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ARTICLE

DNA methylation study of Huntington’s disease
and motor progression in patients and in animal
models
Ake T. Lu 1,10, Pritika Narayan 2,10, Matthew J. Grant2, Peter Langfelder3,4, Nan Wang3,4, Seung Kwak5,

Hilary Wilkinson 5, Richard Z. Chen5, Jian Chen 5, C. Simon Bawden6, Skye R. Rudiger6, Marc Ciosi7,

Afroditi Chatzi7, Alastair Maxwell7, Timothy A. Hore 8, Jeff Aaronson5, Jim Rosinski5, Alicia Preiss5,

Thomas F. Vogt5, Giovanni Coppola 3,4, Darren Monckton 7, Russell G. Snell2,11, X. William Yang 3,4,11 &

Steve Horvath 1,9,11✉

Although Huntington’s disease (HD) is a well studied Mendelian genetic disorder, less is

known about its associated epigenetic changes. Here, we characterize DNA methylation

levels in six different tissues from 3 species: a mouse huntingtin (Htt) gene knock-in model, a

transgenic HTT sheep model, and humans. Our epigenome-wide association study (EWAS)

of human blood reveals that HD mutation status is significantly (p < 10−7) associated with 33

CpG sites, including the HTT gene (p= 6.5 × 10−26). These Htt/HTT associations were

replicated in the Q175 Htt knock-in mouse model (p= 6.0 × 10−8) and in the transgenic

sheep model (p= 2.4 × 10−88). We define a measure of HD motor score progression among

manifest HD cases based on multiple clinical assessments. EWAS of motor progression in

manifest HD cases exhibits significant (p < 10−7) associations with methylation levels at

three loci: near PEX14 (p= 9.3 × 10−9), GRIK4 (p= 3.0 × 10−8), and COX4I2 (p= 6.5 × 10−8).

We conclude that HD is accompanied by profound changes of DNA methylation levels in

three mammalian species.
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Huntington’s disease (HD) is a dominantly inherited neu-
rodegenerative disorder clinically characterized by a
progressive movement disorder, cognitive dysfunction,

and psychiatric impairment. HD gene-expansion carriers
(HDGECs) have CAG-repeat lengths of 36 or greater on one of
the alleles of the huntingtin (HTT) gene. HD is one of several
polyglutamine disorders (including spinal cerebellar ataxias types
1, 2, 3, 6, and 7, spinal and bulbar muscular atrophy, and
dentatorubral-pallidoluysian atrophy) that are caused by the
expansion of unstable CAG trinucleotide repeats1.

Since these disorders exhibit distinct patterns of neuronal loss and
clinical manifestation, the differential pathogenesis of polyglutamine
disorders may be due to differences in polyglutamine protein con-
text or the host protein function. This is despite nearly ubiquitous
expression of these proteins, at least in the brain, and, in the case of
HTT, expression throughout the body and during development. The
age of onset of motor (AMO) symptoms is strongly and inversely
correlated with the number of CAG trinucleotide repeats in HTT2–4.
A recent study showed that HTT CAG-repeat length but not
polyglutamine length determines the timing of HD motor onset5.
HD patients are usually clinically diagnosed in their 40s, but the
AMO ranges from younger than 10 years for individuals with high-
repeat lengths to, in rare cases, over 80 years. Age plays an important
role in HD; for example, the product of CAG-repeat length and
chronological age (CAP score) relates to clinical progression in HD
according to longitudinal studies of HDGEC cohorts3.

By exploiting DNA methylation (DNAm)-based biomarker of
tissue age (referred to as the epigenetic clock), we have shown
that HD is associated with epigenetic age acceleration (AgeAccel)
and greatly disrupted changes in DNAm levels in brain tissues6.
Recent studies have looked at methylation levels of selected genes
in HDGECs7 and analyzed 13 human cortical samples8. DNA
(de)methylation in an HTT gene context has also been investi-
gated in transgenic animal models9. However, it is not yet known
whether HD is associated with significant DNAm changes in
other human tissues and in transgenic animal models.

Here we present, to our knowledge, the largest DNAm study of
HD to date. We generate large methylation datasets from three
species and from eight sources of DNA. We evaluate composite
epigenetic biomarkers and individual CpGs in terms of their
relationship with (a) HDGEC status and (b) HD progression in
individuals with manifest motor symptoms. Our epigenetic clock
study demonstrates that manifest HD is associated with increased
epigenetic age in human blood DNA. Epigenome-wide associa-
tion studies (EWAS) of HD mutation status reveal that HTT is
the most significant locus in multiple tissues from three species.
Blood DNAm levels of select genomic loci are associated with
motor score progression among manifest HD patients.

Results
Our methylation study datasets derive from three species: (I) a
total of 2164 human samples across blood, lymphoblast, and
fibroblast tissues collected from five datasets, (II) a total of 112
mouse tissues (cerebellum, striatum, blood, cortex, and liver)
measured on two platforms (reduced representation bisulfite
sequencing (RRBS) and a custom methylation array), and (III)
168 blood samples from sheep. All methylation datasets are
described in Table 1 (for human) and Supplementary Table 1 (for
mouse and sheep). Human blood samples were a subset of a
larger collection from Enroll-HD10 and Registry-HD11 datasets;
the longitudinal clinical measures from the subset of cases were
used to perform the HD progression analysis.

Human data. We generated five human DNAm datasets using
the Illumina Infinium array (N= 2164 samples; Table 1): (1)

N= 910 blood samples from Enroll-HD study (data 1); (2) N=
714 longitudinal blood samples from 357 individuals from Enroll-
HD (data 2); (3) N= 376 blood samples from Registry-HD; (4)
N= 100 lymphoblastoid cell samples from Registry-HD; and (5)
N= 64 fibroblast samples from the CHDI. The Enroll-HD study
datasets (blood data 1 and 2) used in this study were a subset of a
larger collection of 33,288 observations from 15,203 individuals
(“Methods”; Supplementary Tables 2, 3). Apart from studying the
effect of HTT mutation status on DNAm levels, we also tested the
hypothesis that methylation levels in blood-derived DNA are
predictive of motor progression in manifest HD cases. We ana-
lyzed large-scale longitudinal motor score assessments from (1)
Enroll-HD data 1 after the initial blood draw (on average 3.1
years of follow-up; Supplementary Table 2), (2) the Enroll-HD
data 2, which only involved HDGECs (on average 7.9 years apart
from the first blood draw; Supplementary Table 3), and (3) the
last visit in the Registry-HD cohort (Table 1). Our EWAS of HD
progression involved 917 individuals with manifest HD for whom
both DNAm profiles and longitudinal clinical assessments were
available (“Methods”).

HD motor progression in manifest HD cases. A linear mixed
analysis was performed to define a measure of HD motor pro-
gression in manifest patients from Enroll-HD. For data 1, we used
a large-scale Enroll-HD database comprising 14,850 longitudinal
observations across 5204 manifest patients (“Methods”). Total
motor scores were measured by the Unified Huntington’s Disease
Rating Scale (UHDRS)12, a standard clinical assessment to
quantify the severity of disease (Supplementary Note 1). A higher
UHDRS motor score indicates a more severe disease progression.
Figure 1a illustrates the heterogeneity of slopes of longitudinal
motor scores versus visit, indicating the utility of modeling visit as
a random effect in a linear mixed-effects model. A linear mixed-
effects model was used to relate the longitudinal motor scores
(dependent variable) to visit (random effect), age, sex, CAG
length, age at motor onset, and educational attainment (“Meth-
ods”). Our measure of HD progression was defined by the ran-
dom slope estimate after adjusting for the other covariates. The
adjusted random slope estimate can be viewed as a measure of
atypical HD progression not predicted by HTT mutation, age,
and potential confounders. This measure is analogous to the one
used in an earlier genome-wide association study (GWAS) of HD
progression13.

After >2 years of follow-up, motor scores were substantially
increased (on average 7.6 points; Supplementary Fig. 1). As
expected, CAG-repeat length and AMO were significantly asso-
ciated with an increase in motor score in a linear mixed model
analysis (Table 2). The model revealed that motor scores were
increased by 2.7 ± 0.09 (p= 5.3 × 10−191) per one unit increase in
CAG-repeat length, increased by 2.2 ± 0.05 (p < 5.0 × 10−300) per
year (of age), increased by 3.5 ± 0.08 (p < 5.0 × 10−300) per year of
follow-up, and decreased by 1.54 ± 0.05 (p= 1.24 × 10−201) per year
of AMO. Females were associated with higher motor scores (p=
1.16 × 10−12) and years of education were associated with lower
motor scores (p= 3.31 × 10−22).

A linear mixed analysis was analogously performed in Enroll-
HD data 2 (1867 observations across N= 278 patients, with a
longer follow-up period (“Methods” and Supplementary Table 4).
The motor score in this group at the last visit showed a
substantially larger increase (on average 27.43 compared to 7.6),
due to the longer follow-up period (on average 7.8 years
compared to 2 years; Supplementary Fig. 1). Both linear mixed-
effects models reveal that our measures of HD motor progression
(random slope) are significantly associated with age and CAG-
repeat length in both Enroll-HD data 1 and 2 (Table 2 and
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Supplementary Table 4, respectively). CAG-repeat length exhibits
particularly significant associations with HD progression (p=
1.1 × 10−13 in data 1 and p= 1.2 × 10−7 in data 2).

In the Registry-HD data, we used a different definition for
motor progression because it differed from Enroll-HD in terms of
the assessment of follow-up information. Short-term follow-up
information (on average 1.18 ± 0.6 years) was available for 224
out of 287 manifest patients from the Registry-HD study. Similar
to a previous study of motor progression in the Registry-HD
data13, we defined progression as raw residual resulting from a
linear model that regressed the motor score at the last visit
(dependent variable) on age and other determinants of motor
progression (“Methods”). The Registry-HD data showed compar-
able patterns for the associations of the fixed effects with motor
scores in terms of directions of regression coefficients and effect
sizes (Table 2 and Supplementary Table 5).

HD manifest patients exhibiting accelerated blood epigenetic
aging effects. We applied five human epigenetic biomarkers of
aging (epigenetic clocks) that lend themselves to analyzing blood
methylation data: (1) Horvath’s pan-tissue epigenetic age (referred
to as DNAm age14); (2) Hannum’s blood-based DNAm age15; (3)
skin and blood clock (DNAmAgeSkinClock)16; (4) DNAmPheno-
Age17; and (5) the mortality risk estimator DNAmGrimAge18.

Using the longitudinal Enroll-HD data 2, we found that all
DNAm age estimators track the passage of study time (Fig. 2a–d).
In the cross-sectional data, the correlation between DNAm age
estimators and chronological ages were >0.84, led by DNAmA-
geSkinClock (Fig. 2c) with correlation estimates ranging between
0.95 and 0.97 across all the three datasets (Supplementary Figs. 2e,
f, 3c, and 4c).

To formally measure possible epigenetic AgeAccel effects
due to HD disease status, we fit a regression model of DNAm
age on chronological age and defined AgeAccel as the resulting
raw residual. Thus, positive AgeAccel means the methylation
state of the sample appears to be older than would be expected
based on chronological age. We found that manifest HD (but
not pre-manifest HD) had significantly higher epigenetic
AgeAccel than controls (0.098 ≤ p ≤ 2.0 × 10−4, Fig. 3), led by
the pan-tissue clock (AgeAccel, p= 2.0 × 10−4, Fig. 3a) and
AgeAccelGrim (p= 2.4 × 10−4; Fig. 3f). The difference
remained significant (p= 1.1 × 10−3; Fig. 3b) when studying
the measure of intrinsic epigenetic AgeAccel (IEAA), which is
independent of imputed blood cell counts19. Despite the low
number of controls (N= 78), we managed to corroborate the
finding for AgeAccelGrim in the Registry-HD data (p= 0.046;
Supplementary Fig. 5L).

A multivariate model analysis demonstrates that the observed
epigenetic AgeAccel effects are not due to confounders
(Supplementary Table 6). In particular, we find that manifest
HD is associated with a significant increase in DNAm age (p=
2.9 × 10−3) in the Enroll-HD data even after adjusting for the 10
principal components. However, this association could not be
replicated in the Registry-HD data (Supplementary Table 7).

The pan-tissue clock also revealed a strong correlation between
lymphoblastoid cells blood (r= 0.74, p= 2.1 × 10−18; Supplemen-
tary Fig. 6A), but the DNAm Age estimate was significantly lower
than that of corresponding blood samples (mean difference= 3.3
years, p= 0.0017; Supplementary Fig. 6B), suggesting that the
Epstein–Barr virus transformation used in generating lymphoblas-
toid cell lines decreases DNAm age.

Next, we tested whether epigenetic AgeAccel is associated with
motor progression in manifest HD. The considered measures

Table 1 A total of 2164 methylation samples across blood, lymphoblastoid, and fibroblast tissues were used for human cross-
sectional studies.

Parameter

Enroll-HD data 1
(N= 910)

Enroll-HD data 2a

(N= 357 × 2)
Registry-HD
(N= 376)

Registry-HD
(N= 100)

CHDI
(N= 64)

DNA source

Buffy coat Buffy coat Whole blood Lymphoblastoid Fibroblast

No. of individuals
Manifest HD 393 204 298 79 37
Pre-manifest 223 153 0 0 0
Control 294 0 78 21 27

Age
HDGEC 49 [18, 76] 45 [18, 76] 53 [19, 84] 52 [19, 82] 43 [31, 58]
Control 51 [18, 76] – 49 [20, 84] 52 [20, 82] 41 [31, 55]

CAG length
HDGEC 43 [36, 51] 44 [37, 59] 45 [39, 67] 45 [39, 66] 44 [41, 50]
Controls 20 [16, 35] – 21 [14, 33] 21 [17, 31] –

Age of motor onset
HDGEC 46 [16, 73] 44 [17, 75] 44 [8, 75] 43 [8, 73] –

DNA methylation
Array type Illumina 450k Illumina EPIC Illumina 450k Illumina 450k Illumina 450k
Normalization method Noob57 Noob57 Noob57 Noob57 Noob57

Data analysis Clock, EWAS,
regression

Clock, EWAS, regression Clock, EWAS,
regression

Clock, regression Clock, regression

Columns 1–5 correspond to blood methylation data from Enroll-HD data 1, Enroll-HD data 2, and the Registry-HD, respectively. For each individual in the Enroll-HD data 2, two blood samples were
collected (separated by roughly 7.9 years). Only the first sample is described in the table. The last row specifies the use of these data: epigenetic clock analysis, epigenome-wide association study
(EWAS), and multivariate regression analysis. Both Enroll-HD10 and Registry-HD11 are large-scale longitudinal observational cohorts for studying the onset and progression of Huntington’s disease. The
last two columns correspond to non-blood methylation data from Registry-HD and CHDI, respectively. The CHDI Foundation is a privately funded, not-for-profit biomedical research organization devoted
to a single disease—Huntington’s disease.
Continuous parameters are presented in the format of mean [min, max].
HDGEC refers to HD gene-expansion carriers (combining pre-manifest and manifest individuals).
aHD status and age estimates reported for the first blood draw for the DNA methylation study. The dataset involves 714 methylation samples from two longitudinal measures across 357 individuals.
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Fig. 1 EWAS of motor progression in manifest HD cases. a The spaghetti plot illustrates how the motor score depends on the visit in Enroll-HD. To arrive
at a measure of motor score progression (i.e., the rate of change in the motor score), we estimated the slope using a random-effects model with a random
slope and intercept term. b The Manhattan plot visualizes the EWAS results of motor progression in manifest HD cases: log (base 10)-transformed meta-
analysis p value (y-axis) versus the chromosomal location of each CpG (x-axis). The EWAS results were calculated with the biweight midcorrelation
tests50. Fixed-effects meta-analysis (weighted by inverse variance) was performed to combine the EWAS results across blood data (N= 917) from Enroll-
HD data 1, Enroll-HD data 2, and Registry data. All p values are two-sided and not adjusted for multiple comparisons. The blue and red horizontal lines
correspond to suggestive significance (α= 1.0 × 10−5) and genome-wide significant levels (α= 1.0 × 10−7), respectively. Gene names are provided for
CpGs (blue circles) with p < 1.0 × 10−6 with detailed summary statistics reported in Supplementary Data 3.

Table 2 Linear mixed model regression analysis for HD motor progression.

Parameter Outcome: motor score Outcome: random slope

Coef. SE T statistic P value Coef. SE T statistic P value

Female 3.375 0.474 7.127 1.16 × 10−12 0.016 0.051 0.316 0.8
Age 2.217 0.045 48.878 <5.0 × 10−300 0.013 0.005 2.749 5.99 × 10−3

CAG length 2.743 0.089 30.757 5.27 × 10−191 0.071 0.010 7.449 1.09 × 10−13

Age at motor onset −1.542 0.049 −31.687 1.24 × 10−201 −0.010 0.005 −2.006 4.49 × 10−2

Education −1.877 0.193 −9.742 3.09 × 10−22 −0.083 0.021 −4.037 5.49 × 10−5

Visit 3.516 0.078 45.019 <5.0 × 10−300

The table presents the coefficient estimates from two linear regression models: (1) a linear mixed model analysis of 14,850 longitudinal motor scores (dependent variable) across 5204 manifest HD
cases from Enroll-HD data 1 and (2) a linear regression model analysis of the resulting random slope estimates (dependent variable) of the same 5204 cases. The linear mixed-effects model included two
random-effects (a random intercept term and a random slope term with respect to visit) and several fixed-effect terms (sex, age at baseline, CAG-repeat length, age at motor onset, educational
attainment). The empirical Bayes estimate of the random slope was used as a measure of HD motor progression for each of the N= 5204 manifest HD cases. We adjusted the random slope estimate for
all fixed effects in our downstream EWAS analysis. The columns report the covariate name, regression coefficient, standard error, Student’s T statistic, and unadjusted two-sided Wald test p value.
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of epigenetic AgeAccel exhibit nominally significant positive
correlations with motor progression (e.g., r= 0.08, meta-analysis
p= 0.016 for the pan-tissue clock; Supplementary Table 8 and
Supplementary Fig. 7).

Human EWAS of HDGEC status. In our EWAS, we related
HDGEC status to individual epigenetic markers (CpGs) using
Enroll-HD data 1 and Registry-HD, then combined the results
using the Stouffer’s method. To avoid technical confounding by
chip effects in the Enroll-HD data 1, we used the aggregated
Enroll-HD data for our EWAS analysis (Supplementary Table 9).
The association between HD and individual methylation levels is
strongly preserved across the two datasets (r= 0.31; Supplemen-
tary Fig. 8). The Manhattan plot reveals that CpG cg22982173 in
exon 1 of the HTT gene on chromosome 4 was most significantly
associated with HD status (Stouffer’s p= 6.5 × 10−26; Fig. 4a and
Supplementary Fig. 9).

We set up a significance threshold at α= 10−7 to adequately
control for false-positive rate in the DNAm array studies20.
We found 33 genome-wide significant CpGs for HD status
(Table 3 and Supplementary Data 1), including cg22982173
in HTT (p= 7.0 × 10−26), cg26892702 near DVL2 (p= 5.3 ×
10−10), cg23819669 near DNAJB8 (p= 4.2 × 10−9), cg19759282
near GPR155 (p= 4.4 × 10−9), cg16739503 near RASA3 (p= 6.5 ×
10−9), cg20684718 near MCM10 (p= 1.4 × 10−8), cg22296756
near HDAC4 (p= 6.9 × 10−8), and probe ch.3.75336R near MLH1
(p= 2.4 × 10−8).

HTT methylation across multiple brain regions. We studied
HTT cg22982173 using 475 brain methylation samples from our
previous study (26 HD versus 39 control individuals; “Methods”)6.
Figure 5 lists the bar plots for the seven selected brain regions, with
right temporal cortex (p= 0.02; Fig. 5e) and midbrain (p= 0.046;
Fig. 5h) reaching statistical significance for increased methylation at
the HTT cg22982173 locus in HD cases compared to controls.
Methylation levels of cg22982173 across all brain regions combined
were significantly higher in the HD group (Fig. 5a: p= 5.6 × 10−6

and remained significant, p= 1.5 × 10−2, after adjusting for intra-
subject dependence).

Our top EWAS hit in the blood (in the HTT locus) continues
to be associated with HD status in several brain regions (Fig. 5),
while the EWAS results in brain tissue are different from those of
blood tissue on a global level (Supplementary Fig. 13). Supple-
mentary Figures 11 and 12 report bar plots of cg22982173 stra-
tified by study and tissue types: blood, lymphoblastoid cell,
fibroblast, and a total of 14 brain regions. The CpG cg22982173
resides within a region of the genome with a high density of CpGs
(i.e., in a CpG island) and therefore would be expected to have
low levels of methylation; however, significant increases in
methylation were observed in HD cases.

Both CAG-repeat alleles correlate with human HTT methyla-
tion. CAG-repeat lengths were assessed for both long and short
alleles (CAG.long and CAG.short) in the human HTT exon 1
locus. We correlated both alleles to human HTT methylation (at
cg22982173) using all N= 2164 human samples. A series of
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Fig. 2 Spaghetti plots of DNA methylation age versus chronological ages in the longitudinal Enroll-HD data 2. Each spaghetti plot depicts DNAm age
versus chronological age, using the Enroll-HD data 2 with two time-points per individual. Each line connects two blood draws from the same individual
collected on average 7.9 years apart. The panels report results for different epigenetic clocks a Horvath’s pan-tissue clock14, b Hannum’s blood-based
clock15, c the skin and blood clock16, and d and DNAm PhenoAge17. The same analysis was not performed on DNAmGrimAge because it is a mortality risk
predictor that uses age in its definition.
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multivariate regression models were tested to evaluate the joint
effect of CAG.long and CAG.short in (i) all, (ii) controls only, and
(iii) HD mutation carriers only, respectively (“Methods”).

Strikingly, our comprehensive model fitting analysis in
different data and cell types demonstrated that both CAG.long
and CAG.short were independently associated with HTT
methylation (Supplementary Data 2). These significant associa-
tions were observed even after restricting the analysis to controls
or to HD mutation carriers, respectively. Interestingly, the
product of the two CAG-repeat lengths (CAG.product= CAG.
long × CAG.short) showed the best relationship with HTT
methylation according to the Bayesian information criterion
(BIC) (Supplementary Data 2). The CAG.product model
exhibited the best fit (lowest BIC value) when considering all
N= 910 blood samples from the Enroll-HD data 1, all N= 376
blood samples from the Registry-HD, N= 294 controls from
Enroll-HD data 1, N= 616 HD mutation carriers from Enroll-
HD data 1, the N= 298 HD mutation carriers from Registry-HD,

N= 80 mutation carriers from the lymphoblastoid data, and N=
37 mutation carriers from the fibroblast data.

The quadratic term in CAG.long was also significantly related
to HTT methylation using polynomial modeling analysis. The
multivariate linear models showed that age and sex only have
negligible effects on the methylation levels of cg22982173
(Supplementary Data 2).

The moderately high correlation estimates (r ~ 0.4–0.65)
between the CAG.product and HTT methylation levels were
replicated in several datasets (meta-analysis p value of 9.1 ×
10−123; Fig. 6). Significant correlations can be observed even
when using only controls (meta-analysis p= 4.5 × 10−8) or only
HD mutation carriers (p= 3.9 × 10−27; Supplementary Figs. 14
and 15).

The methylation levels of cg22982173 were low both in HD
cases and controls: the β value (interpreted as the proportion of
chromosome methylated at this locus) ranged from 0.015 to 0.063
(Supplementary Fig. 16).
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Fig. 3 Epigenetic age acceleration in blood versus manifest HD disease status. Epigenetic age acceleration (y-axis) versus manifest HD status in N= 687
(294 controls and 393 manifest HD) blood samples from Enroll-HD data 1. Each panel corresponds to a different epigenetic clock. a Age-adjusted DNAm
age based on Horvath’s pan-tissue clock (AgeAccelerationResidual [AgeAccel])14, b intrinsic epigenetic age acceleration (IEAA), which is independent of
blood cell composition, c extrinsic epigenetic age acceleration, which is based on Hannum’s clock and does depend on blood cell composition15, d age-
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Human HTT methylation is not confounded by other trinu-
cleotide tandem repeats. It is well known that the HD expansion
is overrepresented on a subset of the haplotypes associated with
non-disease-associated alleles. Notably, a potential methylation-
modifying polymorphism exists in the form of the polymorphic
CCG repeat, which lies immediately downstream of the CAG
repeat21 and tags many of the most common HTT haplotypes.

We evaluated five multivariate linear regression models to
examine if the association between HTT cg22982173 and CAG
length could possibly arise as an artifact of linkage disequilibrium
between the CAG repeat and some other methylation-modifying
variants at the HTT locus (“Methods”). Especially, we examined the
model (Model 5) that omitted all HD cases that carried an atypical
HTT structure, defined as those that do not conform to the “typical”
reference alleles (CAG)Q1CAACAGCCGCCA(CCG)P2(CCT)2
(where Q1 and P2 are numbers of pure CAGs and CCGs,
respectively)22. We studied 372 individuals from the Registry-HD
cohort, which revealed a marked association between CAG- and
CCG-repeat lengths in the Registry-HD cohort (r2= 0.16, p < 2 ×
10−16; Supplementary Fig. 17A). However, several lines of evidence
suggest that the most associations we have observed in HTT
cg22982173 are not driven by CCG length or other HD-specific
haplotype effects, but are a direct product of the CAG length (linear
models 1–5 listed in Supplementary Table 10).

Human EWAS of motor progression in manifest HD. To test
whether HTT methylation matters for motor progression in

manifest HD cases, we performed a meta-analysis that combined
three separate EWAS of (adjusted) motor progression using the
two Enroll-HD and the Registry-HD datasets, respectively
(“Methods”). Interestingly, higher methylation of the HTT locus
(cg22982173) was associated with slower HD progression in
manifest HD cases according to the motor score (p= 0.05),
Stroop tests for cognitive function assessment (color naming p=
0.01, word reading p= 0.07, and interference test p= 0.06), and
functional assessment score (p= 0.009).

Our blood EWAS of HD progression in manifest HD cases
found three genome-wide significant CpGs: cg26919387 (meta-
analysis p= 9.3 × 10−9) in PEX14, cg12823408 near GRIK4
(meta-analysis p= 3.0 × 10−8), and cg21497164 in COX4I2
(meta-analysis p= 6.5 × 10−8; Fig. 1b, Supplementary Fig. 18,
Supplementary Table 11, and Supplementary Data 3). The robust
correlation (approximate r=−0.19) indicated that all three CpGs
that were hypomethylated were associated with HD motor
progression.

The top EWAS hits were not confounded by single-nucleotide
polymorphisms (SNPs). CpG measurement can be compromised
by neighboring SNPs. We addressed this concern using two
approaches. First, we correlated the significant CpGs with SNPs
that located near the CpG probes according to the Illumina
annotation file. No significant correlations were observed.

Second, we applied the software Gaphunter23 and found only 1
CpG (cg04285477 near Cl4orf43) out of 33 EWAS CpGs associated
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with HD disease status exhibited weak evidence of confounding
(i.e., a clustering pattern; “Methods”). None of the three CpGs (top
hits) associated with motor progression showed evidence of
confounding.

EWAS of motor progression was not confounded by treatment.
Tetrabenazine, a medication for symptomatic treatment of
chorea, was used by ~23% of HD patients in Enroll-HD. Treated
and untreated HD patients did not differ in terms of age, but
treated patients exhibited a higher CAP score (p= 0.01 in Enroll-
HD data 1 and p= 8.2 × 10−8 in Enroll-HD data 2) and a higher
motor score (p= 3.2 × 10−4 in Enroll-HD data 1 and p= 2.1 ×
10−9 in Enroll-HD data 2; Supplementary Figs. 19 and 20).
Tetrabenazine was not significantly associated with any of the
three motor progression-associated CpGs as depicted in Supple-
mentary Fig. 21. Furthermore, no CpGs on the Illumina array
were associated with tetrabenazine treatment at a genome-wide
significance level of p= 1.0 × 10−7 (Supplementary Fig. 22).
Overall, these results demonstrate that the EWAS of HD pro-
gression is not confounded by tetrabenazine treatment.

Methylation data from Htt knock-in mice (Q175). We gener-
ated two types of DNAm datasets (RRBS and custom methylation
array) from a heterozygous (HET) Htt knock-in (KI) mouse

model (Q175 versus Q20 CAG repeats or wild-type mice;
“Methods”).

We conducted EWAS of mutant HTT gene (Q20 versus Q175)
across the striatum and cerebellum in RRBS data. Focusing on
CpGs in the murine Htt locus revealed a moderately strong
correlation between the striatum and the cerebellum (r= 0.55
and p= 5.3 × 10−11; Supplementary Fig. 23). Strikingly, CpG sites
falling within the Htt locus are among the top EWAS results for
Q175 status in murine striatum and cerebellum (Supplementary
Fig. 24). This finding is also illustrated by our meta-analysis
EWAS across the striatum and cerebellum (Fig. 4b). Our EWAS
identified two genome-wide significant CpGs in Htt region,
chr5:34762314 (meta-analysis p= 6.0 × 10−8) and chr5:34762241
(p= 9.2 × 10−8) located between exons 1 and 2 (Fig. 4b, d and
Supplementary Data 1). These CpGs were located ~1 kb in the 3′
direction of HTT exon1 (Fig. 4d), both were hypermethylated in
the Q175 group.

Analyzing the same brain regions from another group of mice
using our custom array platform revealed another highly
significant CpG to be hypomethylated in the Q175 group (probe
cg12389415 on the custom array, mouse chr5:34795955) also
within the Htt locus (meta-analysis p= 3.2 × 10−22; Supplemen-
tary Fig. 25). Integrating the EWAS results across all the available
tissue types: the two brain regions, blood, cortex, and liver,
increased the statistical significance of the association (Stouffer
meta-analysis p= 6.2 × 10−45). The Htt gene locus was the top

Table 3 Meta-analysis EWAS of HDGEC status in human blood.

Chr. CpG bp CpG island Gene Gene location Meta p Meta Z

4 cg22982173 3,076,557 Island HTT First exon 6.5 × 10−26 10.53
17 cg26892702 7,132,489 DVL2 Body 5.3 × 10−10 −6.21
3 cg23819669 128,187,274 DNAJB8 TSS1500 4.2 × 10−9 −5.88
2 cg19759282 175,351,649 Island GPR155 5′-UTR; 1st exon 4.4 × 10−9 5.87
13 cg16739503 114,862,324 S_Shore RASA3 Body 6.5 × 10−9 −5.8
10 cg20684718 13,248,241 MCM10 Body 1.4 × 10−8 −5.68
12 cg04605980 117,471,700 1.8 × 10−8 −5.63
11 cg06993329 886,695 N_Shore CHID1 Body 1.9 × 10−8 −5.63
17 cg04683330 80,041,239 Island FASN Body 1.9 × 10−8 −5.62
12 cg16320626 121,877,851 N_Shelf KDM2B Body 2.1 × 10−8 −5.6
3 ch.3.753362Ra 37,048,044 MLH1 5′-UTR; body 2.4 × 10−8 5.58
16 cg09080920 928,338 Island LMF1 Body 2.5 × 10−8 −5.57
22 cg14703589 31,644,558 LIMK2 First exon; 5′-UTR; body 2.6 × 10−8 −5.57
12 cg17859634 124,798,815 Island FAM101A Body 3.4 × 10−8 −5.52
14 cg04285477 74,194,516 C14orf43 Body 3.6 × 10−8 −5.51
17 cg23148992 3,558,246 CTNS Body 4.1 × 10−8 −5.49
19 cg08117431 5,455,497 Island ZNRF4 5′-UTR; 1st exon 4.2 × 10−−8 −5.48
2 cg15115604 241,069,379 Island MYEOV2 Body 5.0 × 10−8 −5.45
14 cg10929299 50,334,860 5.1 × 10−8 5.45
19 cg10585870 14,530,314 Island DDX39 TSS200 5.6 × 10−8 5.43
11 cg15746396 13,485,203 Island BTBD10 TSS1500 6.2 × 10−8 5.41
7 cg14640310 44,058,913 Island POLR2J4 TSS200 6.9 × 10−8 5.39
2 cg22296756 240,305,369 HDAC4 5′-UTR 6.9 × 10−8 −5.39
19 cg11543665 8,373,294 Island CD320 TSS201 6.9 × 10−8 5.39
2 cg05054944 25,856,333 DTNB Body 7.2 × 10−8 −5.39
16 cg00284420 87,311,948 7.5 × 10−8 −5.38
17 cg24965497 7,227,181 N_Shore NEURL4 Body 7.6 × 10−8 −5.38
4 cg13731523 3,047,190 S_Shelf 8.0 × 10−8 −5.37
17 cg14517001 80,179,931 Island 8.2 × 10−8 −5.36
19 cg20635595 48,281,627 Island SEPW1 TSS1500 8.4 × 10−8 5.36
11 cg16356630 14,683,035 PDE3B Body 8.7 × 10−8 −5.35
4 cg01200289 77,227,751 Island STBD1 First exon; 5′-UTR 9.0 × 10−8 5.35
12 cg11881599 92,814,084 CLLU1OS 3′-UTR; TSS1500 9.2 × 10−8 5.34

The table reports 33 genome-wide significant CpGs (meta-analysis p value <10−7). A positive (negative) value of the meta-analysis Z statistic indicates that the CpG is hypermethylated
(hypomethylated) in human HDGECs. In this case–control study, we did not distinguish pre-manifest from manifest HD. The Z statistic is based on Stouffer’s meta-analysis method across the aggregated
Enroll-HD samples and the Registry-HD data. Columns report the chromosome, CpG, position (hg19 assembly), the relative location to the nearest CpG island, nearest gene, location of the CpG with
respect to the gene, meta-analysis (unadjusted, two-sided) p value, and Z statistic.
aThe unusual probe name “ch.3.753362R” reflects a CpH probe (CA, CC, CT) as opposed to a CpG probe, which targets the reverse strand on chromosome 3 (hg19 coordinate 753362).
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EWAS hit in all five tissues profiled on the custom methylation
array (Supplementary Data 1).

Ovine EWAS of HD status. In addition to mice, we also studied a
transgenic model of sheep with a human HTT cDNA transgenic
sequence24–28. The transgene is integrated into a different loca-
tion than the endogenous sheep HTT gene. Using a custom
methylation array, we generated blood methylation data from
168 sheep: 84 HD transgenic sheep and age-matched controls;
“Methods”). EWAS of HD transgenic status identified five
genome-wide significant (p < 1.0 × 10−7) CpGs located on chro-
mosome 10 including one CpG near the HTT transgene (Fig. 4c,
according to oviAri4 assembly coordinates 1826–1903 bp). The
most significant association was the CpG located in exon 4 of the
HTT transgene with a striking p value of 2.4 × 10−88, followed by
another CpG in the FLT1 gene (p= 1.8 × 10−10; Supplementary
Data 1).

Only CpGs close to the CAG expansion are hypermethylated in
HD. A comparison of the significant CpGs in the HTT locus
across three species, human, mouse and sheep (Fig. 4d), revealed
that significant CpGs for HD status are located within 2 kb of the
CAG expansion in exon 1 of HTT/Htt. The comparison between
human and sheep highlighted that the proximity between a CpG
dinucleotide and the location of the CAG expansion in either the
endogenous HTT or transgenic HTT (typically <2 kb) plays an
important role (Fig. 4d). This is based on the following obser-
vations: (a) all genome-wide significant CpGs near the HTT locus

are located within 2 kb of the CAG expansion, (b) unlike in
humans, HTT exon 4 is close to the site of the CAG expansion in
the sheep because the HTT transgene is a cDNA without any
intronic genomic DNA, (c) unlike in humans, methylation at a
specific CpG in exon 4 of an HTT cDNA gene fragment relates
strongly to HD transgenic gene status in blood samples from the
sheep (Supplementary Data 1).

Next, we investigated if HD patients tended to gain methylation
in associated HTT CpGs. Interrogating the genomic regions
surrounding HTT exon 1, all four CpGs were significantly
hypermethylated in HD patients (Supplementary Data 4). Inter-
estingly, all the 27 significant CpGs in Htt (meta-analysis p < 0.05)
also exhibited the same hypermethylation pattern in Q175 mice
(Supplementary Data 4).

Enrichment analysis of EWAS results. To gain insights on the
biological function associated with HD related CpGs, we used two
different approaches for carrying out functional enrichment
analysis: (1) the anRichment approach under HDinHD29 and (2)
GOMETH enrichment analysis, which takes into account the
different number of probes per gene present on the Illumina 450k
array30. We studied the top 1000 CpGs that were hypomethylated
in HD and another set of top 1000 CpGs that were hyper-
methylated in HD using the anRichment analysis (Supplementary
Tables 12 and 13). The top 1000 hypomethylated CpGs were
adjacent to genes (hypergeometric p= 3.6 × 10−13) implicated by
a protein–protein interaction network analysis of polyglutamine
disorders (Supplementary Table 14). The most significant
enrichment according to the GOMETH analysis involved the
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overlap between the top 1000 hypermethylated CpGs and RNA
binding (p= 3.4 × 10−6; Supplementary Table 15).

We carried out an enrichment analysis of CpGs associated with
HD progression using the same two approaches. The anRichment
analysis identified the HD progression related genes enriched in
several known HD relevant gene sets (Supplementary Table 16)
and the GOMETH analysis identified gene sets enriched in
immune cell activation (Supplementary Table 17).

Discussion
This is by far the largest DNAm study of HD to date. We gen-
erated large methylation datasets from seven sources of DNA
across three species (human: 2000 blood, 100 lymphoblastoid
cells, and 64 fibroblasts; mouse: 32 striatum, 32 cerebellum, 16
liver, 16 cortex, and 16 blood; sheep: 168 in the blood).

One of our major findings is that manifest (but not pre-
manifest) HD cases exhibit accelerated epigenetic aging effects in
blood, which is consistent with the epigenetic AgeAccel observed
in various brain regions6. HD progression in manifest individuals
was only weakly linked to epigenetic AgeAccel in blood.

A second major finding of our study was that EWAS (as
opposed to GWAS) of the HTT mutation status consistently
found CpGs in the HTT locus in all species and tissues. If nothing
was known about the genetics of HD, then our human blood
methylation data would have implicated the pertinent disease
gene: a very significant CpG probe located in HTT exon 1. The
HTT methylation effect was validated across seven sources of
DNA (blood, lymphoblastoid cells, fibroblasts, striatum, cere-
bellum, cortex, and liver) and across three species. Our most
significant human HTT cg22982173 was neither confounded by

neighboring trinucleotide tandem repeats nor dominated by
atypical HTT structure. We also analyzed custom methylation
array data (providing >1000× coverage per CpG) to address
concerns surrounding low sequence coverage (minimum 15×
coverage) in the mouse RRBS data31. Both mouse RRBS and
custom methylation array data implicated the Htt gene. A com-
parison of the significant CpGs in the HTT/Htt locus across three
species—human, mouse, and sheep—revealed that significant
CpGs for HD status were located in the vicinity of the CAG
expansion in exon 1 of HTT/Htt. The methylation levels of
cg22982173 exhibited only weak (but nominally significant)
negative correlations with measures of motor progression and
other clinical assessments (e.g., Stroop test) in manifest HD after
adjusting CAG expansion, and other potential confounders. An
intriguing and yet unexplained finding, based on our compre-
hensive model fitting analysis of the most significant CpG
cg22982173 in the human HTT locus, was that the methylation
level at this locus correlated with the allelic product of CAG
lengths in both cases and controls, inferring that methylation at
this locus was related to the length of the non-mutated allele as
well. Our analysis of HTT methylation in human postmortem
brain samples was consistent with that observed in blood samples.

Abundant caution needs to be exercised in linking Htt exon1
methylation to expression levels of the mutant HTT/Htt gene,
since CpGs often have only weak effects on neighboring gene
expression levels32. However, it is interesting that at least in the
murine Htt allelic series KI mouse model, there is a robust Htt
CAG-length-dependent reduction of mutant Htt RNA and pro-
tein levels in the striatum29. Caution is also warranted when
interpreting the relationship between transgene expression and
CpG methylation in the transgenic sheep model for the following
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Fig. 6 Human HTT methylation versus the product of CAG lengths. The product of the two CAG alleles (CAG.product= CAG.long × CAG.short)
correlated with DNA methylation levels of the human HTT cg22982173 locus in a blood samples from Enroll-HD data 1, b blood samples from Enroll-HD
data 2, c blood samples from the Registry-HD study, d lymphoblastoid lines from the Registry-HD study, and e fibroblast samples from the MTM study.
The title of each panel reports the Pearson’s correlation coefficient and corresponding unadjusted p value. Fixed-effects meta-analysis (weighted by inverse
variance) produced a meta-analysis p value of 9.1 × 10−123. Points in the scatter plots are colored by HD status: red=manifest HD, orange= pre-manifest
HD, and black= control. Each plot reports a Pearson’s correlation coefficient and corresponding p value.
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reasons. When exogenous DNA is inserted into a host genome in
order to generate a transgenic cell or animal model, copy number,
integration site, and transgene composition (e.g., the inclusion of
exogenous viral or bacterial sequences) could all significantly
influence the status of transgene methylation and expression33,34.
Moreover, transgenes can be considerably affected by the
flanking genomic DNA sequences at its random integration site,
hence susceptible to position effect variegation including gene
silencing35,36.

Our finding on HTT/Htt locus methylation, especially identi-
fying that the most significant HD-associated methylation sites
were in close proximity to the repeat expansion mutation itself,
may have general implications for understanding the role of
epigenetics in repeat expansion disorders. First, similar findings
of pathologically relevant abnormal DNAm in the proximity of
expanded pathogenic repeats have been observed in other dis-
orders such as fragile X syndrome, myotonic dystrophy type I,
and Friedreich’s ataxia37–39. Second, a recent study showed 22
disease-associated tandem repeats, including those found within
genes: FMR1 (gene mutated in fragile X), frataxin, HTT, ataxin 1,
and ataxin 3 were located in chromatin domain boundaries
enriched with an ultra-high density of CpG islands and bound by
methylation-sensitive chromatin factor CTCF40.

Another important area of investigation is whether methyla-
tion changes on HTT exon 1 have any impact on the somatic
instability of the mutant CAG repeat itself. Recent large-scale
human genetic studies revealed variants in mismatch repair
enzymes (e.g.,MLH1,MSH2, MSH3), which are known to modify
the germline and somatic instability of expanded HTT CAG
repeats in KI mouse models41, act as modifiers of the age of
motor symptom onset in HD5.

Our EWAS of HDGEC status in human blood identified 33 loci
at a genome-wide significance level. Besides HTT itself, the EWAS
revealed the following genes known to modify mutant HTT
aggregation or toxicities. DNAJB8 is a member of the DNAJ
(Hsp40) chaperone family and inhibits polyglutamine mutant
HTT aggregation and amyloid fibril formation42,43. HDAC4
binds to mutant HTT in a polyglutamine length-dependent
manner and is localized to the cytoplasmic inclusions in striatal
neurons in HD mouse models, and genetic reduction of murine
Hdac4 reduces cytoplasmic mutant Htt aggregation and restores
cortico-striatal synaptic transmission in HdhQ150 KI mice44.

Another clinically relevant finding determined by blood EWAS
of HD motor progression was that epigenetic modifiers were
linked to symptom progression in HD. Our analysis focused on
progression of motor symptoms in manifest HD cases discovered
three CpGs: cg26919387 near PEX14 (p= 9.3 × 10−9), cg12823408
near GRIK4 (p= 3.0 × 10−8), and cg21497164 in COX4I2 (p=
6.5 × 10−8). These findings were not confounded by medications
used for treating movement disorders (tetrabenazine). Arguably,
the most interesting gene identified was GRIK4, which is selec-
tively expressed in the cortex and striatum. Studies of mice defi-
cient in Grik4 or elevated Grik4 gene dosage have demonstrated
the critical role of this molecule in sensory motor gating and
protection against excitatory neurotoxicity45.

While our EWAS findings in blood were different to those
observed in a previous analysis of brain tissue using a limited
brain methylation dataset6, we found that several brain regions
exhibited hypermethylation of the HTT cg22982173 locus in HD
cases. In our two independent murine studies, we observed
genome-wide significant hyper- and hypomethylation at the Htt
locus in the striatum and cerebellum of Q175 KI mice. Further-
more, our top EWAS hit inside the HTT locus replicated in
human lymphoblastoid cells and in fibroblasts.

Overall, our study provides new insights and directions of HD
research in the areas of accelerated epigenetic aging, the role of

HTT locus methylation and HD biology, and other methylation
sites that may act as epigenetic modifiers that modulate HD
progression.

Methods
Data sets. HD mutation carriers did not differ significantly from controls in terms
of chronological age. However, pre-manifest HD samples tended to be significantly
younger than manifest HD samples. Further, the study sample ascertainment
induced a strong negative correlation between CAG length and age at enrollment
(r=−0.5, p= 2.4 × 10−40 in Enroll-HD). Thus, manifest HD status (or equiva-
lently pre-manifest HD status) was confounded by chronological age in our data.
Unfortunately, we observed a strong association between HD disease status and
Illumina chip ID in the Enroll-HD study (but not in the Registry-HD study). Most
Illumina chips contained 12 manifest HD samples or 12 pre-manifest HD samples
or 12 controls. Since chip effects probably confound the relationship between HD
status and DNAm levels, we removed the chip effects from the DNAm data by
averaging the DNAm levels of each CpG across the 12 samples on a given chip. The
HD status of a chip corresponded to the shared HD status of the 12 samples. By
replacing individual level data by “aggregated Enroll-HD data,” we effectively
removed chip effects at the cost of reduced sample sizes (from N= 910 Enroll-HD
samples to 76 corresponding chips). Illumina chips were not confounded by HD
status in the Registry-HD study.

Enroll-HD: a prospective registry study in a global HD cohort. We obtained
phenotypic data (demographic data and clinical assessments) from the longitudinal
Enroll-HD study based on 15,203 individuals. Only a subset of these 15,203
individuals was profiled on the DNAm array: (1) Enroll-HD data 1 were based on a
single buffy coat sample from N= 910 individuals (controls, pre-manifest HD, and
manifest HD) from Enroll-HD data 1. The Enroll-HD data 2 involved two buffy
coat samples (from two separate blood draws) from 368 HTT mutation carriers.
The first blood sample from each individual was on average collected 7.9 years
before the second sample. We removed 11 of the 368 individuals from the analysis
because (a) two individuals were severe outliers according to our epigenetic clock
analysis and nine individuals already appeared in the Enroll-HD data 1. Thus, we
only studied 357 individuals from the Enroll-HD data 2 study in our analysis.

Enroll-HD is a longitudinal, observational, multinational study that will
integrate two existing HD registries, Registry-HD in Europe and COHORT in
North America and Australia, while also expanding to include sites in Latin
America and Asia. ClinicalTrials.gov Identifier: NCT01574053 (Principal
Investigator: Bernhard G. Landwehrmeyer and Study Director: Joseph Giuliano).

With indefinite and ongoing annual assessments, the goal of Enroll-HD is to build
a large and rich database of longitudinal clinical information and biospecimens. This
database will serve as a basis for future studies aimed at developing tools and
biomarkers for progression and prognosis, identifying clinically relevant phenotypic
characteristics, and establishing clearly defined endpoints for interventional studies.
Core datasets are collected annually on all research participants as part of this multi-
center longitudinal observational study of HD. Data are monitored for quality and
accuracy using a risk-based monitoring approach. All sites are required to obtain and
maintain local Ethics Committee approvals.

The primary objective of Enroll-HD is to develop a comprehensive repository of
prospective and systematically collected clinical research data (demography,
clinical features, family history, genetic characteristics) and biological specimens
(blood) from individuals with manifest HD, unaffected individuals known to carry
the HD mutation or at risk of carrying the HD mutation, and control research
participants (e.g., spouses, siblings, or offspring of HD mutation carriers known not
to carry the HD mutation). Enroll-HD is conceived as a broad-based and long-term
project to maximize the efficiencies of non-clinical research and participation in
clinical research. With over 200 sites in roughly 30 countries, Enroll-HD is the
largest database available for HD researchers. Our Enroll-HD data 1 involved blood
samples from Northern America (81%), Europe (12.8%), Latin America (1.1%),
and Oceania (5.1%). All individuals were 18 years or older. Both sexes were eligible
for the study as were healthy volunteers. A non-probability sampling method
was used.

Informed consent from the potential participant or legal representative is a pre-
requisite for study participation. Participants’ IRB consent is an unconditional pre-
requisite for patient participation in the Enroll-HD, approved by the Scientific
Review Committee [https://enroll-hd.org/for-committees/]. More details of the
ethics oversight are listed in Enroll-HD protocol [https://www.enroll-hd.org/
enrollhd_documents/Enroll-HD-Protocol-1.0.pdf].

Below, we describe the study population from Enroll-HD. Patients with HD and
their family members are recruited from speciality clinics (Human Genetics,
Neurology, Psychiatry) that advise and treat people affected by HD. In addition, in
some areas, community clinics and neurologists who see HD patients will recruit
participants for this study. More details for the study population including
inclusion and exclusion criteria are listed in Supplementary Note 2.

Registry-HD data. The European Huntington’s Disease Network (EHDN) pro-
vided us with whole DNA samples from the Registry-HD core research project. We
analyzed 376 samples from whole blood and 100 samples from lymphoblastoid cell
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lines. Registry-HD is a multi-center, multinational observational study with no
experimental treatment. It forms part of the Huntington Project, a worldwide
collaboration dedicated to finding treatments that make a difference for HD.
Registry-HD is sponsored by the High Q Foundation, a non-profit organization
that supports a variety of research projects seeking to find treatments for HD. The
study description of Registry-HD is listed in NIH ClinicalTrial database [https://
clinicaltrials.gov/ct2/show/NCT01590589]. Participants IRB consent was obtained
at the time of the potential participant’s visit an explanation of the study, approved
by the Scientific and Bioethical Advisory Committee of the EHDN. Details of the
consent are listed the section of “Participant informed consent” of the study
protocol [http://www.ehdn.org/wp-content/uploads/2018/06/registry-protocol-2.0.
pdf].

Human fibroblasts. We obtained N= 64 fibroblast samples from the CHDI
Multiple Tissue Monitoring (MTM) study. The study involved 37 HD mutation
carriers and 27 age-matched controls. The mean age was 42.7 years and the pro-
portion of males was 45%. DNAm arrays were profiled in fibroblast tissues. The
mean CAG lengths in the HD mutation group were 44 and 19 for the long and
short allele, respectively. The CAG lengths were not available in the control group
and were set to 28 and 18 for the long and short allele, respectively. The data are
described in Table 1.

DNAm data. DNA was extracted from the Registry-HD and the Enroll-HD
samples using the Miller salting out procedure and the QIAGEN QIAamp DNA
Midi Kit. DNA was eluted in Buffer AE (a TE buffer). Bisulfite conversion was
performed using the Zymo EZ DNA Methylation Kit (Zymo Research, Orange,
CA, USA) as well as subsequent hybridization to the Illumina DNAm array, and
scanning (iScan, Illumina) were performed according to the manufacturer’s pro-
tocols by applying standard settings. DNAm array data were profiled in Human-
Methylation450 Bead Chip for Enroll-HD data 1 and Registry-HD, and profiled on
the EPIC array (also known as 850k array) for Enroll-HD data 2. DNAm levels (β
values) were determined by calculating the ratio of intensities between methylated
(signal A) and un-methylated (signal B) sites. Specifically, the β value was calcu-
lated from the intensity of the methylated (M corresponding to signal A) and un-
methylated (U corresponding to signal B) sites, as the ratio of fluorescent signals
β=Max(M,0)/[Max(M,0)+Max(U,0)+ 100]. Thus, β values range from 0
(completely un-methylated) to 1 (completely methylated). We used the “noob”
background normalization method46 to account for technical variation in back-
ground fluorescence signal. The noob approach capitalizes on a new use for the
Infinium I design bead types to measure nonspecific fluorescence in the color
channel opposite of their design (Cy3/Cy5).

DNAm age and epigenetic clock. DNAm levels give rise to particularly promising
biomarkers of aging since chronological age (i.e., the calendar years that have
passed since birth) has a profound effect on DNAm levels in most human tissues
and cell types. To study the association of epigenetic AgeAccel with HD, we used
(1) Horvath’s pan-tissue DNAm age on the basis of 353 CpGs14, (2) Hannum’s
DNAm age on the basis of 71 CpGs15, (3) DNAmAgeSkinClock on the basis of 391
CpGs16, (4) DNAm PhenoAge on the basis of 513 CpGs17, and (5) DNAm
GrimAge on the basis of 1030 CpGs18. The first three DNAm ages were developed
as a measure of chronological age, while the last two were developed as a measure
of mortality risk. However, all the biomarkers are associated with mortality and
morbidity17,18,47.

All of the DNAm age models were established through elastic net regression
models. For example, the pan-tissue clock is based on methylation levels of 353
dinucleotide markers known as cytosine phosphate guanines or CpGs14. The
weighted average of these 353 epigenetic markers gives rise to an estimate of tissue
age (in units of years), which is referred to as “DNAm age” or as “epigenetic age.”
The pan-tissue epigenetic clock method applies to any tissue or cell type that
contains DNA (with the exception of sperm), including individual cell types
(helper T cells, neurons, glial cells) and complex tissues and organs (blood, brain,
bone, breast, kidney, liver, lung)14.

To study the association between the DNAm-based biomarkers and HD, we
used a measure of epigenetic AgeAccel that has been widely used in our previous
studies of aging. We regressed DNAm age on chronological age using a linear
regression model and defined AgeAccel as the corresponding raw residuals. By
definition, AgeAccel has no linear dependence on chronological age (correlation
r= 0). Thus, a positive (or negative) value of AgeAccel indicates that the DNAm
Age is higher (or lower) than expected based on age. In an analogous manner, we
defined the acceleration measures, AgeAccelSkinClock, AgeAccelPheno, and
AgeAccelGrim, based on DNAmAgeSkinClock, DNAmAgePheno, and
DNAmGrimAge, respectively. We further examined two widely used acceleration
measures: IEAA derived from Horvath’s pan-tissue DNAm Age, which is
independent of age-related changes in blood cell composition, and extrinsic
epigenetic age acceleration based on Hannum’s DNAm Age, which up-weights the
contribution of blood cell count measure.

Mathematical details and software tutorials for the epigenetic clock can be
found in the Supplements of the relevant publications14. An online age calculator
can be found at our webpage [https://dnamage.genetics.ucla.edu].

EWAS of HD disease status. We adjusted the CpG data for sex using a linear
model, then related each CpG to HD status using the robust biweight mid-
correlation. We used the “estlambda” function in the GenABEL R package to
calculate the inflation factors48.

We stratified our EWAS analysis by pre-manifest/manifest HD disease status
because each stratum lends itself for addressing different biological questions:
studying time to HD onset may involve different pathways from those that
determine motor progression in manifest HD samples. Because sex can have an
effect on DNAm levels, we adjusted the DNAm levels for sex by forming residuals.
Since HD germline mutation status was not related to chronological age, there was
no need to adjust for chronological age.

Our analysis methods make extensive use of meta-analysis. A simple yet
powerful meta-analysis method, known as Stouffer’s method, relies on combining
the Z statistics from individual datasets (the two blood datasets (aggregated Enroll-
HD and the Registry-HD study). Specifically, for each CpG i and dataset a, one
obtains a Z statistic Zia, for example, by the inverse normal transformation of the p
value. Next, a meta-analysis Zi statistic for each CpG is calculated as

Zi ¼
1
ffiffiffiffiffiffiffiffiffi

Nsets
p

X

Nsets

a¼1

Zia ð1Þ

The meta-analysis statistic Zi is approximately normally distributed with mean
0 and variance 1; the corresponding p value is then calculated using the normal
distribution.

Human brain methylation data in multiple regions. We studied the association
of HD with brain methylation levels of HTT CpG using our previous study data6.
Postmortem brain samples from HD (N= 26) and non-HD (N= 39 including 18
Alzheimer’s disease cases and 21 neurologically normal controls) were collected at
UCLA and University of Auckland. DNAm arrays were profiled in following brain
regions: caudate nucleus (N= 29 arrays), cingulate gyrus (N= 33), cerebellum
(N= 42), hippocampus (N= 33), parietal cortex (N= 64), frontal lobe (N= 70),
occipital cortex (N= 43), temporal cortex (N= 37), midbrain (N= 26), motor
cortex (N= 33), sensory cortex (N= 33), and visual cortex (N= 32). In our
association analysis for HD disease status, we removed the samples from left
temporal cortex (N= 0 for HD), right frontal cortex (N= 0 for HD), and right
occipital regions (N= 2 for HD), yielding a total of 14 brain sub-regions available
for our analysis.

Allelic effects of CAG length alleles on HTT CpG. We studied the joint effect of
CAG.long and CAG.short on human HTT methylation (at cg22982173) in N=
1807 individuals (2164 samples) across five datasets: Enroll data 1 (blood samples),
Enroll data 2 (two blood samples for each individual), Registry-HD blood samples,
Registry-HD lymphoblastoid cells, and CHDI fibroblast. We tested eight multi-
variate regression models to evaluate the joint effect of CAG.long, CAG.short, and
a quadratic term in CAG.long. The first four multivariate regression models
involved the following covariates: (1) additive model with two covariates CAG.long
and CAG.short, (2) a single covariate defined as the sum of CAG lengths (=CAG.
long+ CAG.short), (3) a single covariate defined as the product of CAG lengths
(=CAG.long × CAG.short), and (4) a model with three covariates CAG.long, CAG.
short, and their interaction term. Polynomial regression models 5–8 evaluated the
quadratic effect of CAG.long. Models 5–7 extended models 1–3, respectively, by
adding the square term of CAG.long. Model 8 evaluated three covariates square of
CAG.long, CAG.short, and their interaction term. Each model also included age at
blood draw and sex. These models were evaluated in three subsets: all individuals,
only controls, and only HD mutation carriers. We could not evaluate controls in
the Registry-HD lymphoblastoid cells and the MTM fibroblast data due to low
sample size (n < 25 controls).

CCG-repeat length versus HTT methylation. We evaluated five multivariate
linear regression models for studying the effect of CCG-repeat length on
cg22982173 methylation (dependent variable) in the Registry-HD cohort (up to
372 observations). Model 1 involved two covariates: the two alleles measuring
CCG-repeat length. Model 2 extended model 1 by adding two alleles measuring
CAG-repeat length. Model 3 is the same as model 1, but limited to the analysis to
209 individuals with homozygosity for CCG7 (where 7 equals the CCG-repeat
length). Model 4 involved both alleles for CAG length plus HD disease status.
Finally, we re-examined model 5 (N= 350 observations) that included both alleles
of CAG length, but omitted all HD cases that carried an atypical HTT structure as
defined in ref. 22.

Htt Q175 mouse. In the RRBS study, we analyzed HET Htt KI mouse lines Q175
and Q20 mice49. The HET Htt KI line expressed one wild-type endogenous Htt
allele and a second Htt allele with KI of human mHTT exon 1 with either ~190
CAG repeats (Q175) or 20 CAG repeats (Q20). Male HET mice were crossed with
C57BL/6J (B6J.zQ175 KI, JAX stock number: 370476, https://www.jax.org/strain/
370476) female mice at the Jackson Laboratory (Bar Harbor, ME)29. Animals born
within 3–4 days from litters having four to eight pups were identified by ear tags,
tail sampled for genotyping, and weaned at ~3 weeks of age. HET mice were
selected based on the CAG repeat sizing to allow a Gaussian distribution of CAG
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repeats in the experimental cohort to avoid skewed distributions. Best Gaussian fit
was judged by eye. Body weight cut off: experimental animals had to weigh >11 g
(females) and >13 g (males) by 5 weeks of age. Animals presenting any anomaly
were excluded. Unacceptable anomalies were cataracts, malocclusion, missing/
small eye, ear infection, unreadable, or missing tag. Mice were housed in cages
enriched with two play tunnels, a plastic bone and enviro-dri® (Shepherd Specialty
Papers). Animal cage changes occurred weekly. The cages were maintained on a
12:12 h light/dark cycle. Water and food were freely available at all times. This
study was carried out in strict accordance with the recommendations in the Guide
for the Care and Use of Laboratory Animals, NRC (2010). The protocols were
approved by the Institutional Animal Care and Use Committee of PsychoGenics,
Inc., an AAALAC International accredited institution (Unit #001213).

The mouse methylation array study was conducted at UCLA. HD KI Q175 mice
and wild-type littermate control mice were obtained from The Jackson Laboratory
(JAX stock number: 370476). Animals were housed in standard mouse cages under
conventional laboratory conditions, with constant temperature and humidity, 12 h/
12 h light/dark cycle (7.00 a.m./7.00 p.m.) and food and water ad libitum. All
animal studies were carried out in strict accordance with National Institutes of
Health guidelines and approved by the UCLA Institutional Animal Care and Use
Committees.

Mouse methylation data. For the custom methylation array study (Horvath-
MammalMethylChip40), we profiled eight tissue samples for each tissue and group
defined by disease status (Q175 and Q20). We used the Illumina array for five
tissues: cerebellum, striatum, cortex, liver, and blood. In addition, we used another
platform RRBS analysis to generated additional methylation data for the cere-
bellum and striatum (again eight samples per group and tissue). We limited the
CpGs with at least 15 observations, yielding 2,896,456 and 2,965,343 CpGs avail-
able for the cerebellum and striatum EWAS, respectively. We performed Student’s t
tests for association tests and combined the results across the tissues based on the
Stouffer’s method.

RRBS is a widely used technology because it is cost-effective at measuring
cytosine methylation data at hundreds of thousands (or even millions) of locations
at a single-nucleotide level. Compared to whole-genome sequencing it is cost
effective because it combines restriction enzymes and bisulfite sequencing to enrich
for areas of the genome with a high CpG content. Its limitations include a bias
towards regions with a high CpG content and relatively low coverage of individual
CpGs (compared to an Illumina array).

The mammalian methylation array is attractive because it provides very high
coverage (over thousand X) of highly conserved CpGs in mammals, but it focuses
on only 37k CpGs that are highly conserved across mammals.

An ovine transgenic HD model. We analyzed a total of 168 sheep (57% females):
84 HD transgenic sheep age matched with 84 sheep as controls. The age of sheep
ranged from 2.9 to 7.0 years with mean ± SD= 4.1 ± 0.8. HD transgenic sheep
generated from a new large-animal HD transgenic ovine model24. Sheep (Ovis aries
L.) were selected because the developmental pattern of the ovine basal ganglia and
cortex (the regions primarily affected in HD) is similar to the analogous regions of
the human brain. Microinjection of a full-length human HTT cDNA containing 73
polyglutamine repeats under the control of the human promotor resulted in six
transgenic founders varying in copy number of the transgene24.

To isolate genomic DNA, thawed blood samples (300 μl) were treated twice
with red cell lysis buffer (300 mM sucrose, 5 mM MgCl2, 10 mM Tris pH 8, 1%
Triton X-100), for 10 min on ice; each incubation was followed by centrifugation at
1800 r.c.f. for 10 min at 4 °C, and removal of supernatant. Final pellet was
incubated in cell digestion buffer (2.4 mM EDTA, 75 mM NaCl, 0.5% sodium
dodecyl sulfate) and proteinase K (final concentration 500 μg/ml) for at least 2 h at
50 °C. An equal volume of phenol:chloroform:isoamyl alcohol (25:24:1; pH 8) was
added and samples mixed by inversion, followed by centrifugation at 14,000 r.pm.
for 5 min at room temperature. This step was repeated if required. Supernatant was
collected and mixed with 2× volume 100% ethanol to precipitate DNA. Following
removal and evaporation of residual ethanol, genomic DNA samples were
resuspended in 50 μl TE buffer (pH 8). Sample concentrations were initially
measured on nanodrop to inform further dilution of samples to range of 100–1000
μg for measurement on Qubit. All protocols used were approved by the University
of Auckland Animal Ethics Committee (New Zealand) and the SARDI/PIRSA
(South Australian Research and Development Institute/Primary Industries and
Regions South Australia) Animal Ethics Committee (Approval number 19/02).
Moreover, all work involving OVT73 Sheep was approved by PIRSA Animal Ethics
Committee with oversite from the University of Auckland Animal Ethics
Committee. DNAm arrays were profiled using a custom Illumina methylation
array (HorvathMammalMethyl40) based on 38,000 CpG sites in highly conserved
regions in mammals. EWAS was performed using the R function
“standardScreeningBinaryTrait” from the “WGCNA” R package50.

HD motor progression in the Enroll-HD data 1. To establish a measure of HD
motor progression, we used the large-scale Enroll-HD database comprising 14,850
longitudinal observations across 5204 manifest HD individuals. Of the 5204
patients, 312 were initially in pre-manifest then converted to manifest disease

status, in which we only used the visits since manifest phase. We applied linear
mixed models under R/nlme 3.1–148 with random effects to longitudinal measures
of UHDRS total motor scores, adjusted for age, sex, CAG-repeat length, age at
motor onset, education attainment, and visit time as fixed effects. The UHDRS total
motor score is a sum of 31 items across oculomotor function, dysarthria, chorea,
dystonia, gait, and postural stability. Each item is a scale from 0 to 4 indicating no
abnormalities (score as 0) to the most severe impairment (score as 4). The possible
range of the total motor score is 0–124. We restricted our analysis for the obser-
vations with motor scores ≥5. The random effects included a random intercept
with respect to individuals and a random slope with respect to visit to account for
heterogeneous changes in motor scores across individuals that could not be cap-
tured by the fixed effect of visit. Therefore, we computed the empirical Bayes
estimates of the random slopes as a “raw” measure of HD motor progression. Next,
we regressed the random slopes on sex, age at baseline, CAG-repeat length, age at
motor onset and education attainment, and used the residuals as the measure of
HD progression for our downstream analysis. The mean (SD) of follow-up esti-
mates were 2.1 (1.03) years in all 5204 manifest individuals and 3.13 (1.27) years in
the subset of 354 individuals available with DNAm array data.

HD progression in Enroll-HD data 2. In an analogous manner, we performed the
linear mixed analysis to establish the measure of HD motor progression, using the
manifest individuals in the Enroll-HD data 2. The data 2 aimed to profile two
longitudinal measures of DNAm array with approximately a 7-year gap; thus, most
of the first blood samples were collected during visits by the individuals in the
Registry-HD study. We removed the individuals already appearing in the Enroll-
HD data and the visits with motor scores <5, leaving 275 manifest individuals
(including 73 converting to manifest) remaining in our progression analysis. In
establishing the measure of HD progression, there were >1860 observations across
the 275 individuals available for our analysis, with a mean follow-up period of ~7.9
years, from the visits aligned with the first DNAm methylation profiles through to
the most recent visits. The model framework of the linear mixed analysis was
similar to the one used for Enroll-HD data 1, whereas the age at fixed effect was
based on the visit aligned with the first methylation profiles. The random slopes
with respect to visits were also adjusted for sex, age, CAG-repeat length, age at
motor onset, and education attainment for the downstream analysis.

Registry-HD data. To establish the HD motor progression scores, we used the
cross-sectional phase motor scores based on the last visits, similar to what other
authors had done for the Registry-HD data13. We applied linear regression analysis
to the motor scores, adjusted for sex, age at the last visit, age at motor onset, age at
DNAm profiles, CAG length and education attainment, and used the residuals as
the measure of the progression for downstream analysis.

Assessment of HD progression in HTT cg22982173. We studied the implication
of HTT cg22982173 in HD progression across different clinical assessment
domains. While our primary measure of HD progression was based on motor score
assessments across several visits following the blood draw, we also defined analo-
gous measures of progression based on other clinical assessments: functional
assessment score, and the Stroop color and word tests.

Detailed visualization of regional EWAS coMET. We applied the R package
comet (version 3.1)51 to visualize the genomic regions of interest from our EWAS
results.

EWAS of HD motor progression. We conducted the EWAS of motor progression
scores based on the adjusted random slopes on Enroll-HD data 1 and data 2,
respectively, and based on the adjusted last motor scores on the Registry-HD data.
EWAS was performed with the function “standardScreeningNumericTrait” in the
WGCNA R package under R 3.4.3. Effect sizes were based on biweight mid-
correlation (bicor) for robust correlation estimates50. We combined the results
across the three studies via fixed-effect models weighted by inverse variance under
METAL (released 2011-03-25)52 and only used the overlap CpGs between the
Illumina 450k and EPIC array.

Gaphunter analysis to detect confounding by SNPs. The Gaphunter hunter
software allows one to identify CpG probes that are confounded by adjacent
SNPs23. We applied minfi/Gaphunter (3.6) under R to our blood DNAm data from
Enroll-HD data 1, Enroll-HD data 2, and Registry-HD, respectively. The analysis
was performed using the R minfi/gapfunction function, which identifies CpG
probes with a gap in a (methylation) beta signal greater than or equal to the defined
threshold and reports number of clusters constituting the gap. We used the default
threshold of 0.05 and a default cut off value of 0.01. Evidence for SNP confounding
exists if the CpG exhibits at least two distinct clusters that involve >20 individuals
each. Gap patterns were examined in the 33 CpGs associated with HD disease
status and the three CpGs associated with motor progression manifest HD cases.

Functional enrichment analysis. The anRichment software is implemented in the
online tool HDinHD29 (www.HDinHD.org), which includes published gene sets,
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including GO (gene ontology) terms53, KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathways54, Molecular Signatures Database gene sets55, and curated
literature gene sets included in the “userListEnrichment” function56 of the
WGCNA (3.6.3) R package as well as transcriptomic co-expression network
modules identified in analyses of publicly available expression data from HD
patients as well as mouse models.

The GOMETH enrichment analysis properly takes into account the different
number of probes per gene present on Illumina array (450k in our analysis) by
using Wallenius’ noncentral hypergeometric test30. We used the GOMETH R
function (R version 3.6), which includes GO terms and KEGG pathways.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Our data are available from two data repositories. First, Gene Expression Omnibus
(Superseries GSE147004 and subseries GSE146917, GSE147002, GSE147003, and
GSE72778 (human brain methylation). Second, from Enroll-HD [https://www.enroll-hd.
org/]. Please direct inquiries to info@chdifoundation.org with the words “Enroll-HD
Methylation data” in the subject line. All other relevant data supporting the key findings
of this study are available within the article and its Supplementary information files or
from the corresponding author upon reasonable request. A reporting summary for this
Article is available as a Supplementary information file.

Code availability
This article does not use any custom code or mathematical algorithm. Relevant code or
software has been published in previous articles (“Methods”). In addition, software code
is available upon request.
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