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Abstract

How the locus-specificity of epigenetic modifications is regulated remains an unanswered

question. A contributing mechanism is that epigenetic enzymes are recruited to specific loci

by DNA binding factors recognizing particular sequence motifs (referred to as epi-motifs).

Using these motifs to predict biological outputs depending on local epigenetic state such as

somatic mutation rates would confirm their functionality. Here, we used DNA motifs includ-

ing known TF motifs and epi-motifs as a surrogate of epigenetic signals to predict somatic

mutation rates in 13 cancers at an average 23kbp resolution. We implemented an interpret-

able neural network model, called contextual regression, to successfully learn the universal

relationship between mutations and DNA motifs, and uncovered motifs that are most

impactful on the regional mutation rates such as TP53 and epi-motifs associated with

H3K9me3. Furthermore, we identified genomic regions with significantly higher mutation

rates than the expected values in each individual tumor and demonstrated that such cancer-

related regions can accurately predict cancer types. Interestingly, we found that the same

mutation signatures often have different contributions to cancer-related and cancer-inde-

pendent regions, and we also identified the motifs with the most contribution to each muta-

tion signature.

Author summary

Locus-specific epigenetic modifications play critical roles in various biological processes.

However, it remains elusive how proteins and their binding motifs regulate such locus-

specific epigenetic patterns. A contributing mechanism is that epigenetic enzymes are

recruited to specific loci by DNA binding factors recognizing particular sequence motifs

(referred to as epi-motifs). Using these motifs to predict biological outputs depending on

local epigenetic state such as somatic mutation rates would confirm their functionality.

Here, we developed an interpretable neural network model using contextual regression
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(CR) to predict somatic mutation rates at kilobase resolution using DNA motifs in 13

diverse cancers and identified the most informative motifs particularly epi-motifs. Fur-

thermore, we showed that the genomic regions with significantly higher mutation rates

than the predicted values can be used for cancer classification, thus facilitating discovery

of the underlying mechanisms. Importantly, this study provides candidate motifs and TFs

for the investigation of new mechanisms and the trained CR model is readily applicable to

new cancers and identifying cancer-related regions. The CR model can also be applied to

other biological questions, such as predicting histone modification using DNA sequences.

Introduction

Locus-specific epigenetic modifications, such as DNA methylation and histone modifications,

play critical roles in various biological processes [1]. While epigenetic patterns are influenced

by multiple factors, including nucleosome positioning [2,3], modifying enzymes [3], transcrip-

tion factors (TFs) [4], non-coding RNAs (ncRNAs) [5], signaling molecules [6] and three-

dimensional genomic organization [7,8], the epigenetic modifying enzymes generally do not

recognize specific DNA sequence or do not bind to DNA at all and they need to be recruited

to specific loci by DNA binding proteins or ncRNAs. Pioneer transcription factors are exam-

ples of such proteins that initiate chromatin remodeling and activate regulatory elements in

particular loci [9–12]. However, proteins and their binding motifs responsible for establishing

or maintaining other types of locus-specific epigenetic patterns largely remain elusive.

Accumulating evidence suggest the importance of DNA sequence features in shaping epige-

netic patterns [4,13–20]. DNA motifs associated with epigenetic modifications (referred to as

epi-motifs) have been documented [21–23]. The readout of epi-motifs is dynamic and depen-

dent upon cellular conditions (e.g. activity of the DNA binding regulator and its access to

DNA), and thus is the epigenome. This mechanism is similar to how TFs function: while the

TF motifs remain the same, the transcriptional regulation is tissue-specific and dynamic. Suc-

cessful prediction of gene expression using TF motifs supports the functionality of TF motifs

[24,25]. Utilizing epi-motifs to predict biological outputs depending on local epigenetic state,

such as somatic mutation rates, would thus help to illustrate their importance in regulating

epigenetic locus-specificity.

Somatic mutations are tightly associated with disease phenotypes and are resulted from the

interplay between mutagenic processes and DNA repair mechanisms [26–32]. The regional

mutation rates are related to various factors, including replication timing, transcriptional

activity, nucleosome positioning, chromatin accessibility, histone modifications and protein

binding [26–32]. Analysis of mutation rates has been performed at multiple scales. At the

megabase scale, high mutation rate is correlated with later replication timing, closed chroma-

tin, strong repressive (e.g. H3K9me3) and weak active (H3K4me1/2) histone marks [33–38].

At the gene scale, reduced mutation rate is associated with high transcription and high

H3K36me3 levels [39–42]. At the scale of tens to hundreds of bases, nucleosome positioning is

correlated with periodicity of mutation rates [43–49]; furthermore, while high mutation rates

are observed at the binding sites of CTCF [40,50,51], ETS family and numerous other tran-

scription factors [52–55], simultaneous analysis of DNA damage and repair suggests that the

impact of protein binding varies from no effect to inhibition or stimulation on DNA damage

depending on TF and DNA damaging agent [56]. At the smallest scale of several base pairs,

previous analyses have uncovered sequence context of somatic mutations and mutational sig-

natures [57–61].
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These observations support that chromatin state is tightly correlated with regional mutation

rate [29–31]. Such a relationship can be quantified at the megabase scale by machine learning

models [34,37,62]. However, at finer scales (e.g. tens of bases to kilobase), no strong correlation

between individual epigenetic signals and mutation rates has been observed [34,37,62] and a

quantitative model to explain this relationship has not been established. This knowledge gap

hinders the understanding of the epigenetic mechanisms that regulate somatic mutation. As

protein binding has been suggested to influence the balance between DNA damage and DNA

repair rates around their binding sites [52–56], considering DNA motifs recognized by DNA

binding proteins may aid in establishing a prediction model for mutation rates. However, it

has to overcome the challenge that proteins can have divergent effects on mutation rate upon

binding [56].

Given that driver mutations in cancers and other diseases only account for a small portion

of all somatic mutations, we hypothesize that (1) the majority of somatic mutations are corre-

lated with the regional features, such as epigenetic state and TF motifs, and the regional muta-

tion rates can be predicted by these relevant features; in other words, somatic mutations in

these regions are disease-independent and their occurrence is only related to the local environ-

ment rather than the disease state. (2) a relatively small portion of genomic regions contain

disease-related mutations and the mutation rates in these regions significantly deviate from

the expected values; in other words, these mutations are driven by the disease state and have

higher mutation loads than expected from the local environment.

We present here an interpretable deep neural network model that predicts somatic muta-

tion rate at the kilobase scale using DNA motifs. We calculate the mutation rate in genomic

regions with distinct epigenetic states as annotated by ChromHMM [3] based on the following

rationale. As the epi-motifs are associated with the regional epigenetic state [21–23] and the

regional epigenetic state has been shown to be associated with somatic mutation rates [33–38],

it is reasonable to use epi-motifs together with other motifs to predict regional mutation rates

in the same epigenetic state. If randomly segmenting the genome, a single region likely con-

tains segments in different epigenetic states (e.g. the active enhancers are often 200-300bp long

which is only part of a kilobase-long region) and it is thus inappropriate to predict the muta-

tion rate of the entire region using epi-motifs together with other motifs. If randomly segment-

ing the genome at a high resolution such as 200bp to avoid this problem, the regions are too

short to get stable mutation rates and we are not aware of any study that can predict mutation

rates at even kilobase resolution using only sequences.

We chose DNA motifs as input features because protein binding has been shown associated

with the regional mutation rate [29–31]. By building such a predictive model, we aimed to

uncover the DNA motifs that enhance or repress somatic mutations (Fig 1). Similar to how the

identification of TF motifs important for gene regulation in promoters and enhancers has con-

tributed to our understanding of transcriptional regulation [63,64], we propose that identify-

ing mutation-associated motifs, particularly epi-motifs, will help pave the way towards

revealing the molecular mechanisms influencing the rate of regional somatic mechanisms.

Our model has several unique features. First, we not only include known motifs docu-

mented in the literature but also de novo motifs associated with DNA methylation and histone

modifications (referred to as epi-motifs) [21–23]. The inclusion of epi-motifs can approximate

the epigenomic signals and would reveal DNA motifs involved in regulating locus-specific epi-

genetic modifications. Second, our model is interpretable, utilizing a method called contextual

regression [65,66]. It can assess the contribution of each motif to the prediction accuracy and

determine whether the presence of a motif is associated with an increase or decrease in the

regional mutation rate. Third, this model can identify disease-related regions that exhibit

exceeding loads of mutations. These regions can be used for classifying disease type.

PLOS COMPUTATIONAL BIOLOGY Predicting somatic mutation rates
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The objective of this study was threefold: (1) to develop an interpretable deep neural net-

work model that predicts somatic mutation rate at the kilobase scale using DNA motifs, (2) to

identify the motifs that are most impactful on the regional mutation rates and (3) to classify

cancer types using disease-related regions that contain significant higher mutation rates than

predicted values.

Fig 1. The flowchart of the analysis. Using DNA motifs, including known TF motifs (TF motifs), histone associated

motifs (Histone motifs) and DNA methylation associated motifs (Methyl motifs) to represent epigenetic states, we

built a contextual regression (CR) model to predict regional mutation rates. As the majority of the mutations are

related to the local epigenetic state and independent from the disease state (grey dots), this CR model can quantify the

relationship between DNA motifs and somatic mutation rates. Importantly, the CR model revealed the motifs most

predictive of somatic mutations (right branch) and the predicted mutation values allowed classification of cancer types

using the cancer-related regions with significantly higher mutation rates than predicted (left branch). In the scatter

plot, each point represents a training/testing instance, which is the predicted/measured mutation rate of a genomic

region. The mutation rate is the log2(MutationRate+1), which is consistent with Fig 2c. The rows of the heatmap are

important motifs and the columns are different types of cancers.

https://doi.org/10.1371/journal.pcbi.1011536.g001
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Results

Regional somatic mutation rates could be predicted using DNA motifs at

kilobase resolution

We collected somatic mutations from 1,125 donors, detected through whole-genome sequenc-

ing (WGS) from the Pan-Cancer Analysis of Whole Genomes (PCAWG) project [67] (see

Online Methods for selection criteria and S1 Table). These donors were associated with 13

tumor types and contained a total of 8,086,632 somatic mutations. To define the genomic seg-

mentation and epigenetic states in the normal tissues corresponding to each cancer type, we

took the genomic segmentation defined by ENCODE using ChromHMM [68]. The rationale

behind this approach is that the majority of the mutations in cancers are random, and we rea-

soned that they depend primarily on the local epigenetic state, which can be approximated

using normal cells. We observed that, on average, 80.3% of the genome shares similar

ChromHMM states between the cancer cell line and their corresponding normal cell line (S2

Table). Because the ChromHMM segments vary in length reflecting the distinct scales of dif-

ferent chromatin states, we calculated and normalized mutation rate in each region as

Di ¼
Ci

li
1000
� T

106

, where T is the total number of somatic mutations in the tumor dataset under con-

sideration, Ci the number of somatic mutations in region i, li is the length (bp) of this region. It

is worth noting that the size of the genomic region is much smaller, with an average 22.7kb (S3

Table), compared to the larger 1Mbp regions used in the previous studies [34,37,62]. This finer

scale is expected to better capture the regional epigenetic state and mutation rate.

To build our prediction model, we utilized a comprehensive set of DNA motifs as input fea-

tures. This set included 1,663 known human motifs from the literature, as well as 310 motifs

associated with DNA methylation and 348 motifs associated with histone modifications, as

previously identified [22,23] (Online Methods and S4 Table). We trained and tested the con-

textual regression (CR) model on 80% of all the donors to predict the regional mutation rates,

while the remaining 20% of donors were left out for evaluating the model’s capability for classi-

fying cancer types. The framework of this study is shown in S1 Fig.

Contextual regression (CR) is a framework to interpret machine learning models

[65,66,69]. It can quantify contributions of features by learning an embedding function that

maps each feature vector to a local linear model capable of predicting the target value. The val-

ues assigned to each element in the feature vector are considered as context weight and the

embedding serves as the classifier of the context. By analyzing the statistics of the context

weight, the contribution of each feature can be inferred. CR has been successfully applied to

identify important features from neural network models such as those predictive of open chro-

matin [65] and circular RNA biogenesis [66].

Here, we constructed a CR model with a fully connected neural network architecture (Fig

2A). The model consisted of one input layer and 7 hidden layers. The 1st, 3rd, and 5th hidden

layers contained p/2, p/10-20, p/5-30 nodes, respectively (p is the number of features). Each

hidden layer was activated using the rectified linear unit (ReLU) activation function, and each

was followed by a dropout layer (2nd, 4th, 6th hidden layer) with a rate of 0.01, 0.01 and 0.1,

respectively. Dropout layer is a common technique used in model training to prevent overfit-

ting. Dropout rate refers to the percentage of the neurons that are randomly dropped out in

the hidden layer. Higher dropout rates mean that more neurons are deactivated. The 7th layer

is the Context Weight layer with p nodes and a linear activation function. The output was gen-

erated by taking the dot product between the input and Context Weight layers (Fig 2A).

We hypothesized that (1) the majority of the somatic mutations are random and indepen-

dent of cancer (the associated regions are referred to as cancer-independent regions), and (2)
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such random mutations are associated with the local epigenetic state and can be predicted by

DNA motifs. To test this hypothesis, we trained the model to predict mutation rates in all regions.

We anticipated that an accurate prediction would confirm the dominant majority of regions to be

cancer-independent. We then identified cancer-related regions as those whose observed muta-

tion rates significantly deviate from the predicted values and the prediction model could be fur-

ther improved by removing the identified cancer-related regions (see S2 Fig).

To implement this strategy, we first performed the CR prediction with 10-fold cross validations

for each cancer type and calculated the Pearson correlation between the predicted and observed

mutation rates (see S3 Table). The average Pearson correlation was high, measuring 0.866 (Fig

2B), indicating a dominant majority of cancer-independent regions. To build a universal model

Fig 2. The contextual regression model successfully predicted somatic mutation rates in 13 tumors. (a) The structure of the

contextual regression model; (b) For each tumor type, 10-fold cross validation was performed and the Pearson correlation coefficient

was calculated between the predicted and measured values. "Training accuracy" and "Testing accuracy" represent the average of Pearson

correlation coefficients in the training, testing datasets respectively. "Included for re-training" indicates which data set was included for

re-training the CR model after removing the cancer-related regions (i.e. the regions with mutation rates significantly deviating from the

predicted values). "Testing accuracy of the re-trained model" represents the correlation using the re-trained CR model obtained from the

interactive procedure (see Online Methods). Because the regions from a tumor type in the test set may overlap with the regions included

in the merged dataset for training, the overlapped regions were removed and Pearson correlation coefficients are shown as "Testing

accuracy after removing overlapping regions"; (c) The scatter plot for one fold from the 10-fold cross validations in which chr1 and

chr11 were left out as the testing set; (d) The scatter plot for prediction in Lymph-CLL testing set using the re-trained CR model.

https://doi.org/10.1371/journal.pcbi.1011536.g002

PLOS COMPUTATIONAL BIOLOGY Predicting somatic mutation rates

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011536 October 2, 2023 6 / 25

https://doi.org/10.1371/journal.pcbi.1011536.g002
https://doi.org/10.1371/journal.pcbi.1011536


for all cancers, we selected 5 cancers with large sample size (donors and regions) and superior pre-

diction performance (average Pearson correlation coefficients> 0.90 in the test sets in the 10-fold

cross-validations). These cancers included Bone-Osteosarc, CNS-Medullo, Kidney-RCC, Panc-

Endocrine and Stomach-AdenoCA. We merged the regions from these five cancers. To avoid the

similar regions present in both training and test sets, we held out 2 or 3 chromosomes for testing

while training the model on the other chromosomes. We performed 10 such cross-validations,

resulting in average Pearson correlations of 0.926 on the training sets and 0.907 on the test sets,

respectively (see S5 Table and Fig 2C). It is worth noting that the ChromHMM regions differ

across the 13 cancers. Few exact ChromHMM segments (with exactly the same starting and end-

ing locations in the genome) were shared across all 13 cancers, with 80% of the ChromHMM

states unique to only one cancer and a negligible portion (much smaller than 0.01%) occurring in

all 13 cancers. Therefore, the features on the regions are distinct for different cancers and their

somatic mutation rates can be predicted using the same model.

Our next focus was on improving the prediction performance for cancer-independent

regions. To achieve this, we first identified and removed regions whose observed mutation

rates significantly deviated from the predicted values (Online Methods). Subsequently, we re-

trained the CR model using the remaining regions (i.e. cancer-independent regions) that bet-

ter captured the relationship between epigenetic state and random somatic mutations (S2 Fig).

We next refined the identification of cancer-independent regions and cancer-related regions

using the re-trained CR model. Consistent with our hypothesis, the majority of regions are

cancer-independent, with the highest proportion being 90.1% in Breast-AdenoCA and the

lowest being 63.1% in Prost-AdenoCA (Fig 3A, S6 Table).

To evaluate the prediction performance using an independent data set, we applied the re-

trained CR model to the remaining 8 cancer types (Figs 2B, 2D and S3 and S3 Table,) and

achieved an average Pearson correlation coefficient of 0.857. Considering regions included in

the 5 training datasets might also appear in the other datasets, we removed all the overlapping

regions in the test set, and the average Pearson correlation was not affected and remained high

at 0.858 (Fig 2B). Taken together, the CR model successfully captured the relationship between

cancer-independent somatic mutation rates and DNA motifs in diverse tissues.

Notably, the prediction performance using DNA motifs alone is comparable to that using

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) data of TFs and histone

modifications. For example, using 165 TF and histone ChIP-seq of data from GM12878 (down-

loaded from https://www.encodeproject.org/) as the input features to predict the somatic muta-

tion rates of Lymph-CLL (with GM12878 as the corresponding normal cell for Lymph-CLL), the

Pearson correlations on the training and testing datasets were 0.903 (compared to 0.943 using

motifs) and 0.871 (compared to 0.899 using motifs), respectively. The slightly lower correlation

using ChIP-seq data may be attributed to the smaller number of TFs measured by ChIP-seq com-

pared to the number of available motifs. Since most cancers lack extensive ChIP-seq data in the

corresponding normal tissues or cell lines, this observation indicates that using TF and epi-motifs

can be useful for approximating the regional epigenetic states in predicting mutation rates.

The analysis of the prediction results indicates that our model does not solely predict aver-

age mutation rates in different ChromHMM states. We demonstrated this by showing that the

same ChromHMM state exhibits a wide range of mutation rates (S4 Fig). This observation

holds true for all the analyzed cancers, not just breast cancer. Additionally, we observed a high

correlation between the predicted and measured mutation rates in all regions within the same

ChromHMM states (breast cancer as an example in the S5 Fig and each panel is one

ChromHMM state). These observations clearly showed that our model can indeed predict

mutation rates for individual regions and not just distinguish the mean mutation rates between

different ChromHMM states.
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Furthermore, we merged the similar motifs to remove redundancy and the model’s perfor-

mance remained comparable with the original model (S7 Table). We chose to use the non-

merged motif set in this study because different versions of the same motifs may represent col-

laborations of the same TF with different partners.

Contextual regression identified important features in cancer-independent

regions

To identify the most important features in each cancer-independent region, we selected motifs

with both the largest contributions to the predicted value and the largest contextual weights:

(1) we first selected the top 10% of features with the largest |βiXi|, where βi is the contextual

Fig 3. Analysis of the cancer-independent regions. (a) The percentage of cancer-independent regions in the 13

cancer types. Percentage is calculated as the number of cancer-independent/related or ambiguous regions divided by

the total number of regions in a cancer; (b) Cancer-independent regions clustered using the contextual weights of the

motifs. For each of the 13 cancer types, the identified cancer-independent regions were clustered into 10 clusters using

the Manhattan distance between the feature contextual weight vectors as the similarity metric. Each row is a motif with

non-zero contextual weight, each column a cluster, and each entry is the average of a motif’s contextual weights in all

the regions in a cluster. The clusters were further clustered into 10 groups; (c) The normalized mutation rate of each

group, which is the z-score of mutation density (see methods for more details), varies significantly from the lowest in

group A to the highest in group G; (d) The numbers of regions in the 10 groups; (e) The fold change of ChromHMM

states in group A and each tumor. The fold change for each ChromHMM state is defined as the percentage of the state

in group A divided by the percentage of the state in all the regions in a specific cancer.

https://doi.org/10.1371/journal.pcbi.1011536.g003
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weight for feature Xi. |βiXi| represents the contribution of feature Xi to the predicted mutation

rate of this region. (2) Among the top 10% of features with the largest |βiXi|, we selected the

top 10% of features with the largest |βi|. In the following analyses, we only focused on the

selected motifs and each region was thus represented by a vector composed of the contextual

weight value βi for the selected motifs and 0 for the unselected motifs.

Using the contextual weight profile obtained for each cancer, we performed clustering of

the cancer-independent regions using K-means. The value of k, the number of clusters, was

determined as the elbow point on the elbow curve for each individual cancer. After removing

the clusters with small size (less than 10 regions), we obtained a total 163 clusters across 13

cancers. These clusters were further grouped into 10 distinct groups using hierarchical cluster-

ing. Group A had the most clusters (18), while group F had the least (6) (Fig 3B, see S6 Fig for

the full heatmap). The 10 groups show distinct characteristics. First, the mutation rate is the

lowest in group A and the highest in group E (Fig 3C). Second, the number of regions in each

group varied significantly, with group A containing the largest number of regions (657,746)

and group F having the smallest number (441) (Fig 3D). Third, two ChromHMM states,

namely the Weak Repressed PolyComb and Quiescent/Low states, were only enriched in

group A across all 13 cancers but not in any other groups (Figs 3E and S7).

To identify the important features in each group, we calculated the average of contextual

weights across clusters for each group (Fig 4A and S8 Table). This analysis led to the identifica-

tion of 336 unique motifs distributed across the 10 groups, with group J having the highest

number of motifs (130) and group A having the smallest number (41) (Fig 4B). Interestingly,

although epi-motifs (motifs associated with histone modification and DNA methylation)

accounted for only 28% of the input motifs, their percentage increased significantly to average

35% (one-proportion z-test p-value = 5.1×10−7) among the important motifs in the 10 groups.

This increase was particularly prominent in group A, B, F and I (Fig 4C). This finding supports

the notion that epi-motifs play a crucial role in establishing regional epigenetic states [22,23].

To gain deeper insights, we focused on group A due to its largest number of regions. In this

group, we identified 18 motifs with positive contextual weights and 22 motifs with negative

contextual weights (Fig 4A). The sign of the contextual weights indicates positive or negative

association between the input feature and the predictive value. Therefore, our analysis sug-

gested that the 18 and 22 motifs would have opposite impacts on somatic mutations. We then

examined the mutation rates around these motifs and found that motifs with positive weights

were associated with significantly higher mutation rates compared to those with negative

weights (p-value of 4.5×410−6 from Student’s t-test) (Fig 4D). Furthermore, we performed

pairwise comparison between all the possible positive- and negative-weighted motif pairs. In

62.6% of all the pairs (248/396, using a p-value cutoff of 0.05 from Student’s t-test), the muta-

tion rates around the motif sites (upstream 50bp to downstream 50bp) for positive-weighted

motifs were higher than the paired negative motifs. One motif pair of CBX2 (positive coeffi-

cient) and TP53 (negative coefficient) is shown as an example in Fig 4E. The mutation rate is

significantly higher (p-value of 1.51×10−4 from Student’s t-test) around the CBX2 motifs than

that around TP53 (i.e. M6403_1.02) motifs in group A. TP53 is known to play a significant

role in repairing damaged DNA [70], supporting the reasonable negative association between

TP53 motifs and mutation rate.

Among the important motifs in group A, we observed 6 positive- and 5 negative-weighted

histone-motifs (Fig 4A). The positive association of the H3K27me3 motifs and the negative

association of H3K4me3.H3K4me1 and H3K4me1.H3K36me3 motifs with the mutation rate

are not surprising and consistent with the literature. The positive association of 1 H3K4me1.

H3K27ac and 3 H3K36me3 as well as negative association of 2 H3K9me3 motifs suggest the

relationship between histone modification and somatic mutation at the kilobase scale is more
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complex than expected from the previous megabase-scale studies. Interestingly, we also found

3 DNA methylation motifs (MM) positively associated with somatic mutation rates, indicating

the possible roles of DNA methylation on affecting DNA damage and repair.

Fig 4. Identification of important motifs in cancer-independent regions. (a) The important features in the 10

groups. Blue and orange represent the negative and positive contextual weight, respectively; (b) The number of

important motifs in each group; (c) The percentages of motif categories in each group; (d) The average mutation rates

around the motifs with positive contextual weights are higher than those around the motifs with negative contextual

weights in the group A regions; (e) Mutation rates around the motif sites (1kbp at each side of the motif) in the group

A regions. The red and blue lines represent the motifs with positive and negative contextual weights, respectively. The

motif site is at the center.

https://doi.org/10.1371/journal.pcbi.1011536.g004
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The CR model allows identification of cancer-related genomic regions and

motifs

The analysis of the predicted mutation rates allowed us to identify cancer-related regions in

each tumor type (see Online Methods). The percentage of these regions varied across cancer

types, ranging from 0.2% in CNS-Medullo to 10.5% in Prost-AdenoCA, with an average of

4.1% (Fig 3A). The small proportion of these cancer-related regions confirms our hypothesis

that the majority of genomic regions are cancer-independent. One example for cancer-related

regions in Breast-AdenoCA is shown in Fig 5A. We analyzed the biological processes in can-

cer-related regions for each cancer type (S9 Table) and the enriched ones for Breast-AdenoCA

are shown in Fig 5B, including those relevant to breast tissue and/or breast cancer such as

"right ventricular cardiac muscle tissue morphogenesis", "negative regulation of fat cell differ-

entiation", and "negative regulation of female gonad development" as well as "telomere forma-

tion via telomerase" and "telomerase RNA localization to Cajal body". Notably, the key gene

WRAP53 is also found in the Breast-AdenoCA-related regions, which is related to the

increased risk of breast cancer [71–73].

We also found that the disruption rate of motifs by somatic mutations in cancer-related

regions was significantly higher than that in cancer-independent regions for 10 out of 13

tumor types (p-value < 0.05, Fig 5C). The disruption rate of motifs for cancer-related regions

is defined as the number of all motif binding sites overlapped with somatic mutation divided

by the number of all motifs binding sites and the number of somatic mutations (see Online

Methods). This observation supports the hypothesis that the DNA motifs play a role in shaping

the epigenetic state, and mutations that disrupt these motifs may be associated with

tumorigenesis.

To identify the most significantly disrupted motifs in the cancer-related regions for each

cancer, we selected motifs that had a disruption rate in the top 5% of all motifs with a p-

value < 0.05 (p-value calculated from the Student’s t-test for the alternative hypothesis of the

disruption rate in cancer-related regions larger than that in cancer-independent regions).

Among the 342 motifs obtained in 13 cancer types, 60.8% of them were known motifs, a

decrease from 72% in the input motifs (Fig 5E). 102 (28.9%) DNA methylation associated

motifs represented a significant increase from 13% in the input motifs. Notably, all of them are

unmethylated motifs (i.e. UM motifs), which are known to be associated with low DNA meth-

ylation level [23]. This observation is consistent with the well-established phenomenon of

hypomethylation being frequently observed in both highly and moderately repeated DNA

sequences, including heterochromatic DNA repeats, in cancer [74]. The most common motifs

found across cancer types included one known motif (E2F1, motif ID: M4536_1.02), two

unmethylation motifs (UM_235.9_3.32_0.65_1_SGCWCGCGGCGGC and

UM_326.6_2.71_0.59_6_CGCGCCCCGY). E2F1 is known to play a crucial role in cell cycle

regulation [75] and DNA repair [76]. Somatic mutations in E2F1 binding sites could poten-

tially result in dysfunction of E2F1. Additionally, several motifs were found to be specifically

disrupted in certain cancer types (S10 Table), such as M2321_1.02 (TP63) in Bone-Osteosarc,

M6446_1.02 (RARG) in Breast-AdenoCA, and M5371_1.02 (EGR4) in Lymph-CLL.

It is interesting that the cancer-related regions in most cancer types were enriched in the

ChromHMM state of "Quiescent/Low", which typically exhibits little or low epigenetic signals.

Furthermore, each cancer type also showed its own specific epigenetic state, as reflected by the

enrichment of different ChromHMM states. For example, "Transcription at gene 5’ and 3´´´ is

the most enriched state in Lymph-CLL and Lymph-BNHL, while "ZNF genes & repeats" was

enriched in Bone-Osteosarc and Panc-Endocrine (Fig 5D).
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The cancer-related regions are predictive of cancer types

The cancer-related regions are presumably important in cancers considering the cancer-

related regions are those having significantly higher mutation rates than the predictive muta-

tion values. Therefore, we examined whether these regions could be predictive of cancer types.

Fig 5. Analysis of the cancer-related regions. (a) The identified cancer-related regions in Breast-AdenoCA (red dots);

(b)The enriched pathways for the cancer-related regions in Breast-AdenoCA; (c) The fold change and p-value for the

motif disruption rates in the 13 tumors. The red line represents the p-value of 0.05; (d) The fold change of

chromHMM state (same as that in Fig 3E) for the cancer-related regions in each tumor; (e) The percentages of motif

types that were significantly disrupted in cancer-related regions; (f) The classification model performance. The

confusion matrix for the classification model using the 150 selected cancer-related regions on the testing dataset. Rows

and columns correspond to the true and predicted tumor types, respectively. Values are the number of donors

classified correctly. For example, for the Prost−AdenoCA, 31 donors were correctly classified.

https://doi.org/10.1371/journal.pcbi.1011536.g005
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Twelve cancers with WGS data with>30 donors each were used for multi-class classification

of cancer types, with Stomach-AdenoCA excluded due to the small sample size. Additionally,

400 healthy donors from GTEX were included as controls. Using the mutation counts in the

67,890 cancer-related regions (which collectively spanned the entire genome, S6 Table), a Gra-

dient Boosting Decision Tree model was trained for classifying the 12 tumor types and con-

trols. The training and evaluation of the classification model were performed on 80% of the

cancer donors (the dataset used in CR model construction) and controls, while the remaining

samples (independent data not used in the CR model construction) were utilized as the testing

set. A systematic search of the hyperparameter space (27,000 combinations of 6 parameters,

S11 Table and method section) was conducted using 5-fold cross-validation on the training

data (i.e. the 80% of the 1,382 cancer donors and 320 control donors). The best parameter

combination was selected based on the minimal difference of accuracy between the training

and validation datasets to avoid overfitting. The prediction accuracy on the test data in the

5-fold cross-validations was 0.865. We re-trained the classification model using all the 80%

data with the best parameter combination and its prediction accuracy on the left-out 20% data-

set was 0.858.

The feature selection process was conducted using the feature importance metric of Gradi-

ent Boosting Decision Tree, and 150 regions (accounting for 5.8% of the whole genome) were

selected for re-training the classification model. We also performed the parameter tunings

using 5-fold cross validation on the 80% dataset. The accuracy on the testing samples was

0.813 using the best parameter combination (S12 Table). Subsequently, the classification

model was re-trained using the 80% dataset with the best parameter combination and its pre-

diction accuracy on the left-out 20% donors was 0.822 (Fig 5F). The recall for each class on the

testing dataset ranged from 0.14 in Bone-Osteosarc to 1.00 in control, with a median of 0.72.

The precision ranged from 0.62 in Breast-AdenoCA to 1.00 in Bone-Osteosarc, Lymph-BNHL

and Ovary-AdenoCA, with a median of 0.83. The F1 score, a comprehensive metric, ranged

from 0.25 in Bone-Osteosarc to 0.98 in Control, with a median of 0.75. It is not surprising that

the best performance was achieved on control samples, as distinguishing normal samples from

tumor samples is generally easier than differentiating between different types of tumors. The

performance on Bone-Osteosarc was the worst, which was likely due to small sample size (only

28 donors in training and 7 in testing). Overall, the performance of the model is satisfactory,

especially considering that it only utilized 5.8% of the genome for classification. These results

further validate the model’s robustness and demonstrate that the predicted mutation values

can serve as a reference for identifying regions with aberrantly high mutation rates, which may

be associated with specific cancer types.

Discussion

Distinct from the previous analyses, we showed for the first time that DNA motifs can be pre-

dictive of regional somatic mutation rates at the kilobase scale. The DNA motifs include

known TF motifs as well as epi-motifs that are associated with histone modifications or DNA

methylation. We showed that the prediction performance is comparable to that using histone

and TF ChIP-seq data. Considering that genome sequencing is much easier than ChIP-seq

experiments in tumor tissues, our model provides a powerful approach to quantify the rela-

tionship between somatic mutations and epigenetic state.

A remarkable aspect of the study is the revelation of the pivotal roles played by epi-motifs

in predicting regional somatic mutation rates. Despite accounting for only 28% of the input

motifs, epi-motifs constitute an average of 35% in the most predictive motifs across the 10

groups. Moreover, the significantly higher frequency of disruption of DNA methylation
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associated motifs (28.9%) in the cancer-related regions, compared to their percentage (13%) in

the input motifs, suggests their pivotal roles in shaping the regional epigenetic state and decid-

ing the locus-specific modifications. These important epi-motifs identified from this analysis

can guide future studies to investigate the proteins that bind to these motifs and recruit epige-

netic enzymes to specific loci, thereby initiating local changes in the epigenetic state. The suc-

cess of this study also suggests that it is possible to use epi-motifs as the surrogate of local

epigenetic state for predicting other observable measurements.

We hypothesized that the majority of somatic mutations are random and only depend on

the regional epigenetic state in the normal cells/tissues. In other words, the majority of the

genomic regions containing somatic mutations are cancer-independent. This hypothesis was

supported by the high correlation between the predicted and measured mutation rates across

all the regions. This kilobase-scale relationship is general across cancers as indicated by the

successful prediction on cancers not included in the training dataset. Such a relationship was

not previously uncovered in megabase-scale analyses from previous studies.

Furthermore, the contextual regression model provides a framework to interpret the neural

network predictions and identify the most predictive features. Using the contextual weights of

the predictive motifs, we were able to cluster the genomic regions that share similar motif con-

tribution profiles on predicting mutation rates. The regions in the same cluster are presumably

regulated by similar mechanisms, akin to genes sharing similar expression profiles across cell

types. In fact, by analyzing these clusters, we observed that the impact of protein binding on

regional mutations can be positive, negative or neutral. While the previous study reported that

TF binding would block DNA repair proteins in the open chromatin regions to increase muta-

tion rates [55], we found there exist proteins/motifs whose occurrence in the open chromatin

regions is associated with lower mutation rates. This observation highlights the importance of

genetic and epigenetic context on impacting regional mutations.

Importantly, the predicted mutation rates from the contextual regression model provide a

quantitative background to identify cancer-related regions in a particular cancer. These

regions exhibit significantly higher mutation rates than expected from the regional epigenetic

states in the corresponding normal tissue. The CR model learns the relationship between

motifss and mutation rate. For each region from each cancer, it has its own background muta-

tion rate based on its own features. Therefore, if the observed mutation rate is higher than the

background, the region may be related to the mechanism of this cancer and thus called cancer-

related region. Because regions with higher mutation rates in cancer tissues compared to the

normal tissues can be resulted from various causes and might be irrelevant to cancer, using the

predicted mutation rates as the reference would allow distinction between regions within can-

cer tissues and uncover those directly related to cancer. While investigating the underlying

mechanisms in these regions is not the focus of this study, the identified known and epi-motifs

can help mechanistic analysis in the future and elucidate region-specific factors regulating

somatic mutation rates. Based on these cancer-related regions, we showed that only using 150

regions that account for only 5.8% of the human genome could predict cancer types with a sat-

isfactory performance. This result provides a potential diagnosis tool using targeted

sequencing.

Mutational signatures have been widely adopted to characterize the preference of mutation

types in cancers. Therefore, we performed mutational signature analysis on 3 types of regions,

i.e. cancer-independent regions, cancer-related regions and all the regions. The association of

cancer-independent regions with the mutational signatures is more similar to that of all

regions than cancer-related regions, which is not unexpected. The relative contribution of

mutational signatures can be quite different between these two types of regions within the

same cancer type. For example, signature 2 contributes more in cancer-related regions in
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Bone-Osteosarc, compared to that in cancer-independent regions (S8 Fig). Motifs with signifi-

cant contributions to each mutational signature are listed in Github (https://github.com/

Wang-lab-UCSD/SomaticMutation/tree/main/results/supplementaryTables/13_cancers_

motifs_contribution_30_SBS.xlsx). It is obvious that the two approaches (CR model and muta-

tional signatures) provide complementary information and the motifs/their binding proteins

uncovered by the CR model can guide mechanistic study of mutational signatures in specific

regions.

During the submission of this work, Sherman et al. [77] published a deep learning method

to predict mutation rates at 10kbp resolution. Our study is different from Sherman et al. in the

following aspects and the two studies are highly complementary. First, our model only uses

DNA motifs and epigenomic data of 6 histone marks in the corresponding normal cell types

for each cancer type. In contrast, Sherman et al. used much more data, including 723 chroma-

tin marks from 111 tissues to train their model as well as replication timing in 10 cell lines and

average nucleotide and CG content in the reference genome. Our model uses much less fea-

tures but can achieve a slightly better prediction performance (a mean Pearson R2 = 0.736, i.e.

R = 0.858, Fig 2B and S3 Table in our manuscript compared to a mean Pearson R2 = 0.706, i.e.

R = 0.84, in Sherman et al.). Second, our model can be applied to new cancer types without

retraining and only requires the epigenetic state in the corresponding normal cells as shown in

our paper that the model trained on 5 cancer types was successfully applied to predict the

remaining 8 cancer types. In contrast, Sherman et al. has to re-train the entire model to include

new cancer types. Third, our study focuses on understanding how the DNA motifs, particu-

larly the epi-motifs, contribute to regional somatic mutation rates and the contextual regres-

sion model provides an interpretable model that directly derives the important motifs. In

contrast, Sherman et al. focused on uncovering driver mutations.

In this study we used ChromHMM to segment the genome and annotate the epigenetic

states. It is worth noting that the analysis results should be insensitive to the variability of chro-

matin states. Our model considers the mutation rates of individual regions and does not

require a distinction between different states, such as enhancer subclasses. It might be interest-

ing to compare different segmentation methods and use different numbers of ChromHMM

states to repeat our analysis in the future.

Taken together, we developed an interpretable neural network model to successfully predict

somatic mutation rates at kilobase resolution using DNA motifs in 13 diverse cancers and iden-

tified the most informative motifs particularly epi-motifs. Furthermore, we showed that the

genomic regions with significantly higher mutation rates than the predicted values can be used

for cancer classification, thus facilitating discovery of the underlying mechanisms. The availabil-

ity of additional WGS data in cancer samples and epigenomic data in the corresponding normal

samples would allow further improvement of the model performance and generality. Further-

more, this study provides candidate motifs and TFs for the investigation of new mechanisms

and the trained CR model is readily applicable to new cancers and identifying cancer-related

regions. The CR model can also be applied to other biological questions, such as predicting his-

tone modification using DNA sequences. Interestingly, we found that the same mutation signa-

tures often have different contributions to cancer-related and cancer-independent regions, and

we also identified the motifs with the most contribution to each mutation signature.

Materials and methods

Somatic mutation data

The somatic mutation data of 2,583 donors analyzed by the Pan-Cancer Analysis of Whole

Genomes Consortium (PCAWG) were downloaded from the International Cancer Genome
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Consortium (ICGC) data portal [78] (https://dcc.icgc.org/). This was the largest data set when

this analysis started. The tumor types for the donors were retrieved from S1 Table in reference

[67]. We filtered the data using the following criteria: (1) donors with metastatic tumors were

removed because in this study we focused on the primary tumors; (2) outlier donors with

extremely high or low somatic mutation numbers were discarded to avoid bias. An outlier was

defined as a data point located outside 1.5 times the interquartile range above the upper quar-

tile and below the lower quartile for a tumor type; (3) tumor types with less than 5 donors or

without ChromHMM segmentation in the corresponding normal tissues were not included;

(4) only WGS data were kept if a donor had both WES and WGS data; (5) removing tumor

types if the number of the total somatic mutations in all the donors of that tumor type was less

than 30,000. As a result, 1,125 donors from 13 different tumor types remained for model train-

ing and testing (S1 Table). Somatic mutations in the blacklisted regions were removed [79].

While it is true that these 13 cancer types may or may not be fully representative of somatic

mutation rates in all tissues, it is important to note that the main objective of this study was

not to select cancer types as representatives for different tissues. Instead, our study aimed to

develop a predictive model to understand how DNA motifs contribute to regional somatic

mutation rates across a diverse set of cancers.

DNA Motifs

We included 1731 human motifs of DNA binding proteins documented in the CIS-BP database

[80] and another 55 motifs from Factorbook [63]. We also added 313 motifs associated with

DNA methylation [23] and 361 motifs associated with histone modifications [22] that were

identified in our previous studies. These motifs were used to approximate the epigenetic state.

We used FIMO [81] to scan these total 2460 motifs against hg19. With a p-value cutoff of 10−5,

2,321 motifs having at least one occurrence were used for the following analyses (S4 Table).

Genomic segmentation using ChromHMM

The core 15-state ChromHMM segmentations were downloaded from https://egg2.wustl.edu/

roadmap/web_portal/. For kidney and prostate gland, the ChromHMM segmentations were not

available from the website. To be consistent, we applied the core 15-state trained ChromHMM

model to these 2 tissues, which was downloaded from https://egg2.wustl.edu/roadmap/data/

byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/model_15_

coreMarks.txt. The data for these 2 tissues were downloaded from the ENCODE portal (S13 Table).

Somatic mutation density and feature calculation

We calculated the somatic mutation density in a given set of cancer patients as the following.

Let Ri denote the segmented region i, i = 1,. . .,N, li the length (bp) of Ri, and Ci the number of

somatic mutations in all the donors in region i. The somatic mutations were downloaded from

PCAWG. The regional somatic mutation density Di was computed as Di ¼
Ci

li
1000
� T

106

, where T is

the total number of somatic mutations in all the donors of this dataset. We added a pseudo-

count to Di and defined Dð1Þi ¼ log2ðDi þ 1Þ. We then calculated Yi ¼
ðDð1Þi � MeanÞ

STD as the response

variable in the model by z-score transformation, where Mean is the average of Dð1Þi and STD is

the standard deviation error of Dð1Þi .

Let Mj be the motif j, j = 1,..,p. C0i;j is the median p-value of all occurrences of Mj in the

region Ri and the p-value was calculated from FIMO [81]. We used -log10(C0i;j) in each region

as the input features to predict Yi.
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Construction, training and testing of the CR model

The architecture of CR model was shown in Fig 2A. We used Adam as the optimization algo-

rithm for training the CR model. Adam is a popular and efficient optimization algorithm com-

monly used in neural network training. It is well suited for problems that are large in terms of

data/parameters. The choice of Adam was based on its strong performance in similar tasks. To

ensure the optimal performance of the CR model, we conducted a grid search of hyperpara-

meters, including the dropout rate. Dropout is a regularization technique used to prevent over-

fitting in neural networks by randomly setting a fraction of the neurons’ output to zero during

training. We tested different dropout rates and evaluated the model’s performance. We

selected three cancers (Bone-Osteosarc, Breast-AdenoCA, and Liver-HCC) covering the range

of the prediction performance. We tested five different dropout rates and the test set accuracies

are very similar, which shows the robustness of the model training to dropout rates. The ratio-

nale of Contextual regression (CR) is that CR can quantify feature contributions by learning

an embedding function to map each feature vector to a linear model that can predict the target

value. The values assigned to each element in the feature vector are considered as context

weight and the embedding serves as the classifier of the context. By analyzing the statistics of

the context weight, the contribution of each feature can be inferred.

The details of the training and testing of the CR model is shown in S1 Fig. Briefly, we

divided the donors randomly into two sets: 80% for model training/testing and the rest for

independent testing. Using the 80% donors, we trained and tested CR models for individual

cancer types using 10-fold cross validations (Step 1 in S1 Fig). The best performed 5 cancers

were selected to train a universal model on all the regions in these 5 cancers (Step 2). As the

majority of the regions in the cancers could be accurately predicted using the motifs and the

ChromHMM segmentation in the corresponding normal cells, it confirmed our hypothesis

that somatic mutations in the majority of the genome are cancer-independent. To better cap-

ture the relationship between the somatic mutations and epigenetic state, we removed the

regions, i.e. cancer-related regions, whose predicted mutations rates significantly deviated

from the observed values (Step 3). We further analyzed important motifs with high CR weights

(Step 4). We then trained and tested a classification model to distinguish cancer types using

the cancer-related regions on the 20% of the donors that were not used to select these regions

as an independent test (Step 5).

Assessing the CR model performance

In each dataset, we performed cross validation to assess the model performance, in which 10%

of the segmented regions were held out for testing. Because there were overlapped

ChromHMM regions from different tumor types, we partitioned the samples from these 5

tumor types based on the chromosomes to avoid the overlapped regions presenting in training

and testing datasets. Two or three chromosomes were randomly left out for testing while the

other chromosomes were used for training CR models. We repeated such cross validation 10

times. The specific partitions of training/testing dataset and performances were listed in

S5 Table.

Identification of cancer-related and cancer-independent regions

To identify the cancer-related and cancer-independent regions, we used an iterative proce-

dure. First, we trained a CR model using all the regions from the merged dataset (the first itera-

tion). As the majority of the regions are cancer-independent regions, using all the regions to

train the model would not significantly impact the accuracy. Assuming the cancer-indepen-

dent somatic mutation counts in a specific region follow a Poisson distribution, we estimated
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the parameter lambda (i.e. the expectation for Poisson distribution) using the predicted counts

that were converted from the predicted mutation rates. Based on this Poisson distribution, we

calculated a p-value for the observed mutation count. If a region had a p-value (upper-tail or

lower-tail) < 0.1, it was considered as either cancer-related or ambiguous and thus removed

from the training set. We retrained the CR model using the remaining regions that presumably

contained more cancer-independent ones in the second iteration. Repeating this procedure

would continue improving the model and removing regions that are cancer-related or ambigu-

ous. We found that this procedure converged fast as the average mean squared error (MSE) on

the testing dataset reached the plateau at the second iteration, indicating that the model

became stable. Therefore, we took this model trained using two iterations as the final model

for the following analyses.

We used the predicted mutation rates from the final CR model as the background and re-

calculated the p-value for each region in each tumor. A region was called cancer-independent

if its p-value (upper-tail and lower-tail) > 0.1, cancer-related if the FDR from the upper-tail for

a region was <0.01. The other regions were ambiguous regions and not included in any fur-

ther analysis.

Somatic mutation calling for the GTEX data

We downloaded the GTEX WGS data from dbGap (accession number phs000424.v8.p2). We

aligned the sequencing reads to hg19 and called somatic mutations using the GATK best prac-

tice workflow [82]. We removed the reads that originated from duplicates of the same DNA

fragments using MarkDuplicatesSpark function in GATK. Base (Quality Score) Recalibration

was conducted for correcting any systematic bias observed in the base quality scores. We fol-

lowed the guideline of how to call somatic mutations using GATK4 Mutect2 (https://gatk.

broadinstitute.org/hc/en-us/articles/360035889791—How-to-Call-somatic-mutations-using-

GATK4-Mutect2-Deprecated-). We called candidate variants using Mutect2, which is

designed specifically for somatic mutation calling by the GATK group. FilterMutectCalls was

then applied to identify variants from artifacts, such as those resulting from alignment, strand

and orientation bias, polymerase slippage, and germline variants. The tool uses the annotations

within the callset and applies preset thresholds that are tuned for human somatic analyses.

This generated a VCF file with a FILTER field. The true positives were labeled with PASS in

the FILTER field. Funcotator was used to add annotation to these variants, such as dbSNP and

gencode. Lastly, we only considered somatic mutations with a FILTER flag PASS and obtained

somatic mutations for 400 donors.

Disruption rate of the motifs

In the cancer-related regions for a given patient, the disruption rate of a motif was calculated

as C/(M*N), where C is the number of motif binding sites overlapped with somatic mutations

in the cancer-related regions in this patient, M is the total number of motif binding sites and N

is the total number of somatic mutations in the cancer-related regions for this patient. Simi-

larly, we calculated the disruption rate in the cancer-independent regions. To test whether the

disruption rate in the cancer-related regions was higher than in the cancer-independent

regions, paired-T test was used to compute the p-value for each tumor type with the patients as

samples. This way, we identified significantly disrupted motifs for each cancer type.

To evaluate whether all motifs were significantly disrupted in one type of cancer, we per-

formed the above analysis for all the motifs. Specifically, given the cancer type and a patient,

the disruption rate for all motifs was defined as C/(M*N), where C is the number of all motif

binding sites overlapped with somatic mutations in the cancer-related regions in this patient,
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M is the total number of all motif binding sites and N is the total number of somatic mutations

in the cancer-related regions of this patient. The disruption rate in cancer-related regions is

calculated in the same way. Paired-T test was used to evaluate the significance for each tumor

type with the patients as samples. The p-value cutoff was set to 0.05.

Gradient boosting decision tree

A gradient boosting decision tree was trained to classify cancer types using the scikit-learn

package [83]. There were six parameters in the model, including (1) learning rate (denoted as

learning_rate); (2) the minimum number of samples (or observations) required in a node to

be considered for splitting (min_samples_split); (3) the minimum samples (or observations)

required in a terminal node or leaf (min_samples_leaf); (4) the maximum depth of a tree

(max_depth); (5) the fraction of observations to be selected for each tree (subsample); (6) the

number of sequential trees to be modeled (n_estimators).

We selected the optimal values of the parameters with the best classification performance:

when using all the cancer-related regions as features: learning_rate = 0.012; min_samples_s-

plit = 150; min_samples_leaf = 130; max_depth = 2; subsample = 0.6; n_estimators = 1900

(S11 Table); when using the selected 150 cancer-related regions as features, learnin-

g_rate = 0.011; min_samples_split = 190; min_samples_leaf = 60; max_depth = 3; subsam-

ple = 0.6; n_estimators = 2000 (S12 Table).

Mutational signature analysis

To identify the mutational patterns in cancer-independent and cancer-related regions respec-

tively for each cancer, we first prepared the catalog matrix C with rows as mutation types and

columns as different type of regions. In our case, the dimension of C is 96x3, where 96 corre-

sponds to the number of mutation types and 3 corresponds to the three types of regions,

which are cancer-independent regions, cancer-related regions, and all the ChromHMM

regions in this cancer as the reference. Then we used R package MutationalPatterns [84,85]

with default parameters to fit C with the 30 COSMIC mutational signatures and the relative

contributions of the 30 mutational signatures can be calculated for the three types of regions in

each cancer.

Supporting information

S1 Fig. The framework for the training and testing of the CR model.

(TIF)

S2 Fig. The toy model illustrates how to train the CR model and identification of cancer-

independent and cancer-related regions. The red dots represent the cancer-related regions

and the black dots represent the cancer-independent regions. And the black line represents the

true model. In practice, we don’t know which dots (i.e. regions/samples) are cancer-related or

cancer-independent regions. So we train a CR model using all the samples and get the trained

model indicated by the red line. Under the assumption, we know that the trained CR model is

not exactly the true model, but it is close to the true model. To identify the cancer-related

regions, we take the prediction of the current trained CR model as the background and per-

form the hypothesis testing for each region (see Online methods for details). We remove the

regions with small p-value and re-train the CR model using the rest of regions. And then a

new CR model (i.e. the blue line) is obtained. This new CR model is closer to the true model.

The blue line is treated as the true model and the hypothesis testing is done for each region

again based on the prediction of the blue model. At last, the regions with small p-value will be
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taken as cancer-related regions and regions with large p-value will be taken as cancer-indepen-

dent regions.

(TIF)

S3 Fig. The scatter plots for the 13 tumor types using the re-trained CR model. Cor: the

Pearson correlation. MAE: mean absolute error. MSE: mean squared error. Spearman: Spear-

man correlation.

(TIF)

S4 Fig. The log2(MutationRate+1) distribution across ChromHMM states in breast cancer.

All the other cancers have similar wide distributions.

(TIF)

S5 Fig. Correlation between predicted and measured mutation rates across ChromHMM

states in breast cancer. All the other cancers have similar high correlations.

(TIF)

S6 Fig. Cancer-independent regions clustered using the contextual weights of the motifs.

For each of the 13 cancer types, the identified cancer-independent regions were clustered into

10 clusters using the Manhattan distance between the feature contextual weight vectors as the

similarity metric. Each row is a motif, each column a cluster, and each entry is the average of a

motif’s contextual weights in all the regions in a cluster. The clusters were further clustered

into 10 groups.

(TIF)

S7 Fig. The fold change of chromHMM state in the 9 groups from group B to group J. The

color key represents the fold change between the percentage of one state in one group and the

percentage of the state in the whole dataset.

(TIF)

S8 Fig. Heatmap of normalized mutation signature contributions in 3 different regions

across 13 cancers. The color key represents the normalized contribution values.

(TIF)

S1 Table. The tumor types and donor size analyzed in this study.

(XLSX)

S2 Table. The ChromHMM state similarity between cancer and corresponding normal cell

lines. Four cancer-normal cell comparisons are shown in terms of length percentage of similar

states ("length.similar"). To be more specific, TssA and TssAFlnk are deemed as similar;

TxFlnk, Tx and TxWk are similar; ZNF/Rpts, Het, ReprPC, ReprPCWk and Quies are similar.

(XLSX)

S3 Table. The summary statistics for 13 tumor types in this study. "Correlation in Train

set": the average of Pearson correlations of CR model on the training dataset across 10-fold

cross validation. "Correlation in Test set": the average of Pearson correlations of CR model on

the testing dataset across 10-fold cross validation. "Merge data to train CR": whether or not to

use this tumor type data to train a unified CR model. "Correlation in final model": the Pearson

correlation between true value and the prediction from the final CR model applied to all

regions in a tumor. "number of regions after removing overlapped regions": the number of

regions after removing the overlapped regions with the 5 merged datasets. "Correlation with

no overlapped regions": the Pearson correlation between the true value and the prediction
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from the unified CR model applied to regions without overlaps in a tumor.

(XLSX)

S4 Table. The motif ID and the corresponding proteins used in this study. The number of

binding sites in each chromosome is also listed. "TotalNum" represents the total number of

binding sites in the whole genome.

(XLSX)

S5 Table. The 10-fold cross validation results. "chr in test": the chromosome ID used as the

testing dataset. "MSE_test": mean squared error in the testing dataset. "Cor_test": the Pearson

correlation in the testing dataset. "MSE_train": the mean squared error in the training dataset.

"Cor_train": the Pearson correlation in the training dataset.

(XLSX)

S6 Table. The chromHMM dataset used in this study and the number of cancer-related

regions for each cancer.

(XLSX)

S7 Table. Training and testing results using merged motif as features. (The annotation of

column names can be found in Fig 2B legend).

(XLSX)

S8 Table. The important features in each group. "GroupA_beta": the coefficient of feature in

group A. 0 represents that the feature is not important in the group. "GroupA1_mean": the

average of mutation rate in the regions with the corresponding motif binding sites in group A.

(XLSX)

S9 Table. The enriched pathways for the cancer-related regions for 13 tumor types.

(XLSX)

S10 Table. The motifs significantly disrupted by the somatic mutations. For example,

UM_3582.2_3.88_0.56_57_known. TEAD2 is significantly disrupted in three datasets: Lymph-

CLL, Kidney-RCC, Ovary-AdenoCA.

(XLSX)

S11 Table. The classification performance using all the cancer-related regions as features.

(XLSX)

S12 Table. The classification performance using selected the 150 most important regions.

(XLSX)

S13 Table. The accession number for the histone modification used in this study to per-

form the ChromHMM segmentation.

(XLSX)
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