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Large-scale genomic analyses link reproductive ageing to 
hypothalamic signaling, breast cancer susceptibility and 
BRCA1-mediated DNA repair

A full list of authors and affiliations appears at the end of the article.
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Abstract

Menopause timing has a substantial impact on infertility and risk of disease, including breast 

cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ~70,000 

women to identify common and low-frequency protein-coding variation associated with age at 

natural menopause (ANM). We identified 44 regions with common variants, including two 

harbouring additional rare missense alleles of large effect. We found enrichment of signals in/near 

genes involved in delayed puberty, highlighting the first molecular links between the onset and end 

of reproductive lifespan. Pathway analyses revealed a major association with DNA damage-

response (DDR) genes, including the first common coding variant in BRCA1 associated with any 

complex trait. Mendelian randomisation analyses supported a causal effect of later ANM on breast 

cancer risk (~6% risk increase per-year, P=3×10−14), likely mediated by prolonged sex hormone 

exposure, rather than DDR mechanisms.

Introduction

Younger age at natural (non-surgical) menopause (ANM) is associated with lower risk of 

breast cancer, but higher risks of osteoporosis, cardiovascular disease and type 2 diabetes 1. 

Early menopause also has a substantial impact on fertility. It is estimated that natural fertility 

ceases on average 10 years before menopause 2, which is becoming increasingly relevant as 

women in many populations are delaying childbearing. For example, the birth rate in British 

women aged 30-34 years is now higher than in any other half decade (http://

www.ons.gov.uk/ons/publications/). ANM is on average 51 years in Caucasian populations, 

while natural menopause before the age of 40, or primary ovarian insufficiency (POI), 

occurs in 1% of the population 3.

Previous genome wide association studies (GWAS) identified 18 common genetic loci 

associated with ANM, implicating several plausible gene candidates across a number of 

molecular pathways 4,5. Together those reported variants explained <5% of the variation in 
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ANM, compared to 21% explained by all common variants on GWAS arrays 4. We therefore 

undertook a more comprehensive genetic analysis in a substantially larger sample of nearly 

70,000 women, incorporating both common and, for the first time, low-frequency coding 

variants. We were able to triple the number of independent signals associated with ANM, 

including two low frequency coding variants in previously unreported loci. Our findings 

provide new insights into the causal relationship between ANM with breast cancer and 

identify molecular overlaps between ANM and puberty timing.

Results

GWAS HapMap 2 meta-analysis

In a combined analysis of up to 69,360 women of European ancestry (Supplementary Table 

1), 1,208 SNPs, among a total of ~2.6 million, reached the genome-wide significance 

threshold (P<5×10−8) for association with ANM. Of these, we identified 54 independent 

signals located in 44 genomic regions using approximate conditional analysis implemented 

in GCTA (Figure 1, Table 1, Supplementary Tables 2 and 3). Eight loci contained secondary 

signals: six loci each contained two signals, and two loci each contained three signals. 

Across the 54 identified signals, MAFs ranged from 7% to 49%, and effect sizes from 0.07 

to 0.88 years per allele with no significant heterogeneity between studies. All of the 18 

previously reported independent signals for ANM 4,5 retained directionally concordant 

genome-wide significance (maximum P=3.7×10−11). These 18 signals were also 

directionally concordant in a sub-meta-analysis of studies that were not included in the 

previous publication (P-value range 1×10−30 to 1×10−3). The top 29,958 independent SNPs 

with association P<0.05 explained 21% (SE 9.7%, P=0.01) of the variance in ANM reducing 

to 6% (SE 1.6%, P=6.3×10−12) for the top 54 SNPs with P<5×10−8 (Supplementary Table 

4). This contrasts with an estimate of 2.6% for the previously identified 18 index SNPs.

We assessed functional enrichment of all ANM-SNP associations in regions containing 

active histone marks across 10 physiological cell-type groups using stratified LD score 

regression 6 (see Methods and Supplementary Table 5). Only the ‘kidney related cell types’ 

group showed significant enrichment (P=0.003), which could reflect the mesonephric 

embryonic origin of ovarian parenchymal cells 7. Analysis by functional annotation revealed 

the strongest enrichment for variants located in UCSC defined coding regions 

(Supplementary Table 5), with ~1.5% of SNPs explaining 24.8% of the trait heritability 

(P=4.6×10−3). The heritable component increased to 55% (SE 11%, P=2.9×10−7) when a 

500bp window was added to the coding regions, capturing ~6.5% of SNPs.

Exome array meta-analysis

To estimate the contribution of low-frequency coding variation to ANM, we performed a 

meta-analysis of up to 39,026 women genotyped on exome arrays (Supplementary Table 6). 

Only one signal, from two highly correlated (r2=0.73, D’=1) low-frequency missense 

variants in HELB, reached genome-wide significance in this discovery phase (Table 2, 

Figure 1, Supplementary Table 7). Ten low-frequency (MAF<5%), non-synonymous SNPs 

with association P<5×10−4 were selected for follow-up in an independent sample of 10,157 

women from the deCODE study that imputed rare variant genotypes. Directionally 
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concordant effect estimates were observed for 6/8 variants (2 of the 10 failed QC). The 

combined analysis identified missense alleles in HELB (rs75770066, MAF= 3.6%, beta = 

0.85 year/allele, P=1.2×10−31) and SLCO4A1 (rs140267842, MAF= 0.8%, beta=0.79, 

P=1.6×10−8) as associated with ANM (Table 2, Supplementary Table 7 and Supplementary 

Figure 1).

HELB is a DNA helicase that unwinds DNA during replication, transcription, repair and 

recombination. SLCO4A1 (solute carrier organic anion transporter family, member 4A1) 

transports organic anions such as thyroid hormones and estrone-3-sulfate. Both exome array 

signals in HELB and SLCO4A1 were located in ANM loci newly identified by our parallel 

HapMap2 GWAS meta-analysis. At HELB the association of the common index SNP, 

rs12371165, was fully explained by associations at the two rare exome chip SNPs, which are 

in high LD with each other (r2=0.73, D’=1) (Figure 2). In contrast, the three independent 

signal SNPs identified through GCTA were not explained by the rare variant(s) 

(Supplementary Table 8). It thus appears there are at least two non-redundant signals at this 

locus and future fine-mapping experiments will be required to fully elucidate the number of 

independent causal variants. Functional studies have shown that substitution of aspartate by 

a non-polar residue at amino acid 506 of HELB affects binding of HELB to Replication 

Protein A (RPA) 8. At SLC04A1, all three variants (the common index SNP, second signal 

from GCTA and the exomechip variant) appeared to reflect non-redundant signals, such that 

the association of each with ANM was unaffected by the presence of either of the others 

(Supplementary Table 8).

ANM SNPs strongly enriched in DNA damage-response pathways

Pathway analyses using MAGENTA and GRAIL indicated substantial enrichment of GWAS 

SNP associations in DNA damage response (DDR) pathways (Supplementary Tables 9 and 

10). Seven of the 10 ANM pathways identified by MAGENTA at study-wise significance 

were involved in DDR, with the highest enrichment in the PANTHER defined ‘DNA Repair 

Pathway’ (P=1×10−6). After annotating likely causal genes at each locus, we found that 29 

of the 44 GWAS highlighted regions contained one or more DDR genes within 500kb (Table 

1). At 18 of these 29 regions, the DDR candidate was either the nearest gene or the signal 

was associated with expression of a DDR gene at the locus.

The top SNP at GWAS Signal #37 (Table 1) was highly correlated (r2>0.95) with four 

common non-synonymous variants in BRCA1 [rs1799966, rs16942, rs16941, rs799917], 

none of which is listed in HGMD (www.hgmd.cf.ac.uk/) as a known breast cancer 

susceptibility variant and all of which are listed as “not clinically important” on the Breast 

Information Core http://research.nhgri.nih.gov/bic/. In our exome array data, no low 

frequency coding variants in BRCA1 were associated with ANM (P>0.05). Signal #37 was 

an eQTL for BRCA1 in multiple tissues, including: blood, skin, adipose and brain 

(Supplementary Table 11). There were 15 ANM signal genes that STRING analysis 

identified as having at least one direct link to BRCA1 (Supplementary Table 12, 

Supplementary Figure 2). Of these, there is experimental evidence that 7 code for direct 

binding partners of BRCA1: BRE (Signal #5), MSH6 (Signal #6), POLR2H (Signal #8), 
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FAM175A (Signal #9), UIMC1 (Signal #13), RAD51 (Signal #30), and CHEK2 (Signal 

#43).

While many of the DDR genes highlighted are involved in homologous recombination for 

repair of double strand breaks, such as the BRCA1 pathway, other mechanisms of repair are 

also represented, eg. mismatch repair (MSH5, MSH6) and base excision repair (APEX1, 

PARP2) (Figure 3). Two genes act as DNA damage checkpoints (CHEK2 and BRSK1), 

others are involved in the cellular response to damage, such as cell cycle arrest, DNA 

replication, transcription control and apoptosis (Figure 3). CHEK2 is a well-known breast 

cancer associated gene 9, but the ANM-associated signal was not in LD with the 1100delC 

variant associated with breast cancer (r2<0.01).

ANM SNPs enriched in known POI genes

In addition to the DDR pathways, MAGENTA analyses also identified a four-fold 

enrichment of ANM GWAS SNP associations located in/near a set of 31 genes reportedly 

associated with monogenic primary ovarian insufficiency (Supplementary Tables 13 &14). 

Four of our genome-wide significant hits were located in or near reported POI genes. 

Autosomal recessive mutations in MCM8 cause primary amenorrhea, hypothyroidism, and 

hypergonadotropic hypogonadism 10. Recessive mutations in EIF2B4 (signal #5) cause 

ovarioleukodystrophy with vanishing white matter syndrome 11. POLG (signal #31) 

mutations have been linked to POI in isolation or associated with other neurologic 

conditions 12. Mutations in MSH5 (Signals #15a and #15b) have been associated with 

various human diseases including POI 13. In addition, TDRD3 (Signal #28) is a primary 

binding partner of FMR1 in which triplet repeat premutations are a risk factor for POI 14. 

We saw no significant enrichment of ANM signals in our wider panel of ovarian function 

genes (Supplementary Tables 13 and 15).

Genetic correlation of ANM with other traits/diseases

We searched the GRASP database 15 and NHGRI catalogue (http://www.genome.gov/

gwastudies/) for pleiotropy between ANM signals and proxies (r2>0.5) with other GWAS 

traits (Supplementary Table 16). The top overlapping signals were for liver enzymes, lipids, 

urate, height and fasting glucose (p=<10−10 for association of ANM SNP/proxy and second 

trait). We found no overlap with any autoimmune traits and only a very weak link with any 

cancer (upper airway tract cancer, p=1×10−8). To test the relationship between ANM and 

other health outcomes more broadly, we performed cross-trait LD score regression to 

estimate genetic correlation with 53 published GWAS meta-analyses (Supplementary Table 

17). Adult obesity ranked highest in this analysis with a negative trait correlation (rg=−0.15, 

P=0.0004) with supporting evidence from other growth/anthropometric traits including age 

at menarche (rg=0.14, P=0.003), BMI (rg=−0.13, P=0.003), BMI in women but not men 

(P=0.002 vs 0.17), waist circumference in women but not men (P=0.009 vs 0.29) and WHR 

in men but not women (P=0.03 vs 0.27). Other nominally significant associations include 

HDL (rg=0.14, P=0.02) and current/former smoking status (rg=0.20, P=0.04) both of which 

are supported by epidemiological observations 16.
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To elucidate the causal directions between these traits, we performed bi-directional 

Mendelian randomisation (MR) analyses on ANM with both age at menarche and BMI. We 

were unable to resolve the causal direction with BMI (BMI to ANM: Pscore= 0.668 

(Supplementary Table 18); ANM to BMI: PBinomial=0.683, (Supplementary Table 19). 

However the 123 reported menarche SNPs collectively predicted ANM in the expected 

direction (Pscore=0.0005, Supplementary Table 20), but the ANM SNP score was not 

associated with age at menarche (Pscore = 0.571, Supplementary Table 21). We further 

explored the nature of this shared genetic architecture by testing for enrichment of all ANM-

associated SNPs in/near genes implicated in monogenic or polygenic puberty timing 17. 

Significant enrichment was found with the monogenic set (P=0.01), underscored by ANM-

associated SNPs in/near five genes reportedly causal for hypogonadotrophic hypogonadism 

(KISS1R, TAC3, CHD7, SOX10 and FGFR1) (Supplementary Table 22).

ANM variants demonstrate causal link with breast cancer

Given the overwhelming enrichment of DDR genes and known epidemiological associations 

between ANM and breast cancer risk 18, we tested the causal relationships between these 

traits using a Mendelian Randomization approach 19.

Across the 56 ANM SNPs (54 HapMap 2 + 2 exome) there was a positive correlation 

between the effect sizes on ANM and the effect sizes for risk (logORs) of breast cancer (in 

46,347 breast cancer cases and 41,736 controls from Breast Cancer Association Consortium 

(BCAC); r=0.67, P=2.25×10−8). A polygenic risk score comprising numbers of ANM-

increasing alleles at the 56 SNPs, weighted by the effect size on ANM, was positively 

associated with breast cancer risk; each one-year older genetically predicted ANM was 

associated with a OR=1.064 higher breast cancer risk (1.050-1.081), P=2.78×10−14 

(Supplementary Figure 3). This effect size is larger than that reported by the largest pooled 

analysis of observational epidemiological studies (OR=1.030 (1.026-1.034)) 18. All of the 

women in the GWAS from the BCAC study were also included in the Mendelian 

randomization (MR) study (N=14884, ~14% of total MR study). To confirm that this overlap 

did not bias our results we conducted two analyses. Firstly, a sensitivity analysis tested the 

effect on breast cancer of 18 previously identified ANM SNPs, which were identified from a 

meta-analysis that did not include BCAC cases, and a similar effect estimate was observed 

(OR 1.062 [1.033-1.101, P=1.58×10−7]) Secondly, the reverse analysis tested 63 SNPs with 

independent robust associations with breast cancer 20, and found no association between 

these breast cancer signals and ANM (Pscore >0.05), which reduces the likelihood of case-

ascertainment bias in our discovery meta-analysis (Supplementary Table 23).

Stratified analyses revealed significantly larger effect estimates for the ANM risk score in 

ER positive vs ER negative breast cancer cases (OR=1.07 (1.05-1.10) P=1.73×10−12 vs 

OR=1.03 (1.00-1.07) P=0.043; P=0.0086 for the case-only analysis) and women aged >=55 

vs <=45 years (OR=1.06 (1.04-1.10) P=2.23×10-7 vs OR=1.00 (0.97-1.05) P=0.95, case-

only P=2.30×10−5). Consideration of DDR vs non-DDR linked SNPs in the polygenic risk 

score also produced discordant effect estimates (OR 1.05 [1.03-1.08], p=1.06×10−7 vs OR 

1.12 [1.06-1.21], P=7.84×10−10 respectively, Phet=0.01), a difference which was further 

reinforced in the age stratified analyses (Supplementary Figure 3 and Table 24).
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Furthermore, lack of association between ANM risk scores with risk of prostate cancer in 

men (in 25,074 cases and 24,272 controls) (P=0.36, Supplementary Table 25) provides no 

evidence to support an effect of ANM-related DDR mechanisms on other cancer risks. We 

therefore surmise that ANM genetic variants influence breast cancer risk primarily through 

variation in menopause timing.

Discussion

Our study represents a largely expanded genetic discovery effort for ANM, both in terms of 

increased sample size and breadth of variation tested. By more than doubling the GWAS 

sample size we have increased the number of loci robustly associated with the trait three-

fold. In addition, we assessed the role of low-frequency protein coding variation using 

exome genotyping arrays. This approach identified the first such variants of large effect for 

ANM, implicating both HELB and SLC04A1 in the aetiology of reproductive ageing. Both 

of these regions contain common variants we identified in parallel, producing “synthetic 

associations” at the HELB locus 21.

Our analyses suggest a far more substantial role for DNA damage response processes in 

ovarian ageing than originally estimated. Both manual assessment and formal computational 

approaches identified an overwhelming excess of DDR genes mapping to the 44 GWAS loci, 

possibly explaining up to ~2/3rds of the associations. Despite the limitations of our GWAS 

approach to map definitively SNPs to genes, 19/44 loci contained signal SNPs where 

plausible DDR candidates were either the closest gene or linked via altered expression levels 

to the associated variant. This level of enrichment is comparable to that observed in GWAS 

meta-analyses of several cancers 22,23.

A notable inclusion in our list of DDR annotated genes was BRCA1, which was the nearest 

gene, linked as an eQTL and contained multiple non-synonymous SNPs in high LD with the 

lead index SNP. Although rare loss of function alleles are well studied in the context of 

cancer pre-disposition, coding variants in BRCA1 are generally regarded as neutral and have 

not been previously mapped to any complex trait or disease, including breast cancer. Titus et 
al have shown that BRCA1 expression decreases in human ovaries with age and that reduced 

brca1 expression in mouse models leads to reduced ovarian reserve 24. This is consistent 

with our data, where the ANM-lowering allele reduces expression in blood. BRCA1 directly 

inhibits a functional interaction with oestrogen receptor α and thus BRCA1 variants could 

also affect ANM through altered oestrogen signalling 25. Of the 34 DDR genes highlighted 

in Table 1, 15 have experimental links to BRCA1, three of which form part of the BRCA1-A 

complex; BRE (BRCC45), FAM175A (Abraxas) and UIMC1 (RAP80). While dispensable 

for BRCA1’s major tumour suppressive role in promoting DNA double-strand break repair 

by homologous recombination (HR), the BRCA1-A complex components RAP80 and 

Abraxas are actually involved in counteracting this activity, restricting BRCA1-dependent 

HR to appropriate levels 26. Similarly, the DNA helicase Fbh1 (FBXO18; Signal #20) 

negatively regulates HR 27,28. While HR is essential for cell viability, such anti-recombinase 

activities are also important for maintaining genome stability, and failure of this regulation is 

associated with inappropriate recombination events, and the accumulation of toxic 
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recombination intermediates, DNA repair activities associated with driving translocations, 

loss-of-heterozygosity, and chromosomal abnormalities 29.

Double strand break repair is an important response to metabolic and environmental damage 

to DNA, but is also a key process in meiosis for resolving recombination events. Aberrant 

meiotic recombination is known to cause meiotic arrest and affect the viability of oocytes. 

Menopause occurs when the number of oocytes in the ovary falls below a threshold number 

(approx. 1000) and thus processes that affect the size of the oocyte pool will affect timing of 

menopause. Recent studies have shown that recessive mutations in both MCM8 and MCM9 
results in genomic instability, caused by a deficiency in double strand break repair, which 

has a devastating effect on the oocyte pool, causing POI 10,30. MCM8 is one of the genes 

highlighted in our study (signal #41) and a further 12 are also involved in homologous 

recombination repair, including two which are specific for meiotic repair (MSH5 and DMC1 
(DNA meiotic recombinase 1)). Thus double strand break repair, during recombination, at 

meiosis, appears to be a major mechanism by which oocyte numbers are regulated, thus 

determining depletion of the oocyte pool and ANM.

In this study, however, the repair mechanisms highlighted are not confined to homologous 

recombination repair; mismatch repair and base excision repair are also implicated, as well 

as mitotic repair and repair checkpoints. Thus it appears that the mechanisms are not 

confined to repair of meiotic cross-overs, but more general mechanisms are also involved. 

Seven million oogonia are produced during fetal development by mitosis. Inefficient repair 

of DNA damage during these mitotic events could result in apoptosis and thus a reduction in 

the initial oocyte pool. Loss of oocytes throughout female life is predominantly by atresia 

rather than ovulation. It is likely that oocytes are particularly sensitive to DNA damage due 

to the prolonged state of cell cycle arrest, lasting up to 50-60 years. Thus aberrant repair 

throughout life could affect the rate of atresia and thus ANM.

Several of the genes highlighted in our study are robust cancer predisposition genes, eg. 

BRCA1, CHEK2 and MSH6. Additionally BCAR4 and STARD3 have also been linked with 

breast cancer predisposition. However common susceptibility variants have not been mapped 

to any of these genes through GWAS approaches for any cancer [www.genome.gov/

gwastudies/]. Patients with known pathogenic BRCA1 breast cancer predisposition 

mutations, have been reported to have lower ANM 31, although other studies have failed to 

replicate these findings 32.

We found that carrying higher numbers of ANM-increasing variants was associated with 

increased breast cancer risk. This was consistent with (indeed slightly larger than) the 

observed epidemiological association. Our Mendelian randomization approach indicates a 

causal relationship between ANM and breast cancer risk, with prolonged oestrogen and/or 

progesterone exposure likely to be the mechanism 33. Consistent with this, the effect size 

was greater for ER-positive than ER-negative breast cancer.

At first sight, this observation might appear paradoxical given the enrichment of DDR genes 

associated with menopause. However, we noted that the association between ANM variants 

and breast cancer risk was weaker for those in/near DDR genes than those in the non-DDR 
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set. This raises the possibility that the DDR variants that reduce menopausal age do 

modestly increase breast cancer risk, but this is counterbalanced by the larger effect due to 

altered hormonal exposure. Alternatively, it is possible that variants in the non-DDR set may 

have a residual effect on breast cancer risk through hormonal or other mechanisms, or that 

both mechanisms could play a role (supplementary Figure 4). BRCA1 mutations are known 

to be risk factors for prostate cancer 34 and yet we found no association with prostate cancer 

predisposition for the ANM variants, supporting the hypothesis that the breast cancer 

association is mediated via menopause and not a direct effect of the DDR variants. That the 

effect of the ANM polygenic risk score on breast cancer risk was larger than that predicted 

from observation studies might indicate measurement error in the reporting of age at 

menopause or residual negative confounding in epidemiological studies; in either case, the 

Mendelian Randomisation analysis performed here using the polygenic risk score as an 

instrumental variable can give a more accurate estimate of the effect of age at menopause on 

breast cancer risk. Such measurement error would also be present in studies in the ANM 

GWAS from which the polygenic risk score weights were derived, hence the ‘true’ effect of 

later menopause on breast cancer risk may actually be larger even than the ~6% increase in 

risk/year predicted here.

Our findings provide novel evidence for a neural influence on the timing of ovarian follicular 

ageing. Until now, it has been considered that hypothalamic/pituitary activity in relation to 

the menopause is simply secondary to the loss of feedback inhibition by ovarian 

hormones 35. We identified five ANM loci containing genes reported causal for 

hypogonadotrophic hypogonadism. Of these, monogenic disruption of three (CHD7, FGFR1 
and SOX10) are causes of Kallman syndrome, characterized by anosmic hypogonadotrophic 

hypogonadism due to failure of embryonic migration of GNRH secreting neurons from the 

olfactory bulb to the hypothalamus 36. In addition, KISS1R (GPR54) encodes the receptor 

for kisspeptin, a key hypothalamic activator of the reproductive hormone axis, and TAC3 
encodes neurokinin B, which is highly expressed in hypothalamic neurons that also express 

kisspeptin and promotes the pulse frequency of luteinising hormone (LH) secretion from the 

pituitary. A possible central influence on ovarian ageing is also supported by the ANM locus 

in/near FSHB (which is reportedly also associated with circulating FSH levels). 

Alternatively, recent studies have identified expression of TAC3, KISS1R and kisspeptin in 

ovarian granulosa cells 37, suggesting peripheral actions of these neuropeptides and their 

receptors 38. Indeed, GPR54-haploinsufficiency in mice leads to progressive oocyte and 

follicle loss without affecting gonadotropin secretion 38. Regardless of their site of action, 

our findings indicate several mechanisms that could link the regulation of puberty to ANM, 

and therefore impact both the start and end of the female reproductive lifespan.

In summary, our findings suggest a surprisingly narrow range of biological pathways 

governing ANM, highlighting a substantial role for DNA damage response in the aetiology 

of ovarian ageing. We demonstrate the utility of genetics to inform epidemiological 

observations, revealing shared biological pathways linking puberty timing, breast cancer and 

reproductive ageing.
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Online Methods

Menopause data collection

ANM was self-reported and defined as the age at last naturally occurring menstrual period 

followed by at least 12 consecutive months of amenorrhea. Recall bias/error for ANM may 

have reduced our power to detect associations, but would be unlikely to introduce systematic 

error. We assessed this issue in our previous meta-analysis and found no significant 

differences in effect estimates when considering retrospective versus prospective studies 4. 

We included women with ANM 40–60 years in our analyses, excluding those with 

menopause induced by hysterectomy, bilateral ovariectomy, radiation or chemotherapy, and 

those using hormone replacement therapy (HRT) before menopause (Supplementary Table 

1). Within each of the included studies, each participant provided written informed consent 

and the study protocol was approved by the Institutional Review Board at the parent 

institution.

GWAS

A total of 33 studies contributed genome-wide association data using self-reported ANM 

(Supplementary Table 1). One of the 33 studies was from the Breast Cancer Association 

Consortium (BCAC), comprising 17 separate studies with menopause data, genotyped using 

an Illumina iSelect array (iCOGs) 20. This resulted in a maximum total sample of 69,360 

individuals of European descent. Studies were asked to use the full imputed set of HapMap 

Phase 2 autosomal SNPs, and to run an additive model including top principal components 

and study specific covariates.

In some cases, studies submitted data using 1000 Genomes based imputation; in these cases 

SNPs not included in the HapMap 2 set were removed. Once data were submitted, each 

study was quality controlled centrally according to standard QC protocols independently by 

two analysts. SNPs were filtered out if the minor allele frequency (MAF) was less than 1%, 

or if the imputation quality metrics were low (imputation quality<0.4). Studies and SNPs 

passing QC were combined using an inverse-variance weighted meta-analysis, implemented 

using METAL 39. Again, this meta-analysis was run by two analysts independently, who 

then separately used PLINK clumping commands 40 to identify the most significant SNPs in 

associated regions (termed “Index SNPs”), using only those SNPs which had data from more 

than 50% of the studies. SNPs were considered genome-wide significant if p<5×10−8 (p of 

0.05 Bonferroni corrected for a million tests). Comparisons were made to ensure 

concordance of the identified signals between the two independent analysts.

Exome chip

Exome genotyping data were analysed for 22 studies of European ancestry, with 

questionnaire data on ANM (Supplementary Table 6). Genotype calling was performed 

using the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) 

joint calling protocol, including X chromosome variants. Each contributing study carried out 

study-level analysis in the R-packages skatMeta or seqMeta using the skatCohort command 

with the top genetic principal components included in the model and alleles coded according 

to a common reference file (SNPInfo_HumanExome-12v1_rev5.tsv.txt from http://
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www.chargeconsortium.com/main/exomechip) 41. Following data submission, two data 

analysts carried out checks to ensure consistency of allele coding. We carried out a single 

variant meta-analysis in METAL 39, giving a total sample size of 39,026, with associations 

considered significant if p<5×10−8. Variants were put forward for replication in the deCODE 

study (n=10,157) if they were present in more than half of studies in the discovery stage and 

had p<5×10−5 if MAF was less than 1% or p<5×10−4 if MAF was 1–5%.

Selection of independent signals / conditional analysis

Independent signals (termed “Signal SNPs”) for ANM were identified using approximate 

conditional analysis implemented in the GCTA software package 42. Linkage disequilibrium 

(LD) between variants was estimated using three independently genotyped studies as 

reference panels - the Rotterdam Study I (N=5,974) and two EPIC-InterAct datasets 

(N=7,397 and N=9,294); these comprised males and females of European ancestry with 

GWAS data imputed using CEU haplotypes from HapMap 2. We assumed zero correlation 

between SNPs more than 10 Mb apart or on different chromosomes. We considered 

independent signals to be those observed by at least two of the three LD reference panels 

and located in a 10 Mb region that contained a genome-wide significant SNP based on 

univariate test statistics.

We assessed the independence between exome array and HapMap 2 signals by performing 

formal conditional analyses in the Women’s Genome Health Study (WGHS, N=11,664). 

Regression was performed including all significant index SNPs in additive models, including 

the same study covariates as used in the primary analysis. LD computation in 

Haploview 43used experimental genotypes where possible (the rare exome chip variants and 

the common variants rs3741604 and rs2236553), but HapMap 2 imputed genotypes for the 

other common variants (MaCH v. 1.0.16, all Rsq >0.99).

Gene identification

At each locus identified by the GWAS meta-analysis, we annotated the likely causative 

gene(s) (Supplementary Table 3) using the following criteria: identified in at least one of the 

gene prioritisation/pathway programs (GRAIL or STRING), the top SNP or a proxy (r2>0.8) 

was an eQTL in one of 108 tissues, the top SNP or a proxy (r2>0.8) was a coding variant 

(Supplementary tables 9-12, 26, 27, Supplementary Figure 5). In case of overlap between 

the results of the GWAS and exome analyses, the gene indicated by the exome array analysis 

was chosen. Further manual annotation was used to select additional likely candidates based 

on known biology (e.g monogenic primary ovarian insufficiency) or biology highlighted by 

hypothesis-free pathway testing (Supplementary Table 15). If no candidate was identified by 

these methods the nearest gene was chosen.

GRAIL is a literature based text mining program used to suggest the mostly likely casual 

gene at each locus 44, controlling for gene size and without any seed regions. A GRAIL p-

value < 0.05 was taken to indicate a suggested causal gene (Supplementary Table 9). All 

genes located within 500kb of the top SNP at each locus were assessed using the STRING 

program (http://string-db.org/), which was used to highlight any connectivity between genes 

in different regions (Supplementary Table 12).
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Expression quantitative trait loci (eQTL)

Each independent SNP signal was assessed in over 100 separate eQTL datasets 

(Supplementary methods and Table 11 for details 45). If an independent signal SNP was in 

high LD (r2>0.8; using SNAP http://www.broadinstitute.org/mpg/snap/) with the most 

significant signal for an eQTL, then the eQTL gene was highlighted as a potential causal 

candidate. The collected eQTL results met criteria for statistical thresholds for association 

with gene transcript levels as described in the original papers.

Pathway identification

We tested for signal enrichment across 2,580 pre-defined biological pathways in GO, 

KEGG, Ingenuity, Panther, Reactome and Biocarta using MAGENTA 46 using the full 

HapMap Phase 2 imputed meta-analysis (Supplementary Table 10). Analysis was performed 

using the same default settings as described in our previous paper 4, with study-wise 

significance declared at an FDR<0.05. In addition to these pre-defined pathways, we also 

tested four custom pathways comprised of genes involved in POI (N=31), ovarian function 

(N=130), monogenic disorders of puberty (N=21) and age at menarche (N=154) 

(Supplementary Tables 13-15, 22).

Estimating variance explained by SNP sets

An estimate of the total variance explained by highlighted ANM SNPs was calculated using 

REML (restricted maximum likelihood) implemented in GCTA 42. Using individual level 

data from the EPIC-InterAct cohort (N=1,761), we calculated the attributable variance for 

the genome-wide significant SNPs and at varying significance thresholds (5 × 10−7, 5 × 

10−6, 5 × 10−5, 5 × 10−4, 0.005, 0.05, and all SNPs passing QC) obtained from a repeated 

meta-analysis excluding EPIC-InterAct.

We used stratified LD score regression to quantify evidence of functional enrichment 

specific to groups of cell types 6. We used the same baseline model as in Finucane et al. 6 

which comprises 53 overlapping categories including basic annotations such as coding, 

UTR, promoter, and intron, as well as several histone marks, DNase I Hypersensitivity Site 

(DHS) regions, chromHMM predictions 47, regions that are conserved in mammals 48, super 

enhancers 49, and FANTOM5 enhancers 50. We evaluated enrichments for each of these non-

cell-type specific categories. We then took 230 cell-type-specific annotations in four histone 

marks-H3K4me1, H3K4me3, H3K9ac 51 and H3K27ac 52 (Supplementary Table 5), and 

grouped them into 10 cell-type groups, (adrenal/pancreas; central nervous system; 

cardiovascular; connective/bone; gastrointestinal; immune/hematopoietic; kidney; liver; 

skeletal muscle; other) 6. We added each cell-type group to the baseline model one at a time 

and measured the p-value of the resulting LD Score regression coefficient of the cell-type 

group using the −h2 flag in ldsc (https://github.com/bulik/ldsc) with LD Scores from 1000G 

Genomes Europeans [http://www.1000genomes.org/]. We ranked the cell-type groups by 

whether the per-SNP heritability in the ‘functional’ annotation was larger than the per-SNP 

heritability outside this annotation, controlling for the other annotations in the baseline 

model.

Day et al. Page 11

Nat Genet. Author manuscript; available in PMC 2016 May 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.broadinstitute.org/mpg/snap/
http://https://github.com/bulik/ldsc
http://www.1000genomes.org/


Breast and prostate cancer Mendelian Randomisation (MR)

To assess the association of the ANM SNPs with breast cancer risk, we used breast cancer 

cases (n=46,347) and controls (n=41,736) of European ancestry from 41 studies in the 

BCAC, who had been genotyped using a custom Illumina Infinium array (iCOGS). 

Following standard quality control exclusions (as described in 20) genotypes were available 

for 199,961 SNPs. Further genotypes were imputed in a two-stage procedure using 

SHAPEIT and IMPUTEv2 53 with the 1000 Genomes Project March 2012 release as the 

reference dataset 54, giving ~11.6 million SNPs with imputation r2>0.3 and MAF>0.005. 

The 4,747 breast cancer cases and 7,285 controls in the BCAC dataset for whom ANM 

information was available had also been included in the ANM GWAS analysis.

The genotypes or imputed genotype dosages for the 56 significant SNPs in Tables 1 and 2 

were used to construct a polygenic risk score for each breast cancer case and control, such 

that for the ith woman

where βj is the ANM regression coefficient for the effect allele of the jth SNP (conditional βs 

were used for the correlated SNPs) and Gij is the number of copies of the effect allele at the 

jth SNP carried by the ith woman (Gij is between 0 and 2).

The association between the polygenic risk score and breast cancer was tested using 

unconditional logistic regression, adjusting for study and for seven principal components (as 

estimated based on a subset of 37,000 uncorrelated markers including ~1000 selected as 

ancestry informative markers). The log(OR) was scaled according to the effect size of a one-

unit increase in polygenic risk score on ANM in control subjects, so as to obtain an 

estimated logOR for a one-year increase in genetically predicted ANM. Hence the polygenic 

risk score can be thought of as an instrumental variable in a Mendelian Randomisation of 

ANM against breast cancer.

Additional analyses were conducted specifically for estrogen receptor (ER) positive 

(N=27,026) or ER negative (N=7,401) cases, and for participants with age at diagnosis (for 

cases) or interview (for controls) ≤45 years (8,547 cases and 8,029 controls) or ≥55 years 

(24,841 cases and 20,410 controls)(as a surrogate for pre- or post-menopausal age at 

diagnosis, because ANM was not known for all participants), with heterogeneity evaluated 

in case-only analyses.

We also tested the association of ANM SNPs on prostate cancer risk, to determine whether 

any effect of genetic variants was specific to breast cancer. Prostate cancer data were 

available from a similar sample size to breast cancer and there is known overlap in genetic 

risk for breast and prostate cancer. Individual level data was not available for prostate cancer, 

we therefore assessed the impact of ANM using an approximated allele score comprised of 

the 54 HapMap2 GWAS SNPs on summary level results 55. The score was assessed using 

summary statistics from a recent prostate cancer meta-analysis, comprising 25,074 cases and 
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24,272 controls from 32 studies in the PRACTICAL Consortium 56, genotyped using the 

iCOGs array, with quality control and imputation carried out in the same way as for the 

BCAC iCOGs study.

Genetic correlation with additional traits

Cross-trait LD score regression was used to estimate the genetic correlation between 

menopause timing and 54 individual traits from published studies including anthropometric 

and metabolic traits 57. We estimated genetic correlations with the method described in 58 

and the --rg flag in the ldsc software package (https://github.com/bulik/ldsc) with LD Scores 

from 1000 Genomes Europeans and default settings. Briefly, this method regresses the 

product of effect size estimates for trait 1 and trait 2 for each SNP against LD Score. The 

product of the slope and a constant estimates the genetic correlation, and the intercept 

estimates the product of the number of overlapping samples and the correlation between 

phenotypes among the overlapping samples.

Bi-directional Mendelian randomisation analyses on ANM with age at menarche and BMI 

were carried out using similar methods as for prostate cancer, with a weighted allele score 55 

generated from summary statistics. Information on the associations with age at menarche 

came from the most recent genome-wide association study for the trait (N=182,416 women 

from 57 studies) 17. The BMI data were taken from the most recent analysis (N=249,796 

from 64 studies) 59. While it was possible to calculate a full allele score for the genome-wide 

significant BMI SNPs to ANM analysis, this was not possible for the ANM SNPs to BMI 

analysis; instead a binomial test of consistency of effect direction was used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Miami plot of HapMap and exome SNP associations. Log-transformed P values are shown 

for association with ANM for SNPs from HapMap 2 (top; pink) and SNPs from the meta-

analysis of exome chip data (bottom; blue). Previously known signals are shown in gray, and 

newly discovered signals are shown in red (HapMap 2) or purple (exome chip and HapMap 

2). The yellow lines correspond to genome-wide significant levels in each direction; the gray 

lines indicate where the y axis has been truncated.
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Figure 2. 
Multiple signals at HELB and relationship to DNA helicase B protein sequence. Positions 

are given in Build 37 coordinates of the reference genome. The top signal from the exome 

chip analysis maps to an acidic motif of DNA helicase B and results in the replacement of an 

acidic aspartate residue by a nonpolar glycine residue. Concurrent alteration of three acidic 

amino acids, (including the aspartate residue identified by the exome chip analysis) to 

nonpolar residues has been shown to reduce RPA binding (8)
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Figure 3. 
Classification of genes identified as being involved in the DNA damage response, at genetic 

loci associated with ANM.
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