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ABSTRACT

Animal relocation data has recently become considerably more ubiquitous, finely structured (collection fre-
quencies measured in minutes) and co-variate rich (physiology of individuals, environmental and landscape
information, and accelerometer data). To better understand the impacts of ecological interactions, individ-
ual movement and disease on global change ecology, including wildlife management and conservation, it is
important to have simulators that will provide relatively simple demographic, movement, and epidemiology
models against which to compare patterns observed in empirical systems. Here we describe a simulator that
accounts for the influence of consumer-resource interactions, existence of social groups anchored around a
central location, territoriality, group-switching behavior, and disease dynamics on population size. We use
this simulator to develop new and reinforce existing results and point out areas for future study.

Keywords: Consumer-resource interactions, agent-based models, Numerus Model Builder, SIR models,
metapopulations

1 INTRODUCTION

Disease ecology is a rich field of study that synthesizes inter alia demographic, epidemic, behavioural,
movement, spatial and community processes in an ecological setting (Dougherty et al. 2018, Altizer et al.
2011, Johnson et al. 2015). Thus, understanding the impact of particular diseases on wild populations
in ecological settings is a challenge that requires a comparison of the spatial and community structure of
these focal populations, as they might arise in the absence versus the presence of the causative agents of
the diseases of interest. One way of doing this is to build simulation models that incorporate demographic,
spatial, movement, and other relevant behavioral and community processes, and then compare simulations
of these models across various scenarios (White et al. 2018) or outcomes with and without epidemiological
processes added to the mix. We take this latter approach and our primary aim is to develop a tool that can
be used to study the impact of disease on colonial populations and metapopulations (Hanski et al. 1997).
This tool must be comprehensive enough to include critical processes needed to address questions that will
extend our current knowledge in significant ways. Its application, of course, is limited by the structure of the
model. Thus, in building the model, we are guided by principles related to concepts of “appropriate com-
plexity modeling” (Getz et al. 2018, Larsen et al. 2016), which guides methods for extending the model to
address questions that require the incorporation of additional processes into the model. The modular model
structure imposed by the architecture of the Numerus Model Builder (NMB) platform greatly facilities its
modification, including the incorporation of new process (Getz et al. 2015, Getz et al. 2018).
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The standard approach to modeling disease outbreaks caused by directly-transmitted pathogens is through
systems of differential or difference equations that model the number or density of susceptible (S), infec-
tious (I), and recovered or removed (R) individuals (Hethcote 2000, Getz and Dougherty 2018). Systems
approaches, however, limit our ability to consider individual-level traits, unless these traits can be reasonably
well expressed by dividing the population into a limited number of subgroups, such as groups of individuals
infected with different strains of pathogens (Keeling and Rohani 2011). Including individual-level varia-
tion in disease models requires an agent-based (Grimm et al. 2006) or network approach (Keeling et al.
2010), which then allows both individual behavior and pathogen exposure history to be incorporated into
the model. It also allows tracing the number of individuals each pathogen infects (Getz et al. 2015) and,
hence, the identification of individuals that may be acting as super-spreaders (Lloyd-Smith et al. 2005).

Here, we develop an agent-based formulation that has application to studying disease outbreaks in wildlife
populations whose state of health—and hence, susceptibility—is impacted by various factors, including
social factors related to group living and the structure of social networks (Sah et al. 2017), ecological
factors related to foraging success, and the movement behavior of individuals. The model also includes a
periodic return to a colony or nest cell, which implies that the model has both an individual-level and a
group-level (household or colony) structure. Such models have applications in animal production systems
(e.g., managing foot and mouth disease, James and Rushton 2002), wildlife conservation (Altizer et al.
2011), and disease management at the human-animal interface (Alexander et al. 2018). The latter involves
diseases such as anthrax (Carlson et al. 2018), bovine tuberculosis (De Garine-Wichatitsky et al. 2013), and
brucellosis in cattle and wild ungulates (Dean et al. 2012), chronic wasting disease in deer (Williams 2005),
and toxoplasmosis in rats, cats and humans (Saadatnia and Golkar 2012).

2 METHODS

No single model can incorporate all possible processes and the model we present here, for example, does not
include age structure. Of course, it can be elaborated in this direction, should age structure be particularly
germane, as it would in populations where different age classes have different levels of susceptibilty to
disease (but see Coulson et al. 2001, Diekmann and Heesterbeek 2000). For clarity, we outline below—
without mathematical details—the processes incorporated in our model, leaving such details to the Technical
material that can be found in our supporting online file (SOF). Aspects of the Numerus Model Builder
construction of the model and the generated NovaScript (extended JavaScript language) implementation are
also provided in this file.

2.1 Model Outline

The model is formulated as a set of agents (individuals) moving over a cellular array. The agents themselves
can be differentiated with respect to type (e.g., sex), can undergo discrete state transitions (e.g., disease
state) and can also change continuously over time with respect to that state of each agent, such as in our
case, its current “mass" (also a surrogate for fitness) and its current “stress level” (which accumulates when
the individual is unable to meet its resource needs each time period). The cells in the cellular array may
also have relatively complex states that, in our model, include a list of the agents in each cell and the level
of a dynamically responding resource, which determines the environmental context for the agents. The
movement of each agent over the landscape is assumed to be influenced by reproductive, ecological, and
epidemiological processes but not on colony membership or other agent factors. More specifically, in our
model, the following objects and concepts apply (mathematical and coding details provided in the SOF):

Simulation world. This is the set of agents moving over a cellular array (in our case hexagonal and with
a toroidal topology).

https://github.com/wmgetz/SOF/blob/master/AgentMoveDiseaseSuppInfo.pdf
https://github.com/wmgetz/SOF/blob/master/AgentMoveDiseaseSuppInfo.pdf


Getz, Salter, and Tallam

Cells. These are spatial extents (or patches) that contain resources, host at most one colony site, and can
be occupied by one or more agents who either pass through in a single time period or remain for
some time during which they exploit the dynamically changing (through both growth and extraction)
resources.

Time. The action takes place over discrete time steps during which individuals (agents) move through
one or more cells, stay in a cell to exploit resources, or return to their colony cell at regular intervals
of time where they may reproduce.

Agents. Each agent has a biomass (fitness surrogate), a stress level, and a sex determined at birth.
Females may reproduce on regular returns back to their colonies by, essentially, fissioning into two.

Agent association groups (colonies). Each agent belongs to one of several association groups called
colonies. These colonies have a home or nest cell. An agent belonging to a particular colony marks
each cell that it moves through with a colony-specific marker. The accumulation of such markers,
with fading effects over time, facilitates the emergence of territorial movement behavior.

Consumer-resource ecology. When individuals move they loose biomass, but if they remain in a cell
they gain biomass. Changes in biomass are computed using dynamic consumer-resource interaction
processes that incorporate stress components as well (Getz 2011). These dynamics account for
resource growth, saturation, storage processes, and agent resource-extraction rates.

Territoriality. Cells have a fading memory of the accumulated visits of all individuals from a particular
colony through the deposit of a scent-like marker each time an agent enters the cell.

Movement. At each time-step—except when moving back to the colony at regular intervals of time—
individuals move to cells, selected with given probabilities based on their relative attractiveness.
This attractiveness increases with resource richness and decreases with distance, as well as with the
strength of the markings of agents from foreign colonies.

Colony switching (fission-fusion dynamics). In some scenarios we allow individuals to switch member-
ship of their current colony when they enter a cell that is the nest location of a foreign colony. The
specific rule we use, when “colony switching” is permitted, is for individuals to switch colonies with
probability 0.8 if the foreign colony in question is no more than 30% as large as their current colony.

Births and deaths. Only females reproduce with a particular probability at regular nest-cell return times,
provided they are sufficiently fit (i.e., large) and not too stressed. Individuals die at a natural-
mortality specified rate, plus an additional disease-induced-mortality rate during their infectious
period.

Force of disease transmission. Each cell presents a risk of infection to susceptible (S) agents entering
that cell with a force proportional to the number of infected (I) individuals currently in the cell added
to a fading value of past visits by infected individuals. This incorporation of accumulated but fading
risk from past visits allows the model to deal with both direct (current I individual visits) and indirect
disease transmission (past visits of I individuals),

Epidemiology. We allow individuals to cycle through an S (susceptible), E (exposed but not yet in-
fectious), I (infectious), V (immune), S cycle at rates respectively proportional to the risk force of
disease transmission, the inverse of the latent period, the inverse of the infectious period, and the
inverse of refractory immune period. Individuals in all stages are subject to a natural mortality rate,
while individuals in the I stage are subject to an additional disease-induced mortality rate.

We used the above concepts to formulate our equations and develop our simulation code using the Numerus
Model Builder (NMB) platform, which greatly facilitates rapid, accurate construction of the model through
NMB’s hierarchical architecture and chip design. More specifically, cell equations and agent equations
were first constructed as individual modules, which were then used to populate a “world” with an open-
ended number of agents moving over an 18×18 hexagonal cellular array that contained 9 regularly spaced
nest cells (Fig. 1). A toroidal topology was used to avoid boundary effects—but, of course, if boundary
effects are important or the focus of an investigation, then the NMB allows them to be incorporated once
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equations describing how individuals move at boundaries are included in the code. The simulation period
was 2000 time steps, with individuals returning every 10 time steps to their colonies to reproduce.

Some of the details on how to build such models using NMB have been provided elsewhere (Getz et al. 2018,
Getz et al. 2015), with additional novel features discussed in our SOF. Notably, the NMB platform has two
independent components. The first is a set of coding tools accessed through a graphical user interface (GUI)
that is used to generate a NovaScript, which is an enriched JavaScript language. This script can then be run
in any suitable run-time environment, where NMB currently provides a Java runtime engine implementable
in Windows, MacOS, and Linux environments. An example of a script created for our model is provided
in our SOF, together with a table that facilitates moving between the code and the mathematical description
provided therein. Finally, our model is available online (see our SOF) and interested readers can run the
model after downloading a free version of the NMB platform at the Numerus website.

Figure 1: A view of the Numerus model builder (NMB) dashboard that includes output from a simulation
run, plotted up to time t = 1959. Parameters that can be manipulated using sliders appear above the 6
graphics panels, while a full list of parameters and values appear on the right-hand side. The top left graphic
panel depicts the 18× 18 hexagonal landscape: colony nest cells are indicated using fully saturated colors
their territory cells use partially-saturated corresponding color (note “boundary spillover” effects due to the
toroidal landscape topology). The number of individuals in each colony at time t = 1959 are plotted in the
central bar graph, using matching colony nest-cell colors. The number of agents in each disease class are
plotted in the upper right-most graphics panel. Plots are also shown of the average cell resource (bottom left
graphics panel), agent biomass/fitness (bottom center graphics panel) and agent stress (bottom right graphics
panel) levels over time. A mouse-controlled arrow can be used to read particular values from the plotted
output (bottom center graphics panel).

https://github.com/wmgetz/SOF/blob/master/AgentMoveDiseaseSuppInfo.pdf
https://github.com/wmgetz/SOF/blob/master/AgentMoveDiseaseSuppInfo.pdf
https://github.com/wmgetz/SOF/blob/master/AgentMoveDiseaseSuppInfo.pdf
https://numerusinc.com
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3 RESULTS

Prior experience with the consumer-resource component of the model (Getz et al. 2015, Getz et al. 2016)
and some experimentation led us to select a set of resource and consumer growth and interaction process rate
parameters, as well as consumer stress and mortality process rate parameters (Tables 2 & 3 in SOF) that were
used to generate a baseline set of simulation results against which we could compare the agent and colony
population dynamics under different movement and disease scenarios. We set up our NMB dashboard so
that we could observe plots of information in real time and create a visual record of all parameter values
used to produce the results of interest. An example of this output obtained during one of our simulations is
provided in Fig. 1.

3.1 No disease scenarios

We ran two instances of the baseline scenario (no disease, no colony switching, weak competition) and
obtained similar results with some stochastic variation across runs. A plot of the number of agents Nt
over time (all are in the susceptible disease state) for the the two runs is provided in Fig. 2A and can are
seen to be close in both period and amplitude. We note that our baseline scenario places us at a particular
point in the consumer-resource growth-rate, extraction, and interaction parameter value space of our model.
Different behaviors are expected at other points in this space, just as a different qualitative behaviors arise in
the Lotka-Volterra prey-predator model with the type of functional response that we use in our model (i.e.,
Beddington-DeAngelis extended to an agent-based setting, as in Cantrell and Cosner 2001, Getz 2013). For
example, if we decrease the mutual interference level from 1 (resource extraction inefficiencies due to self
and others are proportional to the total biomass of all agents in cells) to 0 (inefficiencies arise only from
self) or increase it to 10 (inefficiencies increase ten fold for each competitor in the cell, presumably due to
territorial conflicts) then we see a small decrease in the oscillation frequency in the former case (compare
plots Fig. 2A with orange plot in Fig. 2B), but a very different type of trajectory in the strong mutual
interference case (compare plots in Fig. 2A with orange plot in Fig. 2C). When colony switching is included
(compare the blue “switch” and orange “no-switch” population trajectories in Figs. 2B and C) the effects
vary depending on the level of competition: a clear effect of colony switching only emerges once extinction
rates are considered, as reported below.

Figure 2: The number of agents Nt , obtained from simulations of the model, are plotted over the 2000
step time interval: A. two different instances for the same the baseline case (no competition, no colony
switching, no disease); B. two simulations without competition (q= 0); C. two simulations with competition
(q = 10). In the latter two cases, no-colony-switching (pswitch = 0.0 is represented by the blue plots and
colony switching (pswitch = 0.8) by the orange plots. Note that the vertical scales on the panels A to C are
different.

https://github.com/wmgetz/SOF/blob/master/AgentMoveDiseaseSuppInfo.pdf
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Figure 3: A. The number of agents Nt is plotted for the baseline case except for the following modifications
to movement behavior. Movement is driven by: territory size maximization (two blue plots); available
resource maximization (two green plots); movement cost minimization (orange and yellow plots); and equal
weightings of above three (dotted grey plot—the same as blue plot in Fig. 2A). B. The times taken for all
infected (I) and exposed (E) individuals to be extirpated by natural mortality (disease mortality rates are zero
in these simulations) are plotted as a histogram for 15 replicate simulations for each of the three transmission
parameter cases labeled β = 0.01, 0.2, and 0.03 (note: time scale is log-like). C. Plots of the number of
individuals in disease states S, E, I, and V (immune) for Run 3 of the case β = 0.03, where final extirpation
of the epidemic occurred at time t = 1816 (note that number of dead individuals in state D (dead) was not
plotted since it is integrated—and hence steadily increasing—rather than an instantaneous value of time).

3.2 Effects of different movement strategies

We evaluated the effects of our agents moving on the total number of agents over time for the following five
strategy rules (note: the rules apply to staying in the current cell or moving to one of 18 cells within a radius
of 2 hexagonal rings for all times steps except t mod Tf when all individuals must be back in their nest
cells):

1. maximize available resources
2. maximize territory size
3. minimize movement costs
4. maximize an equally weighted combination of the above three
5. maximize an equally weighted combination of all three, with colony switching (see Section 2.1)

The number of agents produced by an illustrative simulation for each of movement strategies 1-4 are graphed
in Fig. 3A. Simulations involving movement strategy 5 were undertaken in the context of exploring the
effects of mortality on population viability.

3.3 Mortality, colony switching and extinction

To illustrate the impact of mortality rates on population viability, we ran our baseline scenario 15 times with
the natural mortality increased from 0.005 to 0.02. The average extirpation time over these 15 runs was
425 (Table 3, SOF). We then compared this result with 15 runs in which individuals are allowed to switch
colonies with a probability of 0.8 whenever they entered a nest cell of another colony that was no more than
30% as large as their own colony (Table 3, SOF). In this case, the average extirpation time was 587, which
is significant larger than the no-switch case at the p < 0.01 level.

https://github.com/wmgetz/SOF/blob/master/AgentMoveDiseaseSuppInfo.pdf
https://github.com/wmgetz/SOF/blob/master/AgentMoveDiseaseSuppInfo.pdf
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3.4 Pathogen transmission

The number of infected individuals in a population, after seeding the population with an exposed (or in-
fectious) individual under non-zero pathogen transmission conditions, follows a U- or J-shaped bimodal
distribution (Fig. 3B) that represents failed or short-lived/stuttering outbreaks (Lloyd-Smith et al. 2009).
Plots in Fig. 3C represent successful outbreaks (i.e., the number of infected individuals rises to a peak and
then falls to zero)—unless endemic conditions ensue (i.e., the presence of infected individuals persists over
time, Lloyd-Smith et al. 2005). In the latter case, the bimodal distribution is essentially a long-tailed dis-
tribution, given that all stochastic population processes ultimately go to zero, if zero is an absorbing state
(which it is in our model since no new infectious individuals are recruited from outside of our metapopu-
lation, Méléard et al. 2012, Fig. 3C). Our model is initially seeded for potential disease outbreaks in that
one of the agents at simulation initialization is in disease state E (exposed), while the remaining 349 are
in disease state S (susceptible). To set up potential pathogen transmission outbreak scenarios requires that
the transmission parameter be positive (i.e., β > 0, see Table 1 in the SOF). To explore the nature of these
bimodal distributions, we simulated 15 instances each of disease dynamics for the cases β = 0.01, 0.2, and
0.03. The amount of time it took for the number of exposed and infected individuals to fall to zero in each of
these cases is represented in the histograms plotted in Fig. 3B. The agent dynamics in the longest-lasting of
these 45 runs is illustrated in Fig. 3C. In these simulations, we note that the only effect of pathogens on host-
population dynamics is through the assumption that individuals in disease states E and I do not reproduce,
and not through disease-induced mortality (considered next).

3.5 Disease virulence

In standard SIR epidemic models (S: susceptible, I: infectious, R: recovered with immunity), the virulence
of a pathogen is assumed to be captured by the size of the disease-induced mortality rate parameter. In
our model, this parameter is µI (Table 1, SOF). We investigated the effects of increasing the value of this
virulence parameter in the context of a pathogen transmission rate of β = 0.05 (Table 1, SOF) that leads
to outbreaks that generally persist over our 2000 time step interval (cf. Fig. 3B. and C. where for β =
0.03 14 runs led to extirpation of disease within 1000 time steps and one at time t = 1816). In this case,
the number of infectious individuals remained positive for the full simulation interval of 2000 time steps
(Fig. 4). As virulence levels increased, the number of infectious individuals decreased and the total number
of susceptible individuals increased. The highest virulence level, the number of infected individuals kept
being driven down to almost zero, at which which point the number of susceptible individuals increases only
to be driven down at the next outburst in the number of infectious individuals.

4 DISCUSSION AND CONCLUSION

The results we obtained are meant to provide exemplars of how simulations can be designed to develop
quantitative narratives that have the potential to contribute to our understanding of the impact of disease on
spatially structured populations that have particular social structures. The model, as constructed, provides
a tool for consumer-resource interactions to be explored in the context of individuals moving over a land-
scape and competing locally (i.e., in cells) to extract a renewable resource, where the extraction function has
a Beddington-DeAngelis mutual interference form (Getz 2013). This consumer-resource interaction com-
ponent has been extensively explored in the context of aggregated population level models that have been
extended to include diffusion (Chen and Wang 2005) and viral disease (Elaiw and Azoz 2013) as well. It
has not been explored in the context of nesting colonies, however, and so cannot be compared to the results
we obtain here.

https://github.com/wmgetz/SOF/blob/master/AgentMoveDiseaseSuppInfo.pdf
https://github.com/wmgetz/SOF/blob/master/AgentMoveDiseaseSuppInfo.pdf
https://github.com/wmgetz/SOF/blob/master/AgentMoveDiseaseSuppInfo.pdf


Getz, Salter, and Tallam

Figure 4: The number of infectious (I: top) and susceptible (S: bottom) agents in four simulations over the
interval [0,2000] are plotted here over the first 1000 time steps only for the baseline set of parameter values,
except for transmission (β = 0.05) and disease-induced mortality (µI = 0.0, blue; µI = 0.3, orange; µI = 0.1,
grey; and µI = 0.2, yellow). The average values were calculated over the full 2000 time steps.

Agent-based versions of prey-predator processes have been built using the Netlogo (Thierry et al. 2015)
and Starlogo (Karsai et al. 2016) modeling platforms. The first of these modeled predation at a “fast”
minute-by-minute time scale. Predation events were calculated based on correlated random walks and ac-
counting for predator perceptual ranges and prey refugia. Predation events were then accumulated along
with births and deaths into a Lotka-Volterra-type population process iterated at a “slow” daily time scale.
This study found inter-alia that increasing predator efficiency by either increasing their perceptual range or
decreasing the number of prey refugia resulted in a coexistence region—an equilibrium around which the
prey and predatory populations oscillated—decreased for both prey and predator, thereby increasing the risk
of extinction.

One result that emerges from simulations of our model is that competition causes the period of prey-predator
oscillations to increase and be dampened more rapidly, with this increase and dampening accentuated as
colony mixing increases. A second result is that a “grass is greener syndrome” (i.e., movement decisions are
based purely on resource considerations) leads to increased stress in individuals and, as a possible result, to
population collapse because individuals are not taking into account the cost of moving (green plots in Fig. 3).
This collapse (green plots Fig. 3) is mitigated by territoriality considerations, since these curtail movement
and allow more time for resource extraction (blue plots in Fig. 3); but movement based on territoriality-only
considerations leads to dampening, albeit less so than movement-cost-only considerations (compare yellow
with blue plots in Fig. 3). Notably, a movement strategy that accounts for all three factors provides the most
regular, albeit oscillatory, population trajectories (dotted grey plot in Fig. 3).

A third result that emerges from our simulations relates to the effects of disease on population dynamics,
for which our model provides an appropriate formulation to address the questions of interest. One of these
effects is the impact of increasing pathogen transmission rates on the maintenance of an endemic infection.
No subclass of a population (e.g., infectious individuals or even the population as a whole) can persist
forever—both are bounded stochastic population processes that are known to go extinct in a finite amount
of time (Ball and Nåsell 1994, Gordillo et al. 2008). This is amply demonstrated in our simulations that
consider the impacts of increasing pathogen transmission rates. In Fig. 3B, we verify that our infection
process produces the expected U-shaped bimodal distributions of infectious individuals, though the breadth
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of the distribution associated with the outbreak mode (as opposed to an early-fade-out mode) increases with
β . Indeed, for β = 0.05, once an outbreak occurs, it generally lasts longer then 1000 time steps, as illustrated
in Fig. 4. This remains true as the virulence of the pathogen (expressed in the model in terms of the level
of disease induced mortality in the host) increases from µI = 0 (blue plots in Fig. 4) through µI = 0.03
(orange plots in Fig. 4) and µID = 0.1 (grey plots in Fig. 4) to µI = 0.2 (yellow plots in Fig. 4). What is
clear from these simulations is that as virulence increases, the number of infectious individuals decreases,
though in our highest virulence case we obtain a sequence of fade outs to near extirpation, followed by
outbreaks that are then contained by the high mortality rates of infectious individuals and the transition of
those individuals surviving the infection to a state of temporary immunity. This immunity once lost creates,
along with births, a rising group of susceptible individuals. Such outbreaks are similar to what we see
in seasonal influenza—although, in this case, loss of immunity is hastened by the existence of different
influenza strains and mutations in the influenza virus antigens (Lofgren et al. 2007).

A deeper exploration of the various issues examined in this paper, as well as comprehensive investigations
of the many other questions that could be asked along the lines of those we posed, would require much
more extensive simulations than has been reported here. This is particularly true of simulations involving
evaluations of times-to-extinction of populations (Ovaskainen and Meerson 2010), consequences of different
movement strategies on the formation and stability of territories (Giuggioli and Kenkre 2014), extirpation
of disease outbreaks (Lloyd-Smith et al. 2009) because of the stochastic nature of the processes involved.
In the context of developing quantitative narratives, a point is reached where additional simulations will
not add to the qualitative character of the information obtained and the increased precision that comes from
additional runs is not useful. In other words, there is little value in being more precise than the level of the
errors associated with the fit of models to data.

The model we present here has the potential to address a range of questions relating to the ecology of
consumer-resource interactions played out over spatially-structured landscapes and impacted by movement
and disease processes. Our model can also be elaborated to address questions that include, for example,
mating and genetic structures, multispecies situations, environmental factors that exhibit seasonal variation,
and landscape structures, including individuals moving over real landscapes. Numerus Model Builder has
the facility to import landscape information from GIS databases that can be easily extended to metapopu-
lation settings (Getz et al. 2017); thus, our model can be readily extended to ask questions about spatially-
structured populations on real landscapes.

Of course, considerable interest exists in fitting models to data, especially in the context of wildlife man-
agement (McLane et al. 2011) and predicting the behavior of ecological systems that, for example, include
a sociological component (Filatova et al. 2013). Agent-based models provide the best, if not the only,
approach to addressing many of the more complex questions relating to the management of real socio-
ecological systems and to the advancement of ecological understanding needed to anticipate and reduce the
impacts of Covid-2019 type zoonotic outbreaks (Evans et al. 2020).
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APPENDIX

A supporting online file (SOF) containing details of the mathematical model, the Numerus Model Builder
(NMB) construction of our model and a copy of the NovaScript file (superset of JavaScipt and imple-
mented in a Java Run Time environment), is available at https://github.com/wmgetz/SOF/blob/master/
AgentMoveDiseaseSuppInfo.pdf. The NMB model itself can be downloaded at https://github.com/wmgetz/
NMB/blob/master/GetzEtAlOct2019.nmd
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