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Abstract

Pancreatic intraepithelial neoplasia (PanIN) is a premalignant lesion that can progress to 

pancreatic ductal adenocarcinoma, a highly lethal malignancy marked by its late stage at clinical 

presentation and profound drug resistance1. The genomic alterations that commonly occur in 

pancreatic cancer include activation of KRAS2 and inactivation of p53, and SMAD42-4. To date, 

however, it has been challenging to target these pathways therapeutically; thus the search for other 

key mediators of pancreatic cancer growth remains an important endeavor. Here we show that the 

stem cell determinant Musashi (Msi) is a critical element of pancreatic cancer progression in both 

genetic models and patient derived xenografts. Specifically, we developed Msi reporter mice that 

allowed image based tracking of stem cell signals within cancers, revealing that Msi expression 

rises as PanIN progresses to adenocarcinoma, and that Msi-expressing cells are key drivers of 

pancreatic cancer: they preferentially harbor the capacity to propagate adenocarcinoma, are 

enriched in circulating tumor cells, and are markedly drug resistant. This population could be 

effectively targeted by deletion of either Msi1 or Msi2, which led to a striking defect in PanIN 

progression to adenocarcinoma and an improvement in overall survival. Msi inhibition also 

blocked the growth of primary patient-derived tumors, suggesting that this signal is required for 

human disease. To define the translational potential of this work we developed antisense 

oligonucleotides against Msi; these showed reliable tumor penetration, uptake and target 

inhibition, and effectively blocked pancreatic cancer growth. Collectively, these studies highlight 

Msi reporters as a unique tool to identify therapy resistance, and define Msi signaling as a central 

regulator of pancreatic cancer.

To understand the mechanisms that underlie pancreatic cancer development and progression, 

we investigated signals that control self-renewal, a key stem cell property often hijacked in 

cancer. In particular, we focused on the role of Musashi (Msi), a highly conserved RNA 

binding protein originally identified in drosophila5. While Msi has long been used as a 

marker of stem/progenitor cells6, the breadth of its functional impact is only beginning to 

emerge: genetic loss-of-function models have shown that Msi signaling is important for 

maintaining stem cells in the mammalian nervous system7, and more recently in normal and 

malignant hematopoiesis8-12. However, the role of Msi in pancreatic cancer biology and 

whether it may be a viable therapeutic target remains unknown.

To address these questions, we first analyzed MSI expression in human pancreatic cancers. 

MSI1 and MSI2 were expressed in all primary tumor samples analyzed, with expression 

increasing during progression (Extended Data Fig. 1). To track the function of Msi-

expressing cells, we developed Msi knock-in reporters (Reporter for Musashi, REM) in 

which fluorescent signals reflected endogenous Msi expression (Fig. 1a-b; Extended Data 

Fig. 2a-c). To define if Msi-expressing cells contribute to pancreatic cancer, we crossed 
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REM mice to the KrasLSL-G12D/+;p53f/f; Ptf1aCRE/+ model13-15 (Extended Data Fig. 2d-h). 

In vivo imaging of living tumors revealed clear Msi1 and Msi2 reporter activity within 

remarkable spatially restricted domains frequently surrounded by blood vessels (Fig. 1c-d; 

Extended Data Fig. 2i, Supplementary Video S1). Cells with high levels of Msi reporter 

expression were rare, and detected in 1.18% and 9.7% of REM1 and REM2 cancers (Fig. 

1e-f). Because cancer stem cells can be similarly rare16,17, we tested if Msi-expressing cells 

have preferential capacity for tumor propagation18. Consistent with this possibility, Msi+ 

cells expressed ALDH19, and were dramatically more tumorigenic in vitro and in vivo (Fig. 

1g-i; Extended Data Fig. 3a-g). Most importantly, Msi2+ cells were highly lethal: while 

100% of mice orthotopically transplanted with Msi2+ cells developed invasive tumors and 

died, none of the mice receiving Msi2− cells showed signs of disease (Fig. 1j, Extended Data 

Fig. 3h). Given the suggestion that certain markers may not consistently enrich for tumor 

propagating ability20, our findings indicate that Msi-expression can identify cancer stem 

cells at least in some contexts, and that Msi2 + cells preferentially drive pancreatic cancer 

growth, invasion and lethality.

Msi2+ cells also represented a high proportion of circulating tumor cells, and were more 

tumorigenic than Msi2− CTCs (Fig. 1k-l). While this suggests that Msi2+ CTCs may pose a 

greater risk for tumor dissemination21, the fact that Msi was not consistently elevated in 

metastatic patient-samples analyzed leaves the question of Msi's role in metastasis open. The 

Msi reporter also provided an opportunity to define if it could be used to identify therapy 

resistance. Exposure to gemcitabine led to preferential survival of Msi2+ cells even at high 

doses (Fig. 1m-n; Extended Data Fig. 3i-k). These experiments show that Msi2+ cells are a 

predominant gemcitabine-resistant population, and suggest Msi reporters could serve as a 

tool to visualize drug resistant cells, and identify therapies to target them.

Because Msi expression rose during progression (Extended Data Fig. 1f-k, 4a), and marked 

therapy resistant cells, we tested if genetic or pharmacologic targeting of Msi could eradicate 

this ‘high risk’ population. Deletion of Msi1 led to a 5-fold reduction in tumor volume by 

MRI (Fig. 2a-b, Extended Data Fig. 4b, Supplementary Videos S2-S4). Histologically, 

adenocarcinoma areas comprised 67% of WT-KPf/fC but less than 10% of Msi1−/−KPf/fC 

pancreata; further while Msi1 loss allowed low grade PanINs to form, it largely blocked 

progression to adenocarcinoma (Fig. 2c-f, Extended Data Fig. 4 c, d). Finally, Msi1 deletion 

improved survival in orthotopic grafts: median survival for WT-KPf/fC graft recipients was 

28.5 days, and for Msi1−/−-KPf/fC grafts was 70.5 days, representing a 2.5-fold increase in 

survival time and a 23-fold decrease in risk of death (Fig. 2g).

Because both Msi1 and Msi2 are expressed in pancreatic cancer, we also analyzed the 

impact of deleting Msi29. MRI showed no detectable tumor mass in most Msi2−/−-KPf/fC 

mice (Fig. 2h-i; Extended Data Fig. 4e, Supplementary Videos S2, S5-S6). Histologically, 

KPf/fC pancreata were mostly replaced by adenocarcinoma, often accompanied by 

extracapsular invasion into surrounding structures; in contrast, Msi2−/−-KPf/fC pancreata 

contained low-grade PanIN with rare high-grade PanIN and microscopic foci of 

adenocarcinoma within predominantly normal tissue (Fig. 2j-o). Median survival, tracked in 

the autochthonous model, was 122 days for Msi2−/−-KPf/fC vs. 87 days for WT-KPf/fC mice 

(Fig. 2p), representing a 4-fold decreased risk of death. Collectively, our data show that Msi 
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inhibition significantly improves disease trajectory, leading to an approximate doubling of 

survival. The fact that the mice ultimately succumbed to disease is likely due to the strong 

selection for escaper cells in Msi1 and Msi2 single, or double knockout mice (Extended 

Data Fig. 5). Additionally, some redundancy between Msi1 and Msi2, as well as a partial 

gene fragment present in Msi1−/− mice (data not shown) may also exert compensatory 

activity.

To understand the molecular basis of the effects of Msi loss, we genomically profiled Msi 

deficient tumor cells (Extended Data Fig. 6, 7a-d). Msi loss led to down-regulation of many 

key genes, including regulators of stem cell function (Wnt7a, Aldh, Lin28), proto-oncogenes 

(c-Met, Fos, Fyn) and Regenerating (Reg) family genes, linked to gastrointestinal cancers. 

Among these, analysis of 3'UTRs for Msi binding-sites and RIP-PCR identified BRD4, c-

MET and HMGA2 as potential direct targets (Extended Data Fig. 7e, Fig. 3a). We focused 

on c-MET22, which was diminished in Msi null pancreatic cancer and also bound MSI1 in 

CLIP-seq experiments (Fig. 3b-d, Extended Data 7f, g). c-Met could not only be activated 

molecularly by MSI but also effectively complemented MSI loss (Fig. 3e, f; Extended Data 

Fig. 7h). While these suggest that c-Met is a direct functional target of Msi, it is almost 

certainly one of many. In fact, Msi's powerful impact on cancer is probably because of its 

ability to control a broad range of programs (Extended Data Fig. 6). In this context, BRD4 

and HMGA2 may be particularly attractive targets23,24, as they could act at an epigenetic 

level with c-Met to collectively mediate Msi function. Underscoring such a potential 

convergence of epigenetic and oncogenic pathways, inhibitors of both Brd4 and c-Met 

effectively targeted gemcitabine-resistant Msi2+ cells (Fig. 3g-h).

To complement the mouse models, we tested the impact of MSI inhibition on primary 

patient samples, which harbor more complex mutations, and are uniformly drug resistant. 

Primary pancreatic cancer cells were infected with MSI shRNAs and xenografted (Extended 

Data Fig. 8a). While shMSI cells were equivalently present at time of transplant, their ability 

to contribute to the tumor mass in vivo was reduced by 4.9-6.5 fold (Fig. 4a-b, Extended 

Data Fig. 8b-c), demonstrating that inhibition of either MSI1 or MSI2 results in marked 

suppression of primary human pancreatic cancer growth. Interestingly, MSI2 expression was 

more homogeneous in patients than in mouse models (Extended Data Fig. 1a-b, 2d-e). This 

could be a consequence of selection due to treatment and end-stage disease in patients, or 

because MSI2 patterns differ between mouse models and human disease. However, 

regardless of the level of heterogeneity, our loss-of-function studies indicate that the mouse 

and human disease are both highly dependent on Msi signaling.

Given that inhibition of Msi has profound effects on pancreatic cancer progression, we 

explored its potential as a therapeutic target by developing antisense oligonucleotides 

(ASOs)25,26 specific for MSI1. Because ASO inhibitors are designed based on target RNA 

sequences, they can be a powerful approach for inhibiting proteins like Msi, considered 

“undruggable” by traditional approaches27. Of 400 candidate MSI1- ASOs screened, the two 

most potent markedly reduced colony formation, as well as human cell line and KPf/fC 

derived tumor growth in vivo (Fig. 4c-g, Extended Data Fig. 8d, e). The MSI1-ASOs have 

not yet been lead-optimized, a longer-term process designed to maximize therapeutic level 

efficacy with systemic delivery. To test if a lead-optimized ASO can penetrate the tumor 
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microenvironment, a lead-optimized ASO against Malat1 was delivered intraperitoneally 

and was effective in knocking down its target in both stem and non-stem cell fractions (Fig. 

4h; Extended Data Fig. 8f-j). These studies provide proof-of-principle that deliverable Msi 

inhibitors can antagonize pancreatic cancer growth in vivo, and suggest that ASOs should be 

explored further as a new class of therapeutics in this disease.

The Msi reporters we describe here may be broadly applicable for cancer diagnostic and 

therapeutic studies. Because Msi reporter activity can be visualized through live imaging, 

these mice can be used to track cancer stem cells in vivo, and provide a dynamic view of 

cancer growth and dissemination within the native microenvironment. The fact that reporter-

positive cells are gemcitabine-resistant raises the exciting possibility that this could serve as 

a platform to visualize resistance in vivo. Integration of such reporters during drug 

development may provide a powerful complement to conventional screens, and allow 

identification of therapies that can better target therapy-resistant disease. Further, the 

spatially restricted distribution of Msi+ cells could have important implications for designing 

strategies to loco-regionally target cells that drive residual disease and relapse.

One of the biggest disappointments in pancreatic cancer therapy has been the failure of 

targeted agents to make a meaningful impact. Our data demonstrate that Msi function is 

critical for growth and progression of pancreatic cancer, and Msi therefore represents an 

attractive therapeutic target. Here we show that cell-penetrating antisense oligonucleotides 

are able to antagonize Msi and inhibit growth of pancreatic cancer. These findings highlight 

the value of targeting Msi, and suggest that ASOs27-30 and other antagonists should be 

developed for pancreatic and other cancers marked by high Msi expression. Finally, the rise 

of Msi in pancreatitis (Extended Data Fig. 9) raises the possibility that Msi inhibition could 

serve as a strategy to decrease the risk of developing pancreatic cancer. In the long term, 

blocking Msi signaling could provide a new approach to controlling cancer establishment, 

progression, and therapy resistance.

Methods

Mice

REM1 (Msi1eYFP/+) and REM2 (Msi2eGFP/+) reporter mice were generated by conventional 

gene targeting (Genoway, France; Fig. 1); all of the reporter mice used in experiments were 

heterozygous for the corresponding Msi allele. The Msi1f/f (Msi1flox/flox) mice were 

generated by conventional gene targeting by inserting LoxP sites around Exons 1-4 

(Genoway, France). The Msi2 mutant mouse, B6; CB-Msi2Gt(pU-21T)2Imeg (Msi2−/−) was 

established by gene trap mutagenesis as previously described9. Dr. Hideyuki Okano 

provided the Msi1−/− mice as previously described7. The LSL-Kras G12D mouse, 

B6.129S4-Krastm4Tyj/J (Stock No: 008179) and the p53flox/flox mouse, B6.129P2-

Trp53tm1Brn/J (Stock No: 008462), were purchased from The Jackson Laboratory. Dr. Maike 

Sander provided Ptf1a-Cre mice as previously described14. Dr. Andrew Lowy provided 

Pdx1-Cre mice as previously described13. Mice were bred and maintained in the animal care 

facilities at the University of California San Diego. All animal experiments were performed 

according to protocols approved by the University of California San Diego Institutional 

Animal Care and Use Committee. No sexual dimorphism was noted in all mouse models. 
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Therefore males and females were equally used for experimental purposes and both sexes 

are represented in all data sets.

Tissue dissociation and cell isolation

(A) Mouse pancreatic tumors were washed in RPMI 1640 (Gibco, Life Technologies) and 

cut into 2-4mm pieces immediately following resection. Dissociation into a single cell 

suspension was performed using the Miltenyi Biotec Mouse Tumor Dissociation Kit 

(130-096-730). Briefly, tumor pieces were collected into gentleMACS C tubes containing 

RPMI 1640 dissociation enzymes, and further homogenized using the gentleMACS 

Dissociator. Samples were incubated for 40 minutes at 37°C under continuous rotation, then 

passaged through a 70 μm nylon mesh (Corning). Red blood cells were lysed using RBC 

Lysis Buffer (eBioscience), and the remaining tumor cells were used for FACS analysis and 

cell sorting. (B) Freshly resected mouse brains were rinsed in PBS, placed in accutase (Life 

Technologies), and cut into <2mm pieces. Samples were incubated 15 minutes at 37°C, then 

passaged through a 70 μm nylon mesh (Corning). Red blood cells were lysed as above prior 

to FACS analysis and sorting of brain cells. (C) Bone marrow cells were suspended in HBSS 

(Gibco, Life Technologies) containing 5% FBS and 2 mM EDTA and were prepared for 

FACS analysis and sorting as previously described31. Analysis and cell sorting were carried 

out on a FACSAria III machine (Becton Dickinson), and data were analyzed with FlowJo 

software (Tree Star).

Immunofluorescence and immunohistochemical staining

(A) Human primary pancreatic cancer tissues were fixed in 10% neutral buffered formalin 

and paraffin embedded at the Moores Cancer Center at UCSD according to standard 

protocols. 7μm sections were obtained and deparaffinized in xylene. The UNMC Rapid 

Autopsy Pancreas (RAP) Program provided a second cohort of human primary pancreatic 

cancer tissues and matched liver metastases. Pancreatic cancer tissue from KPf/fC mice were 

fixed in 4% paraformaldehyde and paraffin embedded at the UCSD Histology and 

Immunohistochemistry Core at The Sanford Consortium for Regenerative Medicine 

according to standard protocols. 5μm sections were obtained and deparaffinized in xylene. 

Antigen retrieval was performed for 20-40 minutes in 95-100°C 1x Citrate Buffer, pH 6.0 

(eBioscience). Sections were blocked in TBS or PBS containing 0.1% Triton X100 (Sigma-

Aldrich), 10% Goat or Donkey Serum (Sigma Aldrich), and 5% bovine serum albumin. (B) 

Single cell suspensions from mouse pancreatic tumors and brain. Cells isolated by FACS 

were suspended in DMEM (Gibco, Life Technologies) supplemented with 50% FBS and 

adhered to slides by centrifugation at 500rpm. 24 hours later, cells were fixed with 4% 

paraformaldehyde (USB Corporation), washed in PBS containing 0.1% Tween-20 (Sigma-

Aldrich), and blocked with PBS containing 0.1% Triton X-100 (Sigma-Aldrich), 10% Goat 

serum (Invitrogen), and 5% bovine serum albumin (Invitrogen). (C) Single cell suspensions 

from mouse bone marrow. Cells were allowed to settle onto chambered cover glass (LabTek) 

coated with poly-llysine (Sigma) at 37°C, fixed with 4% paraformaldehyde (USB 

Corporation), washed in 1× Dako wash buffer (Dako), and blocked with Dako wash buffer 

containing 10% Goat serum (Invitrogen). All incubations with primary antibodies were 

carried out overnight at 4 °C. For immunofluorescent staining, incubation with Alexafluor-

conjugated secondary antibodies (Molecular Probes) was performed for 1 hour at room 
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temperature. DAPI (Molecular Probes) was used to detect DNA and images were obtained 

with a Confocal Leica TCS SP5 II (Leica Microsystems) or with a Nikon Eclipse E600 

fluorescent microscope. For immunohistochemical staining, endogenous peroxidase was 

blocked by incubating slides in 3% H2O2 for 15 minutes prior to primary antibody. 

Incubation with Biotinylated secondary antibodies (Vector Laboratories) was performed for 

45 minutes at room temperature. ImmPACT NovaRED Kit (Vector Laboratories) was used 

per manufacturer's protocol. Sections were counterstained with hematoxylin. The following 

primary antibodies were used for human tissue sections: rabbit anti-Msi1 (Abcam, ab52865) 

4μg/ml; rabbit anti-Msi2 (Abcam, ab76148) 1μg/ml; and mouse anti-Keratin (Abcam, 

ab8068) 1:20. The following primary antibodies were used to stain mouse tissues: rabbit 

anti-ALDH1 (Abcam, ab24343) 1:200; rabbit anti-cMet (Abcam, ab5662) 1:250; chicken 

anti-GFP (Abcam, ab13970) 1:250 (for pancreatic tumors and brain) or 1:200 (for bone 

marrow); rabbit anti-Msi2 (Abcam, ab76148) 1:500 (for pancreatic tumors and brain) or 

1:200 (for bone marrow); rat anti-Ki67 (eBioscience, 14-5698) 1:1000; rat anti-Msi1 

(eBioscience, 14-9896-82) 1:500; mouse anti-Keratin (Abcam, ab8068) 1:10; and 

biotinylated DBA (Vector Laboratories, B-1035) 1:1000.

Pancreatic tumorsphere formation assay

(A) Pancreatic tumorsphere formation assays were performed on freshly isolated mouse 

pancreatic tumor cells or circulating tumor cells from peripheral blood modified from 

Rovira, et al32. Briefly, pancreatic tumors from 10-13 week old REM1-KPf/fC or REM2-

KPf/fC mice were dissociated and FACS sorted for YFP+ and YFP- or EpCAM+/GFP+ and 

EpCAM+/GFP- cells, respectively. 100-500 cells were suspended in 100μl DMEM F-12 

(Gibco, Life Technologies) containing 1x B-27 supplement (Gibco, Life Technologies), 3% 

FBS, 100mM-mercaptoethanol (Gibco, Life Technologies), 1x non-essential amino acids 

(Gibco, Life Technologies), 1x N2 supplement (Gibco, Life Technologies), 20ng/ml EGF 

(Gibco, Life Technologies), 20ng/ml FGF2 (Gibco, Life Technologies), and 10ng/ml 

ESGRO mLIF (Millipore). Culture media for circulating tumor cells also contained 20ng/ml 

mHGF (R&D Systems). Cells in media were plated in 96-well ultra-low adhesion culture 

plates (Costar) and incubated at 37°C for 7 days. Sphere images were obtained with a 

Nikon80i. Sphere size was measured using ImageJ 1.47v software.

Lentiviral constructs and production

Short hairpin RNA (shRNA) constructs were designed and cloned into plenti-hU6BX vector 

with a GFP tag by Cellogenetics. The target sequences are 5’-

CCCAGATAGCCTTAGAGACTAT-3’ for MSI1, 5’-CCCAGATAGCCTTAGAGACTAT-3’ 

for MSI2 and 5’-CTGTGCCAGAGTCCTTCGATAG-3’ for the control scrambled sequence. 

Additional (shRNA) target sequences were cloned into a plenty-FG12 vector with a Tomato 

Red tag. These target sequences are 5’-ATGAGTTAGATTCCAAGACGAT-3’ for MSI2 and 

5’-AGGATTCCAATTCAGCGGGAGC-3’ for control scrambled sequence. Virus was 

produced in 293T cells transfected with plenti-shRNA constructs along with pRSV/REV, 

pMDLg/pRRE, and pHCMVG constructs. Viral supernatants were collected for three days 

followed by ultracentrifugal concentration at 50,000xg for 2h.
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Agarose colony formation assays

MIA PaCa-2, Panc-1, Capan-2, and HPAC human pancreatic cancer cell lines were 

purchased from ATCC, and cultured in the appropriate growth media as recommended by 

ATCC. ASPC1, FG, and AA0779E human pancreatic cancer cell lines were provided by Dr. 

Andrew Lowy, and grown in DMEM containing 10% FBS, 1x Glutamax, and 1x PS (pen/

strep). Human pancreatic cancer cell lines were infected with GFP-tagged or TomatoRed-

tagged lentiviral particles containing shRNAs for MSI1, MSI2, and a scrambled control. 

Positively infected cells were sorted 72 hours after transduction. For colony assays, 24-well 

plates were first coated with 0.6% agarose in DMEM without supplements. Cells were 

plated at a density of 2000 cells per well in 0.3% agarose containing DMEM, 10% FBS, 

NEAA, PS, and Glutamax. Growth medium was placed over the solidified agarose layers 

and was supplemented every three days. Colonies were counted 14 days after plating.

MRI

Magnetic resonance imaging was used to determine the pancreatic volumes of the mice in 
vivo. Mice were anesthetized using 1.5% isoflurane and imaged in a 7.0 Tesla small animal 

scanner (Bruker-Biospin, Ettlingen, Germany). Contiguous coronal slices were acquired 

using a multi-slice, RARE sequence: repetition time/echo time = 4826 ms/33 ms, Field of 

View = 6×3 cm, and Matrix = 126 ×128 with up to 44 slices with a thickness of 0.5mm. 

Segmentation and volume rendering were performed using Amira software (FEI 

Visualization Sciences Group, Burlington, MA).

Histological analysis/Quantification of PanIN and PDAC

Mouse tumors from 4.5-13 week old Msi1−/−-KPf/fC, Msi2−/−-KPf/fC mice, and WT-KPf/fC 

littermates were isolated, fixed in 4% paraformaldehyde, and paraffin embedded according 

to standard protocols. 5μm sections were obtained for hematoxylin and eosin and periodic 

acid-Schiff/Alcian Blue staining. To quantify tumor areas, each slide was digitally scanned 

with an Aperio slide scanner. Imagescope software was used to measure PDAC area, PanIN 

area, and normal pancreas area.

Gene expression microarray, RNA-Seq, and data analysis

(A) WT-KPf/fC or Msi1−/−-KPf/fC mice were euthanized at 11 weeks of age. Tumors were 

harvested and total cellular RNAs were purified, labeled and hybridized onto Affymetrix 

GeneChip Mouse Genome 430 2.0 Arrays and raw hybridization data were collected (VA/

VMRF Microarray & NGS Core, UCSD). Expression level data were extracted using R 
package gcrma14, and normalized using a multiple-loess algorithm as previously 

described33,34. Probes whose expression levels exceed a threshold value in at least one 

sample were considered detected. The threshold value is found by inspection from the 

distribution plots of log2 expression levels. Detected probes were sorted according to their q-
value, which is the smallest false discovery rate (FDR) at which a probe is called 

significant13,35. An FDR value of α is the expected fraction of false positives among all 

genes with q ≤α. FDR was evaluated using Significance Analysis of Microarrays (SAM) and 

its implementation in the official statistical package samr36,37. The samples were treated as 

“Two class paired” according to the date of RNA extraction. No genes reached a significance 
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level of α=0.1. A heat map of selected genes was created using in-house software. (B) MIA 

PaCa2 cells were infected with GFP-tagged or TomatoRed-tagged lentiviral particles 

containing shRNAs for MSI1, MSI2, MSI1+MSI2, and a scrambled control. At 72 hours 

post-infection, positively infected cells were sorted and total cellular RNAs were isolated 

using a Qiagen RNeasy mini kit. RNA-seq fastq files were processed into transcript-level 

summaries using kallisto, an ultrafast pseudo-alignment algorithm with expectation 

maximization. Transcript-level summaries were processed into gene-level summaries by 

adding all transcript counts from the same gene. Gene counts were normalized across 

samples using DESeq normalization38, and the gene list was filtered based on mean 

abundance, which left 13,684 “detected” genes for further analysis. Differential expression 

was assessed with an R package limma39 applied to log2-transformed counts. Statistical 

significance of each test was expressed in terms of posterior error probability pE using the 

limma function eBayes40,41. Posterior error probability, also called local false discovery rate, 

is the probability that a particular gene is not differentially expressed, given the prior 

probabilities of the model. The list of genes sorted by pE (in ascending order) were analyzed 

for over-represented biological processes and pathways using a non-parametric version of 

Gene Set Enrichment Analysis42,43. Denoting pE(1) the probability that a gene is not 

differentially expressed in the Msi1 knockdown and pE(2) the probability that a gene is not 

differentially expressed in the Msi2 knockdown, the probability that a gene is differentially 

expressed in both samples was estimated as [1-pE(1)][1- pE(2)]. By the same token, the 

probability that a gene is differentially expressed in the Msi1 knockdown but not in the Msi2 

knockdown was estimated as [1-pE(1)]pE(2); likewise with indices 1 and 2 switched.

RT-PCR analysis

RNA was isolated using RNeasy Micro and Mini kits (Qiagen) and converted to cDNA 

using Superscript III (Invitrogen). Quantitative real-time PCR was performed using an 

iCycler (BioRad) by mixing cDNAs, iQ SYBR Green Supermix (BioRad) and gene specific 

primers. Primer sequences are available upon request. All real time data was normalized to 

actin or Gapdh.

In vivo transplantation assay and analysis

In vivo we focused on the tumorigenic potential of Msi2 reporter cells since Msi1+ cells 

were unable to form tumors in small numbers (100, 1000), possibly because they are less 

tumorigenic or more quiescent (data not shown). Pancreatic tumors from 10-13 week-old 

REM2-KPf/fC mice were dissociated and FACS sorted for EpCAM+/reporter+ (GFP+) and 

EpCAM+/reporter- (GFP-) cells. 100, 500, 1000, or 5000 GFP+ and GFP- cells were 

suspended in DMEM (Gibco, Life Technologies) containing 10% FBS, then mixed 1:1 with 

matrigel (BD Biosciences). Cells were injected subcutaneously into the left or right flank or 

orthotopically into the tail of the pancreas of 5-8 week-old NOD/SCID Il2ry−/− (NSG) 

recipient mice. Subcutaneous tumor dimensions were measured with calipers every 7 days 

for 8-12 weeks. Tumor volume was calculated using the standard modified ellipsoid 

formula, ½(Length × Width2). At endpoint, flank tumors were removed and dissociated as 

described above. Tumor cells were stained with anti-mouse EpCAM antibody 

(eBiosciences) then analyzed for GFP expression by flow cytometry on a FACSAria III 

machine (Becton Dickinson), and data analyzed with FlowJo software (Tree Star). 
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Subcutaneous tumors did not exceed 2cm in diameter as per the University of California San 

Diego Institutional Animal Care and Use Committee Policy on Experimental Neoplasia.

Patient-derived xenograft infection and in vivo transplant

Patient samples were obtained from Moores UCSD Cancer Center from Institutional Review 

Board-approved protocols with written informed consent in accordance with the Declaration 

of Helsinki. All knockdown experiments were conducted with the construct shCTRL 

(scrambled), shMSI1, and shMSI2. Briefly, freshly dissociated (GentleMACS Dissociator, 

Miltenyi) patient-derived xenograft cells were plated in RPMI-1640 with 20% FBS, 1x 

glutamax, 1x non-essential amino acids, 100 IU/ml penicillin, and 100μg/ml streptomycin. 

Cells were transduced with GFP-tagged lentiviral shRNAs, and FACS analysis was 

performed after 24 hours on a portion of the cells; the remaining cells were transplanted into 

the flank of 5-8 week-old NSG recipient mice. Tumor size was monitored by caliper 

measurement, and mice were euthanized when tumors reached 2 cm in diameter. 

Subcutaneous tumors did not exceed 2cm in diameter as per the University of California San 

Diego Institutional Animal Care and Use Committee Policy on Experimental Neoplasia. 

Tumors were harvested, dissociated, and analyzed by FACS.

RIP-qPCR

HEK 293T cells were transfected with MSCV-Flag-Msi2-IRES-tNGFR and lysed 72 hours 

post-transfection. RNA-immunoprecipitation was carried out with anti-Flag antibody 

(Sigma-Aldrich) or control IgG using the EZ-Magna RIP kit as per the manufacturers’ 

protocol (Millipore). Immunoprecipitated RNA was converted to cDNA and analyzed for the 

expression of indicated genes by real-time PCR.

CLIP SEQ

Briefly, MIA PaCa-2 cells were UV cross-linked with a Stratalinker (Model 2400, 

Stratagene). Cells were lysed and supernatant added to Dynabeads conjugated to MSI1 

antibody (clone 14H1, eBiosciences). CLIP library preparation and sequencing, as well as 

sample preparation and sequencing, were performed as previously described44. 73,329 

unique tags were obtained from MSI1-bound targets including tags with the binding core 

sequence “rUAG” site, as reported previously45.

MET rescue Assay

Using gateway technology, pENTR-Human c-MET was engineered into the pLENTIPGK-

PURO DEST vector. MIA PaCa-2 cells were infected with pLENTI PGK-MET or pLENTI 

PGK-EMPTY virus. Following the establishment of the stable cell line over expressing c-

MET; lentiviruses containing shRNAs for Control, MSI1, or MSI2 were delivered. Cells 

were sorted for GFP expression and plated into a soft agar colony assay. Colonies were 

counted 14 days after plating.

in vivo and in vitro drug the rapy

9-10 week old REM2-KPf/fC mice were treated with Gemcitabine alone or in combination 

with Crizotinib or iBet762 for 6 days. On day 6, tumors were removed, dissociated (as 
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described above), counted for total cellular content, stained with anti-mouse EpCAM 

antibody and analyzed for reporter expression by flow cytometry. Gemcitabine (Sigma, 

G6423) was resuspended in H2O at 20mg/ml and delivered at 200mg/kg or 500mg/kg by IP 

injection twice over 6 days (on day 0 and 3). Crizotinib (Seleckchem PF-02341066) was 

resuspended in DMSO at 50mg/ml, diluted 1:10 in H2O, and delivered at 100mg/kg/day for 

6 days by oral gavage. iBet762 (Selleckchem S7189) was resuspended in DMSO at 

50mg/ml, diluted 1:10 in H2O, and delivered at 30mg/kg/day by IP injection for 6 days. For 

in vitro drug assay, low passage Msi2 Reporter KPf/fC cells loaded with 2μM DiI and 

imaged continuously for up to 48 hours while receiving 10μM gemcitabine treatment.

ASO inhibitors

To identify human Msi ASO inhibitors, rapid throughput screens were performed to identify 

effective ASOs as previously described46,47. ASOs were tested in full dose-response 

experiments to determine potency. The top 2 most effective ASOs were chosen to test free 

uptake and verify target knockdown in MIA PaCa-2 cells. The sequences of Gen 2.5 MSI1 

ASOs used for the study were ASO-1, 5’- ATATGATACAGGACGG -3’, and ASO-2, 5’- 

TTACATATGATACAGG -3’, with underlined letters indicating cEt modified bases. The 

sequence of Gen 2.5 scrambled (5’- GGCTACTACGCCGTCA -3’) ASO with no perfect 

match for any known transcript was included as a negative control. (A) In Vitro: MIA 

PaCa-2 cells were treated with 0.5μM-20μM of antisense compound for 24 hours, after 

which cells were lysed and RNA isolated. Gene expression was assessed with Taqman 

probes for MSI1 and MSI2. Actin was used to normalize all real time data. For functional 

testing, MIA PaCa-2 cells were plated in the colony assay as previously described. The 

growth medium was supplemented with 0.25μM-10μM of ASO. Cells were supplemented 

weekly with fresh antisense compound. Colonies were counted 21 days after the first ASO 

treatment. (B) In Vivo: 5×105 MIA PaCa-2 cells were transplanted into the flank of 5-8 

week-old NSG recipient mice. Once tumors were measureable at 2 weeks post transplant, 

50μg of either Control ASO or MSI1 ASO-1 in PBS was administered intratumorally. ASOs 

were delivered daily over the course of the study. Tumor measurements were recorded every 

3 days. Subcutaneous tumors did not exceed 2cm in diameter as per the University of 

California San Diego Institutional Animal Care and Use Committee Policy on Experimental 

Neoplasia. (C) In Vivo: In 8 week-old WT-KPf/fC mice, either Control ASO or Malat1 ASO 

was delivered by intraperitoneal injection at a dose of 50mg/kg. ASOs were delivered daily 

for 14 days. On day 15, mice were sacrificed and the tumor removed. Tumors were 

harvested and used as follows: (1) flash frozen for RNA isolation and qPCR analysis for 

Malat1; (2) placed into 4% paraformaldehyde for paraffin embedding, sectioning, and in situ 

hybridization analysis for Malat1; and (3) dissociated and sorted for RNA isolation to 

compare Malat1 expression in EpCAM+/ALDH+ and EpCAM+/ALDH- populations.

Tumor imaging

11-12 week old REM-KPf/fC mice were anesthetized by intraperitoneal injection of 

ketamine and xylazine (100/20 mg/kg). In order to visualize blood vessels and nuclei, mice 

were injected retro-orbitally with AlexaFluor 647 anti-mouse CD144 (VE-cadherin) 

antibody and Hoechst 33342 immediately following anesthesia induction. Pancreatic tumors 

were removed and placed in HBSS containing 5% FBS and 2mM EDTA. 80-100 micron 
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images in 1024 × 1024 format were acquired with an HCX APO L20x objective on an 

upright Leica SP5 confocal system using Leica LAS AF 1.8.2 software. Videos were 

generated using Volocity 3D Image Analysis Software and compressed using Microsoft 

Video 1 compression.

Circulating tumor cell analysis

10-13 week old REM2-KPf/fC mice were anesthetized and approximately 100μl of 

peripheral blood and ascites was collected in PBS containing 5mM EDTA and 2% Dextran. 

Samples were incubated at 37°C and red blood cells were lysed using RBC lysis buffer 

(eBiosciences). Remaining cells were stained with anti-mouse EpCAM-PE (eBiosciences) 

and anti-mouse CD45-PE-Cy7 (eBiosciences) antibodies. Analysis was carried out on a 

FACSAria III machine (Becton Dickinson) and data analyzed with FlowJo software (Tree 

Star).

In situ hybridization

Msi1 and Msi2 mRNA were detected in tumor samples using RNAscope, an RNA in situ 
hybridization method that permits signal amplification and background suppression. Human 

tissue was drop-fixed in neutral-buffered formalin and processed and embedded in paraffin. 

4μm tissue sections were collected in RNase-fee manner and dried at room temperature 

overnight. Staining was initiated by baking the slides for 32 min at 60 degrees, then they 

were deparaffinized, subjected to antigen retrieval and treated with protease (two sequential 

incubations at 65 and 75 degrees for 12 min each) to enhance probe penetration, as described 

by the manufacturer (Advanced Cell Diagnostics). Msi1-specific and Msi2-specific RNA 

target probe sets were generated and supplied by the manufacturer (Advanced Cell 

Diagnostics). Sequential amplification steps result in a large number of horseradish 

peroxidase molecules per mRNA. The probe was visualized by incubation with 3,3’ 

diaminobenzidine (DAB). Sections were counterstained with hematoxylin. All steps of this 

procedure were performed using a Ventana Discovery Ultra (Roche). Slides were analyzed 

by conventional light microscopy.

Msi1−/−KPf/fC Survival Curve

For the Msi1−/−-KPf/fC mice, tracking survival was complicated by the incidence of 

hydrocephaly observed in the knockout mice reported previously7. To avoid confounding the 

data with deaths due to non-tumorigenic events, we carried out orthotopic transplants. 

Briefly, Msi1−/−KPf/fC and WT KPf/fC mice at 8 weeks of age were sacrificed and tumors 

collected. Tumors were divided into four equal chunks, and then surgically transplanted into 

the pancreas of 8-week-old NSG mice. After surgery, the orthotopically transplanted mice 

were tracked for survival.

Luciferase assay

A Lightswitch Luciferase Assay System (Active Motif, Inc) was used for the assessment of 

MSI1 regulation of cMET. Briefly, 1×104 MIA PaCa-2 cells were plated into 96 well plates 

and cultured for 24 hours. 50ng of cMET 3'UTR GoClone (S811259, Active Motif, Inc) 

plasmid DNA and increasing concentrations (0ng, 50ng, and 100ng) of either PGK-GFP or 
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PGK-MSI1 plasmid vector DNA were co-transfected into MIA PaCa-2 cells. After 24 hours, 

cells were lysed using the Lightswitch Luciferase Assay Reagent (LS100, Active Motif, Inc) 

and luciferase activity measured using a plate scanner (Infinite 200, Tecan).

Caerulein-induced pancreatitis

4-week-old C57BL/6 mice received 8 injections of 50μg/kg caerulein (Sigma-Aldrich) or 

PBS hourly each day for two consecutive days (for a total of 16 injections). Pancreata were 

isolated 2 days after the last injection, fixed in 4% paraformaldehyde and paraffin embedded 

according to standard protocols. 7μm sections were obtained, deparaffinized in xylene, and 

stained as described above.

Statistical analysis

Statistical analyses were carried out using GraphPad Prism software version 6.0d (GraphPad 

Software Inc.). Sample sizes were determined based on the variability of pancreatic tumor 

models used. Tumor bearing animals within each group were randomly assigned to 

treatment groups. Data are shown as the mean ± SEM. Two-tailed unpaired Student's t-tests 

with Welch's correction or One-way analysis of variance (ANOVA) for multiple 

comparisons when appropriate were used to determine statistical significance (*P<0.05, 

**P<0.01, ***P<0.001, ****P<0.0001).

Extended Data
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Extended Data Figure 1. The Musashi genes MSI1 and MSI1 are expressed in human pancreatic 
adenocarcinoma
(a, top row) Representative images of a primary patient pancreatic adenocarcinoma sample 

stained with anti-keratin (green), DAPI (blue), and anti-MSI1 (red) antibodies. White arrows 

indicate MSI1 negative cells; yellow arrow indicates a MSI1 positive cell (a, bottom row) 

Representative images of a primary patient pancreatic adenocarcinoma sample stained with 

anti-keratin (green), DAPI (blue), and anti-MSI2 (red) antibodies. White dotted regions 

indicate MSI2 negative cells while yellow dotted regions indicate MSI2 positive cells. (b, 
top row) Representative images of a primary patient pancreatic adenocarcinoma sample 

stained with anti-keratin (green), DAPI (blue), and anti-MSI1 (red) antibodies. White arrows 

indicate MSI1 negative cells; yellow arrow indicates a MSI1 positive cell. (b, bottom row) 

Representative images of a primary patient pancreatic adenocarcinoma sample stained with 

anti-keratin (green), DAPI (blue), and anti-MSI2 (red) antibodies. Yellow dotted region 

indicates MSI2 positive cells. (c, top row) Representative images of a matched liver 

metastasis from a patient with pancreatic adenocarcinoma stained with anti-keratin (green), 

DAPI (blue), and anti-MSI1 (red) antibodies. White arrows indicate MSI1 negative cells; 

yellow arrows indicate MSI1 positive cells. (c, bottom row) Representative images of a 

matched liver metastasis from a patient with pancreatic adenocarcinoma stained with anti-

keratin (green), DAPI (blue), and anti-MSI2 (red) antibodies. Yellow dotted region indicates 

MSI2 positive cells. (d) Quantification of MSI1 and MSI2 expression in four patients 

comparing primary pancreatic adenocarcinoma to the patient matched liver metastasis; 4 

images analyzed per patient. (e) Quantification of the frequency of MSI1 and MSI2 positive 

cells in four patients comparing primary pancreatic adenocarcinoma to the patient matched 

liver metastasis; 4 images analyzed per patient. (f) MSI1 and (g) MSI2 expression in normal 

pancreas (n=1), PanIN (n=9), and pancreatic adenocarcinoma samples (n=9). (h) 

Quantification of MSI2 expression from a human tissue array comparing Grade 1 (well-

differentiated, n=9), Grade 2 (moderately differentiated, n=12), and Grade 3 (poorly 

differentiated, n=16) adenocarcinoma relative to normal pancreas (n=14) and normal 

adjacent pancreas (n=16). (i) MSI1 and (j) MSI2 expression in well-differentiated, 

moderately differentiated, and poorly differentiated human pancreatic cancer cell lines (n=3 

independent experiments). (k) Colony formation of well-differentiated, moderately 

differentiated, and poorly differentiated human pancreatic cancer cell lines (n=3 independent 

experiments). Data are represented as mean ± SEM. Total Magnification 200x A-B. Source 

Data for all panels are available online.
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Extended Data Figure 2. Validation of Msi1 and Msi2 reporter mice
(a) FACs analysis of Msi2 reporter expression in hematopoietic stem cells, progenitors and 

lineage-positive differentiated cells. (b) Representative image of Msi1 expression in FACs 

sorted YFP+ neuronal cells; YFP (green), Msi1 (red), and DAPI (blue). (c) Representative 

image of Msi2 expression in FACs sorted GFP+ hematopoietic cells; GFP (green), Msi1 

(red), and DAPI (blue). (d-e) Msi-expression in keratin+ cells. (d) Msi1-YFP reporter 

(green, white arrows) and keratin (red) staining was performed on tissue sections of REM1-

KPf/fC mice; (e) Msi2-GFP reporter (green, white arrows) and keratin (red) staining was 

performed on tissue sections of REM2-KPf/fC mice. DAPI staining is shown in blue. Rare 

cells (<5%) were found to be keratin-negative (possibly mesenchymal population). (f) 
Immunofluorescence analysis of Msi1 and Msi2 expression overlap in isolated EpCAM+ 

KPf/fC cells (n=3, 1000 total cells analyzed from 3 independent experiments). Data are 

represented as mean ± SEM. (g-h) Survival of Msi reporter-KPf/fC and WT-KPf/fC mice. 

Survival curves of (g) Msi1YFP/+-KPf/fC (REM1-KPf/fC, n=21) or WT-KPf/fC (n=18) mice, 

and (h) Msi2GFP/+-KPf/fC (REM2-KPf/fC, n=65) or WT-KPf/fC (n=54) mice. (i) Live image 

of Msi2 reporter cells in REM2-KPf/fC tumor; VE-cadherin (magenta), Hoescht (blue), Msi 

reporter (green). See also Figure 1c-d. Source Data for all panels are available online.
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Extended Data Figure 3. Analysis of stem cell traits in Msi1 and Msi2 reporter+ KPf/fC 
populations
(a) ALDH expression in reporter positive tumor cells sorted from REM1-KPf/fC (top row) 

and REM2-KPf/fC (bottom row) mice; ALDH1 (red), DAPI (blue) and GFP or YFP 

(green). (b) Average ALDH expression in bulk or Msi1 and Msi2 reporter positive tumor 

cells (n=3 each; 90 total cells analyzed from 3 REM1-KPf/fC and 150 total cells analyzed 

from 3 REM2-KPf/fC). (c) Average Msi expression in ALDH+ cells from REM1-KPf/fC and 

REM2-KPf/fC tumors (n=3 independent experiments for each genotype). (d-e) 
Representative images of spheres formed from (d) Msi1 and (e) Msi2 reporter+ and reporter- 

tumor cells. See also Figure 1g-h. (f-g) In vivo tumor growth of Msi2 reporter+ or Msi 

reporter- KPf/fC cells at (f) 500 or (g) 1000 cells (n=16). See also Figure 1i. (h) Survival of 

mice orthotopically transplanted with 10,000 Msi2 reporter+ and reporter- KPf/fC tumor 

cells (n=6). See also Figure 1j. Log-rank (Mantel-Cox) survival analysis (p<0.05). (i-j) 
Reporter frequency in REM2-KPf/fC mice treated with vehicle or 200mg/kg Gemcitabine 

(n=3 each). See also Figure 1m-n for high dose (500mg/kg) Gemcitabine. Data are 

represented as mean ± SEM. *** P < 0.001 by Student's t-test or One-way ANOVA. (k) 

Msi2 reporter-negative KPf/fC cells do not turn on Msi2 expression following in vitro 
gemcitabine treatment, suggesting that Msi-reporter+ cells are differentially resistant to 

Gemcitabine. Low passage Msi2 reporter KPf/fC cells loaded with DiI were live-imaged 

continuously for up to 48 hours. Representative series of images from 10μM gemcitabine 

treatment. Reporter-negative cells (red); GFP reporter-positive cells (green); tracking of 

Msi2 reporter-negative cells (white arrows); tracking of Msi2 reporter-positive cells (yellow 

arrows) (n=3 independent experiments). Source Data for all panels are available online.
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Extended Data Figure 4. Analysis of tumors from Msi null KPf/fC mice
(a) Msi2 (green) and Keratin (red) immunofluorescent staining was performed on tissue 

sections from WT pancreas (Normal, n=3 samples), KRASG12D/+;Ptf1aCre/+ (PanIN, n=2 

samples), and KRASG12D/+;p53f/f;Ptf1aCre/+ (PDAC, n=3 samples) mice with quantification 

of Msi2 fluorescence in Keratin positive cells. (b) Average weights of WT-KPf/fC (n=13) 

and Msi1−/−-KPf/fC tumors (n=9). See also Figure 2h-i. for tumor volume analysis (c) PAS 

and Alcian Blue stained sections of pancreata isolated from WT-KPf/fC represent areas used 

to identify the stages of PanINs (yellow boxes) and adenocarcinoma (red box). (d) Tumors 

from 11-13 week old WT-KPf/fC (n=6), Msi1−/−-KPf/fC (n=3), and Msi2−/−-KPf/fC (n=3) 

mice were stained and quantified for percent of Keratin+ tumor cells (red) expressing Ki67 

(green); DAPI staining is shown in blue. (e) Average weights of WT-KPf/fC (n=5) and 

Msi2−/−-KPf/fC tumors (n=7). See also Figure 2h-I for tumor volume analysis. Data are 

represented as mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 by Student's t-test or 

One-way ANOVA. Source Data for all panels are available online.
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Extended Data Figure 5. Selection for escaper Msi expressing cells in Msi1, Ms2 single and 
double knockout KPf/fC mice
(a-c) Immunohistochemical staining for (a) IgG control (n=4), or (b-c, red) Msi2 in 13 week 

old WT-KPf/fC (n=4) and Msi2−/−KPf/fC (n=4) mice. (d) Immunohistochemical staining for 

Msi2 (red) in 22 week old Msi2−/−KPf/fC mouse (n=1). (e-g) Immunohistochemical staining 

for (e) IgG control, (f, red) Msi1 and (g, red) Msi2 in 15-week-old Msi1f/fMsi2−/− double 

knockout KPf/fC mouse (n=1). (h) Survival curves of Msi1f/fMsi2−/−-KPf/fC (n=6) or WT-

KPf/fC tumors (n=35). Source Data for all panels are available online.

Extended Data Figure 6. Genome wide analysis of Msi controlled programs in pancreatic cancer
(a) Genome wide expression analysis of dissociated pancreatic tumors. Microarray analysis 

was performed on RNA from 3 pairs of WT-KPf/fC and Msi1−/−-KPf/fC matched littermates. 

Heat map shows differential expression of selected mRNAs identified as part of a stem cell 

associated gene signature. (b) Concordantly (upper right and lower left quadrants) and 

discordantly (upper left and lower right quadrants) regulated genes (red) in MSI1-
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knockdown and MSI2-knockdown MIA PaCa2 cells. (c) Gene changes specific to MSI1-

knockdown (turquoise) or MSI2-knockdown (purple) in MIA PaCa2 cells. (d) Heat maps 

indicating concordant, MSI1 specific, and MSI2 specific genes. (e) Venn diagram displaying 

the intersection of probe sets that are differentially regulated in MSI1-knockdown, MSI2-

knockdown and double knockdown of MSI1 and MSI2 in MIA PaCa2 cells. Within 

scatterplots, lighter color corresponds to a probability >0.5 and the darker color corresponds 

to a probability >0.75. Source Data for all panels are available online.

Extended Data Figure 7. Molecular targets of Msi signaling
(a-b) Real-time PCR analysis of (a) Msi1 and (b) Msi2 expression in MIA PaCa-2 human 

pancreatic cancer cells relative to normal pancreas (n=3 independent experiments). (c-d) 

Analysis of shRNA knockdown efficiency in GFP+ sorted MIA PaCA-2 cells infected with 

GFP tagged lentiviral shRNA against scrambled control sequences, (c) MSI1 or (d) MSI2 

(n=3 independent experiments). Analysis of direct Msi targets (e) Msi consensus binding 

sites in 3'UTR of Brd4, Hmga2 and c-Met transcripts. (f-g) Phospho-c-Met staining in WT-

KPf/fC and (f) Msi1−/−-KPf/fC, (g) Msi2−/−-KPf/fC mice; Keratin (magenta), phospho-c-Met 

(green), DAPI (blue). See Figure 3b-c for quantified data. (h) Colony formation of MIA 

PaCa-2 cells infected with empty vector or c-MET overexpression vector (3 independent 

experiments) shows no impact of overexpressed c-Met on control MIA PaCa-2 (control for 

c-Met mediated rescue of MSI knockdown in Figure 3f). Data are represented as mean ± 

SEM. *** P < 0.001, **** P < 0.0001 by Student's t-test. Source Data for all panels are 

available online.
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Extended Data Figure 8. Analysis of impaired pancreatic cancer growth with shMSI and MSI1-
ASOs
(a) Schematic for inhibiting MSI in primary patient-derived xenografts. (b-c) Frequency of 

GFP+ patient tumor cells before and after transplantation. See also Figure 4a-b for 

Patient#1, #2. ASO delivery in vivo (d, e) MSI1 expression following free uptake of (d) 
control ASO or (e) MSI1-ASO2 in human pancreatic cancer line (n=3 per condition). See 

also Figure 4c for impact of MSI1-ASO1. Target knockdown efficacy of lead optimized 

ASO in KPf/fC stem cells (f) Malat1 expression in EpCAM+/ALDH+ and EpCAM+/ALDH- 

cells following systemic delivery of lead-optimized control ASO or Malat1-ASO in 

autocthonous KPf/fC model (n=3 independent experiments) See also Figure 4h for target 

knockdown in unfractionated Epcam+ cells. Analysis of potential toxicity of MSI-ASO (g) 

Cage weight of mice receiving daily treatment of MSI1 ASO-1 (50mg/kg) or vehicle by IP 

injection; 4 mice per cage; cage weight was measured every 3 days. (h) Average body 

weight of mice following 3 weeks of daily treatment with MSI1 ASO-1 (50mg/kg) or 

vehicle by IP injection (n=4 mice/cohort). In vivo delivery of MSI1 ASOs (50mg/kg) had no 

deleterious impact on body weight and maintained plasma chemistry markers (AST, ALT, 

BUN, T.Bil) within 3x ULN (upper limit of normal). (i-j) Representative images of in situ 

hybridization for Malat1 (purple) in pancreatic tumors isolated from KPf/fC mice treated by 

daily IP injection with (i) control ASO (50mg/kg) or (j) Malat1-ASO (50mg/kg) for 14 days. 

Source Data for all panels are available online.
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Extended Data Figure 9. Elevated expression of Msi in pancreatitis
Msi2 expression in a caerulein-induced mouse model of pancreatitis, and in human 

pancreatitis. (a) Msi2 staining and (b) quantification of 10 images per group in pancreas 

from PBS-treated (a, top panels, n=1) and caerulein-treated mice (a, bottom panels, n=1). (c) 

Msi2 immunohistochemical staining in islets (purple circles) and acinar cells (blue squares) 

in caerulein or PBS treated mice (n=1 for each group). (d) Immunofluorescent staining of 

Msi2 (green) in DBA+ ductal cells (red) treated with PBS (left panels) or caerulein (right 

panels) (n=1 for each group); DAPI is shown in blue. (e) MSI2 expression in human tissue 

arrays from patients presenting with mild chronic inflammation (n=4) and chronic 

pancreatitis (n=6) compared to normal pancreas (n=14). Data are represented as mean ± 

SEM. **** P < 0.0001 by Student's t-test. Source Data for all panels are available online.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Msi reporter positive pancreatic cancer cells are enriched for tumor initiating capacity
(a-b) Design of Msi reporter constructs (REM1, Msi1eYFP/+; REM2, Msi2eGFP/+). (c-d) Live 

images of Msi reporter cells in (c) REM1-KPf/fC and (d) REM2-KPf/fC tumors; VE-

cadherin (magenta), Hoechst (blue), Msi reporter (green). (e-f) Msi1 and Msi2 reporter 

expression in dissociated tumors (n=6). (g-h) Sphere-forming ability of Msi-reporter+ and 

reporter- cells (g, n=8; h, n=6). (i) In vivo growth of Msi2 reporter+ tumor cells (n=8). (j) 
Survival of mice orthotopically transplanted with Msi2 reporter+ and reporter- KPf/fC tumor 

cells (n=6). Log-rank (Mantel-Cox) survival analysis (p<0.05). (k) Reporter frequency in 

primary tumors (n=3), and CTCs from ascites (n=3) or peripheral blood (n=4). (l) Average 

frequency of tumor-spheres from Msi2 reporter+ and reporter- CTCs (n=3 technical 

replicates). (m-n) Reporter frequency in REM2-KPf/fC mice treated with vehicle or 

500mg/kg Gemcitabine (n=6). Data are represented as mean ± SEM. * P < 0.05, ** P < 

0.01, *** P < 0.001, **** P < 0.0001 by Student's t-test or One-way ANOVA. Source Data 

for all panels are available online.
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Figure 2. Loss of Msi1 or Msi2 impairs tumor initiation and progression in a genetic mouse 
model of pancreatic cancer
(a) Coronal and sagittal MRI images of normal, WT-KPf/fC and Msi1−/−-KPf/fC mice with 

3-dimensional volume rendering of tumor mass (red). (b) Average volumes of isolated WT-

KPf/fC (n=13) and Msi1−/−-KPf/fC tumors (n=9). (c-d) Histology and (e-f) quantification of 

PanIN and/or adenocarcinoma areas in WT-KPf/fC and Msi1−/−-KPf/fC tumors. (g) Survival 

of mice orthotopically grafted with Msi1−/−-KPf/fC or WTKPf/fC tumors (n=16). Analysis of 

Msi2−/−-KPf/fC tumors (h) by MRI and (i) after isolation, WT-KPf/fC (n=5), Msi2−/−-KPf/fC 

(n=7). (j-m) Histology of WT-KPf/fC and Msi2−/−-KPf/fC pancreatic tumors (40x 

magnification); (k) Adenocarcinoma, liver invasion (green arrows), (l) adenocarcinoma 

(yellow arrows), (m) PanINs (blue arrows). (n-o) quantification of PanIN and/or 

adenocarcinoma areas in WT-KPf/fC and Msi2−/−-KPf/fC tumors (n=6). (p) Survival of 

autochthonous Msi2−/−-KPf/fC (n=19) or WT-KPf/fC (n=32) mice. Log-rank (Mantel-Cox) 

survival analysis (p<0.0001). Data represented as mean ± SEM. ** P < 0.01, *** P < 0.001 

by Student's t-test. Source Data for all panels are available online.
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Figure 3. Msi controls expression of key oncogenic and epigenetic signals
(a) Msi RIP-PCR for indicated transcripts. (b-c) Frequency of phospho-c-Met+ cells in WT-

KPf/fC, Msi1−/−-KPf/fC, and Msi2−/−-KPf/fC mice, (b, n=8; c, n=6). (d) Schematic of c-MET 

exons and 3'UTR. CLIP tags (red triangles) indicate MSI1 binding in 3'UTR. (e) c-MET 

3'UTR luciferase reporter activity in the presence or absence of MSI1 or MSI2 (n=3 

independent experiments). (f) Colony formation of MSI1 or MSI2 knockdown cells with or 

without c-MET (n=4 independent experiments). (g-h) FACs analysis of tumors from 

Gemcitabine-treated REM2-KPf/fC mice, in the presence or absence of Crizotinib and 

iBet762; Vehicle (n=7), Gemcitabine (n=3), Gemcitabine+iBet762 (n=3), Gemcitabine

+Crizotinib (n=3). Data represented as mean ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001 

by Student's t-test or One-way ANOVA. ns, not significant. Source Data for all panels are 

available online.
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Figure 4. Targeting MSI inhibits pancreatic cancer growth in patient-derived xenografts
(a-b) Frequency of GFP+ tumor cells before and after transplantation. (c) MSI1 expression 

following MSI1-ASO free uptake in human pancreatic cancer line (n=3 independent 

experiments/dose). (d) Colony formation of control or MSI1-ASO treated human pancreatic 

cancer line (n=3 independent experiments). (e) In vivo growth of human cell line-derived 

tumors in control or MSI1-ASO treated mice (n=10). (f) Relative tumor volume and (g) rate 

of growth of KPf/fC-derived tumors in control or MSI1-ASO treated mice (n=8). (h) Malat1 

expression in autocthonous KPf/fC tumors following systemic delivery of lead-optimized 

control or Malat1-ASO (n=6). Data represented as mean ± SEM. * P < 0.05, ** P < 0.01, 

*** P < 0.001 by One-way ANOVA. ns, not significant. Source Data for all panels are 

available online.
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