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Sensitivity analysis of a land surface scheme using 
multicriteria methods 

L. A. Bastidas, H. V. Gupta, S. Sorooshian, W. J. Shuttleworth, and Z. L. Yang 
Department of Hydrology and Water Resources, University of Arizona, Tucson 

Abstract. Attempts to model surface-atmosphere interactions with greater physical 
realism have resulted in complex land surface schemes (LSS) with large numbers of 
parameters. A companion paper describes a multicriteria calibration procedure for 
extracting plot-scale estimates of the preferred ranges of these parameters from the 
various observational data sets that are now available. A complementary procedure is 
presented in this paper that provides an objective determination of the multicriteria 
sensitivity of the modeled variables to the parameters, thereby allowing the number of 
calibration parameters and hence the computational effort to be reduced. Two case 
studies are reported for the BATS model using data sets of typical quality but very 
different location and climatological regime (ARM-CART and Tucson). The sensitivity 
results were found to be consistent with the physical properties of the different 
environments, thereby supporting the reasonableness of the model formulation. Further, 
when the insensitive parameters are omitted from the calibration process, there is little 
degradation in the quality of the model description and little change in the preferred 
range of the remaining parameters. 

1. Introduction and Scope 

This paper is one of three that discuss the usefulness of 
multicriteria methods for the evaluation and improvement of 
land surface schemes (LSS). A companion paper [Gupta et al., 
this issue] shows how multicriteria methods can be used to 
improve the estimates of LSS parameters by simultaneously 
constraining the model to measurements of several observed 
system responses such as heat fluxes, ground temperature, and 
surface soil moisture. This paper develops that study by intro- 
ducing a robust multicriteria approach to parameter sensitivity 
analysis for LSS models and by showing how the methodology 
provides a way to reduce the dimensionality of the parameter 
estimation problem. In both papers, the methodology is illus- 
trated using the Biosphere-Atmosphere Transfer Scheme 
(BATS) [Dickinson et al., 1993] and two data sets, one from the 
ARM-CART grassland site and the other from a semiarid site 
in the Sonoran Desert, Arizona. A third paper (in preparation) 
will discuss the power and applicability of multicriteria meth- 
ods for the evaluation of model performance and for model 
intercomparison. 

The paper is organized as follows: Section 2 discusses the 
background and context for this work and presents a review of 
the literature. Section 3 introduces the theoretical and practi- 
cal basis for applying multicriteria methods to the generalized 
sensitivity analysis of LSS model parameters. In Section 4, the 
sensihve parameters of the BATS model for two study sites are 
identified, and it is shown that only the reduced set of sensitive 
parameters need to be calibrated to obtain good model per- 
formance. Section 5 discusses the results and future extensions. 

Copyright 1999 by the American Geophysical Union. 
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2. Background 
LSS models differ from classical hydrologic watershed mod- 

els in that they are concerned with both water and energy 
balance, they are driven by multiple input variables (e.g., pre- 
cipitation, shortwave and longwave radiation, wind speed, air 
temperature, and humidity), and they predict the evolution of 
several observable state variables (e.g., soil skin temperature, 
surface soil moisture) and output fluxes (e.g., latent heat, sen- 
sible heat, runoff). Such models often have a large number of 
parameters that must be specified. The Biosphere-Atmosphere 
Transfer Scheme (BATS) [Dickinson et al., 1993], for example, 
has 27 parameters to be estimated, including 16 related to 
vegetation properties and eight related to soil properties, to- 
gether with three initial moisture conditions. While the param- 
eterizations of LSS models have been designed with the notion 
that it should be possible to estimate reasonable values for the 
parameter from measurable characteristics of the land surface, 
recent studies such as the PILPS 2c workshop [Lettenmaier et 
al., 1996] have demonstrated that even simple manual (subjec- 
tive) adjustment of a few model parameters can result in sig- 
nificant improvements in model performance. However, as 
long as the performance of an LSS model remains dependent 
on subjective human expertise for the specification of its pa- 
rameters, it will remain difficult to conduct an objective eval- 
uation of the relative merits of alternative parameterizations. 
It is useful therefore to explore the utility (objectivity and 
efficiency) of automated methods [Sorooshian et al., 1993; 
Gupta et al., 1998] for improving the parameter estimates used 
by LSS models; in a companion paper [Gupta et al., this issue], 
we demonstrate how this can be done by applying multicriteria 
calibration methods. 

As LSS models have become more complex, the number of 
parameters that must be estimated has significantly increased. 
While the typical conceptual watershed hydrology model may 
have only 10-15 parameters, the BATS le model has 27 pa- 
rameters, and the current SiB2 model has 52 parameters that 
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must be specified. Many of these are "conceptual" parameters 
that are not directly measurable at the GCM-LSS scales and 
for which all that might reasonably be specified are the ap- 
proximate ranges for the parameter values, based on some 
approximate understanding of the regional hydrogeology. If 
the input-state-output response of the LSS is not essentially 
sensitive to parameter variations within these ranges, it will be 
reasonable to use some nominal estimates (such as the mid- 
points of the parameter uncertainty ranges). However, if the 
LSS input-state-output response is sensitive to finer specifica- 
tion of these parameters, the only remaining recourse is to 
adjust the parameter so that model responses are constrained 
to closely match available observations via calibration [Gupta 
et al., this issue]. It is important therefore to identify which of 
the parameters within the model are sensitive (for each hydro- 
climatic regime) and should be refined further via calibration. 

A number of different methods have been proposed in the 
literature for the sensitivity analysis of LSS schemes. These 
include the most commonly used "one parameter at a time" 
approach [e.g., Wilson et al., 1987a, b; Pitman, 1994; Gao et al., 
1996], the factorial method [e.g., Henderson-Sellers, 1992; Let- 
tenmaier et al., 1996], the Fourier amplitude sensitivity test 
(FAST) [Collins and Avissar, 1994], and the regionalized sen- 
sitivity analysis (RSA) methodology [Franks et al., 1997]. Most 
studies assumed parameter independence and explored the 
individual impacts of each parameter on each system response 
taken one-at-a-time. None of the methods accounts for the 

joint multiparameter and multiresponse interactions. Although 
the factorial method allows (in principle) the exploration of 
multiparameter interactions, a simple two-level factorial exper- 
iment for a 25 parameter model would require an unreason- 
able number of model runs (22s -- 33,554,432). While this 
number can be reduced by a fractional factorial experiment 
that only considers second- or third-order interdependence, 
the effects of large numbers of possible interactions would 
then be ignored. The FAST method would only require about 
6000 model runs for the same problem (extrapolating from 
Cukier et al. [1978]), but it again ignores interdependence 
among the parameters or requires an a priori estimate of the 
parameter covariance structure. 

Another common feature of past studies is that they were 
directed not only at finding the influence of the model param- 
eters but also at how this influence varies under different 

climatic forcing conditions. The studies were therefore con- 
ducted using artificially constructed atmospheric forcing data 
for different environments [e.g., Henderson-Sellers, 1992; Gao 
et al., 1996]. Further, the impacts were typically evaluated in 
terms of integrated response statistics such as average or cu- 
mulative values over monthly or yearly time spans (e.g., total 
evapotranspiration, total runoff, and minimum upper layer soil 
temperature for a year [Henderson-Sellers, 1992]; mean of the 
annual heat fluxes, ground temperature, and soil moisture [Pit- 
man, 1994]; annual cumulative monthly runoff, annual cumu- 
lative monthly accumulated absolute differences between soil 
moisture and porosity for perturbed and nominal parameters 
[Lettenmaier et al., 1996]; and annual average variation of 
model responses, [Gao et al., 1996]). To our knowledge, only 
Franks et al. [1997] used real system response data for their 
sensitivity analysis. However, they studied a time span of only 
10 days and only considered the latent heat flux. 

In general, these studies have reported that the latent and 
sensible heat fluxes are sensitive to the same parameters. One 
parameter that seems to be universally important for different 

LSS formulations is that related to the stomatal resistance of 

the vegetation. However, the results of different studies using 
BATS are inconsistent; for example, Lettenmaier et al. [1996] 
report high sensitivities to the Clapp and Hornberger param- 
eter B, while Gao et al. [1996] and Henderson-Sellers [1992] did 
not. An important finding by Gao et al. [1996] is that the 
influence of errors in the initial soil layer water conditions may 
persist for several years beyond the end of the spin-up period. 

The work presented here builds on the multicriteria frame- 
work presented by Gupta et al. [1998] and Gupta et al. [this 
issue]. The major aim of this paper is to demonstrate a robust, 
practical, and efficient approach for the parameter sensitivity 
analysis of LSS models, in a manner that properly accounts for 
the joint multiparameter/multiresponse interactions, and to 
illustrate the consequent benefits that can accrue. We show 
that the approach provides a parameter sensitivity classifica- 
tion which is consistent with physical understanding. We also 
show how this classification can be used effectively to reduce 
the dimensionality of the parameter estimation problem, 
thereby significantly reducing the computer time required to 
conduct a model calibration. 

3. Multicriteria Sensitivity Analysis 
3.1. Problem Formulation 

A theoretical basis for the application of multicriteria theory 
to the calibration of conceptual multiparameter physically 
based models was presented by Gupta et al. [1998], and this is 
extended to LSS models by Gupta et al. [this issue]. The char- 
acteristic of LSS models is that they have a relatively large 
number (p) of parameters 0 = { 0•, ". Op}, which influence 
the time evolution behavior of several (m) different modeled 
variables (Z i (0, ti), t• = ta•, ..., tb•, j = 1, ...m). We 
define a single criterion fj.(0) for each separate (jth) model 
response to measure the distance between the set of modeled 
responses Z•(0) and some benchmark responses Xi (Notes: 
(1) it is trivial to extend the methodology to allow more than 
one complementary criterion to be defined on each modeled 
response; (2) without loss of generality, we assume that fj.(0) 
> 0). The benchmark responses could either be model simu- 
lations Z•(O*) performed at some nominal point 0* in the 
parameter space or a set of observations O• made at a study 
site. The specification of the mathematical form of these cri- 
teria depends on the problem and the goals of the user; in this 
work we adopt the commonly used root-mean-square error 
measure of the deviation between two time series 

(RMSEj (0) = sqrt {(l/n) E,=,, ...,• (Zj(0, t) - Xj(t))2}). 
The multicriteria response of the model as a function of the 
parameters can then be defined on the feasible parameter 
space © as 

F(O) = {f•(O),..., fm(O)} 

where 0 C ©. The primary objective of parameter sensitivity 
analysis is to determine which of the parameters 0 give rise to 
significant variations in the multicriteria response function 
F(0) as they are allowed to vary jointly over © and to deter- 
mine the nature of those variations. A secondary objective is to 
classify the sensitivity of the parameters into some order of 
relative importance. 

The above-stated goal of deriving multicriteria parameter 
sensitivity can be addressed by extending and improving the 
"regional sensitivity analysis" (RSA) single-criterion method 
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(a) Parameter Space (b) Criterion Space 

Parameter 01 

Figure 1. Example showing the Pareto solution set for a 
problem having two parameters (01, 02) and two criteria (f•, 
f2): (a) parameter space and (b) criterion space. The points a 
and/3 indicate the solutions that minimize each of the individ- 
ual criteria f• and f2. The thick line indicates the set S of 
multicriteria minimizing points to the function { f•, f2 }; 3' is an 
element of the solution set S which is superior in the multicri- 
teria sense to any point & not contained in it. 

[Spear and Hornberger, 1980; Hornberger and Spear, 1981]. The 
latter method begins with a uniform random sampling of n 
distinct points in the feasible parameter space !9 (we shall call 
this set of points R) and proceeds by partitioning 19 into a 
region B (called the "behavioral" region), which is character- 
ized by a desirable modeled behavior, and its complement B 
(called the "nonbehavioral" region). The behavioral region can 
be defined either in terms of the parameter space that pro- 
duces desired trajectories of the modeled responses or state 
variables [Spear and Hornberger, 1980], or in terms of the (sub- 
jectively assessed) desirable values of a summarizing criterion 
[Hornberger et al., 1985; Beven and Binley, 1992; Chang and 
Delleur, 1992; Spear et al., 1994; Ohte and Bales, 1995; Franks et 
al., 1997]. In the context of (1) the behavioral region must be 
defined in terms of a multicriteria threshold applied to the 
function F(0). A simple way to do this is to select a T = 
{T•, ..., T m } and defineB(T) such thatF(0) < T (where < 
denotes component-by-component superiority). However, this 
requires the subjective selection of m threshold values and, 
further, does not guarantee multicriteria superiority [Bastidas, 
1998]. An alternative approach is to transform the multicriteria 
formulation (equation (1)) into a single-criterion form by some 
mapping such as 

g(0)= • w.•(O) (2) 
j=l,. ß ',m 

where the w i are user-selected weights defining the relative 
importance of the individual criteria and to apply a single 
threshold to g(0). However, this still requires the subjective 
selection of the m weights. These problems can be avoided 
largely by adopting the notion of Pareto Ranking, this being a 
scale-independent and truly multiobjective way to achieve a 
partition of the feasible space. 

3.2. Pareto Ranking 

A defining characteristic of the multicriteria response func- 
tion F(0) is that there is not, in general, a unique minimizing 
point in the parameter space. That is, because of errors in the 
model structure and other possible sources, it is usually impos- 
sible to find a single point 0 at which all the criteria have their 

minima. Instead, it is common to have a set of solutions, with 
the property that moving from one solution to another results 
in the improvement of one criterion while causing deteriora- 
tion of another. Figure la illustrates a simple case with two 
parameters (0•, 02) and a two-criteria response function { f•, 
f2}. Figure la shows the feasible parameter space 19, and 
Figure lb shows the projection of the parameter space into the 
function space. The points a and/3 indicate the solutions that 
minimize each of the individual criteria. The thick line indi- 

cates the set S of multicriteria minimizing points to the func- 
tion { f•, f2}- If 3' and & are points arbitrarily selected from 
inside and outside S, respectively, then every point 3' is supe- 
rior to every point & in a multicriteria sense because it has the 
property that f•.(3') < f•(&), for j = 1, 2. However, it is not 
possible to find another point 3'* in S such that 3' is superior to 
3'*; instead, 3' will be superior to 3'* for one criterion but 
inferior for at least one other criterion. The set S of solutions 

is variously called the trade-off set, noninferior set, nondomi- 
nated set, or efficient set. However, we here call it the Pareto 
set. 

The notion of Pareto Ranking [Goldberg, 1989] can be es- 
tablished using the set R as a sample approximation to 19 as 
follows: First, the Pareto set R • of the sample R is assigned 
rank 1 and set aside. Next the Pareto set R 2 of the remaining 
parameter space is identified, assigned rank 2, and also set 
aside. In this way the procedure is to assign progressively 
higher ranks until the entire sample R has been processed. 
Note that all the points belonging to a set R i are not inferior to 
each other, but that each set R i is superior to R i (j > i) in a 
multicriteria sense. The above ranking procedure imposes an 
order such that lower-ranked points are closer to the Pareto 
set. Thus the requirement to partition 19 into behavioral and 
nonbehavioral regions reduces to the need to select an appro- 
priate Pareto rank R* as a threshold. 

3.3. Testing for Sensitivity: MOGSA Algorithm 

Once 19 has been partitioned into behavioral and nonbehav- 
ioral sets (i.e., R is partitioned into RB and Ra) by selecting a 
threshold Pareto rank, the degree of difference between those 
two sets of parameters forms the basis for conclusions regard- 
ing the relative sensitivities of the parameters. Following Spear 
and Hornberger [1980] and the nomenclature therein, we can 
test whether the individual a priori marginal parameter distri- 
butions of the two sets separate under the classification. If 
an individual marginal distribution does not separate 
(i.e., p(Oi) -- P(Oi/RB) = p(Oi/RB)), this is because the 
parameter Oi taken alone does not have a significant effect on 
the occurrence or nonoccurrence of the behavior; that is, the 
behavior is insensitive to Oi over the multidimensional region 
of the parameter space. 

In practice, and because they are simpler to compute, we 
actually use the Kolmogorov-Smirnov (K-S) two-sample test 
to establish whether the two cumulative marginal distributions 
are different. The K-S test is based on the statistic 

dm.n = sup eB(x) - eB(x)l (3) 
x 

where PB and Pa are the sample cumulative distributions 
functions corresponding to p(Oi/B) and p(Oi/B) for n behav- 
iors and m nonbehaviors, respectively. The statistic represents 
the maximum distance between the two cumulative distribu- 

tion function curves and can be associated with a particular 
significance level or probability value, thereby allowing a rela- 
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Sample N points in feasible space 

Partition population into behavioral (B) and non 
behavioral BLB_/sets based on Pareto ranking 

Compute cumulative distributions P(O,/B) and 
P(O,/B_). Perform Kolmogorov-Smirnov test. 

. 

' ' 
Bootstrap 50 times 

In .... e sample size I 
Figure 2. Flowchart of the MOGSA parameter sensitivity 
analysis method. 

tive ranking of parameter sensitivities. In this study, signifi- 
cance levels below 1%, from 1 to 5%, and above 5% are used 
to define "high," "medium," and "low" parameter sensitivities, 
respectively. 

The results of the sensitivity test described above will vary 
both with sample size and across samples, particularly for small 
sample sizes. Therefore we ensure statistical robustness by 
bootstrapping the sample (resampling 50-200 times with re- 
placement) [Effort, 1979a, b; Mooney and Duval, 1993] and by 
using the median of the K-S statistics so obtained [Rousseeuw, 
1991]. Further, we employ a procedure of successively increas- 
ing the sample size until the number of "sensitive" parameters 
stabilizes. The results could also be dependent on the choice of 
the thresholding Pareto rank R*. Our computer implementa- 
tion permits simultaneous analysis for several threshold values 
to test for such dependence. The methodology, named mul- 
tiobjective generalized sensitivity analysis (MOGSA), is pre- 
sented in Figure 2. 

4. Case Studies 

The above-described MOGSA procedure was used to esti- 
mate the parameter sensitivity of a typical, complex land sur- 
face scheme using two different data sets, one from a Sonoran 
Desert semiarid site near Tucson, Arizona [Unland et al., 
1996], and the other from the ARM-CART (atmospheric ra- 
diation measurement--cloud and radiation testbed) project 
El3 grassland site within the southern Great Plains GCIP 
study area. The LSS used for this study was the off-line version 
of the Biosphere-Atmosphere Transfer Scheme (BATS le) 
[Dickinson et al., 1993] which has 24 independent parameters 
and three initial soil moisture conditions that must be specified 
(see Table 1). For a description of the BATS model and both 

data sets, please refer to the companion paper [Gupta et al., 
this issue]. 

The Tucson data were collected at 20 min time intervals and 

cover an entire year from May 1993 to April 1994. The mea- 
sured atmospheric forcings are net radiation, incoming radia- 
tion, air temperature, precipitation, specific humidity, and 
wind speed. The observed model response variables are sensi- 
ble heat (H), latent heat (hE), and ground temperature (Ta). 
The measured heat fluxes were flagged at certain times by 
Unland et al. [1996] as being of dubious quality, and these data 
were therefore not used in this study. The remaining observa- 
tional data were available at 5219 time steps. 

The ARM-CART data set covers the 5 month period from 
April 1 to August 25, 1995, with a sampling interval of 30 min. 
The observed forcing values are net radiation (R n in W/m2), 
surface temperature (T a in Kelvins (K)), atmospheric pressure 
(Pa in kPa), relative humidity (r h in percent), wind velocity 
(Va in m/s), and precipitation (P in millimeters (mm)). Several 
gaps in the data were filled via interpolation by taking account 
of the diurnal cycle and the occurrence of precipitation [see 
Gupta et al., this issue]. The data set also contains time series 
observations for four variables that correspond with two model 
outputs, sensible heat (H in watts per square meter (W/m2)) 
and latent heat (AE in W/m2), and two model state variables 
(ground temperature (T a in K) and soil moisture (S w in mm)). 
Because of problems with the Bowen ratio system measure- 
ments, all H and AE data corresponding to Bowen ratio be- 
tween 0.75 and 1.25 were discarded. The resulting number of 
time steps at which values of H, AE, Ta, and S w are available 
is 4237. 

4.1. Sensitivity Analysis Results 

The MOGSA methodology was used to estimate the param- 
eter sensitivity of BATS for each site using the RMSE between 
the observed and the model-simulated time series values of 

each observed system response as a different system response 
criterion: {H}, {AE}, {Ta}, and {S w} for ARM-CART and 
{H}, {AE}, and {T.q} for Tucson. The parameters were al- 
lowed to vary between minimum and maximum values corre- 
sponding approximately to the full range of possible values for 
all locations on the Earth, except for the parameters rough and 
displa that do not include the rainforest vegetation type and 
parameter xmohyd for which the range was somewhat more 
restricted (see Table 1). Note that proper feasibility constraints 
were imposed on the allowable values for the parameters to 
preserve the physical realism of the parameterization. For ex- 
ample, the thicknesses of the shallower soil layers are con- 
strained to be less than the deeper soil layers, the initial water 
contents are less than the corresponding soil layer depths, and 
the season variability of vegetation cover and leaf area index 
are smaller than their maximum values. 

The algorithm stabilized for a minimum sample size of 750 
for the Tucson data and for a minimum sample size of 3000 for 
the ARM-CART data. The Pareto rank 10 was chosen as the 

threshold value R * because (1) it was found to achieve a higher 
number of sensitive parameters with a smaller sample size (for 
both the mean and the median of the K-S probability value and 
for both sensitivity thresholds 0.01 and 0.05); and (2) because 
it gave stable results regardless of sample sizes. The results are 
presented in Figure 3 for the Tucson site and Figure 4 for the 
ARM-CART site. The top subplots show the results for the 16 
vegetation parameters and the bottom subplots show the re- 
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Table 1. Parameters Considered in BATS Sensitivity Analysis 

Name Description (units) Range 
Tucson ARM-CART 

Reasonable Range Reasonable Range 

1 vegc 
2 seasf 

3 rough 
4 displa 
5 rsmin 

6 xla 
7 xlai0 
8 sai 

9 sqrtdi 
10 fc 

11 depuv 
12 deprv 
13 deptv 
14 albvgs 
15 albvgl 
16 rootf 

17 
18 

19 

20 

21 
22 

23 

24 

25 

26 

27 

xmopor 
xmosuc 

xmohyd 
xmowil 

xmofc 

bee 

skrat 

solour 

ssw 

rsw 

tsw 

Parameters Associated With Vegetation (18 Vegetation Types) 
vegetation cover 0.0-0.95 
difference between vegc and fractional cover at 269 K 0.0-0.60 
aerodynamic roughness length (m) a 0.0024-1.0 
displacement height (m) a 0.0-5.0 
minimum stomatal resistance (s/m) 5.0-200.0 
maximum leaf area index 0.0-6.0 

minimum leaf area index 0.0-5.0 
stem area index 0.5-4.0 

inverse sqrt of leaf dimension (mm ̂ -0.5) 5.0-10.0 
light dependence of stomatal resistance (m2/w) 0.02-0.06 
depth of top soil layer (m) 0.05-0.5 
depth of root zone layer (m) 0.5-2.0 
depth of total zone layer (m) 5.0-10.0 
vegetation albedo for shortwave < 0.7 •m 0.04-0.20 
vegetation albedo for longwave > 0.7 •m 0.18-0.40 
ratio of roots in upper layer to roots in root layer 0.30-0.90 

Parameters Associated With Soil Texture (12 Textures) 
porosity 0.33-0.66 
minimum soil suction (mm) ' 30.0-200.0 
maximum hydraulic conductivity (mm/s) t' 0.0008-0.01 
water content at which permanent wilting point occurs c 0.088-0.542 
ratio of field capacity to saturated water content c 0.404-0.866 
Clapp and Hornberger "b" parameter 3.5-10.8 
ratio of soil thermal conductivity to that of loam 0.7-1.7 

Parameters Associated With Soil Color (8 Colors) 
soil albedo for different colored soils 0.05-0.12 

Initial Conditions 

surface zone water content (m) 0.0-depuv 
root zone water content (m) 0.0-deprv 
total zone water content (m) 0.0-deptv 

0.10-0.70 0.40-0.95 
0.00-0.60 0.00-0.80 

0.01-0.84 0.01-0.35 
0.05-1.50 0.05-1.50 

50.0-200.0 50.0-200.0 
0.05-3.00 0.05-6.00 

0.05-3.00 0.05-4.00 

1.00-4.00 1.00-3.00 
5.00-10.00 5.00-10.00 

0.02-0.06 0.02-0.06 
0.01-0.20 0.01-0.20 

0.50-2.00 0.50-2.00 
5.00-10.00 5.00-10.00 
0.10-0.20 0.10-0.20 
0.20-0.40 0.20-0.40 

0.10-0.90 0.10-0.90 

0.33-0.66 0.33-0.66 
30.0-200.0 30.0-200.0 

0.0008-0.01 0.0008-0.01 

3.5-10.8 3.5-10.8 
0.7-1.7 0.7-1.7 

0.05-0.12 0.05-0.12 

0.0-0.2 0.0-0.2 

0.0-5.0 0.0-5.0 

0.0-10.0 0.0-10.0 

Global and reasonable ranges. 
aRange does not include tropical rain forest. 
t'Range restricted. 
Cparameters not considered in the analysis. 

sults for the eight soil parameters and the three initial soil- 
moisture conditions. 

The top part of each subplot shows the "global" sensitivity of 
the model, i.e., the sensitivity obtained using the Pareto rank- 
ing 10 as threshold. The bottom part of each subplot shows the 
single-criteria sensitivity of the model to each modeled vari- 
able. For consistency, the single-criterion thresholds were cho- 
sen to partition the sample populations into fractions similar to 
those achieved by the Pareto ranking threshold. In the bottom 
part of each subplot, each group of vertical bars corresponds to 
the sensitivity of a different parameter; the longer the bar, the 
more sensitive the parameter. Also indicated in the plots are 
the 1 and 5% significance levels. If a sensitivity bar crosses the 
1% level, the parameter is considered to have high sensitivity; 
if it crosses the 5% level, it is 'considered to have medium 
sensitivity. Otherwise, it is considered to be relatively insensi- 
tive. 

Considering first the Tucson site (Figure 3), the joint mul- 
ticriteria analysis (top bars) indicates 15 sensitive parameters, 
specifically 12 parameters with high sensitivity, of which 5 are 
related to vegetation (vegc, rough, rsmin, depuv, and deprv), 5 
are related to soil (xmopor, xmosuc, bee, and skrat); and 2 are 
the initial top and total water contents (ssw and tsw); and 3 
parameters have medium sensitivity, of which 2 are related to 
vegetation (displa and xla), and 1 is related to soil (solour). The 
single-criterion analyses (bottom bars in Figure 3) reveal fur- 

ther details about the relationships between different modeled 
variables and individual parameters. Note, for example, that 
the heat fluxes are sensitive to the roughness length and to the 
depths of the top and root soil layers but that the ground 
temperature is not. In particular, it is significant that none of 
the modeled variables are sensitive to the seasonal variation of 

the vegetation cover (seas 0 and the minimum leaf area index 
(xlai0) which is consistent with the properties of the Tucson 
semiarid environment. 

In the case of the ARM-CART site (Figure 4), the joint 
multicriteria analysis (top bars) indicates 16 sensitive parame- 
ters, specifically 14 parameters with high sensitivity, of which 8 
are related to vegetation (vegc, seasf, rsmin, xla, xlai0, depuv, 
deprv, and rootf), 4 are related to soil (xmosuc, xmohyd, bee, 
and skrat), and 1 is the initial water content of the top soil layer 
(ssw); and 2 parameters with medium sensitivity, 1 related to 
soil porosity (xmopor), and 1 being the initial water content of 
the root layer (rsw). Note that the initial total soil layer water 
content (tsw) might also be considered of "medium" sensitiv- 
ity. The single-criterion analyses (bottom bars in Figure 4) 
reveal that the heat fluxes are very sensitive to stomatal resis- 
tance but that the state variables (ground temperature and soil 
moisture) are not. Further, in contrast with the Tucson site, the 
modeled variables are all sensitive to the seasonal variation of 

the vegetation cover (seas 0, and the heat fluxes are both sen- 
sitive to minimum leaf area index (xlai0). This is plausible, 
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Figure 3. Parameter sensitivity analysis results for the BATS model applied to the Tucson semiarid site. 
Multicriteria results are indicated by upward pointing bars and individual-criterion results are indicated by 
downward pointing bars; the longer the bar, the more sensitive the parameter. Sensitivity bars crossing the 1% 
(0.01) and 5% (0.05) levels indicate parameters having high and medium sensitivity, respectively. The top 
subplot shows results for the vegetation-related parameters, and the bottom subplot shows results for the soil 
parameters and initial conditions. Parameters xmowil and xmofc were not included in the analysis. 

considering that the period for which data are available is from 
April to August, and the vegetation over which measurements 
are made is irrigated crop. 

Thus both sites show relatively high sensitivity to 11 param- 
eters, 5 related to vegetation (vegc, rsmin, xla, depuv, and 
deprv), 6 related to soil (xmopor, xmosuc, xmohyd, bee, and 
skrat), and 1 being the initial water content of the surface soil 
layer (ssw). Both sites show relatively low sensitivity to 6 of the 
vegetation parameters, 3 related to stem and leaf properties 
(sai, sqrtdi, and fc), the depth of the total soil layer (deptv), and 
the vegetation albedos (albvgs, and albvgl). 

However, the vegetation-related parameters (rough and dis- 
pla) and the soil color parameter (solour) show high sensitivity 
at the Tucson site but low sensitivity at the ARM-CART site, 
while the vegetation-related parameters (seasf, xlaio, and 
rootf) and the soil parameter (xmotc) show low sensitivity at 
the Tucson site but high sensitivity for ARM-CART. Further, 
the vegetation-related roughness length (rough) is the most 
sensitive parameter for the Tucson site but is the least sensitive 
parameter for the ARM-CART site. In contrast, the difference 
between vegetation and fractional cover (seasf) is a very highly 
sensitive parameter for the ARM-CART site but a parameter 
with very low sensitivity at the Tucson site. 

The sensitivity results for both sites are consistent with the 
model formulation and the physical properties of the different 
environments. For the semiarid Tucson site, 6 of the 8 most 
sensitive parameters are related to the soil storages and tex- 
ture, while for the ARM-CART site, 5 of the 8 most sensitive 
parameters are related to vegetation properties. Moreover, the 
results generally agree with Gao et al. [1996], Wilson et al. 
[1987a, b], and Lettenmaier et al. [1996]. Note that at both sites 
in this study, there is low sensitivity to the light dependence of 
stomatal resistance (fc) and to the vegetation albedos (albvgs, 

albvgl) in marked contrast to the results of Henderson-Sellers 
[1992] for tropical forest. 

4.2. Application of the Sensitivity Results to Model 
Calibration 

An important aim of the parameter sensitivity analysis is to' 
allow the possible reduction in the number of parameters that 
must be estimated, thereby reducing the computational time 
required for model calibration. Gupta et al. [this issue] con- 
ducted a multicriteria calibration run for the Tucson site in 

which they estimated 25 parameters using the latent heat (H), 
sensible heat (,•E), and ground temperature (Ta) system re- 
sponses. This 25 parameter calibration run required ---20,000 
iterations (model simulations) to converge to a solution. To 
illustrate the usefulness of parameter sensitivity analysis in 
reducing the computational effort associated with calibration, 
a similar multicriteria calibration run was made in which only 
18 parameters were estimated, including the 15 sensitive pa- 
rameters (vegc, rough, displa, rsmin, xla, depuv, deprv, xmo-' 
por, xmosuc, xmohyd, bee, skrat, solour, ssw, and tsw) and the 
three marginally sensitive parameters (fc, rootf, and rsw). 
(Note that in BATS the parameter xmowil is derived from 
other parameters and was therefore not included). In this run, 
the insensitive parameters (seasf, xlai0, sai, sqrtdi, deptv, alb- 
vgs, and albvgl) were prescribed to be at the BATS default 
values for semiarid regions [see Gupta et al., this issue, Table 
1]. The goal is to demonstrate that if the parameters diagnosed 
as being insensitive using the MOGSA methodology are not 
calibrated, there is only a marginal degradation in the quality 
of the calibrated model performance, and the preferred range 
of parameters is changed only slightly. 

The results of these two runs are compared in Figure 5. The 
results shown in light shade correspond to the Pareto set ob- 
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Figure 4. Parameter sensitivity analysis results for the BATS model applied to the ARM-CART grassland 
site El3. See explanation on caption for Figure 3. 

tained by the 25 parameter multicriteria calibration run and 
the results shown in black correspond to the Pareto set ob- 
tained by the 18 parameter multicriteria calibration run. The 
parameter estimates are shown on a normalized parameter 
plot (Figure 5a); the parameters and the three initial soil mois- 
ture contents are listed along the x axis, and the y axis corre- 
sponds to the parameter values plotted on a range normalized 
by the allowable maximum and minimum values for the pa- 
rameters (Table 1). Each line from left to right across the plot 
corresponds to a different parameter estimate. The lightly 
shaded area in the background corresponds to the parameter 
ranges considered to be reasonable for the Sonoran Desert 
semiarid Tucson site (see Table 1); these reasonable ranges 
were not used to constrain the calibration runs but were in- 

stead used as postcalibration checks on the reliability and 
power of the calibration procedure: that is, a successful cali- 
bration run should converge to estimates that fall within these 
ranges. Figure 5b shows the trade-offs between the different 
criteria in the multicriteria space; the three response criteria 
are listed along the x axis, while the y axis corresponds to the 
criterion values (RMSEs) with preferred values toward the 
bottom of the plot. Each line going from left to right across the 
plot corresponds to a calibration result (and hence a different 
set of parameter values). Note that if a calibration result plots 
as a line, which falls entirely below (or above) that of a differ- 
ent result, the former can be said to be absolutely superior 
(inferior) in a multicriteria sense. However, if the two lines 
cross each other, then the results are noninferior to each other 
in a multicriteria sense. 

It is important to note that all the solutions for both the 25 
and the 18 parameter calibration runs fall within the reason- 
able bounds (Figure 5a). In the case of the 25 parameter 
calibration, some of the insensitive parameters (sqrtdi, deptv, 
albvgs, and albvgl) tend toward different locations from the 
fixed default values used in the 18 parameter calibration, and 
to be poorly constrained (i.e., they have a relatively wide 
spread). Highly sensitive parameters (e.g., vegc and xmopor) 

tend to be tightly constrained and have similar values in both 
calibration runs, while the less sensitive parameters (e.g., bee 
and fc) tend to be less constrained and vary more. This is 
entirely consistent with the expectation that the less sensitive 
parameters will have a less well defined optimal region. 

Figure 5b shows that the 25 parameter calibration run is 
superior to the 18 parameter calibration run in a multicriteria 
sense; but only marginally so, the improvement in the RMSEs 
for the three system responses is less than 10%. However, the 
18 parameter calibration run required only 4000 iterations 
(model simulations) to converge to a solution, a fivefold re- 
duction from the 25 parameter calibration. These results sug- 
gest that the parameter sensitivity analysis using MOGSA is a 
sensible and viable way to reduce the dimensionality of the 
parameter estimation problem, thereby reducing the compu- 
tational time required for calibration. The left column of Fig- 
ure 6 shows a typical 10 day portion of the time series match 
obtained by the 18 parameter calibration run. For each system 
response, the dots indicate the observed data and the lightly 
shaded area represents the range of variation at each time step 
corresponding to the Pareto set of parameter estimates. The 
relative uncertainty of the daytime hE trajectory is a conse- 
quence of the high degree of noise in the data. The statistics 
computed for each of the responses, as well as the scatterplots, 
are defined for the middle point of the trajectory set and are 
calculated for the entire year of data. The correlation between 
the simulated and the observed values is gratifying. 

5. Summary and Conclusions 
A companion paper [Gupta et al., this issue] describes the 

development of a multicriteria calibration procedure for de- 
termining the preferred range of the many parameters re- 
quired in a complex, present-day LSS and illustrates the ap- 
plication of that procedure using the BATS model with data 
from two field sites. In practice, it is desirable to restrict the 
number of parameters to be calibrated in order to reduce the 
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Figure 5. Results showing the benefits of using multicriteria parameter sensitivity analysis to reduce pa- 
rameter dimensionality before calibration of the BATS model to the Tucson semiarid site. The full 25 
parameter calibration results are shown in black and the reduced 18 parameter calibration results are shown 
in light shade. (a) Parameter estimates plot: each horizontal line represents a member of the Pareto solution 
set. The medium shade area indicates the reasonable range of parameter variability for semiarid regions. (b) 
Criterion values plot: each horizontal line represents a member of the Pareto solution set. Lines closer to the 
base of the plot indicate superior solutions. 

computational effort. Further, the ability to make objective 
determination of the relative sensitivity of modeled variables to 
the specific parameters used in an LSS at a particular site has 
a broader value as a basis for specifying the relative importance 
of the physical processes represented in the model. Thus a 
methodology is required which is consistent with multicriteria 
parameter estimation methods and which is capable of deter- 
mining the extent to which the modeled variables given by an 
LSS are sensitive to the value of the individual parameters 
used in it. 

This need is addressed directly in this paper, by describing 
the development of a novel, multicriteria approach to evaluate 
parameter sensitivity, the MOGSA algorithm, which extends 
and improves the regional sensitivity analysis single-criterion 
method of Spear and Hornberger [1980] to multicriteria by 
sorting the possible parameter sets via the notion of Pareto 
ranking and by applying bootstrapping and sequential sam- 
pling to ensure statistical robustness of the results. The method 
enables the parameters to be ranked in terms of both absolute 
and relative sensitivity. This procedure is then applied in the 
context of the parameter estimation studies described in the 
companion paper. First, the parameters that have significant 
influence on the values of the modeled variables at the two 

sites are determined and are distinguished from the parame- 
ters that have little influence and which might therefore be 
safely omitted from the calibration run. The consequences of 
omitting these parameters from the multicriteria calibration 
were then investigated. 

For both field sites considered in this study, the MOGSA 

algorithm was effective in specifying the sensitivity of BATS- 
calculated variables to the parameters used in the model. The 
results provide insight into important parameters and associ- 
ated processes in BATS at the two field sites. In both cases the 
modeled variables were found to be sensitive to 12 parameters. 
Five are related to vegetation, specifically vegetation cover, 
aerodynamic roughness, minimum stomatal resistance, depth 
of upper soil layer, and depth of root zone soil layer; six are 
related to soil, specifically porosity, minimum soil suction, max- 
imum hydraulic conductivity, Clapp and Hornberger "b" pa- 
rameter, and ratio of soil thermal conductivity to that of loam; 
and one is the initial water content of the surface layer. In both 
cases the modeled variables were found to be insensitive to six 

vegetation-related parameters, specifically stem area index, in- 
verse square root of leaf dimension, light dependence of sto- 
matal resistance, depth of the total soil layer, and the vegeta- 
tion albedos for both shortwaves and longwaves. 

However, important differences were found in the model 
sensitivities at the two sites. These presumably reflect the prev- 
alent climate and the nature of the vegetation at the sites. 
Specifically, the parameters aerodynamic roughness, displace- 
ment height, and soil color show high sensitivity at the semiarid 
Tucson site but low sensitivity at the ARM-CART grassland 
site, while the parameters difference between vegc and frac- 
tional cover at 269 K, minimum leaf area index, ratio of roots 
in the upper layer to roots in the lower layer, and ratio of field 
capacity to saturated water content show low sensitivity at the 
Tucson site but high sensitivity for ARM-CART. In general, 
the sensitivity results for both sites are consistent with the 
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model formulation and the physical properties of the different 
environments. For the Tucson site, six of the eight most sen- 
sitive parameters are related to soil properties, while for the 
ARM-CART site, five of the eight most sensitive parameters 
are related to vegetation properties. 

Comparison between the results of calibration runs for the 
Tucson semiarid site, in which all the parameters were opti- 
mized and in which only a subset of sensitive parameters were 
optimized, was consistent with expectations. There was only 
limited degradation in the quality of the correspondence be- 
tween modeled and observed values (the RMSE for the three 
criteria increased by less than 10%), and the ranges of pre- 
ferred values for the parameters that were optimized in both 
runs were mutually consistent. However, the calibration run 
for the sensitive parameter subset required only 4000 iterations 
(model simulations) to converge to a solution, a fivefold re- 
duction over the full parameter calibration. 

Thus in summary, the multicriteria methodology MOGSA 
developed in this study proved successful when applied to 
evaluate the sensitivity of model-calculated variables to indi- 
vidual parameters for a complex LSS at two distinctly different 
field sites. The sensitivity results for both sites were found to be 
consistent with the physical properties of the different envi- 
ronments, thereby supporting the reasonableness of the model 
formulation. Further, the analysis provided evidence on the 
importance of parameters (and the associated processes) op- 
erating at the two sites, and when the parameters it identified 
as insensitive were omitted from the optimization process, 
there was little degradation in the quality of the model 
description and little change in the preferred range of the 
remaining parameters. The MOGSA algorithm has been 
written to be generally applicable to any model, and the 
code is available from the authors on request (e-mail: 
hoshin @ hwr. arizona. edu ) . 
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