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Abstract

Aβ dimers are a basic building block of many larger Aβ oligomers and are among the most 

neurotoxic and pathologically relevant species in Alzheimer’s disease. Homogeneous Aβ dimers 

are difficult to prepare, characterize and study, because Aβ forms heterogeneous mixtures of 

oligomers that vary in size and can rapidly aggregate into more stable fibrils. This paper introduces 

AβC18C33 as a disulfide-stabilized analogue of Aβ42 that forms stable homogeneous dimers in 

lipid environments but does not aggregate to form insoluble fibrils. The AβC18C33 peptide is 

readily expressed in E. coli and purified by reverse-phase HPLC to give ca. 8 mg of pure 

peptide per liter of bacterial culture. SDS-PAGE establishes that AβC18C33 forms homogeneous 

dimers in the membrane-like environment of SDS and that conformational stabilization of the 

peptide with a disulfide bond prevents the formation of heterogeneous mixtures of oligomers. 

Mass spectrometric studies in the presence of dodecyl maltoside (DDM) further confirm the 

formation of stable noncovalent dimers. Circular dichroism (CD) spectroscopy establishes 

that AβC18C33 adopts a β-sheet conformation in detergent solutions and supports a model in 

which the intramolecular disulfide bond induces β-hairpin folding and dimer formation in lipid 

environments. Thioflavin T fluorescence assays and transmission electron microscopy (TEM) 

studies indicate that AβC18C33 does not undergo fibril formation in aqueous buffer solutions 
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and demonstrate that the intramolecular disulfide bond prevents fibril formation. The recently 

published NMR structure of an Aβ42 tetramer (PDB 6RHY) provides a working model for the 

AβC18C33 dimer, in which two β-hairpins assemble through hydrogen bonding to form a four-

stranded antiparallel β-sheet. It is anticipated that AβC18C33 will serve as a stable, nonfibrilizing, 

noncovalent Aβ dimer model for amyloid and Alzheimer’s disease research.

Graphical Abstract

Introduction

Dimers are among the most important oligomers of the β-amyloid peptide, Aβ. Although 

Aβ fibrils are the most commonly found Aβ species in Alzheimer’s disease brains, Aβ 
oligomers are key contributors to neurodegeneration.1–6 Small oligomers of Aβ have been 

shown to be far more neurotoxic than large oligomers.7–9 Aβ dimers are thought to be 

the basic building block of many larger Aβ oligomers and are one of the most neurotoxic 

and pathologically relevant species in Alzheimer’s disease.10–18 Homogeneous Aβ dimers 

are difficult to prepare, characterize and study, because Aβ forms heterogeneous mixtures 

of oligomers that vary in size and can rapidly aggregate into more stable fibrils.19–27 A 

plentiful source of homogeneous and stable Aβ dimers would be valuable in amyloid and 

Alzheimer’s disease research.

Although biogenic Aβ oligomers are arguably more biologically relevant than synthetic 

Aβ oligomers, biogenic Aβ oligomers are difficult to study because they only occur 

in minute concentrations and must be isolated from brain tissue.7,12–15,28 When Aβ 
oligomers are prepared by allowing Aβ to aggregate in vitro, the resulting Aβ oligomers 

are heterogeneous in size, morphology, and toxicity.29,30 To obtain Aβ dimers, researchers 

have covalently crosslinked Aβ monomers through several types of intermolecular linkages, 

including isopeptide bonds,28,31,32 dityrosine bonds,28,31,33–35 disulfide bonds,16,18,34,36–38 

homocysteine disulfide bonds,38 glycine–serine-rich linkers,39,40 alkyl linkers,38,41–43 4-

hydroxynonenal induced crosslinking,44 and photoinduced crosslinking of unmodified 

proteins (PICUP).23,24,45–47 These covalent Aβ dimers generally aggregate further with time 

into a heterogeneous mixture of larger oligomers, protofibrils, or fibrils (Table S8).

Noncovalent Aβ dimers may be more biologically relevant than covalent dimers, because 

they mimic native Aβ dimers that are formed through noncovalent interactions (Figure 

1).5,33,48–50 Previous approaches to generate noncovalent oligomers have relied upon 
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stabilizing intramolecular linkages, including intramolecular disulfide bonds and oxime 

linkages, to facilitate noncovalent Aβ oligomer formation.51–57 These intramolecular 

linkages are designed to induce a β-hairpin conformation, stabilizing Aβ in the oligomeric 

state and thus delaying or preventing fibril formation. Aβ β-hairpins are thought to 

be the building blocks of many Aβ oligomers, and are thus of special biological 

relevance.52,54,57–59 These modified Aβ peptides bearing intramolecular linkages form 

various sizes of oligomers upon incubation in solution (Table S8).

Aβ oligomers formed by full-length Aβ peptides bearing intermolecular or intramolecular 

linkages have proven useful in amyloid and Alzheimer’s disease research.60–64 These 

artificial oligomers have been used as chemical models to study a variety of aspects 

of Aβ oligomers, including neurotoxicity,16,37,38,41,51,52,55 aggregation kinetics and 

pathways,23,24,28,31–34,36,42,44,52,56 effects on behavioral deficits and neuroplasticity,18 

antibody-binding activities,43,57 and oligomer structures.53 Even though these efforts have 

provided useful chemical model systems, most of the oligomers produced are heterogeneous 

mixtures comprising multiple oligomerization states. There are, to our knowledge, no model 

systems based on full-length Aβ that form stable homogeneous dimers.

Our laboratory has recently developed conditions that permit the efficient expression and 

purification of Aβ42 peptides and mutants thereof.65,66 In the current study, we set out to 

explore the effect of intramolecular disulfide linkages in Aβ42 peptides, by preparing and 

studying a variety of mutant Aβ42 peptides containing two cysteine residues. Here, we 

report the discovery and preparation of AβC18C33, a mutant Aβ42 peptide containing an 

intramolecular disulfide bond that forms stable homogeneous dimers in lipid environments.

Materials and Methods

The materials and procedures for molecular cloning, peptide expression, purification, and 

characterization, as well as SDS-PAGE, mass spectrometry, CD, ThT, TEM, AUC, and DLS 

studies are described in detail in the Supporting Information.

Results and Discussion

Design of Disulfide-Stabilized Aβ42 Peptides.

In previous studies, our laboratory has observed that β-hairpin peptides derived from Aβ 
that contain different residue pairings from the central and C-terminal regions of Aβ form 

different types of oligomeric assemblies.67 Inspired by this observation, as well as by earlier 

studies of Aβ peptides containing disulfide linkages,51–53,57 we expressed and purified five 

mutant Aβ42 peptides containing pairs of cysteine residues at positions 21 and 30, 18 and 33, 

21 and 32, 24 and 29, and 21 and 31, respectively (Figure 2). In each peptide, we mutated 

one nonpolar residue from the hydrophobic central region of Aβ and one nonpolar residue 

from the hydrophobic C-terminal region, with the goal of inducing β-hairpin formation 

with different residue pairings or hydrogen-bonding patterns. For example, while peptides 

AβC21C30 and AβC18C33 share the same residue pairing, the peptides differ in hydrogen-

bonding pattern. In peptide AβC21C30, amino acids K16, V18, F20, and E22 hydrogen bond 

with amino acids M35, G33, I31, and G29, while in peptide AβC18C33, amino acids Q15, L17, 
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F19, A21, and D23 hydrogen bond with amino acids V36, L34, I32, A30, and K28. AβC21C30 

has previously been reported to form a mixture of dimers and trimers in SDS-PAGE and 

hexamers in the solid state.52,53 The other four peptides, AβC18C33, AβC21C32, AβC24C29, 

and AβC21C31, have not been previously reported.

Preparation of Disulfide-Stabilized Aβ Peptides.

We prepared the mutant Aβ peptides by expression in E. coli followed by reverse-phase 

HPLC purification.65,66 We first prepared the corresponding recombinant plasmids encoding 

mutant Aβ peptides bearing double cysteine mutations through molecular cloning (Figure 

S1 and S2). We then transformed the recombinant plasmids into E. coli and expressed the 

mutant Aβ peptides through isopropyl β-D-1-thiogalactopyranoside (TPTG) induction. After 

expression, we lysed the cells and solubilized the inclusion bodies with urea to obtain cell 

lysate containing the mutant Aβ peptides. We then added dimethyl sulfoxide (DMSO) to 

the cell lysate to oxidize the cysteines to form the intramolecular disulfide bond in each 

mutant Aβ peptide. Finally, we purified the disulfide-stabilized Aβ peptides by preparative 

reverse-phase HPLC using a C8 column at 80 °C with water and acetonitrile containing 

0.1% trifluoroacetic acid (TFA). This procedure afforded ca. 8 mg of each pure mutant 

peptide from one liter of bacterial culture (Table S7). Each of the peptides contains an 

N-terminal methionine residue, that results from the start codon for the expression. For 

comparison, we also prepared Aβ(M1–42), which is a homologue of full-length Aβ42 with 

properties similar to native Aβ42.65,68

SDS-PAGE Studies of the Mutant Aβ42 Peptides: Discovery of the AβC18C33 Dimer.

To evaluate the propensities of the disulfide-stabilized Aβ peptides to form oligomers, 

we performed sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

used silver staining to visualize the species formed by each peptide (Figure 3A). Tn the 

SDS-PAGE, Aβ(M1–42) runs with the main band just above the 5 kDa ladder band, at ca. 

6 kDa, which corresponds to the monomer, as well as a pair of weaker bands at ca. 13 

kDa and 15 kDa, which are generally attributed to trimer and tetramer.69,70 The previously 

reported AβC21C30 peptide gives a pair of bands, with similar appearance but slightly lower 

in position. These bands have previously been attributed to dimer and trimer,52 although the 

trimer and tetramer cannot be rigorously excluded. The AβC21C32 and AβC21C31 peptides 

give bands just above the 5 kDa ladder band, at ca. 6 kDa, and thus form monomers. The 

AβC24C29 peptide gives a pattern of monomer, trimer, and tetramer bands similar in position 

and appearance to those of Aβ(M1–42). The AβC18C33 peptide stands out among the mutant 

peptides, giving an intense band midway between the 10 and 15 kDa ladder bands, at ca. 12 

kDa, which corresponds to a dimer.

To further explore the dimerization of the AβC18C33 peptide, we ran SDS-PAGE at 

concentrations ranging from 7.8 to 500 μM (Figure 3B). At each concentration, the 

dimer band predominates, with small bands corresponding to monomer, and higher-order 

oligomers appearing at higher concentrations. In contrast, Aβ(M1–42) shows a predominance 

of the monomer at all concentrations, with the trimer and tetramer bands appearing at higher 

concentrations.

Zhang et al. Page 4

Biochemistry. Author manuscript; available in PMC 2023 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To investigate the effect of the disulfide bond of AβC18C33 upon dimer formation, we 

reduced the disulfide bond with tris(2-carboxyethyl)phosphine hydrochloride (TCEP) and 

studied the oligomerization of the reduced AβC18C33 peptide by SDS-PAGE (Figure 4). 

The reduced AβC18C33 peptide behaves more like Aβ(M1–42), showing distinct bands 

corresponding to monomer, dimer, trimer, and tetramer, at lower concentrations, as well 

as an additional band corresponding to a pentamer at higher concentrations. The reduced 

AβC18C33 peptide also shows a band at the very top of the gel, indicating that the reduced 

peptide also assembles to form fibrils or other high-molecular-weight aggregates. These 

results demonstrate that the disulfide bond is essential for homogeneous dimer formation 

and establish that the cysteine mutations alone do not induce the formation of a pronounced 

dimer band in SDS-PAGE.

Mass Spectrometric Studies of AβC18C33.

To further corroborate the formation of noncovalent dimers and to exclude the possibility 

of covalent dimer formation through a pair of intermolecular disulfide bonds, we performed 

mass spectrometry. Matrix-assisted laser desorption/ionization (MALDT) mass spectrometry 

shows exclusively the AβC18C33 monomer (Figure S14). This observation is significant, 

because it establishes that the dimer observed for AβC18C33 in SDS-PAGE is non-covalent, 

rather than a catenane or a covalent dimer formed through a pair of intermolecular disulfide 

bonds. The AβC18C33 peptide also shows monomer in the ESI mass spectrum in SEC-

MS, eluting with ammonium formate and acetonitrile at pH 10 (Figure 5A). Incubation 

of AβC18C33 with the non-ionic detergent dodecyl maltoside (DDM), followed SEC-MS 

analysis, gives a new peak in the total ion current chromatogram associated with the dimer 

(Figure 5B). Analysis of this chromatographic peak reveals [dimer + 5H]5+ and [dimer + 

6H]6+ ions associated with the dimer (Figure 5C and 5D). The observation of noncovalent 

dimers in SEC-MS experiments with DDM provides further evidence that AβC18C33 forms 

well-defined dimers in the presence of detergent.

To further characterize the noncovalent AβC18C33 dimers, we performed native ion mobility-

mass spectrometry (IM-MS).70 In this technique, the sample is directly injected into the 

mass spectrometer, and species are separated in the gas phase on the basis of mobility 

and then mass-to-charge ratio. A solution of 25 μM AβC18C33 and 300 μM DDM in 200 

mM ammonium acetate buffer at pH 7.4 directly injected into the instrument gave an 

ion mobility chromatogram with two main peaks with arrival times at 7.8 and 11.1 ms 

(Figure 6). Analysis of the isotope patterns and m/z ratios of the mass spectrometric peaks 

associated with the 7.8-ms ion mobility peak revealed a distinct signature for the [dimer + 

4H]4+, indicating that this peak corresponds to the dimer. Similar analysis of the 11.2-ms 

ion mobility peak revealed a distinct signature for the [monomer + 2H]2+, indicating that 

this peak corresponds to the monomer. The SEC-MS and IM-MS results thus agree with 

SDS-PAGE results that AβC18C33 forms well-defined dimers in the presence of detergent 

micelles.

We conducted high-resolution native mass spectrometry on an Orbitrap Exactive Ultrahigh 

Mass Range (UHMR) mass spectrometer — a high-sensitivity instrument with excellent 

mass range and high m/z transmission — to provide additional insights into the dimers 
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formed by AβC18C33 in DDM. When solutions of Aβ(M1–42) in 200 mM ammonium acetate 

were nanoelectrosprayed into the instrument, only monomers were observed, regardless of 

whether 300 μM DDM was included (Figure 7C and 7D).

AβC18C33 exhibits very different behavior than Aβ(M1–42) in high-resolution native mass 

spectrometry. When a solution of AβC18C33 in 200 mM ammonium acetate (without DDM) 

was nanoelectrosprayed into the instrument, monomers and tetramers were observed, with 

the monomer peaks having substantially greater intensity than the tetramer peaks (Figure 

7A). The peaks for the monomers and the tetramers each appear as broad ladders, reflecting 

the presence of multiple sodium ions, which likely arise from the sodium hydroxide 

treatment during the preparation of the Aβ. The stoichiometry of the tetramers was 

confirmed by MS/MS, which produced monomer and trimer fragment ions (data not shown).

Inclusion of DDM in the AβC18C33 sample resulted in the formation of dimers. When 

a solution of AβC18C33 in 200 mM ammonium acetate containing 300 μM DDM was 

nanoelectrosprayed into the instrument, dimers and tetramers were observed, with little or no 

monomer (Figure 7B). The dimers and tetramers were observed as DDM adducts, with 2–3 

DDM molecules per dimer and 6 DDM molecules per tetramer. All species were assigned 

based on charge states from isotopic patterns available using the 100,000-resolution setting 

on the UHMR.

To confirm the presence of AβC18C33 in the broad ladders observed in ammonium acetate 

containing DDM, we collected native mass spectra with collision-induced dissociation 

(CID) at increasing collision voltages on the Orbitrap Exactive UHMR instrument (Figure 

8). Collision-induced dissociation of the entire distribution of dimers and tetramers was 

accomplished in the higher energy C-trap dissociation (HCD) cell.71 At low HCD energy 

(e.g., 20–50 V), broad ladders corresponding to dimers and tetramers were observed. As 

the HCD energy was increased to 80 V and beyond, the dimers and tetramers decreased 

in relative abundance, concurrent with an increase in monomer abundance. The monomers 

have sharper features, and are thus especially easy to discern. The increase in HCD energy 

causes disruption of the noncovalent interactions within the dimer and tetramer complexes 

and dissociation to monomers, providing evidence that these broad features do contain 

AβC18C33 peptides. Mass spectra were recorded at high resolution so that isotope spacings 

could be used to confidently assign charge states and thus stoichiometry. The fact that the 

dimer and tetramer remain adducted with several molecules of DDM in the gas phase even 

with significant gas-phase collisional activation is noteworthy, in that it suggests strong 

association of these oligomers with the DDM detergent. Interestingly, the DDM molecules 

are lost only when the noncovalent dimer and tetramer dissociate to monomers.

Circular Dichroism Studies of AβC18C33.

To explore the structure of the dimers formed by AβC18C33, we turned to circular dichroism 

(CD) spectroscopy. In the absence of SDS, a 30 μM solution of AβC18C33 in 10 mM 

sodium phosphate buffer at pH 7.4 exhibits a broad negative band below 230 nm, with a 

shallow minimum at 203 nm (Figure 9A). With 20 mM SDS, the CD spectrum displays 

a well-defined minimum at 212 nm and maximum at 191 nm (Figure 9A). These data 

indicate that the AβC18C33 peptide adopts β-sheet structure in the presence of SDS, but that 
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random coil structure predominates in the absence of SDS. The spectrum in the presence 

of SDS differs dramatically from that of Aβ(M1–42), which exhibits minima at 207 and 222 

nm and a maximum at 190 nm in SDS and thus adopts an a-helical structure (Figure 9B). 

These results highlight the effect of the disulfide bond upon the conformation of AβC18C33, 

preventing a-helix formation and enforcing β-sheet formation under conditions most relevant 

to SDS-PAGE.

To gain further insight into the structure of the AβC18C33 dimers under conditions relevant to 

the mass spectrometric experiments described above, we collected CD spectra of AβC18C33 

and Aβ(M1–42) with various concentrations of DDM. The CD spectra of AβC18C33 with 

DDM at concentrations well above the critical micelle concentration (CMC, 0.17 mM) 

resemble the CD spectrum of AβC18C33 with 20 mM SDS (CMC 8 mM), exhibiting a 

well-defined minimum at 214 nm and a maximum at ca. 190 nm (Figure 10A). The CD 

spectrum of Aβ(M1–42) with DDM displays a broader minimum, centered at 215 nm, and 

a weaker maximum at ca. 190 nm (Figure 10B). Analysis of the AβC18C33 CD spectra 

using the secondary structure analysis server BeStSel72,73 indicates the formation of ca. 

50% antiparallel β-sheet structure as the concentration of DDM is raised above the CMC 

(Figure 10C). In contrast, the Aβ(M1–42) spectra show only ca. 20% antiparallel β-sheet 

structure under these conditions (Figure 10C). These results further support a model in 

which the disulfide bond stabilizes a β-hairpin conformation in AβC18C33 in the membrane-

like environments provided by detergents.52,74

ThT, TEM, AUC, and DLS Studies of AβC18C33.

To determine the effect of the disulfide bond upon fibril formation, we performed thioflavin 

T (ThT) fluorescence assays. Solutions of AβC18C33 and Aβ(M1–42) were incubated in PBS 

buffer at pH 7.4 in the presence of ThT at 37 °C. Under these conditions, Aβ(M1–42) 

showed a characteristic lag time, followed by a rapid onset of fluorescence at ca. 30 

minutes (Figure 11B). In contrast, AβC18C33 showed no appreciable increase in fluorescence 

over 24 hours (Figure 11A). To rule out the possibility that the AβC18C33 peptide resists 

fibrilization because of the cysteine mutations, rather than the intramolecular disulfide bond, 

we performed a ThT assay using an AβC18C33 analogue containing two alanine mutations, 

AβA18A33. Under comparable conditions, the AβA18A33 peptide showed a lag time of ca. 

4.5 hours, followed by a rapid onset of fluorescence (Figure 11C). These observations 

demonstrate that the disulfide bond prevents fibril formation. The longer lag time associated 

with the AβA18A33 mutant likely reflects the effect of the valine-to-alanine mutation at 

position 18 of the critical 17LVFFA21 amyloidogenic region of Aβ.

We performed transmission electron microscopy (TEM) to corroborate that AβC18C33 does 

not fibrilize. Incubation of AβC18C33 at 37 °C for 24 hours in PBS buffer, followed by TEM 

imaging, showed no fibrils (Figure 12A). In contrast, Aβ(M1–42) showed long fibrils, typical 

of Aβ (Figure 12B). AβA18A33 also showed fibrils, albeit shorter than the characteristic 

Aβ(M1–42) fibrils (Figure 12C). Upon treatment with TCEP to reduce the disulfide bond and 

incubation in PBS buffer, AβC18C33 showed fibrils (Figure 12D). Collectively, these results 

confirm that the intramolecular disulfide bond is critical to arresting the AβC18C33 peptide in 

the oligomeric state.
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To further assess the aggregation of the AβC18C33 peptide in aqueous solution without 

detergent, we performed analytical ultracentrifugation (AUC) and dynamic light scattering 

(DLS) experiments. Sedimentation velocity AUC experiments in 10 mM sodium phosphate 

buffer with 25 mM NaCl at pH 7.4 on samples of AβC18C33 at 5–160 μM showed a 

range of oligomeric species up to 70–80 kDa, as well as monomer, with larger oligomeric 

species becoming more prevalent at higher concentrations (Figure S4). Larger aggregates 

that settled rapidly were also observed to pellet in these 60,000 rpm experiments and 

constituted 52–76% of the sample. In DLS experiments, a freshly prepared solution of 

AβC18C33 (30 μM in 10 mM sodium phosphate buffer at pH 7.4) showed a peak centered at 

a hydrodynamic diameter of 24.4 nm (Figure 13). Upon incubation for 24 hours at 37 °C, 

the peak shifted to 32.7 nm. These results show that AβC18C33 forms large stable oligomeric 

assemblies in aqueous solution in the absence of detergent, and are consistent with the 

pelleting observed in the AUC experiments. Monomer and dimer are likely in equilibrium 

with these assemblies, but are too small to be observed by DLS. In contrast, a freshly 

prepared solution of Aβ(M1–42) showed a peak centered at 58.8 nm, which shifted to 955 nm 

upon incubation for 24 hours (Figure 13). These observations are consistent with the fibril 

formation observed in the ThT and TEM experiments.

Structure of the AβC18C33 Dimer.

Thus far, we have not been able to determine the structure of the AβC18C33 dimer. The 
1H NMR spectrum of AβC18C33 is broad in aqueous solution, and efforts to obtain a 1H–
15N HSQC spectrum of 15N-labeled AβC18C33 in the presence of detergents using simple 

solution-phase NMR techniques have not been successful. Nevertheless, we believe that the 

recently published NMR structure of an Aβ42 tetramer by Carulla and coworkers (Figure 

14A, PDB 6RHY) holds clues into a potential structure of the AβC18C33 dimer.58 The 

tetramer consists of two Aβ42 β-hairpins that flank two C-terminal Aβ42 β-strands. In each 

β-hairpin, valine 18 and glycine 33 are proximal and form a non-hydrogen-bonded pair.

In our working model for the AβC18C33 dimer, the cysteine 18-cysteine 33 disulfide linkage 

stabilizes this β-hairpin conformation. Two AβC18C33 β-hairpins hydrogen bond together, 

without the intervening C-terminal Aβ42 β-strands that make up the Carulla tetramer. Figure 

14B illustrates this working model for the structure of the AβC18C33 dimer. An attractive 

feature of this model is that the C-terminus of each monomer subunit is proximal to the 

side chain of Lys28 in the other monomer subunit, allowing for a salt bridge. We think this 

model for the dimer of full-length Aβ is reasonable because our laboratory has previously 

observed similar hydrogen-bonded dimers of other constrained β-hairpin peptides75–78 and 

because we have found that the lipophilic environment provided by SDS micelles supports 

hydrogen-bonding interactions.79–81

Conclusion

AβC18C33, a double mutant of the expressed peptide Aβ(M1–42) containing an intramolecular 

disulfide bond, forms stable noncovalent dimers in the presence of anionic and non-ionic 

detergents. The dimers exhibit a high degree of β-sheet character and can readily be 

observed by SDS-PAGE and mass spectrometry. In aqueous buffer without detergent, the 
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AβC18C33 peptide does not aggregate to form fibrils, but instead forms solutions of large 

oligomers, as well as smaller oligomers and monomer. The membrane-like environment 

provided by the detergents thus facilitates the formation of dimers. The AβC18C33 peptide is 

readily prepared by expression in E. coli and can be purified by preparative reverse-phase 

HPLC. We have deposited the plasmid to express AβC18C33 at Addgene to make it available 

to other researchers.82

Aβ oligomers continue to be studied intensively through a variety of experimental and 

computational methods.83–91 We anticipate that AβC18C33 will be a valuable tool in 

biological and biophysical experiments, by providing ready access to stable, homogeneous, 

noncovalent Aβ dimers. Oligomers of native Aβ peptides (AB1–40, AB1–42, Aβ(M1–42), etc.) 

are heterogeneous and prone to further aggregation to form fibrils. Oligomeric preparations 

of these peptides can thus be problematic to use in biological and biophysical studies. The 

AβC18C33 peptide provides an attractive alternative to these preparations, because of the 

stability and homogeneity of the dimers that it forms in membrane-like environments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cartoons of dimers of Aβ β-hairpins illustrating the differences between covalent 

and noncovalent dimers. (A) A covalent Aβ dimer generated by an intermolecular 

disulfide bond. (B) A noncovalent Aβ dimer containing two Aβ monomers stabilized by 

intramolecular disulfide bonds. Disulfide bonds are shown in solid orange lines.
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Figure 2. 
Cartoons of mutant Aβ42 peptides containing intramolecular disulfide bonds that stabilize 

the peptides in a β-hairpin conformation. Cartoons illustrate β-hairpin structures with 

different disulfide linkages and residue pairings. Disulfide bonds are shown in solid orange 

lines. Hydrogen bonds are shown in grey dashed lines.
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Figure 3. 
SDS-PAGE studies of the oligomerization propensities of the disulfide-stabilized Aβ 
peptides. (A) Oligomerization patterns of disulfide-stabilized Aβ peptides at 80 μM 

concentration. A 10-μL aliquot of each peptide was run on the gel. (B) Comparison of 

the oligomerization patterns of Aβ(M1–42) and AβC18C33 at various concentrations. A 10-μL 

aliquot of each peptide was run on the gel.
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Figure 4. 
SDS-PAGE studies of AβC18C33 before and after TCEP reduction at various concentrations 

(200, 100, 50, and 25 μM). A 10-μL aliquot of each peptide was run on the gel.
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Figure 5. 
SEC-MS studies of AβC18C33. (A) SEC chromatogram showing AβC18C33 monomers. (B) 

SEC chromatogram showing the formation of AβC18C33 dimer after incubation with DDM. 

(C) Mass spectrum of the SEC peaks corresponding to AβC18C33 dimer and monomer. (D) 

Mass peak corresponding to the 5+ ion associated with AβC18C33 dimer. The Aβ peptide 

was dissolved in 10 mM ammonium acetate buffer with or without 400 μM DDM (pH 7.3) 

to a final peptide concentration of 0.25 mg/mL and incubated at 37 °C for 2 hours. SEC-MS 

was run in 1:1 ammonium formate: acetonitrile running buffer (pH 10.0).
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Figure 6. 
IM-MS studies of AβC18C33 in the presence of DDM. The Aβ peptide was dissolved in 200 

mM ammonium acetate buffer containing 300 μM DDM (pH 7.4) to a final concentration of 

25 μM, then directly injected on the IM-MS system at 100 μL/min.
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Figure 7. 
High-resolution native mass spectrometric analysis of AβC18C33 and Aβ(M1–42) in the 

absence or presence of DDM. (A) AβC18C33 (25 μM) in 200 mM ammonium acetate 

solution. (B) AβC18C33 (25 μM) in 200 mM ammonium acetate solution with 300 μM DDM. 

(C) Aβ(M1–42) (25 μM) in 200 mM ammonium acetate solution. (D) Aβ(M1–42) (25 μM) 

in 200 mM ammonium acetate solution with 300 μM DDM. Spectra were acquired at a 

resolution setting of 100,000.
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Figure 8. 
Native mass spectra of 25 μM AβC18C33 in 200 mM ammonium acetate with 300 μM DDM 

as a function of HCD (CID) collision energy and comparison to the native spectrum from 

ammonium acetate. Spectra were acquired at a resolution setting of 100,000.
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Figure 9. 
CD spectra of (A) AβC18C33 and (B) Aβ(M1–42) in the absence or presence of SDS. CD 

experiments were performed in 10 mM sodium phosphate buffer at pH 7.4.
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Figure 10. 
CD spectra of AβC18C33 and Aβ(M1–42) with DDM. (A) CD spectra of AβC18C33 with 

various concentrations of DDM. (B) CD spectra of Aβ(M1–42) with various concentrations 

of DDM. CD experiments were performed in 1O mM sodium phosphate buffer at pH 7.4. 

(C) Percentage of antiparallel β-sheet structure calculated for the AβC18C33 and Aβ(M1–42) 

peptides with various concentrations of DDM. The CD spectra were analyzed using the 

secondary structure analysis server BeStSel.72,73 The critical micelle concentration (CMC) 

of DDM (ca. 0.17 mM) is marked with a dashed line.
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Figure 11. 
ThT fluorescence assays of (A) AβC18C33, (B) Aβ(M1–42), and (C) AβA18A33. Assays were 

performed with 40 μM Aβ and 40 μM ThT in pH 7.4 PBS buffer at 37 °C without shaking 

(quiescent conditions). Fluorescence was monitored with 440 nm excitation and 485 nm 

emission. The ThT assays were performed in five technical replicates (purple, dark blue, red, 

light blue, and green).
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Figure 12. 
Transmission electron micrographs of Aβ peptides: (A) AβC18C33, (B) Aβ(M1–42), (C) 

AβA18A33, and (D) AβC18C33 with TCEP reduction. Solutions of the Aβ peptides were 

incubated in pH 7.4 PBS buffer for 24 hours at 37 °C and then imaged by TEM with uranyl 

acetate staining.
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Figure 13. 
Dynamic light scattering experiments of AβC18C33 and Aβ(M1–42). DLS experiments were 

performed on 30 μM solutions of the Aβ peptides in 10 mM sodium phosphate buffer at pH 

7.4. DLS data were recorded for freshly prepared solutions, and then after the solutions were 

incubated for 24 hours at 37 °C.
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Figure 14. 
Structural model of the AβC18C33 dimer. (A) The recently published NMR structure of 

an Aβ42 tetramer by Carulla and coworkers (PDB 6RHY).58 (B) Working model for the 

structure of the AβC18C33 dimer.
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