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TEMPTED: time‑informed dimensionality 
reduction for longitudinal microbiome studies
Pixu Shi1,2*†  , Cameron Martino3,4,5†, Rungang Han6, Stefan Janssen7, Gregory Buck8,9, Myrna Serrano8,9, 
Kouros Owzar1, Rob Knight3,4,10,11,12*, Liat Shenhav13,14,15* and Anru R. Zhang1,16* 

Background
Given the highly dynamic and complex nature of microbial communities, identifying 
and predicting their time-dependent patterns are crucial to understanding their struc-
ture and function. The collection of longitudinal microbiome samples provides a unique 
opportunity to capture the dynamics of microbial communities and their associations 
with host phenotypes. However, the nature of longitudinal microbiome data poses sev-
eral analytical challenges. First, microbiome data are high-dimensional, making dimen-
sionality reduction key in guiding analysis and interpretation. Second, the pattern of 
intra-host variation may change over time and vary across hosts, making it challenging 
to extract robust temporal patterns of microbial features [1]. Third, due to inherent prac-
tical limitations of longitudinal studies (e.g., missed patient follow-up visits or inconsist-
ent sample collection), multiple hosts often have missing temporal samples, translating 
into irregular temporal sampling across hosts [2–5].

To investigate longitudinal microbiome data, many studies first use dimension-
ality reduction methods, such as principal coordinate analysis (PCoA); however, 
this method analyzes data at the sample level and does not utilize or account for 

Abstract 

Longitudinal studies are crucial for understanding complex microbiome dynamics 
and their link to health. We introduce TEMPoral TEnsor Decomposition (TEMPTED), 
a time-informed dimensionality reduction method for high-dimensional longitudi-
nal data that treats time as a continuous variable, effectively characterizing temporal 
information and handling varying temporal sampling. TEMPTED captures key microbial 
dynamics, facilitates beta-diversity analysis, and enhances reproducibility by transfer-
ring learned representations to new data. In simulations, it achieves 90% accuracy 
in phenotype classification, significantly outperforming existing methods. In real data, 
TEMPTED identifies vaginal microbial markers linked to term and preterm births, dem-
onstrating robust performance across datasets and sequencing platforms.
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within-subject correlation and temporal structures. In recent years, unsupervised 
tensor methods have been developed to model longitudinal microbiome data. CTF 
[1], microTensor [6], TCAM [7], FTSVD [8], and EMBED [9] format temporal micro-
biome data into tabular tensors and apply tensor decomposition to identify low-
dimensional structures. However, these tensor-based methods assume all hosts have 
the same sampling time points with low-level of or no missingness, which is often 
unrealistic in clinical settings. Moreover, CTF and microTensor do not account for 
the continuity in temporal structure, TCAM does not provide dimension reduction 
for time or samples, while EMBED aims at characterizing temporal structures with-
out offering dimension reduction for hosts or samples. In addition, most of these 
methods can not transfer the learned low-dimensional representation from train-
ing data to independent testing data. Another relevant class of models is the mul-
tivariate functional models that can depict feature trajectories. However, they are 
unsuitable for dimensionality reduction or managing unknown structures in hosts 
[10]. An alternative to analyzing longitudinal microbiome data is by using super-
vised methods, which are focused on generative models inferring the dynamics of 
these communities (e.g., generalized Lotka Volterra) [11–14]. Another example is 
the mixed-effect type models widely used to quantify intra-host variation, but typi-
cally analyze one microbial feature at a time with limited ability to model temporal 
patterns [15]. While these methods account for the correlation structure induced by 
repeated measures as well as for sparsity and compositionality, their output does not 
directly allow the clustering of phenotypes by microbial community dynamics.

Here, we introduce TEMPoral TEnsor Decomposition (TEMPTED), an unsuper-
vised dimensionality reduction tool for high-dimensional temporal data with flex-
ible temporal sampling. TEMPTED formats longitudinal microbiome data into 
an order-3 temporal tensor with subject, feature, and continuous time as its three 
dimensions. The tensor is then decomposed into a summation of low-dimensional 
components, each consisting of a subject loading vector, a feature loading vector, 
and a temporal loading function (Fig.  1). These loadings provide time-informed 
dimension reduction and beta-diversity analysis at both the sample and subject lev-
els and identify corresponding microbial signatures whose temporal trends can aid 
in discerning host phenotypes. TEMPTED also enables the transfer of the learned 
low-dimensional representation from training data to unseen testing data, thus facil-
itating research reproducibility. TEMPTED is unique in that it can handle varying 
temporal sampling and missing time points, a prevalent issue in longitudinal micro-
biome studies, without the need of time discretization, sample removal, or sample 
imputation. Treating time as a continuous variable allows adjacent time points to 
borrow information from each other, thus reducing the impact of noises and enhanc-
ing signals. It is the only dimensionality reduction method currently available for 
temporal data that offers this flexibility. These unique properties enable TEMPTED 
to have superior performance in extracting key information in the dataset in data-
driven simulations. Furthermore, using TEMPTED, we uncover previously unde-
tectable microbial dynamics separating mice with leukemia from healthy ones and 
pregnancies ending in preterm and term birth.
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Results
An overview of TEMPTED

Let i = 1, . . . , n denote subjects, j = 1, . . . , p denote features, and Yijt denote the value of 
feature j from subject i at time point t ∈ Ti = ti1, . . . , timi  . Here, Ti is a subset of inter-
val T containing mi time points and can be different across subjects to accommodate 
varying temporal sampling and missing time points. TEMPTED allows users to choose 
their own preferred data normalization and transformation to obtain Yijt . As illustrated 
in Fig. 1b, we adopt the model setting proposed in [8], which decomposes the temporal 
tensor formed by Yijt using an approximately CANDECOMP/PARAFAC (CP) low-rank 
structure:

(1)Yijt =
r∑

ℓ=1

�ℓa
(ℓ)
i b

(ℓ)
j ξ (ℓ)(t)+ Zijt ,

Fig. 1 Overview of the TEMPTED algorithm for analyzing multi-subject multi-feature temporal microbiome 
data. a Simulated microbiome count data (see Additional file 1) is transformed into relative abundance and 
plotted for four representative microbes and three groups of hosts. Microbe 1 has a unique temporal pattern 
for group 1, microbe 2 has a temporal pattern shared by groups 2 and 3, microbe 3’s temporal pattern is 
shared by all groups, and microbes 4–100 have no temporal patterns. Sampling time points are uniformly 
distributed and used as is without binning. b The observed multi-subject multi-feature temporal data are 
formatted into a temporal tensor with three modes representing subject, feature (microbe), and time, 
respectively. TEMPTED reduces the dimension of the temporal tensor by decomposing it into a small number 
of components, each containing a subject loading vector, a feature loading vector, and a temporal loading 
function. c–e TEMPTED loadings of the first three components from the simulated data. The first component 
captures the bell-shaped trend of microbe 1 and separates group 1 from groups 2 and 3. The second 
component captures the increasing trend of microbe 2 and separates group 2 from groups 1 and 3. The third 
component captures the m-shaped trend of microbe 3 and does not separate any groups. Microbes 4–100 
have low feature loadings in all components
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where r is the number of low-rank components to approximate the data tensor Y , �ℓ 
quantifies the contribution of each component, a(ℓ) = (a

(ℓ)
1 , . . . , a

(ℓ)
n ) are subject load-

ings, b(ℓ) = (b
(ℓ)
1 , . . . , b

(ℓ)
p ) are feature loadings, ξ (ℓ)(t) is the temporal loading that 

captures the shared temporal patterns among subjects and features, and Zijt includes 
unexplained remainder terms and measurement errors. Different from FTSVD [8], 
where Ti is assumed to be identical across all subjects, TEMPTED can accommodate the 
more common scenario of varying temporal sampling Ti across subjects. Our objective is 
to estimate �ℓ , a(ℓ) , b(ℓ) , and ξ (ℓ)(t) while requiring ξ (ℓ)(t) to be smooth. For details of the 
assumptions on ξ(t) and the algorithm for estimation, see the “Methods” section.

The subject loadings a(ℓ) can be used for subject-level beta analysis such as classifier 
training. The feature loading b(ℓ)j  quantifies the contribution of feature j to component 
ℓ . They can be used as the weights vector to aggregate all p features into the following 
subject-specific trajectory corresponding to component ℓ:

Here, the vector 
(
B
(1)
it , · · · ,B(r)

it

)
 also serves as an r-dimensional representation of 

sample t from subject i, which can be used to construct Euclidean distance and perform 
sample-level beta analysis. The definition of (2) is generic and can be applied to any lon-
gitudinal temporal data.

Since most microbiome data from 16S or shotgun metagenomic sequencing are com-
positional, researchers are often interested in the relative abundance of one group of 
microbes versus another. In this scenario, the users can zoom into a small number of 
features most relevant to each component by specifying a quantile cutoff for the feature 
loadings and construct trajectories of log-ratio abundance of top over bottom ranking 
features:

where Cijt is the read count of feature j in the tth sample of subject i. Details of the pseu-
docount chosen in this log ratio transformation can be found in the “Methods” section.

Data‑driven simulation

We evaluated TEMPTED’s ability to perform phenotype discrimination using two data-
driven simulations. The first simulation is based on the ECAM dataset [2], which sam-
pled the gut microbiome of infants delivered vaginally versus by C-section during the 
first 2 years of life (Additional file 1: Fig. S6). This dataset was chosen due to previously 
observed differences in longitudinal trajectories between delivery modes [1, 2]. The sec-
ond simulation utilizes the FARMM [16] dataset that comprises daily fecal microbiome 
samples collected over 15 days from 30 individuals equally divided into three dietary 
categories-vegan, omnivore, and exclusive enteral nutrition (EEN) without dietary fiber-
with all subjects receiving antibiotic treatment during days 6 to 8 (Additional file 1: Fig. 
S7). This dataset was chosen due to its use of metagenomics sequencing and previously 

(2)B
(ℓ)
it =

p∑

j=1

b
(ℓ)
j Ỹijt .

(3)B
(ℓ)
it = log
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Cijt


/
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observed differences between EEN diet and the other two in the recovery of microbi-
ome after antibiotic treatment [6, 16]. We evaluated TEMPTED and alternative com-
putational methods on their ability to differentiate host phenotypes based on microbial 
dynamics at the subject level through precision-recall (PR) of classification and the sam-
ple level through PERMANOVA F-statistic (see the “Methods” section).

These evaluations were performed across random subsets of samples in order to sim-
ulate sparse and varying temporal sampling to assess the impact of different sampling 
densities. First, at the subject level, we evaluated the performance of TEMPTED as 
compared to CTF, microTensor, FTSVD, and TCAM, since methods like PCoA, includ-
ing Bray-Curtis, Unifrac, and weighted Unifrac are limited to sample-level analysis. 
TEMPTED outperforms all methods and reduces the AUC-PR error of host-phenotype 
classification by more than 50% compared to CTF and microTensor, and this superior-
ity is maintained even when other methods utilize more time points (Fig. 2a, c). Among 
these methods, TEMPTED and TCAM are the only ones capable of transferring the 
learned low-dimensional representation from training to testing data (see the “Methods” 
section) and performing out-of-sample prediction, although TCAM cannot handle miss-
ingness in time points (Fig. 2a, c). Second, at the sample level, TEMPTED outperforms 
all existing methods in phenotype differentiation across all sampling densities (Fig. 2b), 
while TCAM does not provide sample-level dimension reduction. It is also important 
to note that among all the non-PERMANOVA methods, TEMPTED is the only method 
treating time as a continuous variable without discretization or imputation. While CTF 
and microTensor allow missingness in the time points, they require discretizing time 
into intervals. On the other hand, TCAM and FTSVD require temporal sampling to 
be identical across subjects without any missing time points. To use these methods for 
highly varying temporal sampling, as in our ECAM-based simulation, without sample 
imputation, we transformed time into the order of samples (Fig. 2) or monthly intervals 
(Additional file 1: Fig. S5).

Case studies

To further examine the performance of TEMPTED on real data, we applied it to three 
publicly available datasets. First, we used a mouse study of acute lymphoblastic leukemia 
(ALL), the most common form of childhood cancer with high genetic predisposition [3]. 
Fecal microbiome samples were longitudinally sampled from wildtype and predisposed 
(Pax5+/− genotype) mice that were raised in a specific pathogen-free environment and 
transferred to a conventional facility at early adulthood to resemble children’s transition 
into kindergarten [3] (Additional file  1: Fig. S8). While both TEMPTED and existing 
methods could successfully recover mouse genotype from the microbiome (wild type vs. 
Pax5+/−), existing methods failed to consistently predict the onset of ALL from micro-
bial profiles (Additional file  1: Figs. S11-13, Tables S1-2). In contrast, TEMPTED was 
the only method that clearly distinguished healthy mice from those that developed ALL 
while associating the difference to specific ASVs (Fig. 3a–c, Additional file 1: Fig. S14, 
Additional file 2). Additionally, TEMPTED identified ASVs that clearly separate wildtype 
and Pax5+/− mice (Fig. 3b, c, Additional file 1: Fig. S15). As there is currently no reli-
able biomarker for ALL onset, this finding might facilitate lead time for therapy. Further-
more, TEMPTED could correlate disease onset to just 12 out of 1065 ASVs. Several of 
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the ALL onset associated ASVs have been associated previously with leukemia and other 
cancers in mice, in particular those classified in the Acetatifactor genus [17–19].

Next, we applied TEMPTED to two independent studies that longitudinally sampled 
the vaginal microbiome during pregnancy: one study sequenced shotgun metagen-
omics and used metagenome-assembled genomes (MAGs) [4, 20] while the second 

Fig. 2 TEMPTED outperforms CTF, microTensor, TCAM, FTSVD, and PCoA in identifying group structures. 
TEMPTED demonstrates superior performance in reducing host-level phenotype discriminatory error 
by more than 50% compared to methods capable of handling missing time points (a, c) and improves 
the sample-level group discriminatory power (b). Sample-level discriminatory power is quantified by 
PERMANOVA pseudo F-statistic based on the sample-level Euclidean distance constructed using the first 
two components from each method (b) (for TEMPTED see Eq. (2)). Host-level group classification error is 
quantified by AUC-PR (1 - area under the precision-recall curve) with the first two components of each 
method as predictors. Both logistic regression and random forest classifiers were employed and shown in 
a, and the results from the better of the two classifiers were shown in c. Dimension reduction is performed 
in-sample and out-of-sample (see the “Methods” section) respectively, and group labels are predicted using 
leave-one-out for logistic regression and out-of-bag for random forest. The methods were applied to two 
datasets: the ECAM infant fecal microbiome data (a, b), which distinguishes between infants delivered 
vaginally (N-subject = 23) and by cesarean section (N-subject = 17), and the FARMM dataset (c), which 
distinguishes between EEN diet (N-subjects = 10) and vegetarian or omnivore diet (N-subject = 20). Error 
bars represent 1.96 standard errors. For ECAM-based simulation, we randomly choose a given number of 
samples from each subject such that CTF, microTensor, FTSVD, and TCAM can use the order of the infant 
age as time variable to form a tensor with no missing values, while TEMPTED uses the infant age as is. For 
FARMM-based simulation, we randomly drop samples from 15 time points to achieve different percent of 
missingness, which CTF and microTensor can manage but TCAM and FTSVD cannot. EMBED was not included 
in the benchmarking because it does not provide host-level or sample-level beta diversity analysis. Different 
reads per sample are obtained by resampling reads in each sample
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sequenced 16S rRNA genes and used ASVs [4, 5] (Additional file 1: Fig. S9-10). Remark-
ably, TEMPTED consistently captured differences in the vaginal microbiome trajectories 
of pregnancies that resulted in term versus preterm birth in both datasets. Notably, this 
differentiation between term and preterm births is based on the dynamics of 8 leading 
microbial features in each study with a significant overlap (Fig. 3e, h), which can poten-
tially serve as a biomarker to detect preterm birth early in pregnancy (Fig. 3f, i). Of note, 
the dynamics of these features are required to differentiate between term and preterm 
birth as this separation was not found when performing differential abundance analysis 
using ALDEx2 [21] at any single time point (Additional files 3–4; the  “Methods” sec-
tion). The identified leading ASVs and MAGs both associate Lactobacillus spp. and 

Fig. 3 TEMPTED reveals latent trajectories distinguishing health phenotypes. a–c show the results 
of applying TEMPTED to a mouse study on leukemia (17 wild-type mice, 27 Pax5+/− mice of 
which 17 developed leukemia) [3]. a Temporal loadings capture major temporal patterns in the 
central-log-ratio-transformed microbial abundance. b Subject loadings separate genotypes in component 
3 and disease statuses in component 2. c Log ratio of the total abundance of the top 0.5% ASVs over the 
bottom 0.5% ASVs, where 1065 ASVs are ranked by feature loadings of components 2 (left) and component 3 
(right), respectively. The log ratio from component 2 diverges between disease statuses for Pax5+/− mice at 
around 40 weeks after antibiotic treatment. The log ratio from component 3 shows distinct temporal patterns 
between genotypes. d–f Results of applying TEMPTED to ASVs in the vaginal microbiome during pregnancy 
(141 term and 49 preterm) [4, 5]. g–i Results of applying TEMPTED to MAGs in the vaginal microbiome during 
pregnancy (111 term and 35 preterm) [4, 20]. d, g Subject loadings separating pregnancies resulting in term 
and preterm deliveries in component 1. The P-value is from the Wilcoxon rank sum test. e, h Top ASVs and 
MAGs ranked by the absolute value of feature loadings of component 1. Features with negative and positive 
loadings are associated with preterm birth and term birth, respectively. f, i Log ratio of the abundance of the 
ASVs with top positive loadings and top negative loadings in (e, h), separating pregnancies resulting in term 
and preterm deliveries
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specifically Lactobacillus crispatus with term birth, and associate Gardnerella, Megas-
phaera, and Atopobium vaginae with preterm birth (Fig. 3e, h), consistent with existing 
literature [4, 20, 22]. Overall, our results highlight the robustness of TEMPTED in mul-
tiple studies and sequencing technologies in uncovering microbial dynamics underlying 
host phenotypes.

Discussion
Despite its many strengths, users of TEMPTED should also be aware of several limita-
tions. Like other unsupervised dimensionality reduction methods such as PCA, PCoA, 
CTF, microTensor, FTSVD, and TCAM, TEMPTED extracts prominent structures from 
the data but does not guarantee the capture of the phenotype of interest in its leading 
components or a single component or look for differential temporal trends between 
host groups. TEMPTED’s smoothness assumption (see the  “Methods” section)  on the 
temporal loading allows it to extract key temporal trends beneath the noisy observed 
data, but such an assumption also makes it unsuitable for change point detection. Cur-
rently, TEMPTED cannot handle individual missing entries in the data tensor, which 
could be addressed in future work. In addition, TEMPTED does not guarantee its rank-r 
decomposition to have the best reconstruction accuracy because it obtains its low-rank 
structure for each component sequentially to achieve the uniqueness of the decomposi-
tion instead of looking for the best rank-r approximation for a given rank. Nevertheless, 
TEMPTED has a flexible model setting that accommodates a wide range of high-dimen-
sional temporal data, making it a valuable and powerful tool for research beyond longi-
tudinal microbiome studies.

Conclusions
TEMPTED was designed to address an important unmet need in the rapidly evolving 
field of microbiome research―namely unsupervised dimensionality reduction for lon-
gitudinal microbiome data that account for the temporal order of samples and accom-
modates varying temporal sampling schemes and missing values. By leveraging temporal 
patterns shared across hosts and features, TEMPTED efficiently extracts important low-
dimensional structures from high-dimensional longitudinal data, identifies major tem-
poral dynamics and key contributing features, facilitates beta-diversity analysis at both 
sample and subject levels, and allows the transfer of the learned low-dimensional repre-
sentation from training data to unseen datasets.

We demonstrated the utility of TEMPTED using data-driven simulations and real 
data applications. First, using data-driven simulations based on data sequenced by two 
technologies (ECAM by 16S and FARMM by shotgun metagenomics), we showcase that 
TEMPTED outperforms existing methods by a large margin in the ability to extract low-
dimensional data structures associated with phenotype differences. Second, using three 
publicly available datasets on different ecosystems (vaginal microbiome and gut micro-
biome), we showcase that TEMPTED uncovers biological signals that go undetected by 
existing methods and produce reproducible results across studies and data types (e.g., 
16S and metagenomic sequencing). The microbial features identified by TEMPTED are 
strong indicators of phenotype differentiation and thus can be leveraged in the design 
of microbiome-based biomarkers. Finally, its flexibility in accommodating varying 
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temporal sampling and ability to transfer the learned low-dimensional representation 
from training to testing data make it a highly practical tool for microbiome research, 
promoting the research reproducibility. The flexible model setting of TEMPTED also 
makes it applicable to a wide range of high-dimensional temporal data, potentially ben-
efiting more research beyond longitudinal microbiome studies.

Methods
In this section, we provide details of our methods, including data preprocessing, the 
TEMPTED algorithm, tensor reconstruction, and how the dimension reduction learned 
from training data can be transferred to new testing data. Additionally, we present 
details of case studies (Pax5 Mice Leukemia data, shotgun metagenomic vaginal data, 
16S Vaginal data), and data-driven simulation studies.

Microbiome data preprocessing

Here, we present the data transformation we adopted for microbiome sequencing 
data specifically to address their compositionality and highly skewed distribution. For 
other sources of data, users can choose their desired transformation and normaliza-
tion before using TEMPTED. Let i = 1, . . . , n denote subjects, j = 1, . . . , p denote fea-
tures, and Cijt denote the observed read count of feature j from subject i at time points 
t ∈ Ti =

{
ti1, . . . , timi

}
 . We apply the centered-log-ratio (CLR) transformation to read 

counts added by .5 [23, 24]

Adding the pseudocount .5 instead of other values is theoretically justified by [24]. [24] 
showed that log(Cijt + αi/2 ) has the smallest bias in the estimation of log(mean of Cijt ) 
when (Ci1t , . . . , Cipt) follow Dirichlet-multinomial distribution with αi being the overd-
ispersion parameter. Since microbiome sequencing count data are generally equally or 
more dispersed than multinomial distribution [25], when the estimation of αi is diffi-
cult, we opt to estimate αi with 1, leading to the pseudocount of .5. In Additional file 1: 
Fig. S1, we also compare the pseudocount of 0.5 with 0.1 and 1. While using 0.1 yields 
slightly worse performance in subject-level and sample-level dimension reduction, 
choosing between 0.5 and 1 has little difference. It is also worth noting that among the 
methods we benchmarked against in our simulation analyses, TCAM, CTF, and FTSVD 
all require log transformation of the count data. microTensor models count data directly 
without adding pseudocounts and log transformation, yet it is still outperformed by our 
method.

TEMPTED algorithm

The goal of TEMPTED is to obtain estimates of �ℓ , a(ℓ) , b(ℓ) and ξ (ℓ)(t) in the approxi-
mately CP low-rank structure (1). To overcome the issue of scaling identifiability (e.g., 
(�l , a

(l), b(l), ξ (l)(t)) and (x1�l , x2a(l), x3b(l), x4ξ (l)(t)) essentially represent the same com-
ponent whenever x1x2x3x4 = 1 ), we opt to estimate each component ℓ sequentially for 
ℓ = 1, . . . , r by minimizing the following objective function (56).

(4)Yijt = log

(
Cijt + .5

(∏p
s=1(Cist + .5)

)1/p

)
.
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While the sequential estimation of components does not guarantee the smallest 
reconstruction error, it preserves the uniqueness of each component regardless of the 
chosen rank r and offers the significant advantage of allowing users to explore addi-
tional components without impacting those previously obtained.

In (5), ‖ζ‖2
H

 is the reproducing kernel Hilbert space (RKHS) norm of function ζ(t) 
with the rescaled Bernoulli polynomial as the reproducing kernel,

where k1(s) = s − .5 , k2(s) = (k21 (s)− 1/12)/2 , and 
k4(s) = (k41 (s)− k21 (s)/2+ 7/240)/24 . This kernel guarantees ζ(t) s to be absolutely 
continuous and squared-integrable in its second-order derivative, and CK  is a tun-
ing parameter controlling the smoothness of ζ(t) s. Such smoothness assumption does 
not require the temporal trends themselves to be polynomials. Commonly seen tem-
poral trends such as monotone, unimodal, bimodal, seasonal, or circadian trends can 
all satisfy this smoothness assumption. It is worth noting that the smoothness assump-
tion is on the underlying structure of the tensor, not the observed tensor itself. Thus, 
variation of microbiome data due to noises does not necessarily violate our smoothness 
assumptions.

Due to the substantial differences in abundance among bacterial taxa across most 
time points, we offer an optional step we referred to as “mean subtraction,” to extract 
and remove this time-invariant structure from Y to improve the efficiency of our 
algorithm when this structure is not of interest. Specifically, we calculate the average 
of Yijt across time points t, resulting in Yij· , which forms the matrix Ȳ =

(
Yij·

)
 . Then, 

we calculate the first singular component of Ȳ  as Ȳ (0) = �0a
(0)b(0)⊤ , and subtract Ȳ (0) 

from Yt for each t. This optional mean subtraction step reduces the effect of highly 
abundant bacteria taxa and other time-invariant factors that may confound down-
stream analysis. We adopted this mean subtraction in all our simulation analyses in 
the main text and real data analyses. In Additional file  1: Section S3, we provide 
more insights into the effect of mean subtraction through simulation based on the 
ECAM data and FARMM data. In summary, we found that the reconstruction accu-
racy of TEMPTED with mean subtraction at rank r is comparable to but slightly bet-
ter than that of TEMPTED without mean subtraction at rank r + 1 (Additional file: 
Fig. S3). The ability of TEMPTED to capture group differences is greatly reduced 
without mean subtraction, but this reduction can be compensated by adding another 
component to the classification and is highly dependent on the dataset (Addi-
tional file  1: Fig. S4). These results suggest the possibility of TEMPTED capturing 
the mean structure in some of its components depending on its significance in the 
dataset. Depending on whether the mean structure contains useful information for 

(5)min
ai ,bj ,ξ

n∑

i=1

p∑

j=1

∑

t∈Ti

(
Yijt − a

(ℓ)
i b

(ℓ)
j ζ (ℓ)(t)

)2
+ CK ||ζ (ℓ)(t)||2H

(6)subject to

n∑

i=1

(a
(ℓ)
i )2 =

p∑

j=1

(
b
(ℓ)
j

)2
= 1.

(7)K(s, t) = 1+ k1(s)k2(t)+ k2(s)k2(t)− k4(|s − t|),
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downstream analyses, users can decide if mean subtraction is needed before apply-
ing TEMPTED.

Set Ỹ = Y or Y after mean subtraction. For each component ℓ = 1, . . . , r sequen-
tially, we perform the following Steps 1 to 3 to estimate a, b, and ζ(t) . 

Step 1: (Initialization) Initialize â = (1/
√
n, . . . , 1/

√
n) . Set b̂ as the first left singu-

lar vector of mode-2 matricization of Ỹ : i.e., the p-by-
(∑n

i=1 |Ti|
)
 matrix with 

{Ỹi·t ∈ R
p}i=1,...,n,t∈Ti as its columns.

Step 2: (Estimation of loadings) To estimate the loadings, we minimize the following 
function by iteratively updating ζ̂ , â , and b̂ respectively until convergence: 

(a) Update ζ̂ by applying kernel ridge regression to solve 

 The details of this update are described in the next section.
(b) Update â = (â1, . . . , ân) by 

(c) Update b̂ = (b̂1, . . . , b̂p) by 

Step 3: (Subtracting previous components) Normalize ζ̂ to ξ̂ = ζ̂ /�ζ̂�2 . Update Ỹ by 

 where η̂ ∈ R is obtained by solving the following least squares problem: 

Step 4: After obtaining {â(l), b̂(l), ξ̂ (l)(t)}rl=1 by sequentially running Steps 1–3, we esti-
mate � = (�1, . . . , �r) is estimated via the following least squares problem: 

(8)
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Kernel ridge regression

By the presenter theorem [26], the solution to (9) must be a linear combination of K(·, s) 
for s ∈ ∪n

i=1Ti , and the weight of this linear combination can be solved by kernel ridge 
regression. Specifically, we introduce the concatenated observation vector and kernel 
matrix:

The solution to formula (9) is equivalent to

which can be solved by

z =
(
y1,1,T1 , y2,1,T2 , . . . , yn,1,Tn , . . . , y1,p,T1 , y2,p,T2 , . . . , yn,p,Tn

)⊤ ∈ R
p(|T1|+···+|Tn|),

K =



K(T1,T1) · · · K(T1,Tn)

...
. . .

...
K(Tn,T1) · · · K(Tn,Tn)


 ∈ R

(|T1|+···+|Tn|)×(|T1|+···+|Tn|),

(15)min
α∈R|T1|+···+|Tn|

(z − DKα)⊤(z − DKα)+ CKα
⊤Kα,

(16)α̂ = (D⊤DK + CK I)
−1D⊤z, ζ̂ (s) = α⊤(K(T1, s), . . . ,K(Tn, s))

⊤.



Page 13 of 17Shi et al. Genome Biology          (2024) 25:317  

Here, I is the identity matrix, and b(t) will cancel out in D⊤D because ||b(t)||2 = 1 . CK  
is a tuning parameter that makes ζ(t) smoother when CK  is larger. The implementation 
of TEMPTED allows users to choose the value of CK  . We used CK = 0.0001 for all our 
case studies and found it to work well for most datasets we analyzed with more than 
four time points. This is validated by a sensitivity analysis of CK  using the ECAM-based 
simulated data (Additional file 1: Fig. S2). Our results also indicate that while sample-
level beta diversity derived from feature loadings is very insensitive to the choice of CK  , 
a larger CK  is needed for a smaller number of time points to ensure good performance in 
the subject-level beta-diversity analysis.

Tensor reconstruction

In addition to estimating the low-rank components, we can also construct Ŷ , a low-rank 
approximation of the target tensor Y , using the following method:

When mean subtraction is applied, the subtracted mean Ȳ (0) needs to be added back 
to Ŷt . We evaluate the reconstruction accuracy of the decomposition in terms of nor-
malized Frobenius norm:

This reconstruction error ranges from 0 to 1 and decreases as the rank r increases for 
TEMPTED and FTSVD. It can guide the selection of r in the same fashion as (1 - percent 
of variance explained) in principal component analysis.

Transfer of dimension reduction to new data

Let Ytrain and Ytest be two datasets consisting of the same features measured within the 
same time frame [0, T]. Suppose that TEMPTED decomposes Ytrain into r components, 
where the ℓ th component has subject loading a(ℓ)train , feature loading b(ℓ)train , and temporal 
loading ξ (ℓ)train . Assuming that Ytrain and Ytest share the same feature loading and temporal 
loading, we can estimate the subject loading of Ytest (i.e., a(ℓ)test ) through one iteration of 
step 2 of the TEMPTED algorithm, with b(ℓ)train and ξ (ℓ)train plugged in. The phenotype of 
the testing subjects will be predicted by applying classifiers to a(ℓ)test trained by a(ℓ)train . The 
prediction of phenotype for the testing data by such classifiers is purely out-of-sample 
since the dimension reduction is performed without any knowledge of Ytest , and classifi-
ers trained by a(ℓ)train have no information from the testing data. The accuracy of such out-
of-sample prediction is evaluated through data-driven simulation (Fig. 2 dashed lines).

Case study: Pax5 mice leukemia data

The Pax5 dataset was published by  [3] and deposited at https:// qiita. ucsd. edu/ study/ 
descr iption/ 11953, artifact ID 75878 [27]. The dataset we used here consists of fecal sam-
ples collected from 17 wild type and 27 Pax5 heterozygous mice that were treated with 
antibiotics at the beginning of the experiment, and 17 Pax5 mice developed leukemia 

(17)Ŷijt =
r∑

ℓ=1

�̂ℓâ
(ℓ)
i b̂

(ℓ)
j ξ̂ (ℓ)(t).

(18)
�Ŷ − Y�2F

�Y −mean(Y)�2F

https://qiita.ucsd.edu/study/description/11953
https://qiita.ucsd.edu/study/description/11953
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during the study. Samples were subjected to 16S V4 short-read Illumina sequencing. 
Raw reads are deposited at ENA with accession PRJEB34720 [28]. Please refer to  [3] 
for detailed sequence processing methods. Note that the original publication contains 
further amplicon sequence data and PacBio long read data not used here. Samples with 
< 35000 reads are removed. Mice with < 2 time points after filtering are removed. Time 
points were recorded as days from the end of antibiotic treatment and were divided by 7 
to obtain weeks. TEMPTED uses ASVs appearing in > 5% of all samples and CTF uses 
ASVs appearing in > 10% of all samples. We used the top 3 components for all dimen-
sion reduction methods when analyzing this dataset. The smoothness parameter CK  was 
set to 10−4 for TEMPTED.

Case study: shotgun metagenomic vaginal data

The dataset used in this study was collected and published by [4] and deposited under 
dbGaP (study no. 20280; accession ID phs001523.v1.p1) [29]. It comprises a total of 705 
vaginal samples obtained from 175 pregnant women visiting maternity clinics in Virginia 
and Washington. Among them, 40 women had preterm pregnancies, and the remaining 
135 women had term pregnancies. To ensure data quality, subjects with less than two 
time points and MAGs that appeared in less than 5% of all the samples were removed 
from the analysis. For the time-specific analysis we used ALDEx2 with gestational weeks 
5–36. A test was performed on weeks with at least 2 term and 2 preterm subjects. We 
conducted a rank-2 decomposition of this dataset using TEMPTED, focusing specifically 
on interpreting the first component. The smoothness parameter CK  was set to 10−4.

Case study: 16S vaginal data

The 16S data used in this study were published by [4, 5] and were deposited under Bio-
Projects PRJNA393472 (subjects enrolled at the University of Alabama, Birmingham) 
and PRJNA821262 (subjects enrolled at Stanford University). Preprocessed data were 
obtained from [30]. We focus specifically on the second- and third-trimester pre-deliv-
ery vaginal samples from 141 term pregnancies and 49 pre-term pregnancies. Samples 
with < 40000 reads were removed, and ASVs (amplicon sequence variants) appearing in 
≤ 5% of all the samples were removed as well. For time-specific analysis using ALDEx2, 
to ensure enough sample size at each time point, gestational days were floored to gesta-
tional weeks. No test was performed on Week 36 because it only contains three preterm 
subjects. We performed rank-2 decomposition of this dataset using TEMPTED, focus-
ing specifically on interpreting the first component. The smoothness parameter CK  was 
set to 10−4.

Data driven simulation

The ECAM dataset was published by  [2] (Qiita ID 10249). Preprocessed data were 
obtained from [31]. Months 15 and 19 were removed due to their large amount of 
missingness. Operational taxonomic units (OTUs) appearing in ≤ 5% of the remain-
ing samples were removed, as were samples with < 2000 reads. Subjects with fewer 
than nine time points were also removed, leaving 23 vaginally delivered infants and 17 
cesarean-delivered infants in the analysis. For m = 2, . . . , 9 , m samples were randomly 
chosen from each subject to form the simulated dataset. Time points were recorded 
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in days and used as is for TEMPTED. For CTF, microTensor, and TCAM, methods 
that demand input as a tabular tensor low-level or no missing time points, the order 
of the m samples was used as the time variable. Since CTF and microTensor can han-
dle some missingness, we also ran them with time points rounded to month. The 
results are summarized in Additional file 1: Fig. S5, which shows worse performance 
for microTensor and slightly improved performance for CTF, but the superiority of 
TEMPTED remained obvious. For TEMPTED, the smoothness parameter CK  was set 
to 1, 0.1, 0.01, 0.005, for m = 2, 3, 4, 5 respectively, and 10−4 for m = 6, . . . , 9 . These 
values of CK  match with the optimal CK  indicated by the sensitivity analysis in Addi-
tional file 1: Fig. S2.

The FARMM dataset was published by  [16] (BioProject ID PRJNA675301). Preproc-
essed relative abundance data were obtained from [32]. Taxa appearing in fewer than 5 
samples were removed. Samples with fewer than 5 taxa were also removed. Time point 
zero was removed because no subject in the vegan group has samples at time zero, 
making the missingness not at random. The remaining 15 time points were randomly 
dropped to achieve different percentages of missingness. Time points were used as is 
for TEMPTED, CTF, and microTensor, while TCAM cannot be run with such missing-
ness. Simulated read counts are generated from multinomial distribution based on the 
observed relative abundance, which is equivalent to rarefication on the observed read 
counts. For TEMPTED, the smoothness parameter CK  was set to 10−4 in all settings.

We used the same central-log-transformed data as input for TEMPTED and TCAM, 
while CTF and microTensor take count data as input. The log-fold-change over baseline 
transformation used in the TCAM paper yields worse results for TCAM. The number of 
ranks r is set to 2 for all methods in the simulation analysis in Fig. 2.

Software usage

PERMANOVA was implemented using R package vegan. Logistic regression and ran-
dom forest were implemented using R package stats and randomForest, respectively. 
AUC-ROC was calculated using R package PRROC. ALDEx2 was performed using R 
package ALDEx2 (1.32.0). CTF was performed using Python plugin gemelli (0.0.8).
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