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Purpose: Megavoltage CT (MVCT) images are noisier than kilovoltage CT (KVCT) due to low
detector efficiency to high-energy x rays. Conventional denoising methods compromise edge resolu-
tion and low-contrast object visibility. In this work, we incorporated block-matching 3D-transform
shrinkage (BM3D) transformation into MVCT iterative reconstruction as nonlocal patch-wise
regularization.

Methods: The iterative reconstruction was achieved by adding to the existing least square data fide-
lity objective a regularization term, formulated as the L1 norm of the BM3D transformed image. A
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) was adopted to accelerate CT reconstruc-
tion. The proposed method was compared against total variation (TV) regularization, BM3D postpro-
cess method, and filtered back projection (FBP).

Results: In the Catphan phantom study, BM3D regularization better enhances low-contrast objects
compared with TV regularization and BM3D postprocess method at the same noise level. The spatial
resolution using BM3D regularization is 2.79 and 2.55 times higher than that using the TV regulariza-
tion at 50% of the modulation transfer function (MTF) magnitude, for the fully sampled reconstruction
and down-sampled reconstruction, respectively. The BM3D regularization images show better bony
details and low-contrast soft tissues, on the head and neck (H&N) and prostate patient images.
Conclusions: The proposed iterative BM3D regularization CT reconstruction method takes advan-
tage of both the BM3D denoising capability and iterative reconstruction data fidelity consistency.
This novel approach is superior to TV regularized iterative reconstruction or BM3D postprocess for
improving noisy MVCT image quality. © 2018 American Association of Physicists in Medicine
[https://doi.org/10.1002/mp.12916]
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1. INTRODUCTION

Megavoltage CT (MVCT) is wused in image-guided
TomoTherapy treatment but its quality is plagued by high
noise level as a result of low detector quantum efficiency
(DQE) of high-energy x rays."> Both postprocessing and iter-
ative reconstruction were used to suppress the noise. In itera-
tive CT reconstruction, regularization terms play an
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important role.® Inspired by the compressed sensing theory,
L1-type regularization terms such as total variation (TV) have
been widely used in CT iterative reconstructions to preserve
image edges.* ® Recently, a tensor framelet regularization
scheme, the generalization of TV, wavelet, and L1-norm, was
proposed by Gao et al. to maintain the object boundary in
MVCT reconstruction while suppressing noise.” These tech-
niques are effective to remove the image noise and streaking
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artifacts due to view aliasing in reconstructed images, but still
result in noticeable image resolution loss when noise varia-
tion is high as shown in MVCT.

The block-matching 3D-transform shrinkage (BM3D)
algorithm was recently proposed and achieved superior image
noise suppression relative to local denoising methods by clus-
tering similar but nonlocal 2D image patches into one group
and performing denoising within each group.®® Because of
the desired denoise performance, BM3D has been used in CT
reconstruction. In a naive fashion, BM3D was applied
directly on the CT projection'® or reconstructed CT
images'''* as a preprocessing or postprocessing component
separate from the reconstruction. These studies showed
superior image resolution preservation to local denoising
methods but the inherit balance between data fidelity and
BM3D regularization was not fully exploited as a single
optimization problem. The integrated optimization approach
was initially implemented for deblurring and denoising nat-
ural images,'*'® where BM3D was formulated as L1 regu-
larization to encourage data sparsity in the BM3D
transformation domain. This method exploited data consis-
tency while suppressing image noise, better preserved
image features and outperformed the naive application. In
2013, Yang et al."” used BM3D patches extracted from a
priori fully sampled images to regularize sparse view recon-
struction of a 2D digital phantom. However, iterative CT
reconstruction using BM3D on real phantom and patient
projections has not been demonstrated. In this study, BM3D
regularization was applied to Catphan and patient MVCT
reconstruction.

2. MATERIALS & METHODS
2.A. Problem Formulation

The CT iterative reconstruction with BM3D regularization
is formulated as

- _ argmin 1 )

X = Xzo 2 ||AX gZH + BHH((DX)? (1)
where g is the measured projection data, A is the forward pro-
jection matrix, @ is the BM3D transformation matrix, f is the
hyperparameter controlling the tradeoff between data fidelity
and regularization, and H,, is the Huber penalty function with
a smoothing parameter pu'® that approximates the L1 norm,
defined as

ly|<n

Lyz
Hay) = { 128y

-4,

In Eq. (1), the quadratic data fidelity term minimizes the

discrepancy between the measured and the estimated projec-

tions, and the regularization term promotes sparsity in the

BM3D transformation domain, which subsequently encour-
ages image smoothness and maintains image texture.

As shown in Fig. 1, the workflow involved two main steps.

In the first step, a block-matching process was performed on
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a coarsely reconstructed initial image to generate the matched
groups, from which the BM3D analysis matrix ® was con-
structed. In the second step, matrix @ was utilized in Eq. (1)
for iterative reconstruction.

2.B. Construction of BM3D transformation matrix

The block-matching was performed on the initial CT
images from TV reconstruction, on which each reference
patch P,(r = 1,2,...,R), with size n? by n? and a separation
distance n¢ in both the row and column directions, is denoted
by the index of the voxel at the left upper corner. For each P;,
a nonlocal searching procedure is performed within the
P;-centered n¥-by-n" window on the initial CT image to obtain
a group of similar patches Gy = {S;j_,Srj2, ", Srj=1 } t0
P, with respect to Euclidean distance. Let x be the vectorized
MVCT image with dimension N. An indicator matrix I, ; with
dimension (nP)*-by is defined for the j patch in the r'
group, such that I - X is a vector containing every pixel in
the similar patch S, ;. The indicator matrix I, for group G; is a
concatenation of all I j(j = 1,2,...,J), and the matrix-vector
product I; - x provides the vectorized group G;.

Aside from the indicator matrix, two independent linear
transformation matrices T; and T, are utilized in the con-
struction of BM3D analysis matrix. T; is the 1D Hadamard
transformation matrix that performs interpatch transformation
across different patches within one group. T, is the 2D Haar
wavelet matrix for intrapatch transformation within each
patch. Ty and T, together implement a 3D transformation on
the group G, that transforms image patches in G; to the
BM3D spectra, with spectra coefficients given by

W = (T] ®T2) . (Ir 'X)

The joint BM3D spectra are a concatenation of the BM3D
spectra for all groups. By defining the BM3D analysis matrix
D as

(Ty®@Ts) - Ly
(Ty ®Ta) - Les

(Ti ® T2) - Lr

the joint BM3D spectra are related to the vectorized image x
by o = Ox.

2.C. Minimization of objective function

The objective function in Eq. (1) was minimized using a
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), a
fast proximal method that solves optimization problem in the
form of

minimize F(x) + G(x),

where F is convex and differentiable function with a Lipschitz
continuous gradient, and G is a convex simple function in
that its proximal operator can be evaluated efficiently. The
proximal operator is evaluated through'®
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FiG. 1. Workflow of the MVCT iterative reconstruction using BM3D regularization.

argmin 1
prox,g(x) = gz (G(z) + % |z — x|§)

Algorithm 1 summarizes the FISTA with line search algo-
rithm, where the main operation in each iteration of FISTA
are the evaluation of the proximal operator of G and the
gradient of F.

Algorithm 1: FISTA with line search.

Pseudocode for FISTA with line search
Initialize xg:= 0, Vg:=Xg,8p >0,y >1, 1, >1
for k=1,2,.. do

ti=1ty

Repeat

(1 if k=1
. {positive root of t,_16% =t0%_,(1—-0) if k>1
yi=0-60)x;_1+ 6V,
X = proxm(y - tVF(y))

breakif F(x) < F(y)+< VF(y),x -y > +-|lx - ylI}

t:=1t/r,
=1t
Bk =0

1
V= X+ o (00— x)
=
if k<
break if Tl =€
Xpi=x
end for
return X

The proposed optimization problem Eq. (1) is presented
in a canonical FISTA form by defining:

1
Fx) = 5 [lAx — gl + BH(®x),

0 ifx>0
oo otherwise

6x) =1.x) = {

The proximal operator of G simply projects onto the
non-negative orthant:

proxg (x) = P (x) = max(x, 0),

and the gradient of F is given by
VFE(x) = AT(Ax — g) + ECDTP[,W]((I)X).

This allows a direct application of FISTA to our formulation.
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2.D. Evaluation

A Siemens imaging quality phantom,' a head and neck
(H&N) patient, and a prostate patient was scanned on an
onboard TomoTherapy imaging system®’ with a 3.5 MV heli-
cal fan beam. A total number of 800 projections were
acquired. The proposed method is compared with Filtered
Back Projection (FBP), TV, and BM3D postprocessing
methods, where the BM3D postprocess performs the BM3D
denoising filter on a FBP-reconstructed CT image.
Evaluation includes both full sampled reconstruction and
down-sampled reconstruction, where 25% of the uniformly
sampled projections are utilized. The task-based modulation
transfer function (MTF)*' is evaluated for comparison of
image resolution across both linear and nonlinear reconstruc-
tion methods.

3. RESULTS
3.A. Phantom study

The reconstruction results using BM3D regularization,
TV, BM3D postprocess and FBP on a line pair slice and
a contrast rod slice of the Siemens imaging quality phan-
tom are shown in Figs. 2 and 3 respectively, for both
fully sampled reconstruction and down-sampled recon-
struction. The image noise, computed as the standard
deviation (STD) within the squares on Figs. 2(d1) and
3(dl), is kept at the same level across all reconstruction
methods except for FBP. TV reconstruction loses the fine
feature as shown by the 8th line pair on the 800 projec-
tion image and the 7th line pair on the 200 projection
image, whereas these line pairs are distinguishable on
images reconstructed from other methods. BM3D postpro-
cess method achieves comparably high spatial resolution
as the BM3D regularization methods, as evaluated by
these high-contrast line pairs, but the postprocessing
method amplifies streaking artifacts, [Fig. 2(c2)], which
originates from the noisy FBP image in Fig. 2(d2), due
to the lack of iterative fidelity penalty in this approach.
Compared to other methods, the BM3D regularization
method is able to maintain image spatial resolution while
removing both the noise and artifacts.

The contrast rod slice compares performance on high- and
low-contrast objects across different reconstruction methods.
Both TV and BM3D postprocess are less effective at
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FiG. 2. Resolution slice reconstructed from (a) BM3D regularization, (b) TV, (c) BM3D postprocess, and (d) FBP using (1) 800 projections and (2) 200 projec-
tions, respectively. Zoom-in details for the 6th—8th line pairs are shown in the left lower corner. The images from BM3D regularization, TV, and BM3D postpro-

cess are under the same noise level.

FiG. 3. Contrast rod slice reconstructed from (a) BM3D regularization, (b) TV, (c) BM3D postprocess, and (d) FBP using (1) 800 projections and (2) 200 projec-
tions, respectively. The images from BM3D regularization, TV, and BM3D postprocess are under the same noise level.

preserving low-contrast objects while removing the image
noise, whereas the BM3D regularization image is able to dis-
tinguish low-contrast fine structures that were obscured by
the noise in the FBP images. Table I presents the quantitative
CNR values evaluated on the contrast rod object indicated by
the region-of-interest (ROI) with label 1 on Fig. 3(d1).

Medical Physics, 45 (6), June 2018

Image resolution comparison across BM3D regularization,
TV, and BM3D postprocess methods under the same noise
level is presented by the line profile plots of the 6™ line pair
in Fig. 4 and the MTF plots in Fig. 5, evaluated basing on
the highest contrast object (ROI2) on Fig. 3(d1). Figures 4
and 5 show that, for high-contrast objects, with equal image
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TaBLE I. The CNR for the contrast slice with the ROII indicated in
Fig. 3(d1).

BM3D BM3D
CNR regularization TV postprocessing FBP
800 Projections 372.10 222.10 300.61 48.91
200 Projections 235.09 230.75 203.34 14.47
Moz
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noise suppression, both the BM3D postprocess and the
BM3D regularization methods maintained resolution compa-
rable to the FBP, whereas the TV regularization degraded the
resolution. At 50% of the MTF magnitude, the spatial resolu-
tion using BM3D regularization is 5.00 and 4.33 Ip/cm,
whereas that of using TV is 1.79 and 1.70 Ip/cm, for the fully

sampled reconstruction and down-sampled reconstruction,
respectively.
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Figure 6 shows the tradeoff between image noise and res- shown in Fig. 3 corresponds to the noise STD at 0.14 and
olution for different reconstruction methods. The image noise 0.18 for 800 projections and 200 projections, respectively.
is computed as the STD of the square on Fig. 3 (d1), and the
image resolution is calculated as the area under the MTF

curve, where the task-based MTF is evaluated on the object 3.B. Patient study

in ROI2 on Fig. 3 (dl). Across a suitable range of image The reconstruction results for a H&N patient slice and a
noise, both the BM3D regularization and the BM3D postpro- prostate patient slice using BM3D regularization, TV, BM3D
cess were able to maintain a comparably high image resolu- postprocess, and FBP are shown in Figs. 7 and 8 respectively,
tion compared with TV, for both the fully sampled for both fully sampled reconstruction and down-sampled
reconstruction and down-sampled reconstruction. The images reconstruction. The image noise, computed as the STDs of
(N T T (2) 0.76
0.82 T pa——
0.75/ -
08 0.74
e ol B
= 0.78 | ~.“..» 5 0'731 Lot
LJ—L i "" & -"‘
£ 076 e Eon S
= o — ~
B 074 - < 07 -
c 3 c o'
=] . = '_c'
8 o072 e g 07 -
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FiG. 6. The resolution vs noise curve of BM3D regularization, TV, and BM3D postprocess using (1) 800 projections and (2) 200 projections. The resolution is
computed as the area under the MTF curve, evaluated on the ROI2 on Figure 3 (d1), and the image noise is computed as the STD of the square on Figure 3 (d1).
[Color figure can be viewed at wileyonlinelibrary.com]

Fi. 7. H&N images with zoom-in displays of ROI reconstructed from (a) BM3D regularization, (b) TV, (c) BM3D postprocess, and (d) FBP using (1) 800 pro-
jections and (2) 200 projections, respectively.

Medical Physics, 45 (6), June 2018
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(c2)

N 7

Fic. 8. Prostate images reconstructed from (a) BM3D regularization, (b) TV, (c) BM3D postprocess, and (d) FBP using (1) 800 projections and (2) 200 projec-

tions, respectively.

the squares on Fig. 7(d1) and 8(d1), is kept at the same level
across all reconstruction methods except for FBP. TV images
lose fine bone structures as shown in the zoom-in ROI dis-
plays of H&N patient in Fig. 7, and produce cartoon-like arti-
facts characteristic to TV regularization. BM3D postprocess
images are able to preserve image spatial resolutions in the
high-contrast region comparable to BM3D regularization and
FBP, but are less effective in preserving the low-contrast
structures, shown in the zoom-in ROIs. For the prostate
patient, the TV images showed more blurred bony bound-
aries. Compared with BM3D regularization, the BM3D post-
process results in worse soft tissue contrast, as shown in
Fig. 8(c2), and magnifies the FBP image artifacts.

4. DISCUSSION

CT imaging dose is a concern for diagnostic imaging and
image-guided radiation therapy, motivating the development
of low-dose CT. In practice, imaging dose reduction is
achieved using sparse projection sampling and/or reduced
x-ray tube current.”*>® Due to the ill-conditioned system
matrix brought by the heavily undersampled data and/or high
noise in low-dose CT imaging, iterative reconstruction has
shown superiority in image artifact reduction and noise con-
trol in comparison to the analytical filtered-backprojection
(FBP) algorithm since the former incorporates physical con-
straints and image features into the iterative framework as
regularization terms.® Because of the low DQE, MVCT can
be a viewed as a special case of low-dose CT that can benefit
from iterative CT reconstruction.

In this work, we for the first time implemented nonlocal
BM3D regularization as L1 regularization for raw CT data
reconstruction. Compared with TV regularization, both
BM3D postprocess and regularization are more effective in
maintaining the resolution while reducing the noise. BM3D
regularization, however, is better at enhancing low-contrast

Medical Physics, 45 (6), June 2018

conspicuity and controlling artifacts than BM3D postprocess
due to the iterative application of the fidelity term.

One limitation of the BM3D regularization is its higher
computational cost. Compared with the 2D natural image pro-
cessing reported by Danielyan et al.,'* the CT reconstruction
problem is several orders of magnitude greater. The previous
method of solving BM3D regularized iterative reconstruction
using ADMM,"” except for the difference of relying on a pri-
ori data for reconstruction, is impractically slow for real
patient data. In this study, to improve the computational speed,
the optimization problem was solved using FISTA,** a fast
proximal gradient method. On one hand, FISTA requires only
the multiplication with the system matrix and its transpose at
each iteration, substantially reduces the computational costs as
compared with other first order methods such as the alternat-
ing direction method of multipliers (ADMM).> On the other
hand, it achieves a convergence rate of O k% , a significant
improvement over the O(%) convergence raté of most other
first-order methods such as ADMM and Chambolle—Pock
algorithm.?® In addition, to reduce matrix multiplication time
and reduce the memory usage, the BM3D analysis matrix was
implemented as sequential multiplication of small transforma-
tion matrices in different dimensions.® With these acceleration
methods, reconstruction for one image slice currently takes
approximately 30 s with BM3D regularization, whereas FBP
reconstruction and TV reconstruction takes less than 0.2 and
3 s, respectively, on a Intel Core i7-7700K CPU with 64 GB
RAM and a GTX TITAN X. As a future development, the
embarrassingly parallelizable matrix multiplication time can
be further reduced with hardware acceleration techniques,
e.g., graphics processing unit (GPU).?’

5. CONCLUSION

We proposed a novel iterative reconstruction method for
MVCT using the BM3D regularization. The method takes
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advantage of the BM3D denoising capability and formulate it
as an L1 type regularization. At the same level of noise sup-
pression, BM3D regularization is remarkably more effective
than TV regularization in maintaining the resolution and
enhancing low-contrast conspicuity. Compared with BM3D
postprocess, BM3D regularization better improves low-con-
trast conspicuity and controls artifacts.

ACKNOWLEDGMENTS

This research is supported by DOE Grants No.
DE-SC0017057 and DE-SC0017687, and NIH Grant
R44CA183390, ROICA188300, and R43CA183390.

CONFLICT OF INTEREST

The authors have no conflicts to disclose.

YAuthor to whom correspondence should be addressed. Electronic mail:
ksheng @mednet.ucla.edu

REFERENCES

1. Beavis AW. Is tomotherapy the future of IMRT? Br J Radiol.
2004;77:285-295.

2. Yartsev S, Kron T, Van Dyk J. Tomotherapy as a tool in image-guided
radiation therapy (IGRT): theoretical and technological aspects. Biomed
Imaging Interv J. 2007;3:e16.

3. Bian J, Siewerdsen JH, Han X, et al. Evaluation of sparse-view recon-
struction from flat-panel-detector cone-beam CT. Phys Med Biol.
2010;55:6575-6599.

4. LaRoque SJ, Sidky EY, Pan X. Accurate image reconstruction from
few-view and limited-angle data in diffraction tomography. J Opt Soc
Am A Opt Image Sci Vis. 2008;25:1772—1782.

5. Chen G-H, Tang J, Leng S. Prior image constrained compressed
sensing (PICCS): a method to accurately reconstruct dynamic CT
images from highly undersampled projection data sets. Med Phys.
2008;35:660—-663.

6. Tian Z, Jia X, Yuan K, Pan T, Jiang SB. Low-dose CT reconstruction
via edge-preserving total variation regularization. Phys Med Biol.
2011;56:5949-5967.

7. Gao H, Qi XS, Gao Y, Low DA. Megavoltage CT imaging quality
improvement on TomoTherapy via tensor framelet. Med Phys.
2013;40:81919.

8. Lebrun M. An analysis and implementation of the BM3D image denois-
ing method. Image Process Line. 2012;2:175-213.

Medical Physics, 45 (6), June 2018

10.

11.

14.

15.

16.

17.

20.

21.

22.

23.

24.

25.

26.

217.

2610

. Dabov K, Foi A, Katkovnik V. Image denoising by sparse 3D transfor-

mation-domain collaborative filtering. [EEE Trans Image Process.
2007;16:1-16.

Huang J, Ma J, Liu N, Feng Q, Chen W. Projection data restoration
guided non-local means for low-dose computed tomography reconstruc-
tion. In: 2011 IEEE International Symposium on Biomedical Imaging:
From Nano to Macro, Chicago, IL; 2011: 1167-1170.

Sheng K, Gou S, Wu J, Qi SX. Denoised and texture enhanced MVCT
to improve soft tissue conspicuity. Med Phys. 2014;41:101916.

. Trinh H, Luong M, Rocchisani J, Dibos F. An optimal weight method for

CT image denoising; 2012.

. Kang D, Slomka P, Nakazato R, et al. Image denoising of low-radiation

dose coronary CT angiography by an adaptive block-matching 3D algo-
rithm; 2013.

Danielyan A, Katkovnik V, Egiazarian K. BM3D frames and variational
image deblurring. /EEE Trans Image Process. 2012;21:1715-1728.
Katkovnik V, Danielyan A, Egiazarian K. Decoupled inverse and
denoising for image deblurring: Variational BM3D-frame technique.
Proc. - Int. Conf. Image Process. ICIP 3453-3456, 2011.

Danielyan A, Katkovnik V, Egiazarian K. Image deblurring by aug-
mented langrangian with Bm3D frame prior. Third Work. Inf. Theor.
Methods Sci. Eng., 2010.

Yang L, Getreuer P, Linghong Z. Sparse-view cone-beam CT reconstruc-
tion via previous normal dose scan induced BM3D-frame regularization
method. In: 12th Int. Meet. Fully Three-Dimensional Image Reconstr.
Radiol. Nucl. Med., Conference Proceedings, Lake Tahoe, CA; 2013:
537-540.

. Parikh N, Boyd S. Proximal algorithms. Found Trends Optim.

2013;1:123-231.

. Gayou O, Miften M. Commissioning and clinical implementation of a

mega-voltage cone beam CT system for treatment localization. Med
Phys. 2007;34:3183-3192.

Moore KL, Palaniswaamy G, White B, Goddu SM, Low DA. Fast, low-
dose patient localization on TomoTherapy via topogram registration.
Med Phys. 2010;37:4068-4077.

Richard S, Husarik DB, Yadava G, Murphy SN, Samei E. Towards task-
based assessment of CT performance: system and object MTF across dif-
ferent reconstruction algorithms. Med Phys. 2012;39:4115-4122.

Pouliot J, Bani-Hashemi A, Chen J, et al. Low-dose megavoltage cone-
beam CT for radiation therapy. Int J Radiat Oncol Biol Phys.
2005;61:552-560.

Wang J, Li T, Liang Z, Xing L. Dose reduction for kilovotage cone-beam
computed tomography in radiation therapy. Phys Med Biol.
2008;53:2897-2909.

Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm.
Soc Ind Appl Math J Imaging Sci. 2009;2:183-202.

Boyd S. Alternating direction method of multipliers. Proc. 51st IEEE
Conf. Decis. Control 3(1), 1-44, 2011.

Chambolle A, Pock T. A first-order primal-dual algorithm for convex
problems with applications to imaging. J Math Imaging Vis.
2011;40:120-145.

Baskaran MM. Optimizing sparse matrix-vector multiplication on GPUs
using compile-time and run-time strategies. IBM Res Rep, 24704; 2008.



	1. Intro�duc�tion
	2. Mate�ri�als and meth�ods
	2.A. Prob�lem For�mu�la�tion
	2.B. Con�struc�tion of BM3D trans�for�ma�tion matrix
	2.C. Min�i�miza�tion of objec�tive func�tion
	 Algo�rithm 1: FISTA with line search.
	2.D. Eval�u�a�tion

	3. Results
	3.A. Phan�tom study
	fig1
	fig3
	fig2
	tbl1
	fig4
	fig5
	3.B. Patient study
	fig6
	fig7

	4. Dis�cus�sion
	5. Con�clu�sion
	fig8

	 Acknowl�edg�ments
	 Con�flict of inter�est
	$^var_corr1
	bib1
	bib2
	bib3
	bib4
	bib5
	bib6
	bib7
	bib8
	bib9
	bib10
	bib11
	bib12
	bib13
	bib14
	bib15
	bib16
	bib17
	bib18
	bib19
	bib20
	bib21
	bib22
	bib23
	bib24
	bib25
	bib26
	bib27




