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Abstract 

In simple judgment tasks, it is generally assumed that thinking 
for longer leads to more accurate judgments, providing better 
benefits as suggested by the speed-accuracy tradeoff frame-
work. However, human cognitive resources are limited, and 
longer thinking induces cognitive costs such as subjective 
workload. Therefore, a total benefit should be considered under 
the tradeoff between thinking benefits (i.e., improving accu-
racy) and thinking costs (i.e., increasing cognitive load) as sug-
gested by the resource rationality framework. We examined 
this issue using computer simulations and behavioral experi-
ments. Our simulations showed that, if a thinking cost was in-
troduced based on resource-rational approaches, there was an 
optimal length of time for maximizing a total benefit and the 
total benefit gradually decreased there. In addition, our experi-
ments demonstrated that judgment accuracy did not always im-
prove even if participants were provided a longer thinking 
time; conversely, longer thinking time was likely to increase 
their subjective workload. These results are consistent with re-
source rationality rather than speed-accuracy tradeoff. The im-
portance of considering cognitive load is suggested to further 
understand human intelligence in the context of a speed-accu-
racy tradeoff.    

Keywords: speed-accuracy tradeoff; resource rationality; cog-
nitive resources; computer simulation; behavioral experiment   

 

Introduction  

Speed-Accuracy Tradeoff Framework  

Humans process information and make judgments in the real 

world. Human cognitive resources, such as computational ca-

pacity and information storage, are limited and cannot handle 

large amounts of data. If humans make judgments hastily, 

they will likely be wrong. In contrast, if they take a long time 

to think of tasks, judgment accuracy is likely to improve.  

Considering the relationship between thinking time and 

judgment accuracy, a speed-accuracy tradeoff (SAT) is a 

well-known framework in information processing and judg-

ments such as perceptual decision-making, recognition 

 
† The second author's current affiliation is National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan 

memory, and inference tasks (e.g., Heitz, 2014; Henmon, 

1911; Karşılar, Simen, Papadakis, & Balci, 2014; Reed, 

1973; Wickelgren, 1977). SAT assumes that faster responses 

collect less accumulated evidence and thus less accurate de-

cisions, and vice versa. SAT is regarded as a ubiquitous effect 

that is closely related to an organism’s judgment processes 

(e.g., Chittka, Skorupski, & Raine, 2009; Heitz, 2014). SAT 

process is often intuitively understood in terms of sequential 

sampling models (e.g., Bogacz, Brown, Moehlis, Holmes, & 

Cohen, 2006; Heitz & Schall, 2012; Ratcliff & Smith, 2004; 

as review, Ratcliff, Smith, Brown, & McKoon, 2016). Se-

quential sampling models argue that individuals set a deci-

sion threshold and make a final choice when the amount of 

evidence, starting from a certain baseline, reaches that thresh-

old. They sometimes adjust their decision thresholds and 

baseline. Lowering the threshold or raising the baseline leads 

to faster responses but simultaneously to an increase in the 

error rate, and vice versa (e.g., Bogacz, Wagenmakers, 

Forstmann, & Nieuwenhuis, 2010). Some studies also sug-

gest that people sometimes terminate their accumulation of 

evidence before a decision deadline, by collapsing or con-

verging the threshold dynamically during thinking (Frazier & 

Yu, 2008; Karşılar et al., 2014).  

In many cases, the performance of SAT is typically de-

picted as a curved line (concave function). When the x- and 

y-axes denote the response time and accuracy, respectively, 

the accuracy remarkably increases at an early stage; however, 

the extent of the increasing accuracy gradually diminishes as 

time elapses (e.g., McElree & Carrasco, 1999). In SAT, a 

benefit obtained by thinking for a long time such as increas-

ing accuracy (we call “thinking benefit”) is regarded as 

equivalent to a benefit obtained through tasks (we call “total 

benefit”) (see upper panels in Figure 1; as described later).  

 

Resource Rationality Framework  

Although many behavioral science studies have discussed 

SAT, the aspect of cognitive resources has been ignored. The 
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SAT has been evaluated mainly based on judgment accuracy. 

However, human cognitive resources are limited and thinking 

is considered costly (e.g., Lieder, Griffiths, Quentin, & 

Goodman, 2018; Shugan, 1980). Therefore, a longer thinking 

time may enhance more accurate judgments, but simultane-

ously will generate a larger subjective workload and irritation 

(we call “thinking cost”).  

Recent cognitive science studies have proposed a resource 

rationality framework (e.g., Griffiths, Lieder, & Goodman, 

2015; Lieder & Griffiths, 2020). This framework helps us un-

derstand “how we think given that our time and minds are 

finite?” (Lieder et al., 2018). The resource-rational approach 

is key to modeling human minds considering their limited 

cognitive resources. Previous studies could better explain hu-

mans rational and accurate behaviors in various tasks such as 

action planning (e.g., Ho, Cohen, & Griffiths, 2023), goal 

pursuit (e.g., Prystawski, Mohnert, Tošic, & Lieder, 2021), 

and anchoring effects (e.g., Lieder et al., 2018).   

In the context of the relationship between thinking time 

and judgment accuracy, accuracy will be maximized at a cer-

tain time point by thinking slowly, as suggested by SAT. In 

other words, a thinking benefit (i.e., increasing accuracy) can 

be regarded as a total benefit. However, the resource rational 

framework assumes that cognitive costs will gradually in-

crease as a person thinks of a task for a long time. Once the 

accuracy reaches the peak, it is unlikely to improve further; 

instead, a thinking cost will become larger. Thus, the total 

benefit gradually decreases after the peak accuracy is ob-

served. That is, researchers should consider the total benefit 

under a tradeoff between thinking benefits and thinking costs 

(i.e., increasing workload).  

Resource Rationality in Numerical Estimations  

Using computational modeling and simulations, Lieder et al. 

(2018) showed that anchoring bias in numerical estimations 

reflects people’s rational use of cognitive resources. The as-

sumptions are briefly summarized as follows: In a numerical 

estimation task, individuals make the first estimation based 

on a presented anchor (i.e., an initially presented value). 

Then, they repeatedly adjust their estimation, and finally pro-

vide the final estimation. In their model, the number of steps, 

𝑡∗, was selected to minimize the expected value of the time 

cost (or thinking cost) of adjustments plus the error cost of 

the final estimate: 

 

𝑡∗ = 𝑎𝑟𝑔 min
𝑡

[𝐸𝑄(𝑥𝑡̂){𝑐𝑜𝑠𝑡(𝑥, 𝑥̂) +  𝛾 ∗ 𝑡}] 

 

where 𝑥̂ and 𝑄(𝑥𝑡̂) were the estimation and the distribution 

of estimations after t-times adjustments, respectively; x was 

the (unknown) true value; 𝑐𝑜𝑠𝑡(𝑥, 𝑥̂) was the error cost; and 

𝛾 was a thinking cost per adjustment. As described in this 

equation, Lieder et al. (2018) introduced a time cost based on 

the resource-rational framework. Generally, an increasing 

number of adjustments (i.e., thinking for a longer time) might 

lead to a reduction in error cost (i.e., increasing judgment ac-

curacy). However, the thinking cost should increase linearly 

as adjustments are repeated. Thus, the total benefit would de-

crease after 𝑡∗-time adjustments. Lieder et al. (2018) argued 

that there was a point that reflects an “optimal resource allo-

cation” under the tradeoff between judgment accuracy and 

time cost.  

Figure 1  Left picture: Schematics of computer simulations of a grid task. An agent was asked to judge whether the proportion 

of black grids was over or under 50%. The agent’s first estimation was sampled from a normal distribution (mean = .50); 

and after t-time adjustments, a final estimation was provided. Our simulations iterated this procedure 1,000 times per agent. 

Right panels: Results of computer simulations. The three left panels inside dotted frames show examples of a one-agent 

simulation, and vertical lines denote the times when a total benefit peaked. If a thinking cost was not assumed, a total benefit 

would be equivalent to a thinking benefit and did not decrease (as predicted by SAT; upper panels). If a thinking cost was 

introduced, the thinking cost continued to linearly increase because human cognitive resources are limited, and a total benefit 

gradually decreased after a peak (as predicted by resource rationality; lower panels). Right-end panels show the peak times 

of a total benefit (vertical lines shown in the “Total Benefit” panels) observed in 500-agents simulation. Peaks of total benefit 

in the resource rationality were observed in narrower ranges and at earlier times than those in SAT.  
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Study Outline  

In this study, we first theoretically examine the differences 

between the SAT and resource rational frameworks through 

computer simulations. We show that, because of humans lim-

ited cognitive resources, there should be an optimal point of 

total benefit under the tradeoff between thinking time and 

thinking cost. Next, we empirically examine the results of the 

simulations using behavioral experiments. We investigate ac-

tual human behaviors and confirm that an unnecessarily long 

thinking time (i) does not always improve judgment accuracy 

and (ii) induces a larger subjective workload. Data and R 

codes are available at  

https://osf.io/6bkt5/?view_only=a4a870d2e088456bad1c38

83176b5c6b  

Simulation Study 

Method  

Tasks and Materials Consider the following a simple per-

ceptual binary-choice task (called a “grid task”): A person is 

presented with a black-and-white grid stimulus and is asked 

to judge whether the black grids are more than half of the 

whole grids (i.e., a binary choice of yes or no).  

Procedure We applied Lieder et al.’s framework of resource-

rational analyses (Lieder et al., 2018) to our grid task (see 

Figure 1 left picture; hereafter, all normal distributions in our 

simulations were truncated for min = 0 and max = 1).  

It was assumed that a person first estimated the proportion 

of black grids as approximately .50. The first value, v1, was 

sampled from a normal distribution (prior distribution) with 

mean = 0.5 and SD = 0.1 because the person initially had no 

prior knowledge. Next, it was assumed that the person repeat-

edly adjusted the estimation by seeing the grid stimulus for a 

few seconds, based on the person’s own belief (b) and the 

correct proportion of black grids (𝐶𝑝𝑟𝑜𝑝). We set 𝐶𝑝𝑟𝑜𝑝 as .55 
1 and assumed that adjustments were conducted 150 times 

(i.e., estimating vt at each time t = 2, 3, …, 150) using the 

Metropolis-Hastings algorithm (Hastings, 1970), a Markov 

chain Monte Carlo method (according to Lieder et al., 2018).  

At each time, a potential adjustment, 𝛿, was proposed by 

sampling from a normal distribution with mean = 0 and SD = 

0.05. This adjustment was either accepted (i.e., vt = vt-1 + 𝛿) 

or rejected (i.e., vt = vt-1) as the following rule. If a proposed 

adjustment was likely to make an estimation more probable 

(i.e., Prob(X = vt-1 + 𝛿) > Prob(X = vt-1)), then it was always 

accepted. Even if the adjustment would be less probable (i.e., 

Prob(X = vt-1 + 𝛿) < Prob(X = vt-1)), it was also accepted with 

probability Prob(X = vt-1 + 𝛿) / Prob(X = vt-1). Otherwise, the 

adjustment was rejected. As increasing t, the distribution of 

the final estimates was assumed to converge to a posterior 

distribution with mean = 𝐶𝑝𝑟𝑜𝑝 and SD = b. We regarded v150 

 
1 In this case, the response “yes” was regarded as correct be-

cause 𝐶𝑝𝑟𝑜𝑝 = .55 was over .50. We additionally simulated 

the symmetrical case with respect to .50 (i.e., 𝐶𝑝𝑟𝑜𝑝 = .45) 

as the final estimate. If v150 > .50, then we regarded it as cor-

rect, and vice versa.  

According to resource rationality, we introduced a thinking 

cost at time t, 𝑇ℎ𝑖𝑛𝑘𝐶𝑜𝑠𝑡𝑡 . Based on Lieder et al. (2018), we 

assumed that thinking costs increased linearly with time t. 

The maximum cost 0.0 (i.e., 𝑇ℎ𝑖𝑛𝑘𝐶𝑜𝑠𝑡150= 0.0) meant that 

human cognitive resources were not assumed and longer 

thinking led to better benefits, which reflected a traditional 

SAT. In contrast, we considered it more natural to assume 

limited cognitive resources and increase thinking costs (i.e., 

𝑇ℎ𝑖𝑛𝑘𝐶𝑜𝑠𝑡150 > 0.0), which reflected resource rationality. In 

our resource rationality simulations, we set 𝑇ℎ𝑖𝑛𝑘𝐶𝑜𝑠𝑡150 

to .50.  

The above procedure was iterated 1,000 times (i.e., assum-

ing that the grid task with 150-time adjustments was iterated 

1,000 times) per agent. We then defined the mean rates of 

correct judgments in the 1,000 iterations for each time t as 

𝑇ℎ𝑖𝑛𝑘𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑡  (note that 𝑇ℎ𝑖𝑛𝑘𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑡was scaled by di-

viding each mean rate at time t by the maximum mean rate). 

Finally, we calculated the mean of the differences between 

benefit and cost (i.e., 𝑇ℎ𝑖𝑛𝑘𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑡  – 𝑇ℎ𝑖𝑛𝑘𝐶𝑜𝑠𝑡𝑡 ) in 

1,000 iterations for each time t, and defined it as 

𝑇𝑜𝑡𝑎𝑙𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑡 . Our simulations assumed that 500 agents 

conducted this grid task. We investigated the differences in 

𝑇𝑜𝑡𝑎𝑙𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑡 as time t progressed between cases where a 

thinking cost was not assumed (SAT; i.e., 𝑇ℎ𝑖𝑛𝑘𝐶𝑜𝑠𝑡150 = 

0.0) and where it was assumed (resource rationality; i.e., 

𝑇ℎ𝑖𝑛𝑘𝐶𝑜𝑠𝑡150 = .50).  

Results and Discussion  

First, we show an example of the estimation in one round (i.e., 

1,000 iterations * 1 agent; panels in dotted frames in Figure 

1). When the maximum thinking cost was 0.0, the total ben-

efit became equivalent to the thinking benefit. This result 

could be captured by the traditional SAT; in fact, the curved 

line depicted in the “Thinking Benefit” and “Total Benefit” 

panels in Figure 1 (i.e., the extent of increasing benefit per 

time gradually declined, but the benefit did not decrease) is a 

typical shape explaining SAT (e.g., Heitz, 2014; Öztekin & 

McElree, 2010; Wickelgren, 1977). However, when the 

thinking cost was introduced, the total benefit peaked at a cer-

tain time point (vertical line) and then gradually decreased. 

This result can be captured by resource rationality, which as-

sumes limited human cognitive resources.  

Next, we repeated this estimation for 500 agents (i.e., 

1,000 iterations * 500 agents) and investigated when the peak 

of the total benefit was observed for each round. As shown in 

the right-end panels in Figure 1 (darkness of color denotes 

frequency), the peak times in SAT ranged widely, especially 

at later times (mean = 95.17, min = 23, max = 150). In con-

trast, peaks in resource rationality were observed in narrow 

ranges, especially at earlier times (mean = 23.16, min = 10, 

max = 51). These results of resource rationality framework 

and confirmed the same tendencies described in the main text.  

Furthermore, we simulated other proportion cases (e.g., 

𝐶𝑝𝑟𝑜𝑝 = .65, .75, .85, etc.) and obtained the same results.  
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simulations suggest that thinking longer is not always a good 

strategy because a total benefit often peaks at early stages.  

 

Behavioral Experiments  

In this section, we empirically examine whether resource-ra-

tional analyses can accurately capture actual human behav-

iors. According to SAT, if people are provided with a longer 

thinking time, they will be able to make more accurate judg-

ments. However, according to resource rationality, even if 

people are provided with a longer time, their judgment accu-

racy does not always improve; instead, their subjective work-

load will increase.  

Based on these considerations, we manipulated the length 

of thinking time in behavioral experiments. In one group, par-

ticipants responded to a task in a normal manner (we call 

“normal group”). Participants in the normal group could click 

a button immediately after a grid stimulus appeared. In an-

other group, a sufficiently long time, 2.5 seconds, was in-

serted between a grid appearing and the two buttons appear-

ing in every trial (we call “long thinking group”). Participants 

in the long thinking group could not click a button during the 

first 2.5s and were forced to think of the task.  

We compared participants’ judgment accuracy and think-

ing costs between the two groups. We predicted that partici-

pants’ accuracy would not differ between them, but that their 

workload in the long thinking group would be greater than 

that in the normal group. If so, it is suggested that the total 

benefit sometimes decreases when a long thinking time is 

provided, which supports the resource rationality framework. 

Method  

Participants Fifty-five participants were assigned to normal 

group (nmen = 31, nwomen = 24; Mage = 39.85, SDage = 20.69), 

and 60 participants to long thinking group (nmen = 38, nwomen 

= 21, nother = 1; Mage = 41.91, SDage = 8.74) via the Japanese 

crowdsourcing platform, Lancers (https://www.lancers.jp/). 

The total sample size was determined using G*Power (Faul, 

Erdfelder, Buchner, & Lang, 2009), assuming a medium ef-

fect size of 0.45–0.5 and a power of 0.8 for “t-tests” family 

and “Difference between two independent means” statistical 

test. The required sample size ranged from 102 (effect size 

0.5) to 124 (effect size 0.45). Based on these estimates, ap-

proximately 60 participants were recruited per group.  

Tasks, Materials, and Procedures Behavioral experiments 

were conducted online, using Qualtrics (Figure 2). We con-

ducted a grid task, introduced in the computer simulations de-

scribed above. First, a fixation cross was presented for 0.5s 

and then a grid stimulus was presented (the initial position of 

the mouse cursor was the center of the screen). Participants 

were asked to judge whether black grids were more than 50% 

in the stimulus and then click the “yes” or “no” button pre-

sented at the bottom of the screen. After clicking a button, a 

“next” button was presented. If they clicked it, a fixation 

cross appeared again, and the same procedure was repeated. 

Participants in both groups responded to 80 questions. We 

prepared four types of grid stimuli in terms of proportions of 

black grids: 35%, 45%, 55%, and 65%. Twenty stimuli 

(black-and-white arrangements differed among all stimuli) 

were used for each percentage per participant. The order of 

presenting grid stimuli was randomized.  

After the grid task, participants were asked to subjectively 

evaluate their thinking costs. Specifically, they rated (a) how 

Figure 2  Schematics of behavioral experiments. In a grid task (80 questions), participants were asked to judge whether the 

proportion of black grids was over or under 50% (responded by clicking a “yes” or “no” button). Participants in the normal 

group could click a button immediately after a grid stimulus was presented. In contrast, in the long thinking group, a time 

lag was inserted for the first 2.5 seconds and participants could not click the buttons (i.e., a long thinking time was provided). 

After the grid task, participants evaluated their subjective workload through the task and irritation due to the time lag.  
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much subjective workload they felt throughout the task and 

(b) how much irritation they felt, using a visual analog scale 

(left: 0 [not at all] – right: 100 [very much]).  

Results and Discussion  

In the following analyses, we excluded trials in which the re-

sponse time was longer than 6s as outliers (3SD of RT across 

all experiments was 5.90 and thus we defined the outlier cri-

terion as 6s). We also excluded trials in which 35% and 65% 

black stimuli were presented because of an extreme ceiling 

effect (individual accuracy: .980).  

Individuals’ judgment accuracy and response time distri-

butions are shown in the two left columns of Figure 3. We 

found that the grand means of individuals’ accuracy (i.e., the 

mean of each participant’s rate of correct judgments) did not 

differ between the two groups 2 (dotted lines; Mnormal = .833; 

Mlong = .826). To analyze accuracy in terms of the length of 

thinking time, we categorized times into three parts: Early 

(~2.5s), middle (2.5~4.0s), and late (4.0s~). We also found 

that, in both groups, the accuracy tended to be higher imme-

diately after participants were allowed to click the buttons 

(i.e., “~2.5s” in normal group, and “2.5~4.0s” in long think-

ing group) and responses in later times were not always more 

accurate. In fact, as shown in the response time distributions, 

correct judgments (yellow bars) were likely to be observed 

frequently in the early stages and tended to decrease later.  

 
2 We additionally estimated 95%CIs of participants’ accuracy for 

each group by using R package brms, and confirmed that 95%CIs 

In addition, we compared the subjective evaluations of 

thinking costs between the two groups (right panels inside a 

frame in Figure 3). We found that participants in long think-

ing group tended to experience greater costs than those in 

normal group in terms of both workload and irritation (work-

load: Mnormal = 29.35, Mlong = 37.37, W = 1317.5, p = .062, 

Cliff’s delta = 0.202; irritation: Mnormal = 20.29, Mlong = 37.37, 

W = 780, p < .001, Cliff’s delta = 0.527; Mann–Whitney U 

test). These results indicate that an unnecessarily long time is 

likely to induce thinking costs in participants.  

In summary, thinking for a longer time provides a thinking 

benefit (i.e., more accurate judgments), but the benefit peaks 

at a certain time point. Simultaneously, the thinking cost (i.e., 

larger workload) gradually increases with time and then will 

exceed the benefit after the peak time of the thinking benefit. 

Therefore, the total benefit will gradually decrease. These be-

havioral data are supported and consistent with the resource 

rationality framework, rather than a speed-accuracy tradeoff.   

General Discussion  

This study focused on the relationship between thinking time 

and judgment accuracy. It is generally believed that a longer 

thinking time leads to improve accuracy (i.e., a thinking ben-

efit can be regarded as a total benefit), as suggested by SAT. 

However, because human cognitive resources are limited, it 

is considered that thinking costs such as subjective workload 

will increase as a person thinks of a task for a longer time. 

overlapped each other (normal group 95%CI = [.798, .869]; long 

thinking group 95%CI = [.794, .859]).   

Figure 3  Results of behavioral experiments. Left two columns: The judgment accuracy (upper row; dots and error bars denote 

the means and 95% confidence intervals, respectively) and response time distributions (lower row; yellow and black denote 

trials where correct and wrong judgments were made, respectively, with 0.1s bin). Grand means of individual accuracy (dotted 

lines) did not differ between the two groups, and thinking longer did not always improve accuracy. Many correct judgments 

were often made in early times. In late times, correct judgments tended to decrease. Right panels inside a frame: Subjective 

ratings for thinking costs after the grid task. Participants in the long thinking group tended to feel larger workload and irritation 

than those in the normal group. Remark: Behavioral data suggested that actual human behaviors were consistent with the re-

source rationality framework, rather than SAT.   
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Thus, the total benefit is predicted to decrease after a certain 

time point (i.e., the total benefit should be considered under 

a tradeoff between thinking benefit and thinking cost), as sug-

gested by the resource rationality framework. This study first 

conducted computer simulations to theoretically explain the 

differences between SAT and resource rationality. First, we 

conducted computer simulations and showed that if a think-

ing cost was introduced, there should be a peak in the total 

benefit and it gradually decreased. Next, we conducted be-

havioral experiments to empirically examine the findings us-

ing computer simulations. We found that even if participants 

were provided with a long thinking time, their accuracy did 

not always increase. We also found that an unnecessarily long 

thinking time induced a larger subjective workload. These be-

havioral data suggest that a total benefit will gradually de-

crease after the peak of thinking benefit (i.e., accuracy) be-

cause a thinking cost (i.e., workload) will continue to increase, 

which is consistent with the resource rationality framework.   

We point out future directions of this study. First, “think-

ing costs” should be more clarified, such as annoyance, cog-

nitive conflicts, etc. Participants’ cognitive load during 

choice behaviors can be investigated through, for example, 

mouse tracking approaches (e.g., deviation of mouse trajec-

tories from an ideal path can be an index for conflicts; Still-

man, et al., 2018). By focusing on such behavioral indices, 

we may be able to empirically discuss some aspects of the 

theoretical findings which are not predicted by the simulation 

(e.g., regarding the decrease in accuracy with additional time). 

Second, we should clarify the reasons why the accuracy at 

2.5-4.0s was higher for long thinking group than the normal 

group, even though they used same amount of time to think. 

We now do not have clear evidence for this issue, but we 

speculate the differences in cognitive load between consider-

ing and waiting. For the first 2.5s in a trial, participants in the 

normal group constantly considered the task without a wait-

ing time, and larger cognitive costs might be induced. On the 

other hand, participants in the long thinking group did not 

have to deeply consider the task because of a waiting time, 

thus their cognitive costs might be smaller. In any case, this 

fact may be a key to shed light of a more complex dynamics 

of thinking time and cognitive cost than initially proposed.  

Regarding practical implications, our results can be a key 

to considering interventions that improve individuals’ judg-

ment accuracy. As shown in our simulations and experiments, 

the total benefit should peak at an early stage. Thus, if an ap-

propriate time (i.e., not too short but not too long, such as 

approximately 1s) is inserted at the beginning of a trial, indi-

viduals’ accuracy may be maximized with a minimum work-

load. According to the resource-rational analyses (e.g., Grif-

fiths et al., 2015; Lieder et al., 2018), the peak of total benefit 

can be regarded as the point at which individuals achieve the 

optimal allocation of their cognitive resources. Designing an 

intervention to enhance accurate judgments under limited 

cognitive resources will be strongly related to a boost, which 

aims at behavioral changes by fostering people’s cognitive 

competence (e.g., Hertwig & Grüne-Yanoff, 2017). Taken to-

gether, this study emphasizes the importance of considering 

limited cognitive resources (i.e., thinking not only about ben-

efits but also about costs) in the context of SAT.   
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