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ABSTRACT: Machine learning potentials (MLPs) capable of
accurately describing complex ab initio potential energy surfaces
(PESs) have revolutionized the field of multiscale atomistic
modeling. In this work, using an extensive density functional
theory (DFT) data set (denoted as Si-ZEO22) consisting of 219
unique zeolite topologies (350,000 unique DFT calculations)
found in the International Zeolite Association (IZA) database, we
have trained a DeePMD-kit MLP to model the dynamics of silica
frameworks. The performance of our model is evaluated by
calculating various properties that probe the accuracy of the energy
and force predictions. This MLP demonstrates impressive
agreement with DFT for predicting zeolite structural properties,
energy−volume trends, and phonon density of states. Furthermore, our model achieves reasonable predictions for stress−strain
relationships without including DFT stress data during training. These results highlight the ability of MLPs to capture the flexibility
of zeolite frameworks and motivate further MLP development for nanoporous materials with near-ab initio accuracy.

■ INTRODUCTION
Accurate and efficient calculation of the energies and forces of
atomistic systems remains one of the leading challenges in
computational chemistry. While ab initio approaches rooted in
quantum mechanics, e.g., density functional theory (DFT),
often yield reliable results, large scale simulation of system
dynamics with DFT remains impractical. For instance,
predicting self-diffusivity coefficients, phase transitions, and
phonon spectra using molecular dynamics (MD) often requires
millions of force and energy evaluations. Traditionally, generic
or DFT-parametrized force fields (FFs) are used for such
computationally demanding simulations. While the simplicity of
the FF methods enables longer simulation time scales for larger
systems, these approaches are often less accurate than ab initio
simulations. Even for FFs derived from DFT calculations, the
rigid analytical form of bonded (e.g., harmonic, Morse, etc.) and
nonbonded (e.g., 12−6 Lennard-Jones, Buckingham, etc.)
potentials often results in systematic deviations.1

In contrast to the simple analytical form of classical FFs,
machine learning potentials (MLPs) have emerged as a flexible
alternative to describe complex potential energy surfaces.
Specifically, by training the model on a suitable set of first-
principles data that spans the relevant configuration space of a
system, an MLP is able to evaluate the potential energy surfaces
(PESs) at accuracy close to the ab initio method at significantly
lower computational cost. Several different MLP forms have
been proposed, which are broadly classified as either kernel
methods or neural network methods. Kernel methods, such as
GAP2 and sGDML,3 employ kernel functions (e.g., SOAP4) to

assess the similarity of atomic configurations and interpolate the
energy from known data points. Neural network methods
calculate single atomic energy contributions by using a set of
symmetry invariant descriptors that capture the local environ-
ment of each atom as inputs to various neural network
architectures. Popular neural network potentials include ANI5

and DeePMD6,7 and newer message-passing networks like
PhysNet,8 SchNet,9 and SpookyNet.10 New MLPs continue to
appear in the literature, and several reviews exist describing and
comparing the current state of the art models.11−15

Open-source releases of MLP software have enabled
researchers to develop their own force fields for various systems
including small molecules, nanoparticles, and metal surfaces.
However, to the best of our knowledge, similar approaches have
not been used for zeolites. Siliceous zeolites are polymorphs
composed of the SiO2 formula unit with significant industrial
use.16,17 Given the chemical simplicity and the existence of over
200 unique topologies and hundreds of thousands of theoretical
structures,18 zeolites are ideally suited for demonstrating the
capabilities of MLPs.
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Many industrially relevant applications of zeolites involve
small molecules diffusing through the porous framework over
relatively long time scales. As including framework flexibility is
necessary to accurately model diffusion and adsorption
phenomena in zeolites,19,20 it is important to develop MLPs
that accurately model dynamics of the framework. Thus, the
central goals of this work are to develop a DFT data set that
rigorously samples the atomic configuration space of pure silica
zeolites and train and validate an MLP using the Deep Potential
(DP) method implemented in DeePMD-kit.7

The DP method represents the system energy as the sum of
single atomic energies that are determined from descriptors that
capture the localized interactions between each atom and its
neighbors within a specified cutoff distance. For a given atom,
the relative coordinates of the local environment (i.e., the
neighboring atoms) are passed through an encoding network to
obtain symmetry invariant descriptors. These descriptors are
then mapped to single atomic energies via an additional fitting
neural network. This approach has shown promising results for
describing the dynamics of both small molecules21−25 and
periodic bulk materials.26−31 Additionally, the DeePMD-kit
provides seamless integration with the Atomic Simulation
Environment (ASE),32 the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS),33 and several other
popular molecular simulation platforms.

In this work, a large DFT data set is generated using 219 of the
248 siliceous zeolite topologies found in the International
Zeolite Association (IZA) database; all topologies with fully
connected frameworks and less than 400 atoms were included. A
single DP model, trained on 187 of these topologies to obtain a
generalized silica MLP, is shown to accurately predict energies
and forces of DFT configurations not included in the training
set. This analysis is extended by using our DP model to calculate
properties not explicitly included in the training, and the results
are compared with the DFT predictions. Our results show
excellent agreement between DP and DFT for structural
properties, equations of state (EOS), and phonon density of
states (PDOS). We also demonstrate the ability of DP to model

stress−strain behavior and give reasonable predictions of
mechanical properties even when ab initio stress data are not
used during training. While other ML models have been
developed to predict some of these properties purely from
zeolite geometric descriptors,34−36 we test how well a DFT-
trained MLP can directly calculate these properties by evaluating
the PES. Our results are also compared with those from the BKS
force field37 (used as a prototypical example of a classical force
field), and we find that the DP model provides significantly more
accurate results. We end our analysis by calculating the above
properties for an additional set of 32 topologies (not included in
the training) to demonstrate the transferability of the model.
Taken together, by highlighting the efficacy of the DeePMD-kit
formulation for silica zeolites, this study lays a foundation for
future exploration of more complex materials such as those
containing extra-framework cations and adsorbates.

■ COMPUTATIONAL METHODS
Training Set Generation. DFT NVT-MD was used to

generate the initial training set for the DP model. The Vienna ab
initio simulation package (VASP) was used with the PBE38

functional for DFT calculations. Dispersion corrections were
considered with the DFT-D3 method with Becke−Johnson
damping (D3BJ).39−41 Only the Γ-point was used for k-space
sampling. A plane-wave cutoff of 400 eV was used, and electronic
energies were converged to 10−5 eV. Configurations were
obtained from MD trajectories (≥1.5 ps simulation time, 0.5 fs
time step) at three different temperatures: 300, 600, and 900 K.
Snapshots from these trajectories were taken every 10 time steps
and were used to train an initial DP model. This model was then
used with LAMMPS to generate 100 ps NPT-MD trajectories at
0.1, 1.0, and 10.0 bar. After equilibrating the system (298 K, 10
ps), the temperature was ramped from 298 to 1000 K over the
course of the simulation. This approach provides a diverse set of
configurations at various temperatures and pressures. Snapshots
of each system at every 1000 time steps were extracted for a total
of 600 configurations (200 × 3 pressures). The energies and
forces of the new configurations were evaluated with DFT, and

Figure 1. Schematic overview of the procedure used to train the DP model. The initial model was trained on configurations from 3 ps NVT DFT-MD
runs at 300, 600, and 900 K. The initial DP was then used to generate 100 ps NPT DP-MD trajectories at pressures of 0.1, 1.0, and 10.0 bar with the
temperature linearly ramped from 298 to 1000 K. Snapshots from every 1000 time steps were selected to obtain new uncorrelated configurations for
training the final DP model that is used to predict various structural properties of silica zeolites.
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the model was retrained including these results. This procedure
is illustrated in Figure 1. Due to computational cost, fewer
configurations were collected for large unit cell topologies; a full
list of the topologies and corresponding data set sizes are
included in the Supporting Information. While not used in this
work, we note that the DPGEN42,43 training protocol can be
used to select snapshots for training.
Model Training.The configurations collected from each run

were first shuffled and then split into 80% training data, 10%
validation data used by the DeePMD-kit during the training
process, and an additional 10% testing data. The cutoff radius is
6.0 Å with smoothing beginning at 5.5 Å. The embedding net
was set to 3 layers with 16, 32, and 64 neurons, respectively. The
fitting net was also set to 3 layers with 64, 64, and 64 neurons.
The model was trained for 2 × 107 steps with the learning rate

starting at 5 × 10−4 and exponentially decaying to 5 × 10−8. The
prefactors for the energy and force contributions to the loss
function were set to pestart = 0.02, pelimit = 1, pfstart = 1000, and pflimit =
1. Validation set learning curves for several model architectures
are shown in Figures S1−S5. The hyperparameters selected
were found to provide a reasonable balance between accuracy
and training/evaluation time (Figure S6). The complete input
file of all parameters used for training the final model is included
in the Supporting Information.

■ RESULTS AND DISCUSSION
Model Performance. The accuracy of the energy and force

predictions for the trained DP model were evaluated using
testing data that was unseen during model training (10% of the

Figure 2. Parity plots comparing DP-predicted (a) energies and (b) forces with corresponding DFT values for the test data set not seen during training.
(c) Energy relative to the relaxed structure from the final 500 fs of a 10,000 fs DFT-MD (solid black line) run with DP predictions overlaid (dashed
orange line) for CHA topology at 298 K.

Figure 3. Normalized distributions of (a) Si−O bond lengths and (b) O−Si−O angles for relaxed geometries of the 187 topologies included in the
training set for DFT, DP, and BKS. (c) Normalized distribution of percent errors relative to DFT of optimized lattice constants for DP and BKS.
Vertical dashed black line denotes zero error (perfect agreement with DFT lattice constant).
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original data set for each topology was set aside for post-training
testing). The parity plots comparing DP predictions to DFT
values for the energies (per SiO2 unit) and forces are shown in
Figure 2a,b, respectively. DP was found to be able to predict
DFT values with excellent accuracy, as seen by the MAE of 2.6 ×
10−3 eV/SiO2 for energies and 3.9 × 10−2 eV/Å for forces. Note
that the data shown in Figure 2a,b corresponds to the combined
test sets of all 187 training topologies considered. Predictions for
some topologies were found to be more or less accurate than
others, and the complete list of MAE values for all individual
topology test sets is included in the Supporting Information.

To further demonstrate our DP’s ability to predict energies
and forces on configurations outside of the training set and to
probe for any potential sampling biases arising from only
including short DFT-MD trajectories in the initial training set,
an additional 20,000 step DFT-MD run at 298 K was completed
for CHA topology. The energies and forces of all configurations
of the trajectory were evaluated with DP, and the MAE for the
entire trajectory was found to be 0.95 × 10−4 eV/SiO2 for the
energy and 2.0 × 10−2 eV/Å for the force predictions. Figure 2c
shows the DFT energies (black line) of the final 500 fs snippet
from the trajectory with DP evaluations overlaid (dashed orange
line).
Structural Properties. The structures of all 187 topologies

were relaxed using DP and compared to DFT optimizations.
The normalized distribution of all Si−O bond lengths and O−
Si−O angles for all relaxed structures is shown in Figure 3a,b,
respectively. The distributions for both angles and bond lengths
with DP match almost perfectly with the DFT distributions,
highlighting the remarkable ability of DP to replicate relaxed ab
initio geometries.

The percent error distributions in calculated lattice constants
relative to DFT values for DP (orange) and BKS (green) are
shown in Figure 3c, where positive and negative errors
correspond to overestimation and underestimation of lattice
constants, respectively. The narrow distribution centered at 0%
error for DP implies excellent agreement with DFT. BKS shows
a wider distribution centered at positive error, indicating a slight
tendency to overestimate the lattice constants compared to
DFT. These results show that a DP trained on higher energy MD
snapshots can still produce very similar global minima to the
DFT PES.

We acknowledge that recently reported classical zeolite force
fields44,45 may show better performance than the BKS model
used in Figure 3. As the central goal of this study is to develop a
MLP model that shows similar accuracy to the DFT data, the
comparison with other classical force fields (beyond the BKS
model) is beyond the scope of this work. Interested readers are
referred to the seminal work of Sastre for more in-depth
comparison across different zeolite force fields.20,46,47

Equation of State. Energy versus volume curves at 0 K were
generated with DFT, DP, and BKS to assess how well DP can
predict energies of systematically varied cell volumes. The
resulting data were fit to the third-order Birch−Murnaghan
EOS,
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Figure 4. Energy−volume curves with third-order Birch−Murnaghan EOS fit for (a) CHA, (b) FER, and (c) RHO topologies for 15 volumes across
±5% volumetric strain. Parity plots comparing DFT with (d) DP and (e) BKS for bulk moduli calculated from EOS fits for all 187 topologies using 5
volumes across ±2% volumetric strain.
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where E0 and V0 are the energy and volume of the relaxed
structure, respectively, and B0 and B0′ are the bulk modulus (a
property that describes the resistance to uniform compression/
expansion) and its derivative. Thus, the bulk modulus can be
determined from fitting energy−volume data to an EOS and
serves as an additional metric for evaluating the performance of
DP.

Taking the topologies of CHA, FER, and RHO as examples,
the energy−volume curves and EOS fits are shown in Figure 4
for 15 volumes across ±5% volumetric strain. The DP data aligns
very well with DFT, while BKS noticeably deviates. The similar
curvature of the EOS fits for DP and DFT suggests DP can
accurately calculate bulk moduli. Additionally, the similar
location of V0 (the volume corresponding to the minimum
energy) is further evidence that DP can accurately predict lattice
constants. The higher curvature of the BKS energy−volume data
implies that BKS overestimates the bulk moduli, and similarly,
the values of V0 imply BKS overestimates the lattice constants
for these topologies.

We extended this analysis to all other topologies included in
the data set, and the resulting parity plots comparing predicted
bulk moduli values with DFT values for DP and BKS are shown
in Figure 4d,e, respectively. For computational efficiency, only 5
volumes were used with ±2% volumetric strain. The RMSE of
bulk moduli calculated with DP was found to be 8.6 GPa, while
BKS values had an RMSE of 31.4 GPa. Again, we see that BKS
has a tendency to overestimate the bulk moduli in comparison to
DFT.
Mechanical Properties. Second-order elastic constants

were calculated with Elastool48 using the optimized high-
efficiency strain-matrix set (OHESS) using 5 strains (±2%
amplitude) for each deformation.49 The elastic constants were
used to compute Voigt-Reuss-Hill (VRH) averages of the bulk
(KVRH) and shear (GVRH) moduli for 172 topologies. Figure 5
shows the agreement of DP and BKS with DFT for KVRH and
GVRH. DP is able to predict KVRH quite accurately for topologies
with values less than around 60 GPa; however, there is a

noticeable drop in accuracy for stiffer materials with high KVRH
values, with DP consistently underestimating bulk moduli
relative to DFT. This suggests that our DP model struggles to
reproduce the expected stress−strain behavior for stiff top-
ologies with high stress tensor values. Additionally, while DP
tends to underestimate GVRH, the overall predictions are
comparable to the BKS predictions.

Accurate calculation of elastic constants using stress−strain
relations requires accurate stresses, so the DFT calculated bulk
and shear moduli were calculated using a 700 eV plane-wave
cutoff to ensure convergence of the stress tensor components.
We note that it is possible to train a DP model including virial
stress error in the loss function, and doing so would likely
improve the accuracy of the mechanical property calculations.
However, the DFT training set configurations were calculated
using a plane-wave energy cutoff of 400 eV, and higher cutoffs
are needed to converge the stress tensor components. Therefore,
it would not be appropriate to use the stress values for training.
Notwithstanding these limitations, it is quite impressive that DP
can produce reasonable predictions of mechanical properties
that were calculated with a 700 eV cutoff even though the
training data consists entirely of configurations calculated at 400
eV. We note that it is necessary to include stress data in the
training and ensure the appropriate basis set is used to give
reliable stress tensors to train on, as shown by the accurate
calculations obtained in other work.30 We also note that better
agreement may be obtained by using methods that calculate
elastic constants from energy−strain relationships as opposed to
stress−strain. However, a detailed investigation into mechanical
properties is beyond the scope of this work, and we elected to
use stress−strain approaches to examine the accuracy of DP-
calculated stresses when not included in training.
Phonon Density of States. The PDOS of CHA (chosen

due to lower DFT computational cost) was calculated at 900 K
to assess DP’s ability to calculate vibrational modes. Atomic
velocities from MD trajectories were used to calculate PDOS
from the Fast Fourier transform of the velocity autocorrelation

Figure 5. Parity plots comparing DFT VRH averages with DP-calculated (a) bulk moduli and (b) shear moduli and BKS-calculated (c) bulk moduli
and (d) shear moduli.
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function. An MD trajectory of 10 ps was used for the DFT
PDOS (black line in Figure 6), and 50 ps was used for DP and
BKS (orange and green lines, respectively) PDOS calculations.
As the PDOS is calculated from the changes in atomic positions,
which are determined by the atomic force calculations at each
MD step, it provides a good metric to probe the accuracy of the
DP forces. We see good agreement in the frequencies of the
vibrational modes between DFT and DP, while the intensity of
the peaks is generally consistent but with some disagreement at a
few frequencies. BKS shows a tendency to overpredict
vibrational mode frequencies with broader and less intense
peaks. These data demonstrate the suitability of the DP model
for predicting phonon modes of silica zeolites at close to DFT
accuracy.

Model Transferability. The previous results assessed DP’s
ability to predict properties of the 187 topologies included in the
model’s training. We now examine a testing set of 32 topologies
from our data set (not used during training) to see how DP
performs for topologies completely unseen by our model. The
optimized geometries of these 32 zeolites were obtained using
both DFT and our DP model to assess DP’s ability to predict
PES minima for new topologies. As seen in Figure 7a−c, the DP
model continues to show impressive agreement with DFT for
optimized geometries of new topologies. Both the optimized
Si−O bond length and O−Si−O angle distributions align almost
perfectly with DFT, and the calculated lattice constants agree
with DFT typically within 1% error for the majority of topologies
considered.

Figure 6. PDOS of CHA at 900 K calculated from the velocity autocorrelation function from an NVT-MD trajectory for DFT, DP, and BKS.

Figure 7. Comparison of normalized distributions of (a) Si−O bond lengths and (b) O−Si−O angles for optimized DFT and DP geometries of 32
topologies foreign to the trained model. (c) Normalized distribution of percent errors relative to DFT of optimized lattice constants for DP. (d) Bulk
moduli calculated from EOS fits, and (e) bulk moduli and (f) shear moduli calculated from stress−strain relationships for the 32 testing topologies
(red) compared to the 187 topologies included in training (gray).
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The calculations of bulk moduli (B0) from fitting energy−
volume data and bulk and shear moduli (KVRH and GVRH,
respectively) from elastic constants using stress−strain data
were repeated for the test set of topologies. As shown by the
excellent agreement between DP and DFT calculated EOS bulk
moduli in Figure 7d, we find our DP is transferable and capable
of mapping out PES of unseen topologies by learning the PES of
many similar structures. High transferability suggests that MLPs
may be ideally suited for applications involving high-throughput
screening of large zeolite databases by calculating a property of
interest at near-DFT accuracy. The DP model also yields
reasonable KVRH (Figure 7e) and GVRH (Figure 7f) predictions
for the testing topologies with an accuracy on-par with that
obtained for the training topologies. We reiterate that DFT
stresses were not included in training, so it should be expected
that KVRH and GVRH (calculated using stresses) are less accurate
than B0 (calculated using energies) for both the testing and
training topologies.
Computational Cost. We end our discussion with a brief

analysis of the computational efficiency of DFT and DP. The
average time per MD step was found for DP and DFT for eight
randomly selected topologies of varying system size. The DFT
and DP calculations were both performed using 32 cores (2.3
GHz Intel Xeon Processor E5-2698 v3) for a direct comparison
of performance. Although using a fixed number of cores neglects
potential scaling differences between DP and DFT with
increasing CPU cores, an exhaustive cost analysis across
different parallelization schemes is beyond the scope of this
work. Figure 8 shows the speedup (ratio of DFT and DP time

per MD step) for increasing system size. For our pure silica
zeolite systems, we found DP to be >1000 times faster than the
corresponding DFT calculation, with more favorable scaling of
DP with an increasing number of atoms leading to improved
speedup for larger systems. Coupled with the accuracy of the
results discussed previously, we conclude that the DP approach
significantly improves the accuracy−cost trade off for these
materials. Note that the above results were obtained with the
CPU version of DeePMD-kit; using GPUs could lead to better
performance and improved parallelization.

■ CONCLUSION
In this work, a diverse DFT data set was generated consisting of
219 pure silica zeolite topologies for training MLPs. DeePMD-
kit was used to train a single DP on 187 of the 219 topologies (32
were set aside as a test set for model transferability) that
accurately reproduces the ab initio PES of silica. We assessed the
ability of the DP to calculate properties that were not explicitly

trained for through energy and force evaluations. We have
shown excellent agreement with DFT structural properties, as
seen by nearly identical tetrahedral SiO4 geometry and lattice
constants in structures relaxed by DFT and DP. The accuracy of
the energies and forces was also highlighted by good agreement
with DP and DFT for energy−volume curves (EOS) and finite
temperature PDOS calculated from MD velocities. Mechanical
properties from elastic constants calculated from stress−strain
relationships were found to show reasonable agreement, with
large improvement likely to be gained from including DFT
stresses during training. We also tested how our model performs
at calculating these same properties for the 32 testing topologies
not included during training, and we found comparable accuracy
to the training set topologies, suggesting a generalized DP
applicable for any pure silica zeolite structure. Our results
indicate an MLP trained on ab initio data can successfully model
zeolite framework dynamics. We are currently extending the DP
approach to model the diffusion of small molecules and metal
nanoclusters in zeolites and metal−organic frameworks
(MOFs). Our findings provide a promising avenue to develop
DP-based MLPs for zeolites and are broadly relevant to the
nanoporous modeling community. Additionally, we anticipate
that the silica zeolite data set developed in this work (denoted as
Si-ZEO22) will motivate the development of other MLPs for
this important class of industrially relevant materials.
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