
UC Berkeley
UC Berkeley Previously Published Works

Title
JBrowse 2: a modular genome browser with views of synteny and structural variation

Permalink
https://escholarship.org/uc/item/7c10t2hw

Journal
Genome Biology, 24(1)

ISSN
1474-760X

Authors
Diesh, Colin
Stevens, Garrett J
Xie, Peter
et al.

Publication Date
2023

DOI
10.1186/s13059-023-02914-z

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7c10t2hw
https://escholarship.org/uc/item/7c10t2hw#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Diesh et al. Genome Biology (2023) 24:74
https://doi.org/10.1186/s13059-023-02914-z

Genome Biology

JBrowse 2: a modular genome browser
with views of synteny and structural variation
Colin Diesh1, Garrett J Stevens1, Peter Xie1, Teresa De Jesus Martinez1, Elliot A. Hershberg1, Angel Leung1,
Emma Guo1, Shihab Dider1, Junjun Zhang2, Caroline Bridge2, Gregory Hogue2, Andrew Duncan2,
Matthew Morgan3, Tia Flores3, Benjamin N. Bimber4, Robin Haw2, Scott Cain2, Robert M. Buels1,
Lincoln D. Stein2 and Ian H. Holmes1*

Abstract

We present JBrowse 2, a general-purpose genome annotation browser offering
enhanced visualization of complex structural variation and evolutionary relationships. It
retains core features of JBrowse while adding new views for synteny, dotplots, break-
points, gene fusions, and whole-genome overviews. It allows users to share sessions,
open multiple genomes, and navigate between views. It can be embedded in a web
page, used as a standalone application, or run from Jupyter notebooks or R sessions.
These improvements are enabled by a ground-up redesign using modern web tech-
nology. We describe application functionality, use cases, performance benchmarks, and
implementation notes for web administrators and developers.

Background
Genome browsers are a fundamental visualization and analysis tool for genomics. As the
technology underpinning the field has progressed—from the study of individual genes,
through whole genomes, up to multiple related genomes—the linear DNA sequence
has provided a natural visual frame for presenting biological hypotheses (such as anno-
tated gene and variant locations) alongside the primary evidence for those hypotheses.
While the genome browser has proved long-lived as a visualization tool, the progression
of sequencing technology has influenced the types of visualization needed. Sequenc-
ing is now sufficiently affordable that population genomics and comparative genom-
ics have become commonplace. Long-read sequencing has enabled the investigation of
structural variation, resolution of individual genotypes from a mixture, long haplotypes,
and improved genome assemblies that were inaccessible using short reads. In addition,
a diversity of sequencing kits are generating a wealth of data on epigenetic and transient
states of the cell, such as DNA–protein associations, methylation, and RNA transcript
levels. All of this information is genome-mappable and therefore viewable in a genome

*Correspondence:
ihh@berkeley.edu

1 Department of Bioengineering,
Stanley Hall, University
of California, Berkeley, CA 94720,
USA
2 Adaptive Oncology, Ontario
Institute for Cancer Research,
MaRS Centre, 661 University
Avenue, Suite 510, Toronto, ON
M5G 0A3, Canada
3 Center for Applied Systems
and Software, 224 Milne
Computer Center, 1800 SW
Campus Way, Oregon State
University, Corvallis, OR 97331,
USA
4 Oregon National Primate
Research Center, Oregon
Health and Science University,
Beaverton, OR 97006, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-023-02914-z&domain=pdf
http://orcid.org/0000-0001-7639-5369

Page 2 of 21Diesh et al. Genome Biology (2023) 24:74

browser, but the new technology demands new visualization tools—and modalities—to
represent it appropriately.

History of JBrowse and the GMOD project

The tools and resources maintained by the Generic Model Organism Database project
(GMOD) have enabled many genome projects to develop their own genome databases
and websites. The GMOD project has developed and maintained two genome brows-
ers: (i) the Perl-based GBrowse genome annotation browser [1], the first portable web-
based genome browser to achieve widespread adoption, and (ii) the JavaScript browser
JBrowse [2, 3], which introduced client-side rendering, a single-page user interface that
avoided page reloads, drag-and-drop annotation tracks, animated panning and zooming
transitions, and a static-site deployment model.

The original JBrowse app (henceforth “JBrowse 1”) has been reliable and extremely
popular. However, it has become increasingly difficult to extend JBrowse 1 due to deep-
rooted design assumptions (such as the assumption that only one genome would ever be
displayed) and its dependence on older software libraries. This paper describes JBrowse
2, a complete rewrite of JBrowse 1 with a similar user interface but a modern software
architecture. As we report in this manuscript, JBrowse 2 goes well beyond the capa-
bilities of JBrowse 1. JBrowse 2 is particularly well-suited to visualizing genomic struc-
tural variants and evolutionary relationships among genes and genomes with syntenic
visualizations.

Structural variant and synteny visualization tools

Many genome browsers, including the GMOD browsers listed above, use a reference
genome to provide a coordinate system in which to align annotations and evidence,
including related genomes. This paradigm is ideal for visualizing individual refer-
ence genomes and small localized variants, such as single nucleotide polymorphisms
and small indels. However, within this paradigm, it can become complicated to visual-
ize structural variations whose alignment to the reference coordinate system departs
strongly from collinearity, such as big duplications, deletions, translocations, insertions,
inversions, and other complex rearrangements. A similar point holds regarding visu-
alization of synteny between genomes: inter-genome alignments can be collinear over
small scales but structurally disrupted over larger scales.

Several specialized tools have been developed to visualize synteny or structural vari-
ation. GBrowse-Syn is an interactive tool that allows comparison of regions of multiple
genomes against a reference sequence [4]. It uses a joining database representing links
between different species and maps sequence coordinates in the aligned segments or
synteny blocks [4]. The Artemis Comparison Tool (ACT) enables comparisons between
sequences and annotations at the genome and base pair level [5]. Other dedicated syn-
teny views such as SimpleSynteny and Cinteny are capable of visualizing synteny across
multiple genomes. SimpleSynteny is a web-based tool providing a pipeline that enables
customization of contig organization instead of pure computational predictions for visu-
alizing synteny [6].

Tools to analyze structural variants (SVs) have also been developed in the past. Rib-
bon, for example, is a visualization tool developed to support long-read evidence in the

Page 3 of 21Diesh et al. Genome Biology (2023) 24:74

analysis of structural variation [7]. By displaying long-read and whole genome align-
ments, Ribbon is able to display genomic links that could span several genes going
through multiple variants. The general-purpose circular visualization tool Circos [8] also
supports views that visualize large-scale variation. Copy number variant (CNV) viewers
such as the CNSpector can visualize copy number variation and large-scale structural
variation that enable the analysis of CNV to detect abnormalities or sequence variants
between multiple samples [9]. General purpose genome browsers such as IGV also
remain popular for analyzing SVs [10]. An overview of the various visual paradigms of
structural variation can be found in [11].

Results
Advances in JBrowse 2

JBrowse 2 combines the well-established paradigms of general-purpose genome brows-
ers with specialized views of synteny and structural variation. It still uses the funda-
mental concept of a linear coordinate scheme based on a reference genome, but it also
introduces alternative views including circular views, dotplot views, comparative syn-
teny views, and the ability to show discontinuous regions in the Linear Genome View.
This provides a number of different views on structurally disrupted genomes.

Compared to other tools for visualizing structural variants and synteny, JBrowse 2 is
most similar to general-purpose genome browsers (GBrowse-Syn and Artemis) in that
it renders syntenic relationships between generic linear visualizations of genomes, their
annotations, and supporting evidence. However, JBrowse 2 also includes views that draw
extensively on user interface concepts pioneered by Ribbon and Circos, and indeed
includes many of the views described in [11]. These are all tied together by a modern
web application framework that enables researchers to navigate between these differ-
ent views, combining multiple coarse-grained, fine-grained, and non-linear views of
the genome. In this way, users can begin by visualizing large-scale variation, zoom in
to examine a particular feature in detail, and interactively examine the supporting evi-
dence, for example, tracing the local context of a genomic breakpoint.

JBrowse 2 also includes other new features such as the ability to export tracks as pub-
lication-quality SVG files; sorting, filtering, and coloring options for alignments tracks;
multi-threaded rendering to accelerate the display of multiple tracks at once; and session
management, so that users can easily save, restore, export, and share the state of their
browser session.

The JBrowse 2 product range

JBrowse 2 is a family of several apps and modular components produced from the same
codebase, specialized for different types of users. These various products are listed in
Table 1.

The two most significant products are the web-based and desktop versions of JBrowse
2, known as “JBrowse Web” and “JBrowse Desktop.” The former runs on any modern
web browser; the latter is compiled using the Electron framework to run on macOS,
Windows, and Linux. JBrowse Desktop generally has more access to the local filesystem;
user’s files can be opened as tracks and will persist across sessions. JBrowse Desktop also
works without an Internet connection or behind a firewall.

Page 4 of 21Diesh et al. Genome Biology (2023) 24:74

While these apps are mostly identical in look and feel, several key operational details
involving sharing and data access are different depending on whether web or desktop is
being used. Unless otherwise noted, references to JBrowse 2 in this paper are inclusive of
both JBrowse Web and JBrowse Desktop.

Sessions, assemblies, views, and tracks

Some of the concepts used by JBrowse 2 to organize and integrate different visualiza-
tions include sessions, assemblies, views, and tracks.

Sessions

JBrowse 2 uses the term session to represent the current state of the browser. These
sessions encompass the state of all views, including the user’s current location in the
genome and any data they may have imported. Sessions can be saved, restored, exported,
or shared with other users.

Assemblies

An assembly in JBrowse 2 refers to a sequence resource, e.g., a FASTA file, and option-
ally includes a list of aliases describing chromosome names that are to be treated identi-
cally, e.g., chr1 and 1. Assemblies can also contain cytoband information that is used
to draw ideogram overviews. Multiple assemblies can be loaded at the same time in
JBrowse Web and JBrowse Desktop, so a user can load the genome assemblies of mul-
tiple species that they want to compare, or different versions of a genome assembly of a
single species.

Table 1 JBrowse 2 consists of multiple products, aimed at different applications but sharing a
common code base

Product name Where to find it Brief description

JBrowse Web https:// jbrow se. org/ jb2/ downl oad/ Static-site compatible app which can
display multiple view types in the
same session

JBrowse Desktop https:// jbrow se. org/ jb2/ downl oad/ Cross-platform desktop app with
ability to save user sessions to disk,
and display multiple view types in the
same session

JBrowse CLI @jbrowse/cli on NPM [12] A command line tool used for admin-
istering JBrowse Web instances

JBrowse Image CLI @jbrowse/img on NPM A command line tool for generating
static images (SVG, PNG) of JBrowse
sessions

JBrowse Embedded Components @jbrowse/react-linear-genome-view,
@jbrowse/react-circular-genome-
view on NPM

Libraries that web developers can
use to display JBrowse views on their
website

JBrowseR [13] JBrowseR on CRAN [14] An R package using JBrowse Embed-
ded components that can be used in
the RStudio IDE or Shiny apps

JBrowse Jupyter [15] jbrowse-jupyter on PyPI [16] A Python package for JBrowse
Embedded components that can be
used in Jupyter Notebooks

https://jbrowse.org/jb2/download/
https://jbrowse.org/jb2/download/

Page 5 of 21Diesh et al. Genome Biology (2023) 24:74

Views

JBrowse 2 views are panels that can show data visualizations or other generic things
like tabular lists. In JBrowse Web and JBrowse Desktop, the user interface is a vertical
arrangement of view panels. By use of these views, different datasets can be arranged
next to each other to compare different sets of data, or different visualizations of the
same data.

A variety of different views are included with JBrowse 2 in order to accomplish this
goal, including the traditional Linear Genome View (Fig. 1A, B), Circular View (Fig. 1C),
Dotplot View (Fig. 1D), Tabular View (Fig. 1E), Linear Synteny View (Fig. 1F), and other
composite views (Fig. 1G, H).

Tracks

Many JBrowse 2 views can display different genome annotation “tracks”: datasets that
align in the view and can be selectively hidden, exposed, or reordered by the user. Such
annotation tracks are among the earliest established user interface elements in genome
browser design, implicitly present in ACeDB [19] and well-established by the time of

Fig. 1 JBrowse 2 integrates many views into a single application. A The Linear Genome View displaying
gene annotations, quantitative signals, and a Hi-C track. B The Linear Genome View can provide a whole
genome overview, here showing tumor vs normal sequencing coverage in the COLO829 cell line [17]. C
The Circular View gives an overview of long-range relationships within and between chromosomes (here,
they are translocations in an SKBR3 cancer genome). D The Dotplot View shows relationships between two
sequences (in this case the relationship between hg19 and hg38 human genomes). E The Tabular View
summarizes features in a sortable, filterable list, showing in this example the SKBR3 variant calls from Sniffles.
F The Linear Synteny View shows relationships between two genomes (in this case, peach and grape) each of
which is rendered using a Linear Genome View. G The SV Inspector allows inspection of structural variants by
combining a Tabular View and a Circular View; here, both the Tabular and Circular views are visualizing a VCF
file of translocations in an SKBR3 cancer genome called using Sniffles [18]. H The Breakpoint Split View shows
events such as gene fusions and translocations (in this case, in the SKBR3 cancer genome) by aligning two
Linear Genome Views and tracing the split or paired read mappings across the two views

Page 6 of 21Diesh et al. Genome Biology (2023) 24:74

GBrowse [1] and the UCSC Browser [20]. A list of track types that are available are listed
in Table 2. Tracks can be toggled using the track selector widget.

The Linear Genome View

The Linear Genome View is the primary view in JBrowse 2, and the most similar in
look and feel to JBrowse 1, GBrowse and the UCSC Genome Browser. This view shows
genome annotation tracks and other genome-mapped data in a horizontally scrollable
panel. A screenshot of the Linear Genome View, annotated with key user interface ele-
ments, is shown in Fig. 2.

At the top of the Linear Genome View is the navigation bar (Fig. 2 (E–J)). Key ele-
ments of this area are the currently selected reference sequence, shown either as a ruler
or as an ideogram (Fig. 2 (E)); navigational controls for panning (Fig. 2 (G)) and zooming
(Fig. 2 (J)); and a location display that doubles as a text search box (Fig. 2 (H)).

Beneath the navigation bar is the area where annotation tracks are shown (Fig. 2
(K–R)). This area has ruled vertical lines to help see where features are aligned. Handles
on the track allow them to be vertically resized, reordered by drag-and-drop, or closed; a
track menu exposes more display options and track metadata.

The track selector

The track selector (Fig. 2 (S–Y)) can be used to add or remove new tracks to the cur-
rent view using a check box. The track selector is associated with one particular view at
any given time, so if there are two Linear Genome Views open (e.g., one for the grape

Table 2 The list of available track types in JBrowse 2, which are specialized to render different kinds
of data from various sources or file formats. Some of the tracks can be used in multiple view types as
well

Track type Appears in Function Supported file types

Quantitative Track Linear Genome View Displays dense, continu-
ous, quantitative data

BigWig, GC content (from
sequence files), GWAS
scores (from BED files)

Synteny Track Dotplot View, Linear
Synteny View

Displays alignments
between different
genome assemblies

PAF [21],.delta from MUM-
mer [22], mashmap.out files
[23],.chain (UCSC), MCScan.
anchors files [24]

Alignments Track Linear Genome View Displays a combination of
a pileup and a coverage
visualization of alignments

BAM, CRAM

Hi-C Track Linear Genome View Displays Hi-C contact
matrix

.hic files, generated by
Juicebox [25]

Variant Track Linear Genome View,
Circular View

Displays feature glyphs
corresponding to variants;
specialized feature details
panel show all genotypes
in multi-sample VCF

VCF (plaintext or tabix)

Feature Track Linear Genome View Displays feature glyphs
corresponding to genome
annotations, e.g. genes

GTF (plaintext), GFF3 (tabix
or plaintext), BigBed, BED
(tabix or plaintext), features
from REST APIs, etc

Reference Sequence Track Linear Genome View Displays a reference/
assembly sequence and a
three-frame translation

FASTA (indexed FASTA or
bgzipped indexed FASTA),
TwoBit (.2bit)

Page 7 of 21Diesh et al. Genome Biology (2023) 24:74

genome and one for peach genome), the tracks they display can be configured indepen-
dently. Furthermore, track selectors are not solely associated with Linear Genome Views;
they can also be associated with some of the other views described in later sections, such
as the Dotplot View and the Linear Synteny View. For each associated view, the track
selector will display tracks relevant to that particular type of view; for example, the track
selector for the Dotplot View will only display tracks that are relevant to dotplots.

Beyond the linear genome view

Complementing the Linear Genome View, several alternate views show different kinds
of annotated data, including inter-sequence relationships and large-scale variation.
JBrowse 2 provides some mechanisms that link these different views together to facili-
tate navigation between them; first, through generic inter-view navigation menus (auto-
matically constructed to link alternate views compatible with the same kind of data), and
second, through specifically tailored user interface features. For example, right-clicking
in an alignments track opens a menu that can launch a Dotplot or Linear Synteny View,
as in Fig. 7; clicking and dragging a region in a Dotplot View will launch a Linear Synteny
View; clicking on breakpoints in the SV inspector will launch the Breakpoint Split View,
and so on.

Displaying and comparing multiple assemblies

JBrowse 2 features several specialized synteny views, including the Dotplot View and the
Linear Synteny View. These views can display data from Synteny Tracks, which them-
selves can load data from formats including MUMmer [22], minimap2 [21], MashMap
[23], UCSC chain files [26], and MCScan [24].

Fig. 2 The Linear Genome View is the core view of JBrowse, allowing flexible and interactive examination
of a genome sequence and its annotations. The user interface elements annotated on this diagram include
(A) view menu, (B) view name, (C) close view button, (D) reference sequence name, (E) reference sequence
overview with optional ideogram, (F) open track selector button, (G) pan buttons, (H) location and search
box, (I) view size, (J) zoom buttons and slider, (K) major ruler coordinates, (L) track label, (M) track drag handle,
(N) track close button, (O) track name, (P) track menu button, (Q) track menu, (R) track resize handle, (S) track
selector menu button, (T) connection menu button, (U) track selector filter, (V) track configuration menu
button, (W) collapsible category label, (X) track select box, and (Y) add track/connection button

Page 8 of 21Diesh et al. Genome Biology (2023) 24:74

The Dotplot View (Fig. 3) can be used at different zoom scales to display whole-
genome overviews of synteny, close-ups of individual syntenic regions, and even indi-
vidual long reads aligned to the reference sequence (see the “Visualizing long reads”
section). Users can click and drag on the Dotplot View to open a Linear Synteny View of
the region.

The Linear Synteny View (Fig. 4A) shows two linear genome view panels stacked verti-
cally. This feature allows users to view Synteny Tracks, representing regions of similarity
between two different assemblies. The top and bottom panels are each fully featured Lin-
ear Genome Views, to which annotation tracks can be independently added. In addition,
by exploiting the feature of the Linear Genome View whereby discontiguous regions can
be shown, the user can view distal gene duplications within the Linear Synteny View
(Fig. 4B).

Displaying structural variation

Structural variants can be classified into simple types (e.g., duplications, inversions)
and more complex types arising from combinations of the simpler ones. The visu-
alization of such SVs is challenging because the derived genome (e.g., the genome
incorporating the structural variant) may be significantly different from the reference

Fig. 3 A A dotplot showing a whole-genome alignment of the grape vs peach genome, computed by
minimap2 and loaded in PAF format, reveals a large-scale syntenic structure. The user can click and drag on
this view, highlighting an area shown by the small pink rectangle, to open up a detailed view (B) showing
multiple synteny tracks, with individual gene pairs (green) and larger syntenic blocks (black) from MCScan

Page 9 of 21Diesh et al. Genome Biology (2023) 24:74

genome. As a result, it is often appropriate to use different visualization modalities
depending on the type of SV.

Overviews of structural variation The availability of multiple view types can help users
visualize SVs through different lenses. For example, whole-genome overviews are often
helpful to visualize large-scale patterns of structural variation. The Linear Genome View
can be used to get a quick visualization of copy number variation by visualizing read
depth from BigWig files representing genome sequencing coverage, employing its facility
to display multiple chromosomes side-by-side to get a whole-genome overview (Fig. 1B).

Users can also apply one of the specialized JBrowse 2 views designed for whole-genome
or multi-genome overviews. These include the Circular, Tabular, and SV inspector views.

The Circular View displays annotations in a circular format as popularized by Circos [8].
Because of its compact arrangement, this circular view is beneficial for exploring long-
range structural variations encoded as breakends or translocations in VCF files [27],
BEDPE files, or STAR-fusion [28] results.

The Tabular View is different from other views described in that it is a textual list of
features rather than a graphical visualization. The table columns show key fields from
the variant file, such as the type of SV, the location, and the ID. Controls in each column
allow the tabular view to be filtered or sorted to drill down into the variant list.

Fig. 4 A The Linear Synteny View comparing the grape and peach genomes using data from MCScan reveals
a complex rearrangement. B A close-up view of a gene duplication visualized with the Linear Synteny View,
with discontinuous regions (chr3 and chr4) displayed side by side on the bottom panel

Page 10 of 21Diesh et al. Genome Biology (2023) 24:74

The SV Inspector (Fig. 5) combines the Circular View and the Tabular View to allow
users to prioritize their structural variants. This composite view was developed to
address a common workflow in cancer bioinformatics research: examining a list of
putative variants to visually evaluate them in the context of relevant information such
as canonical gene models, RNA-seq results, chromatin interactions, or other genome
annotation data. The SV Inspector includes a Tabular View of a set of candidate struc-
tural variants with controls to mark features for later inspection and a Circular View
visualizing where these variants lie in the genome. Each variant is presented as a row in
the tabular view and as a chord in the circular view. Clicking on a chord in the Circular
View or a row in the Tabular View launches a Breakpoint Split View (Fig. 6) showing the
read evidence for a selected structural variant.

Fine detail of structural variation To visualize a single breakpoint, such as a gene
fusion and the evidence for that breakpoint, we introduce the Breakpoint Split View.

Fig. 5 The SV Inspector showing structural variants in the SKBR3 breast cancer long read dataset. The SV
Inspector places the Circular and Tabular views side-by-side. On the left, the Tabular view can be filtered using
simple text expression filters (text box at top left), or column filters (controls in each column header). The
results of filtering are reflected in the circular view at right

Fig. 6 A Breakpoint Split View showing a chromosomal translocation connecting chr1 and chr5 in the SKBR3
breast cancer cell line. The split long read alignments are connected using curved black lines, and the variant
call itself is shown with a green line with directional “feet” showing which sides of the breakpoint are joined

Page 11 of 21Diesh et al. Genome Biology (2023) 24:74

The Breakpoint Split View consists of two Linear Genome Views stacked vertically. The
power of this view lies in its ability to visualize genomic evidence for structural variants
between discontinuous regions of the genome (Fig. 6). The read evidence for the struc-
tural variant is shown using curved black lines for long split alignments or paired-end
reads. The structural variant call itself is shown using green lines, based on information
from breakends [27] or translocation type features from VCF files.

Visualizing long reads

Long-read sequencing technology, such as the platforms developed by Pacific Bio-
sciences and Oxford Nanopore Technologies, has proven useful in the resolution of
haplotypes, structural variants, and complex repetitive regions. JBrowse 2 includes
several features to highlight the information contained in long reads, including
advanced alignments track features to sort, filter, and color reads and a “read vs refer-
ence” feature that enables users to view alignments of long reads in a Dotplot View or
Linear Synteny View (Fig. 7).

In addition to elucidating long-range structure, long-read sequencing platforms can
provide a direct readout of chemical modifications such as methylation on DNA and
RNA sequences. The modifications can be called by tools such as nanopolish [29] and
primrose [30], which stores this information in the MM tag in BAM/CRAM files [31].
JBrowse 2 can then use the MM tag to render the positions of these modifications on
individual reads.

Fig. 7 A An alignments track showing SKBR3 PacBio alignments, with a large (> 1000 bp) insertion
highlighted by soft-clipped reads in blue (1) and a smaller insertion in purple (2). B The “Read vs ref” view
created by right-clicking a read in the Alignments Track creates a Linear Synteny View comparing the read vs
the reference genome, which allows you to see the inserted non-reference bases easily. Users can also select
regions on the read or reference sequence and select “Get sequence” (3)

Page 12 of 21Diesh et al. Genome Biology (2023) 24:74

Ways to access data

Connections

JBrowse 2 allows users to create “Connections” to sets of tracks or assemblies that are
understood to be managed outside of the JBrowse instance. JBrowse 2 includes two
types of Connections by default: JBrowse 1 Connections, which allow viewing tracks
from a JBrowse 1 installation on the web, and UCSC Track Hub Connections, which
allow viewing tracks in a UCSC Track Hub [32]. To help users navigate the latter type
of Connection, JBrowse 2 includes an interface for browsing the UCSC Track Hub
Registry [33].

Direct access to local files

JBrowse Web and JBrowse Desktop allow users to open tracks directly from a user’s
local filesystem. This functionality keeps the data private on the user’s computer. On
JBrowse Web, due to the limitations of web browsers, local files must be re-opened
when the page refreshes or a session is re-opened. JBrowse Web provides a message
to alert users to this necessity. This limitation does not exist on JBrowse Desktop.

Sharing sessions

In JBrowse Web, users can share sessions with other users by generating a share link,
which produces a shortened URL containing the contents of the user session. Visit-
ing the link will restore all the same views at the same locations, with the same tracks
displayed. This also includes track data that a user has added to the session: if a user
opens a track in their session that references a remote file, then their share link will
include this track.

Authentication

JBrowse 2 natively supports Google Drive, Dropbox, and HTTP Basic authentication.
Plugin developers can extend this to connect the genome browser to any application
that needs authentication to access data, as described in the section titled “Extending
JBrowse 2 with Plugins.”

Performance and scalability

JBrowse 2 is structured to take heavy computations off the main thread using remote
procedure calls (RPC). In JBrowse Web and JBrowse Desktop, we use web workers
to handle RPCs, which perform data parsing, rendering, and other computationally
time-consuming tasks in a separate thread. This approach allows the app to remain
responsive to the user even when displaying large datasets or multiple tracks. Note
that JBrowse Embedded does not use web workers currently, so it is single threaded,
but may gain web worker support in the future.

To profile the end-to-end performance of loading and rendering tracks, we used
Puppeteer [34] to run JBrowse 2 (both with parallel rendering enabled and disabled),
JBrowse 1, and igv.js. Each tested browser was given the task of rendering BAM and
CRAM files containing long and short reads at varying coverage. Full details of the

Page 13 of 21Diesh et al. Genome Biology (2023) 24:74

benchmark can be found under “Performance and scalability benchmark details” in
the “Methods” section.

When rendering a single track, JBrowse 2 has comparable performance to igv.js [35],
as shown in Fig. 8. However, when rendering multiple tracks, the parallel rendering
strategy in JBrowse 2 can improve performance (Fig. 9). The parallel strategy also yields a
more responsive user interface, since the main thread (whose frame rate determines the
apparent speed with which the browser responds to user input) does not become tied up
by rendering and data parsing (Fig. 10). Some of the slower performance of JBrowse 2
observed in the performance profiling is due to its relatively slower startup time, which
includes starting up the main thread and web worker threads, an area which may be
amenable to further optimization.

Administration and configuration

Extending JBrowse 2 with plugins

JBrowse 2 has a plugin system which provides developers with the ability to custom-
ize and extend JBrowse to suit the specialized needs of the organization or researcher.
Table 3 describes the elements that can be extended via plugins, such as data adapters,
track types, and view types.

JBrowse Web and JBrowse Desktop feature an in-app Plugin Store where users can
install plugins. Examples of third-party plugins that can be installed include a multiple
sequence alignment viewer, an ideogram viewer with Reactome [36] pathway visualiza-
tion (Fig. 11), and plugins that provide data adapters for fetching data from the mygene.
info [37] and the CIVIC API [38].

Fig. 8 JBrowse 2’s performance is comparable to igv.js and significantly exceeds JBrowse 1’s performance on
large long read datasets, as reflected in these benchmarks rendering aligned reads of varying coverage and
file formats in a 10-kb region. The incomplete data for JBrowse 1 on the BAM long-read benchmark reflects
the fact that JBrowse 1 times out this benchmark (i.e., its rendering time exceeds 5 min). Full details of the
benchmark can be found under “Performance and Scalability benchmark details” in the “Methods” section

Page 14 of 21Diesh et al. Genome Biology (2023) 24:74

Static site compatibility

JBrowse 2 is a “static site” compatible application: since all data parsing and render-
ing occurs on the client, its ongoing deployment does not require any server-side code
beyond a basic web server. Static sites are low-cost because they can be hosted on inex-
pensive or free hosting services like Amazon S3 and Github pages. In addition, many
security issues are mitigated, and the sites may require less maintenance.

JBrowse CLI

The JBrowse CLI is an administrative tool that can load assemblies, tracks, and indices
for gene name searching. The JBrowse CLI tool can be installed from NPM and runs on
both Unix-like and Windows systems, somewhat more portably than JBrowse 1, which
required Perl scripts whose installation on Windows-like systems was more involved.
The JBrowse CLI also includes an admin-server command which allows changes made
in the web GUI to be persisted to the config file on disk.

Text indexing

The JBrowse CLI includes a text indexing command that creates trix formatted indices
[40]; these indices are easier to manage than the index files used by JBrowse 1 (which

Fig. 9 When displaying multiple tracks at once, JBrowse 2’s parallel rendering strategy shows significant
gains compared to single-threaded (serial) strategies, as reflected in these benchmarks rendering aligned
reads of varying coverage and file formats in a 5-kb region. The incomplete data for JBrowse 1 and igv.
js on some of the benchmarks reflects the fact that these apps time out our benchmark under some
circumstances (i.e., rendering time exceeds 5 min). Full details of the benchmark can be found under
“Performance and Scalability benchmark details” in the “Methods” section

Page 15 of 21Diesh et al. Genome Biology (2023) 24:74

consisted of an on-disk hash table built from many small files). The text indexing in
JBrowse 2 allows for either per-track indexes or aggregate indexes containing data from
multiple tracks. The tool can index gene IDs, full-text descriptions, or other arbitrary
data fields from GFF and VCF files. Text searching can also be extended using plugins to
adapt to custom search systems.

Fig. 10 JBrowse 2’s parallel rendering strategy yields significant improvements in user interface
responsiveness, as reflected in these benchmarks rendering aligned reads of varying coverage and file types
in a 10-kb region. We define the response time as the delay, during the rendering phase of the benchmark,
from a randomly sampled time point until the time the next frame is rendered. This directly reflects the
perceived delay between when a user initiates an action and when the app responds. The response time
is a random variable; its expectation gives a sense of average lag, while its variation gives a sense of how
unpredictable the user interface delays can be. Panel A plots the expectation of the response time as a
function of sequencing coverage. At high coverage, JBrowse 2’s parallel strategy maintains a low response
time, in contrast to single-threaded strategies whose response time can grow large, with the perception that
the browser is “hanging” or “frozen.” The relationship between response time and coverage is approximately
linear for all browsers, as shown by the dotted linear regression fit. The incomplete data for JBrowse 1 on
the BAM long read benchmark reflects the fact that the simulation times out (rendering time > 5 min). Panel
B shows the same data plotted as a scatterplot of time between frames. The plotted points show the raw
time between frame values and are overlaid with boxplots that show the variation in response times (25th
and 75th percentiles shown in the boxes, 5th and 95th percentiles shown in the tails). Full details of the
benchmark can be found under “Performance and Scalability benchmark details” in the “Methods” section

Page 16 of 21Diesh et al. Genome Biology (2023) 24:74

Discussion
In this paper, we have introduced JBrowse 2. This document is not intended to recap
the complete JBrowse 2 user guide; instead, it covers foundational concepts (ses-
sions, assemblies, views, tracks, connections, and plugins), the various views (lin-
ear genome view, other basic views, composite views, and overviews), and the data
access modalities, with a focus on use cases involving comparative genomics and
structural variation. We have also briefly introduced some technical details (including

Table 3 A listing of JBrowse 2 elements that can be extended by third-party plugins

Plugin-extensible element Description Example

Data adapters Classes through which reading and
parsing unique data formats is done,
including retrieving data from RESTful
APIs

BamAdapter: processes.bam files, remote
or local, along with their coordinating.bai
or.csi index files

Text search adapters Classes through which searches for
features by name are processed

TrixTextSearchAdapter: used for UCSC
trix indexes, generated by the jbrowse
text-index command

Track types A high-level concept in the configura-
tion system that associates a name,
trackId, and metadata with a data
adapter. There is not a lot of logic
attached to track types; instead, the
display types and renderers are used to
draw and add logic to tracks

AlignmentsTrack: displays data typically
associated with BAM and CRAM type
data adapters

Display types The code to “display” a track type in a
particular view. This layer is important
because it allows track types to be
displayed in multiple view types, and
often contains logic such as menus,
click actions, React components, and
more

LinearSyntenyDisplay, DotplotDisplay:
these display types help display a Synte-
nyTrack in different view types

Renderer types Fetches data from a data adapter and
draws the features, typically render-
ing to either SVG or HTML5 canvas.
Renderers run on the remote side of an
RPC call and are instructed to render a
particular genomic region or regions

PileupRenderer: draws the reads from
a.bam or.cram file

Widgets User interfaces that provide utility or
information to the user. In JBrowse
Web and JBrowse Desktop, these
appear as a side drawer. In embedded,
these appear in a dialog box

Track selector: Provides a list of tracks for
user to toggle in the user interface

RPC calls Custom code that a plugin runs on
the remote side of an RPC call (e.g., in
a web worker) to avoid doing heavy
work in the main thread

WiggleGetMultiRegionStats: estimates
quantitative statistics for the given
genomic regions

View types Containers for visualizations that per-
mit wholly unique visualizations to be
displayed in the same context as the
standard linear genome view

CircularView: provides a circular whole-
genome overview of structural variants

Extension points A named list of callbacks that the code
can use to create arbitrary modifica-
tions to various parts of the code

The `extendPluggableElement` exten-
sion point allows plugins to add to state
tree models e.g., add menu items

Connection types Connections provide a way to connect
to a provider of tracks or assemblies

UCSCTrackHubConnection: adds tracks
from a UCSC track hub to the tracklist

Internet account type Adds a custom authentication method
to a remote data provider

GoogleDriveOAuthInternetAccount:
Adds ability to open share links from
Google Drive

Page 17 of 21Diesh et al. Genome Biology (2023) 24:74

administration, performance engineering, and plugin development) and deployment
on non-web platforms, including R, Jupyter/Python, and desktop.

In large part, the potential of JBrowse 2 arises from its portability, extensibility, and
customizability. It can run as a desktop application for personal use, as a web app to
support research groups and communities, as a visualization component within Jupy-
ter Notebooks or R for use by data scientists, or as a series of embedded components
for developers of biomedical data portals and other integrative projects. In addition,
JBrowse 2 is customizable at multiple levels, ranging from an intuitive GUI for view and
track configuration, to scriptable customization via its CLI, to bespoke visualizations
and user interfaces created using a developer’s plugin API.

Conclusions
JBrowse 2 is a multi-purpose platform for showing genome visualizations, including
but not limited to the linear genome browser view. The multiple view types available in
JBrowse 2 can be incorporated into existing analysis and annotation workflows. The syn-
teny and structural variant visualization features are designed to help users understand
genome assemblies, population-level variation, or inter-species variation. Developers
can extend JBrowse 2 to perform in-app analyses, create novel visualization types, and
create portals for their data repositories or model organism databases. JBrowse 2 can
be used as a web application, a desktop application, a CLI tool, and/or a Jupyter/R Shiny
widget, making genomes and their annotations available to a wider audience.

Methods
Software methodology

The JBrowse development team follows agile practices to plan, design, and implement
new software. Requests for new features and bug reports are documented using Github

Fig. 11 The ideogram view showing the Reactome pathway analysis on a gene list using the JBrowse 2
Ideogram plugin, which uses ideogram.js [39]

Page 18 of 21Diesh et al. Genome Biology (2023) 24:74

issues and reviewed by the development team during backlog grooming sessions. Team-
mates hold pair programming sessions to discuss and review implementations. Pull
requests with new features are peer-reviewed by developers to test and approve changes.
A Github project board is used to track in progress issues and organize incoming ones
according to priority. Finally, a test suite is run for all changes to the codebase using
Github Actions. All source code for JBrowse 2 is distributed under the Apache License
version 2.0 [41]. Many utility libraries and data parsers that are used by the JBrowse pro-
ject are also published on NPM, which can be used independently of JBrowse itself.

Software design sprints

We held two design sprints focused on specific use cases of JBrowse 2, collaborating with
members of the existing JBrowse 1 user community and other selected groups. The first
took place at the Ontario Institute for Cancer Research in Toronto in 2019, focusing on
prioritization of structural variants. The second took place remotely over Zoom in 2020
and focused on comparisons between genomes. Both of these sprints approximately fol-
lowed the Google Ventures design sprint model. For a week, working in small teams, we
conducted expert interviews, mapped out user journeys, sketched out competing solu-
tions, built prototypes, and then presented these prototypes to users for testing.

Implementation details

JBrowse 2 relies on several technological innovations that were not available when
JBrowse 1 was created. JBrowse 2 uses TypeScript [42], which adds compile-time type
checking to JavaScript. JBrowse 2 also uses React [43] for rendering the user interface
and mobx-state-tree [44], which provides a centralized way of storing, accessing, and
restoring the application state. In addition, JBrowse Web and JBrowse Desktop use Web
Workers [45] to enable parallel processing and rendering of data tracks. JBrowse Desktop
is built using Electron [46], a system for building cross-platform desktop applications.

Performance and scalability benchmark details

For performance profiling, we generated reads from an arbitrary region
chr22:25,000,000–25,250,000 on hg19. We simulated 50-kb long reads to a coverage
of ~ 1000 × using pbsim2 v2.0.1 (“pbsim ref.fa –depth 1000 –hmm_model data/R103.
model –length-mean 50,000 –prefix 1000x”) and also simulated 150-bp paired-end
short reads to a coverage of ~ 1000 × using wgsim v1.15.1 (“wgsim -1 150 -2 150 -N
1,000,000 hg19mod.fa 1000x.1.fq 1000x.2.fq”). We aligned the reads to the genome using
minimap2 (2.24-r1122) and subsampled the resulting different coverages using samtools
(1.15.1). We instrumented igv.js to output a console log when it completed rendering.
We then compared the timing of igv.js (v2.12.1) with JBrowse 2 Web, referred to as “jb2
parallel” (v2.4.0); JBrowse 2 Embedded, referred to as “jb2 serial” (v2.4.0); and JBrowse 1,
referred to as “jb1” (v1.16.11). The benchmarking script uses puppeteer v3.16.0 [34] and
measures the time taken to complete the rendering of a track. Each step is run N = 10
times, and the mean time with standard error bars (± σ/√N) is plotted. The frame rate
is calculated using the requestAnimationFrame API. A reproducible benchmark script is
available at https:// github. com/ GMOD/ jb2pr ofile. Note that JBrowse 2 Embedded can
also use parallel rendering, but is tested in serial for the purposes of demonstration.

https://github.com/GMOD/jb2profile

Page 19 of 21Diesh et al. Genome Biology (2023) 24:74

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 023- 02914-z.

Additional file 1. Additional performance profiling, derivation of formula for performance profiling time between
frames metric, and list of data parser libraries on NPM.

Additional file 2. Review history.

Acknowledgements
The expert interviews in the design sprints directly informed the software presented here. We especially wish to thank
Jonathan Torchio, Jared Simpson, Fabien Lamaze, and Heather Gibling of OICR, Viswateja Nelakuditi and Hiromichi Suzuki
of SickKids (The Hospital for Sick Children), Michael Schatz and Michael Alonge of Johns Hopkins University, and Xingang
Wang of Cold Spring Harbor National Laboratory for their participation and invaluable feedback in design sprints. We
also want to thank all contributors of code, feedback, bug, and feature requests on the project’s GitHub pages.

Peer review information
Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration with
the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
CD, GS, PX, TDJM, EH, JZ, CB, GH, AD, and RB formed the core software development team (led by RB) and worked on all
areas of the project. AL contributed design elements and organized design sprints. EG worked on JBrowse Jupyter. MM,
TF, and BB worked on text indexing. RH and SC worked on outreach. LDS and IHH led the project including the prepara-
tion of manuscripts and grant proposals and overall direction. The authors read and approved the final manuscript.

Funding
The JBrowse project was supported by NIH grant R01HG004483. Apollo is supported by NIH grant R01GM080203. Fea-
tures targeted toward the visualization of structural variants in cancer were also supported by NIH grant U24CA220441.
Text searching functionality was also supported by NIH grant R24OD021324.

Availability of data and materials
The datasets analyzed during the current study are listed below, with links from which they can be downloaded and cita-
tions to the primary scientific publications associated with the data.
• The grape genome (Vvinifera_145_Genoscope.12X.fa) and annotations (Vvinifera_457_v2.1.gene.gff3) are available
from Phytozome https:// phyto zome- next. jgi. doe. gov/ info/ Vvini fera_ v2_1 [47].
• The peach genome (Ppersica_298_v2.0.fa) and annotations (Ppersica_298_v2.1.gene.gff3) are available from https://
phyto zome- next. jgi. doe. gov/ info/ Ppers ica_ v2_1 [48].
• The SKBR3 breast cancer cell line PacBio sequencing and Illumina sequencing are available from http:// schatz- lab. org/
publi catio ns/ SKBR3/ [49].
• The COLO829 melanoma cancer cell line Nanopore sequencing is available from ENA PRJEB27698 [17].
• Whole genome alignment of grape vs peach generated with minimap2 2.24-r1122 (“minimap2 -c Vvinifera_457_
Genoscope.12X.fa.gz Ppersica_298_v2.0.fa”) [21]
• Gene based alignments for grape vs peach generated with MCScan “python -m jcvi.compara.catalog ortholog grape
peach –no_strip_names following” using guide from https:// github. com/ tangh aibao/ jcvi/ wiki/ MCsca n-% 28Pyt hon- versi
on% 29 [24].
The source code of JBrowse 2 is available at https:// github. com/ GMOD/ jbrow se- compo nents [50] and is available under
the Apache 2.0 license. An archival copy of the source code is available on Zenodo doi:10.5281/zenodo.7710472 [51].
Installation guides and documentation are available at https:// jbrow se. org/ jb2/ docs.
A list of live demos associated with the figures in this paper is available at https:// jbrow se. org/ demos/ paper 2022/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 24 August 2022 Accepted: 20 March 2023

https://doi.org/10.1186/s13059-023-02914-z
https://phytozome-next.jgi.doe.gov/info/Vvinifera_v2_1
https://phytozome-next.jgi.doe.gov/info/Ppersica_v2_1
https://phytozome-next.jgi.doe.gov/info/Ppersica_v2_1
http://schatz-lab.org/publications/SKBR3/
http://schatz-lab.org/publications/SKBR3/
https://github.com/tanghaibao/jcvi/wiki/MCscan-%28Python-version%29
https://github.com/tanghaibao/jcvi/wiki/MCscan-%28Python-version%29
https://github.com/GMOD/jbrowse-components
https://jbrowse.org/jb2/docs
https://jbrowse.org/demos/paper2022/

Page 20 of 21Diesh et al. Genome Biology (2023) 24:74

References
 1. Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, et al. The generic genome browser: a building block for a

model organism system database. Genome Res. 2002;12(10):1599–610.
 2. Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH. JBrowse: a next-generation genome browser. Genome Res.

2009;19(9):1630–8.
 3. Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M, Helt G, et al. JBrowse: a dynamic web platform for genome

visualization and analysis. Genome Biol. 2016;17:66.
 4. McKay SJ, Vergara IA, Stajich JE. Using the Generic Synteny Browser (GBrowse_syn). Curr Protoc Bioinformatics.

2010;Chapter 9:Unit 9.12.
 5. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J. ACT: the Artemis comparison tool.

Bioinformatics. 2005;21(16):3422–3.
 6. Veltri D, Wight MM, Crouch JA. SimpleSynteny: a web-based tool for visualization of microsynteny across multiple

species. Nucleic Acids Res. 2016;44(W1):W41–5.
 7. Nattestad M, Aboukhalil R, Chin CS, Schatz MC. Ribbon: intuitive visualization for complex genomic variation. Bioin-

formatics. 2020;37(3):413–5.
 8. Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for compara-

tive genomics. Genome Res. 2009;19(9):1639–45.
 9. Markham JF, Yerneni S, Ryland GL, Leong HS, Fellowes A, Thompson ER, et al. CNspector: a web-based tool for visu-

alisation and clinical diagnosis of copy number variation from next generation sequencing. Sci Rep. 2019;9(1):1–9.
 10. Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP. Variant Review with the Integrative Genomics

Viewer. Cancer Res. 2017;77(21):e31–4.
 11. Yokoyama TT, Kasahara M. Visualization tools for human structural variations identified by whole-genome sequenc-

ing. J Hum Genet. 2020;65(1). [cited 2022 Mar 15]. Available from: https:// pubmed. ncbi. nlm. nih. gov/ 31666 648/
 12. Npm. [cited 2022 Apr 27]. Available from: https:// npmjs. com/
 13. Hershberg EA, Stevens G, Diesh C, Xie P, De Jesus MT, Buels R, et al. JBrowseR: an R interface to the JBrowse 2

genome browser. Bioinformatics. 2021;37(21):3914–5.
 14. Hornik K. The comprehensive R archive network. Wiley Interdiscip Rev Comput Stat. 2012;4(4):394–8.
 15. De Jesus Martinez T, Hershberg EA, Guo E, Stevens GJ, Diesh C, Xie P, et al. JBrowse Jupyter: A Python interface to

JBrowse 2. Bioinformatics. 2023;39(1). [cited 2022 May 18]. Available from: https:// acade mic. oup. com/ bioin forma
tics/ artic le/ 39/1/ btad0 32/ 69896 25

 16. PyPI · the Python Package Index. PyPI. [cited 2022 Apr 27]. Available from: https:// pypi. org/
 17. Espejo Valle-Inclan J, Besselink NJM, de Bruijn E, Cameron DL, Ebler J, Kutzera J, et al. A multi-platform reference for

somatic structural variation detection. Cell Genomics. 2022;2(6):100139.
 18. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, et al. Accurate detection of complex

structural variations using single-molecule sequencing. Nat Methods. 2018;15(6):461–8.
 19. Durbin R, Thierry-Mieg J. The ACEDB Genome Database. In: Suhai S, editor. Computational Methods in Genome

Research. Boston: Springer, US; 1994. p. 45–55.
 20. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC.

Genome Res. 2002;12(6):996–1006.
 21. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
 22. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open software for compar-

ing large genomes. Genome Biol. 2004;5(2):1–9.
 23. Jain C, Dilthey A, Koren S, Aluru S, Phillippy AM. A fast approximate algorithm for mapping long reads to large refer-

ence databases. J Comput Biol. 2018;25(7):766–79.
 24. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. Synteny and collinearity in plant genomes. Science.

2008;320:486–8. https:// doi. org/ 10. 1126/ scien ce. 11539 17.
 25. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, et al. Juicebox Provides a Visualization System

for Hi-C Contact Maps with Unlimited Zoom. Cell Syst. 2016;3(1):99.
 26. Chain Format. [cited 2022 Apr 28]. Available from: https:// genome. ucsc. edu/ golde nPath/ help/ chain. html
 27. The Variant Call Format Specification - VCFv4.3 and BCFv2.2. 2022 [cited 2022 May 12]. Available from: https:// samto

ols. github. io/ hts- specs/ VCFv4.3. pdf
 28. Haas BJ, Dobin A, Stransky N, Li B, Yang X, Tickle T, et al. STAR-Fusion: Fast and Accurate Fusion Transcript Detection

from RNA-Seq. bioRxiv. 2017. p. 120295. [cited 2022 Mar 8]. Available from: https:// www. biorx iv. org/ conte nt/ 10.
1101/ 12029 5v1. abstr act

 29. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing
data. Nat Methods. 2015;12(8):733–5.

 30. primrose: Predict 5mC in PacBio HiFi reads. Github; [cited 2022 Apr 28]. Available from: https:// github. com/ Pacifi cBio
scien ces/ primr ose

 31. HTS format specifications. [cited 2022 Apr 28]. Available from: https:// samto ols. github. io/ hts- specs/
 32. Raney BJ, Dreszer TR, Barber GP, Clawson H, Fujita PA, Wang T, et al. Track data hubs enable visualization of user-

defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics. 2013;30(7):1003–5.
 33. The Ensembl Core Team. The Track Hub Registry. [cited 2022 Apr 27]. Available from: https:// www. track hubre gistry.

org/
 34. puppeteer: Headless Chrome Node.js API. Github; [cited 2022 Apr 27]. Available from: https:// github. com/ puppe

teer/ puppe teer
 35. Robinson JT, Thorvaldsdóttir H, Turner D, Mesirov JP. igv.js: an embeddable JavaScript implementation of the

Integrative Genomics Viewer (IGV). Bioinformatics. 2022;39(1). Available from: https:// acade mic. oup. com/ bioin forma
tics/ artic le/ 39/1/ btac8 30/ 69585 54

 36. Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, et al. The reactome pathway knowledgebase
2022. Nucleic Acids Res. 2021;50(D1):D687–92.

https://pubmed.ncbi.nlm.nih.gov/31666648/
https://npmjs.com/
https://academic.oup.com/bioinformatics/article/39/1/btad032/6989625
https://academic.oup.com/bioinformatics/article/39/1/btad032/6989625
https://pypi.org/
https://doi.org/10.1126/science.1153917
https://genome.ucsc.edu/goldenPath/help/chain.html
https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://www.biorxiv.org/content/10.1101/120295v1.abstract
https://www.biorxiv.org/content/10.1101/120295v1.abstract
https://github.com/PacificBiosciences/primrose
https://github.com/PacificBiosciences/primrose
https://samtools.github.io/hts-specs/
https://www.trackhubregistry.org/
https://www.trackhubregistry.org/
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://academic.oup.com/bioinformatics/article/39/1/btac830/6958554
https://academic.oup.com/bioinformatics/article/39/1/btac830/6958554

Page 21 of 21Diesh et al. Genome Biology (2023) 24:74

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 37. Xin J, Mark A, Afrasiabi C, Tsueng G, Juchler M, Gopal N, et al. High-performance web services for querying gene and
variant annotation. Genome Biol. 2016;17(1):91.

 38. Griffith M, Spies NC, Krysiak K, McMichael JF, Coffman AC, Danos AM, et al. CIViC is a community knowledgebase for
expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet. 2017;49(2):170–4.

 39. Weitz E. ideogram: Chromosome visualization for the web. Github; [cited 2022 Apr 27]. Available from: https://
github. com/ eweitz/ ideog ram

 40. Trix Indices. [cited 2022 Apr 15]. Available from: https:// genome. ucsc. edu/ golde nPath/ help/ trix. html
 41. Apache License, Version 2.0. [cited 2022 Apr 15]. Available from: https:// opens ource. org/ licen ses/ Apache- 2.0
 42. JavaScript With Syntax For Types. [cited 2022 Apr 15]. Available from: https:// www. types cript lang. org/
 43. React. [cited 2022 Apr 15]. Available from: https:// react js. org/
 44. Welcome to MobX-State-Tree!. [cited 2022 Apr 15]. Available from: https:// mobx- state- tree. js. org//
 45. Using Web Workers. [cited 2022 Apr 27]. Available from: https:// devel oper. mozil la. org/ en- US/ docs/ Web/ API/ Web_

Worke rs_ API/ Using_ web_ worke rs
 46. Electron. [cited 2022 Apr 27]. Available from: https:// www. elect ronjs. org/
 47. The French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence

suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449(7161):463–7.
 48. Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, et al. The high-quality draft genome of peach (Pru-

nus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet.
2013;45(5):487–94.

 49. Nattestad M, Goodwin S, Ng K, Baslan T, Sedlazeck FJ, Rescheneder P, et al. Complex rearrangements and onco-
gene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line. Genome Res.
2018;28(8):1126–35.

 50. Diesh C, Stevens G, Xie P, De Jesus Martinez T, Hershberg E, Leung A, et al. GMOD/jbrowse-components. Github;
[cited 2023 Mar 8]. Available from: https:// github. com/ GMOD/ jbrow se- compo nents

 51. Diesh C, Stevens G, Xie P, De Jesus Martinez T, Hershberg E, Leung A, et al. JBrowse v2.4.0. Zenodo; 2023. Available
from: https:// zenodo. org/ record/ 77104 72

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/eweitz/ideogram
https://github.com/eweitz/ideogram
https://genome.ucsc.edu/goldenPath/help/trix.html
https://opensource.org/licenses/Apache-2.0
https://www.typescriptlang.org/
https://reactjs.org/
https://mobx-state-tree.js.org/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://www.electronjs.org/
https://github.com/GMOD/jbrowse-components
https://zenodo.org/record/7710472

	JBrowse 2: a modular genome browser with views of synteny and structural variation
	Abstract
	Background
	History of JBrowse and the GMOD project
	Structural variant and synteny visualization tools

	Results
	Advances in JBrowse 2
	The JBrowse 2 product range
	Sessions, assemblies, views, and tracks
	Sessions
	Assemblies
	Views
	Tracks

	The Linear Genome View
	The track selector
	Beyond the linear genome view
	Displaying and comparing multiple assemblies
	Displaying structural variation
	Visualizing long reads

	Ways to access data
	Connections
	Direct access to local files
	Sharing sessions
	Authentication

	Performance and scalability
	Administration and configuration
	Extending JBrowse 2 with plugins
	Static site compatibility
	JBrowse CLI
	Text indexing

	Discussion
	Conclusions
	Methods
	Software methodology
	Software design sprints
	Implementation details
	Performance and scalability benchmark details

	Anchor 38
	Acknowledgements
	References

