
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
A pore-scale model of two-phase flow in water-wet rock

Permalink
https://escholarship.org/uc/item/7bn9m7d9

Author
Silin, Dmitriy

Publication Date
2009-03-11

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7bn9m7d9
https://escholarship.org
http://www.cdlib.org/


A PORE-SCALE MODEL OF TWO-PHASE FLOW IN 
WATER-WET ROCK 

 
DMITRIY SILIN AND TAD PATZEK 

 
Lawrence Berkeley National Laboratory, Berkeley, California 

 
Abstract. A finite-difference discretization of Stokes equations is used to simulate flow in the pore 
space of natural rocks. Numerical solutions are obtained using the method of artificial compressibility. 
In conjunction with Maximal Inscribed Spheres method, these computations produce relative 
permeability curves. The results of computations are in agreement with laboratory measurements. 
 
 

1. INTRODUCTION 
 

Flow properties of natural rocks or other porous media are eventually determined by the 
structure of the pore space. Core laboratory experiments are the main tool for studying these 
properties for scientific and practical applications. Recent progress in imaging and the growth 
of computing power make evaluation of rock properties from computer simulations a 
valuable complement to the traditional laboratory studies. Flow simulations on 3D images of 
the pore space provide valuable insights into the fundamental physics of Darcy flow. 
Comprehensive models and efficient computational algorithms make numerical studies a 
powerful tool with strong predictive capabilities. Various scenarios of fluid displacement in 
different wettability conditions can be tried on numerous images with very limited 
participation of the technical personnel. In some situations, as in the case of loosely 
consolidated formation, reliable measurements are practically impossible, and computer 
simulations can be the only available technique. 

The literature presents a number of pore-scale studies of fluid flow. Fatt [13, 14, 15] had 
pointed to the importance of cross-flow between the voids in the pore space for understanding 
Darcy’s law. Instead of the model of a bundle of capillary tubes, which was routinely used 
before, Fatt proposed a pore-network model. He had demonstrated that a simple-geometry 
network of tubes is capable to capture the essential features of the flow in a porous medium 
and to provide valuable insights into the underlying microscopic mechanisms. However, 

 
Key words and phrases. Pore-scale flow model, finite differences, creeping flow, Stokes equations, 
maximal inscribed spheres, relative permeability. 
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a generic network does not necessarily reflect the pore space geome-
try of a particular rock. Øren with co-workers [5] have extended flow
simulations to unstructured networks derived from three-dimensional
tomography images of the pore space of natural rocks. The associ-
ation of the network used in simulations with the specific rock data
made possible to speak of “predictive capabilities” of the pore-scale
modeling [30]. Numerous studies have been conducted to simulate two
or multi-phase flows in mixed-wet rocks, to model fluid displacement
hysteresis, etc. [8, 9, 31, 2].

The major computational advantage of the pore network approach
is the simplified treatment of the flow equations. The flow in the entire
network is presented as a sum of flows in individual channels, called
pore throats. In the pore bodies, which are the junctions of multiple
throats, the mass balance equations yield and analog of the Kirchhoff’s
first rule. The flow in each pore throat is described by a Poiseuille-type
solution to the steady-state Navier–Stokes equations. This solution im-
plies straightforward rules describing the conductivity of a flow chan-
nel with a relatively simple cross-section geometry [33, 32]. A more
complex geometry may significantly complicate the description of the
conductivity [4].

Despite all the simplifying assumptions, pore-network modeling has
proved to be a useful tool providing insights into the physics and mi-
cromechanics of fluid flow in porous media. Comprehensive overviews
of the pore-network approach over past five decades can be found
in [12, 7]. However, the problem of generating a network reflecting the
specific properties of a given porous medium still remains a challenge.
No universal routine procedure is available up until now. To bypass
the challenges associated with extraction of a representative network,
one can simulate fluid flow directly on the 3D image of the pore space.
This approach includes the necessity to solve the flow equations on a
3D domain of an extremely complex geometry. One group of numeri-
cal simulations relies on the Lattice-Boltzmann method [25, 3, 29, 20].
This method utilizes the basic physics and is rather universal with re-
spect to the range of phenomena suitable for numerical simulations.
At the same time, a rigorous formulation of no-slip or fixed-pressure
boundary conditions may be not as simple [28, 17]. Lattice-Boltzman
simulations of two-phase flow with account for the interfacial phenom-
ena require massive computations. The increment in the complexity
between single-phase flow and two- or multi-phase flow is tremendous.

In this work, we employ a finite-difference approach to solving the
Navier–Stokes equations. It makes possible incorporation of a wide
variety of boundary conditions. The assumption is that the flow is
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steady and slow (creeping flow). Thus, the time derivative and the
convective term in the flow equations can be dropped. At the micro-
scopic scale of a computer-tomography image, the compressibility of the
fluid can be neglected as well, which yields a linear system of Stokes
equations. To simulate two-phase flow at a pore scale, we combine a
finite-differences discretization of the Stokes equations with the Maxi-
mal Inscribed Spheres (MIS) algorithm [42, 38, 37]. MIS-calculations
are based on simple rules end employ efficient cluster search algo-
rithms [39], so that the simulations do not require super-computer
power. The finite-difference approach to simulation of the fluid flow
in the pore space has been in use for a long time [1, 36, 23, 24].

A digital image is a set of cubic voxels. Each voxel is labelled to
distinguish between the void and the solid. The void voxels can be
naturally used for a spacial discretization of the differential equations
and boundary conditions. The large size of the computational domain,
however, may complicate the flow simulations. For instance, a digital
image of dimensions 100×100×100 voxels is quite small from the point
of view of representative high-resolution imaging. However, it requires
solution of a boundary-value problem on hundreds of thousands of grid
cells. The matrix of the discretized system is non-symmetric and the
convergence can be quite slow. Even for Stokes creeping flow equations
on a simple-geometry domain, a rigorous theoretical estimation of the
convergence of the numerical solution to the exact one may be hardly
possible. To figure out the computational parameters yielding reason-
able accuracy of the simulations, we use test problems with known
exact solutions.

Both the finite differences algorithms and the Lattice-Boltzmann
method lead to numerical solutions to the Stokes equations. Appar-
ently there is no obvious winner between the two approaches. Some
finite-difference and Lattice-Boltzmann numerical schemes are very
close to each other [19].

In the numerical simulations within this study, we employ the method
of artificial compressibility developed by Chorin [10]. This method fo-
cuses on steady-state solutions, where the time-evolution of the flow is
not of interest. We combine this approach with partitioning the entire
digital image into parts. The partitioning helps to reduce the volume
of computations to a degree that all the numerical examples presented
below have been computed on a personal computer. The permeability
of the entire sample is evaluated by averaging the permeabilities of the
individual parts.

Prediction of the absolute permeability still remains uncertain due
to the heterogeneity of the rock and, consequently, the high variability
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of the results. However, a combination of flow simulations with Maxi-
mal Inscribed Spheres calculations provides an opportunity to compute
relative permeability curves. MIS-calculations proved to be an efficient
way of generating realistic capillary pressure curves [43, 6]. It turns
out that the MIS-computed relative permeability curves are in a good
agreement with the coreflood measurements.

The paper is organized as follows. In Section 2 we briefly overview
the method of artificial compressibility of solving the steady-state Stokes
equations . In Section 3 we describe the discretization and the numer-
ical algorithm and verify the adequate convergence requirements. Sec-
tion 4 presents a procedure of evaluation of the absolute and relative
permeability from a tomography image by partitioning it into layers.
Finally, Section 5 summarizes the findings and conclusions.

2. The method of artificial compressibility

In this section, we describe an implementation of the method of
artificial compressibility [10]. Navier-Stokes equations for flow of a
viscous incompressible fluid have the form

∂

∂t
v + (v · ∇)v = −

1

̺
∇p + ν∇2v + F (1)

∇ · v =0 (2)

see [21]. Here v = (vx, vy, vz) is the local velocity of the fluid flow, p and
̺ are the fluid pressure and density, ν is the coefficient of kinematic
viscosity. We neglect the gravity or any other body forces, that is,
F = 0.

In dimensionless variables:

v′ =
v

V
, r′ =

r

D
, p′ =

Dp

̺0νV
, t′ =

ν

D2
t (3)

where V and D are some characteristic velocity and distance scales,
Equations (1) take on the form

∂

∂t′
v′ + Re(v′ · ∇)v′ = −∇p′ + ∇2v′ (4)

Here

Re =
V D

ν
(5)

is the Reynolds number. Below, we will skip the prime in order to
avoid cumbersome notations. The idea of the artificial compressibility
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method is as follows: we replace the Navier–Stokes equations for an
incompressible flow with a system of equations

∂

∂t
v + Re(v · ∇)v = −∇p + ∇2v (6)

∂ρ

∂t
+ ∇ · v =0 (7)

The dimensionless density ρ is different from the physical fluid density
̺0 and is artificially introduced for the sake of computations. A lin-
ear relationship between the dimensionless pressure and the artificial
density is assumed:

ρ = δp (8)

Here δ is the artificial compressibility factor. Its value is not a physical
property of the fluid, but a parameter to be chosen to facilitate the
computations. If a solution to equations (6)–(7) converges to a steady
solution as t → ∞, then the time derivatives, including the one in
Equation (7), vanish. In the limit, one obtains a steady-state solution
for incompressible flow. Note that the magnitudes of the time deriva-
tives actually evaluate the discrepancy of approximation to the steady
state problem.

Our objective is steady-state creeping flow, where Re ≪ 1 and the
time derivatives vanish. Thus, we simplify the problem by putting
Re = 0. This assumption eliminates the only nonlinear term in the
equations (6)–(7).

The flow equations must be complemented by appropriate bound-
ary conditions. The computational domain comes from a digital im-
age, which in our case is a subset of a rectangular box. We choose
two opposite faces of this box and declare them the inlet and outlet
boundaries. At these boundaries, we impose Dirichlet conditions for
the pressures, zero-flow conditions for the lateral components of the
flow velocities, and a zero Neumann condition for the component of
velocity in the direction of the flow. The pressure enters the equations
only through its derivatives. Therefore, it can be determined only up
to a constant additive term. The Dirichlet conditions for the pressures
eliminate the ambiguity in the numerical solution. The zero Neumann
conditions for the velocities provide for the compatibility with Equa-
tion (7). Manwart et al. [23] used similar boundary conditions in a
projection method of solving the Stokes equations [11].

3. Discretization of the differential equations

A digital image from a computer tomography scanner is a three-
dimensional array of cubic voxels. The size of each voxel is determined
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Figure 1. A 3D digital image of the pore space of sand-
stone, 250 × 250 × 250 voxels.

by the resolution of the image. Some voxels represent the pore space,
and some represent the solid. The pore space voxels naturally provide
a grid for discretization. Figure 1 shows the digital image of the pore
space of a sandstone.

To discretize equations (6)–(7) we employ a DuFort–Frankel pattern.
We apply a staggered discretization scheme, also known as the marker-
and-cell method (MAC) [18].

The DuFort–Frankel pattern is an explicit three-layer scheme. As an
explicit scheme, it requires relatively small amount of computations.
At the same time, it is known to be unconditionally stable for some
classes of boundary-value problems [35]. The convergence and stability
of this scheme for Navier–Stokes equations have been confirmed by the
numerical evidence [10].
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Figure 2. Voxel and fluid velocity components enumer-
ation: iv = i + 1, jv = j + 1, and kv = k + 1, where i, j, k

are the indices of the voxel center.

The artificial compressibility factor δ should be selected to optimize
the convergence and stability of the iterations. A smaller compress-
ibility should lead faster to an incompressible flow solution, but may
increase the risk of loosing stability by making the system of equa-
tions stiff. A larger compressibility can slow down the convergence
to a steady solution, especially for Equation (7). We have used test
computations to selected a suitable value for δ.

In a MAC discretization, the velocities are evaluated at the center
points of the interfaces between the grid cells, whereas the densities
and pressures are evaluated at the volumetric centers of the voxels,
Figure 2. Only the normal components of the velocities at the cell
walls are used. For example, vx is evaluated only at the centers of
those voxel faces, which are orthogonal to the x coordinate axis.

3.1. Indexing convention. Let Nx, Ny, and Nz be the dimensions
of the grid. We enumerate the grid cells by zero-based indices i =
0, 1, . . . , Nx − 1, j = 0, 1, . . . , Ny − 1, and k = 0, 1, . . . , Nz − 1. At
each voxel, every velocity component is evaluated at the centers of two
opposite walls. For the enumeration, we adopt the convention that the
velocity is always associated with the upstream (with respect to the
indexing) boundary. For example, Figure 2 shows the velocity com-
ponents vx, i,j,k, vy, i,j,k, and vz, i,j,k associated by this indexing with the
voxel (i, j, k). Let h denote the voxel edge length, and let the origin
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of the reference coordinate system be associated with the upstream
corner of the entire image. Then the coordinates of the voxel cen-
ter are x = (i + 0.5)h, y = (j + 0.5)h, and z = (k + 0.5)h. The
x velocity component, vx, is evaluated at the point with coordinates
(ih, (j +0.5)h, (k +0.5)h). The indexing conventions for other velocity
components are similar. Figure 3 shows an example of indexation of the
pressures and velocities at the cross-section of the interior part of the
grid by the plane orthogonal to z and passing through z = (k + 0.5)h.
The diamond markers label the points where the velocities are evalu-
ated at the voxel walls. The circles mark voxel centers.

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

bc

bc

bc

bc

bc

bc

pi,j+1,k

pi,j,k

pi,j−1,k

pi+1,j+1,k

pi+1,j,k

pi+1,j−1,k

vx, i,j,k
vx, i+1,j,k vx, i+2,j,k

vx, i,j−1,k vx, i+1,j−1,k vx, i+2,j−1,k

vx, i,j+1,k
vx, i+1,j+1,k vx, i+2,j+1,k

vy, i,j+1,k vy, i+1,j+1,k

vy, i,j,k vy, i+1,j,k

vy, i,j+2,k vy, i+1,j+2,k

vy, i,j−1,k vy, i+1,j−1,k

Figure 3. The circles mark the voxel centers, where the
pressures are evaluated. The diamonds mark the centers
of the interfaces between voxels, where the velocities are
evaluated. This is a 2D slice of a 3D grid in plane x, y.

To write down the finite-difference equations, the velocities must
be additionally evaluated at the outer downstream boundaries of the
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image, which are not covered by the indexing described above. There-
fore, the regular part of the discrete domain described above is comple-
mented by three two-dimensional velocity arrays associated with the
ghost voxels.

3.2. Finite-difference equations. Let τ denote an increment step
of the variable t. Note that the “time” variable t in Equations (6)–
(7) is an iterations parameter, rather than a physically meaningful
measure of time. A zero-based superscript index n will denote the
enumeration corresponding to t. For example, vn

x, i,j,k denotes the n-
th iteration of the x-component of the velocity v evaluated at the
center of the upstream (in direction x) wall of the voxel i, j, k. The
discretized dimensionless pressures and artificial densities are denoted,
respectively, by pn

i,j,k and ρn
i,j,k.

The DuFort–Frankel pattern is a three-layer scheme. Let the (n−1)-
th and n-th iterations have been evaluated. Let us describe the proce-
dure of calculatin of the (n+1)-th iteration for the velocities, artificial
densities and pressures. The central difference provides a second-order
approximation for the first-order derivative. For example,

∂vx

∂t

∣

∣

∣

∣

n

i,j,k

=
vn+1

x, i,j,k − vn−1
x, i,j,k

2τ
+ O(τ 2) (9)

∂p

∂x

∣

∣

∣

∣

n

i,j,k

=
pn

i+1,j,k − pn
i,j,k

h
+ O(h2) (10)

Although the pressures and velocities are evaluated at different points,
the estimates in Equations (9) and (10) are valid at the same location:
x = ih, y = (j + 0.5)h, and z = (k + 0.5)h. The second-order partial
derivatives in x, y and z are approximated in the following way:

∂2vx

∂x2

∣

∣

∣

∣

i,j,k

≈
(vn

x, i+1,j,k − vn+1
x, i,j,k) − (vn−1

x, i,j,k − vn
x, i−1,j,k)

h2
(11)

∂2vx

∂y2

∣

∣

∣

∣

i,j,k

≈
(vn

x, i,j+1,k − vn+1
x, i,j,k) − (vn−1

x, i,j,k − vn
x, i,j−1,k)

h2
(12)

∂2vx

∂z2

∣

∣

∣

∣

i,j,k

≈
(vn

x, i,j,k+1 − vn+1
x, i,j,k) − (vn−1

x, i,j,k − vn
x, i,j,k−1)

h2
(13)

Equations (9)–(13) yield the following finite-difference approximation
of the x component of the creeping-flow approximation (Re = 0) of
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Equation (6):

vn+1
x, i,j,k − vn−1

x, i,j,k

2τ
=

vn
x, i−1,j,k + vn

x, i+1,j,k − vn−1
x, i,j,k − vn+1

x, i,j,k

h2

+
vn

x, i,j−1,k + vn
x, i,j+1,k − vn−1

x, i,j,k − vn+1
x, i,j,k

h2

+
vn

x, i,j,k−1 + vn
x, i,j,k+1 − vn−1

x, i,j,k − vn+1
x, i,j,k

h2

+
ρn

i+1,j,k − ρn
i,j,k

δh
(14)

The y and z components of the Stokes equations are approximated in
a similar manner. For the artificial compressibility equation (7), one
obtains:

ρn+1
x, i,j,k − ρn−1

x, i,j,k

2τ
=

vn
x, i,j,k − vn

x, i−1,j,k

h
+

vn
y, i,j,k − vn

y, i,j−1,k

h

+
vn

z, i,j,k − vn
z, i,j,k−1

h
(15)

The finite-difference Equations (14)–(15) provide second-order approx-
imations to the respective partial differential equations.

3.3. Discretization of the boundary conditions. The problem un-
der consideration involves two types of boundary conditions. Inside the
sample image, at the pore walls, we impose no-slip conditions. At the
boundaries of the whole image, the boundary conditions are different
depending on the direction of the flow. We impose Dirichlet conditions
for the pressures at the inlet and outlet faces, zero Dirichlet conditions
for the lateral components of velocity, and a zero Neumann condition
for the velocity component aligned with the macroscopic pressure gra-
dient. For the velocities at the lateral boundaries of the domain, we
impose zero Dirichlet conditions. In this section, we discuss the imple-
mentation of these boundary conditions in more detail.

3.3.1. Discretization of the no-slip boundary conditions at the pore walls

inside the image. Incorporation of the no-slip boundary condition merely
means an appropriate modification of Equations (14) when one of the
nodes of the stencil occurs at a pore wall or inside the solid phase.
There are several typical configurations, which can be considered in-
dividually. In the two-dimensional illustrations, the solid voxels are
shaded and the pore voxels are blank. A solid diamond marker labels
the center of the stencil of the discretized Stokes equation (14). The
circles are voxel centers, which are simultaneously stencil center points
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for Equation (15). The stencils, on which the Stokes equations are
discretized, are centered at the interfaces between pore voxels.

Handling a situation where the velocity component is orthogonal to
the pore wall is straightforward. For example, in a configuration shown
in Figure 4, the no-slip boundary condition, vn

x, i,jv ,k = 0, implies

∂2vx

∂x2

∣

∣

∣

∣

n

i,j,k

≈
vn

x, i+1,j,k − vn+1
x, i,j,k − vn−1

x, i,j,k

h2
(16)

rbc bc bc bcrs rs rs rs

rs

rs

rs

rs

rs

rs

rs

rs

i − 2, j, k i − 1, j, k i, j, k i + 1, j, k

x

y

Figure 4. A stencil encountering a pore wall. The filled
diamond marks the center of the stencil.

rs rs rsrs

rs rs rsrs

rs

rs

rs

rs

rs

rs

rs

rs

r

i, j, ki − 1, j, k i + 1, j, k

i, j − 1, ki − 1, j − 1, k i + 1, j − 1, k

bc bc bc

bc bc bc

x

y

Figure 5. A stencil with a pore wall corner.

To show how to incorporate the no-slip boundary conditions into
discretization of second partial derivative of a velocity component in an



12 DMITRIY SILIN AND TAD PATZEK

rs rs rsrs

rs rs rsrs

rs

rs

rs

rs

rs

rs

rs

rs

r

i, j, ki − 1, j, k i + 1, j, k

i, j − 1, ki − 1, j − 1, k i + 1, j − 1, k

bc bc bc

bc bc bc

x

y

bc bc bc

bc bc bc

Figure 6. A stencil with two pore wall corners.

orthogonal direction, consider
∂2vy

∂x2
. In a configuration like in Figure 5,

for an arbitrary n the no-slip condition implies vn
y, i−1,j,k = 0. Hence, in

such a configuration, we put

∂2vy

∂x2

∣

∣

∣

∣

n

i,j,k

≈
vn

y, i+1,j,k − vn−1
y, i,j,k − vn+1

y, i,j,k

h2
(17)

In a situation shown in Figure 6, one obtains

∂2uy

∂x2

∣

∣

∣

∣

n

i,j,k

≈
−vn−1

y, i,j,k − vn+1
y, i,j,k

h2
(18)

If the stencil encounters a wall, as in Figure 7, then the no-slip
boundary condition must be formulated at the midpoint marked by the
triangle. The interface between the voxels i − 1, j, k and i − 1, j − 1, k
is inside the solid phase, so we use the center of this interface as a
ghost node where vy is equal to −vn

y i,j,k. Thus, the approximation of
the second derivative of vy with respect to x takes on the form:

∂2vy

∂x2

∣

∣

∣

∣

n

i,j,k

≈
vn

y, i+1,j,k − vn
y, i,j,k − vn+1

y, i,j,k − vn−1
y, i,j,k

h2
(19)

3.3.2. The boundary conditions at the boundary of the sample. To for-
mulate the boundary conditions for the entire image of the sample, it
is wrapped with a single layer of pore voxels. The boundary conditions
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ut

rs rs rsrs

rs rs rsrs

rs

rs

rs

rs

rs

rs

rs

rs

r

i, j, ki − 1, j, k i + 1, j, k

i, j − 1, ki − 1, j − 1, k i + 1, j − 1, k

bc bc bc

bc bc bc

x

y

bc bc bc

bc bc bc

Figure 7. A stencil encountering a pore wall. The cen-
ter of the stencil is labelled by a filled diamond, whereas
the triangle marks the boundary between the solid wall
and pore space.

are formulated at the planes passing through the centers of these wrap-
ping voxels. The boundary nodes are shown as filled circles and filled
diamonds in Figure 8.

To impose Dirichlet boundary conditions for the pressures and artifi-
tial densities at the inlet and outlet, we merely assign the values at the
respective voxels. For example, let the flow be in the x direction. At
all nodes i, j, k with either i = 0 or i = Nx − 1 we assign the pressures
to mimic the pressure gradient (1, 0, 0). For example:

ρi,j,k = 1 +
δh(Nx − 1 − i)

Nx − 1
(20)

In fact, one can use Equation (20) as the initial condition for the den-
sities over the entire pore space.

To formulate the boundary conditions for velocities, we have to add
to the grid a single layer of ghost voxels at the downstream boundary in
each direction. For example, in x direction, next to the boundary voxels
Nx−1, j, k, we define a double array of ghost velocity components v

ghost

x, j,k .

The ghost arrays v
ghost

y, i,k and v
ghost
z, i,j are introduced in a similar manner.

Since the lateral velocity components are evaluated at the centers of
the voxels faces, discretization of the zero-flow Dirichlet condition is
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rs rs rsrs

rs rs rs

rs

rs

rs rs rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs rs

rs

Nx − 3, Ny − 1, k

Nx − 2, Ny − 1, k

Nx − 1, Ny − 1, k

Nx − 3, Ny − 2, k

Nx − 2, Ny − 2, k

Nx − 1, Ny − 2, k

Nx − 3, Ny − 3, k

Nx − 2, Ny − 3, k

Nx − 1, Ny − 3, k

bc bc

bc bc

bc bc bc

bc

bc

x

y

Figure 8. Discretization of the boundary conditions at
the boundary of entire sample: filled circles and dia-
monds denote boundary nodes. The shaded corner voxel
does not enter the discretized boundary conditions.

straightforward. For the component vx, the central difference provides
a second-order approximation of the normal derivative. That is, for
example, for the zero Neumann boundary condition at the inlet voxels
we put

vx, 0,j,k = vx, 1,j,k (21)

for all j, k.
On each lateral boundary of the sample, two velocity components are

evaluated at the boundary. For these components, discretization of the
Dirichlet condition is straightforward. For the third component, a lin-
ear interpolation provides a second-order approximation. For example,
for vy on the top boundary in Figure 8 one gets

vy, i,Ny−1,k + v
ghost

y, i,k = 0 (22)

where v
ghost

y, i,k is the ghost velocity component defined above.



MICROSCOPIC FLOW MODELING 15

Note that in the discretization described above the velocity com-
ponents evaluated at the external boundaries of the vertex and edge
voxels are not involved. The values of the artificial density ρ at the
corner nodes also are not involved in the computations.

3.4. Computational parameters. To choose values for the artificial
compressibility, an iteration step τ , and a stopping criterion, the algo-
rithm has been applied to two problems admitting analytical solutions:
Poiseuille flow in a pipe of square cross-section, and the Stokes problem
of laminar flow around a solid sphere. We have chosen 10 voxel sizes as
the dimensionless length unit, so that h = 0.1. For each velocity com-
ponent and the artificial density, the mean square relative increment
was the measure of the increment at each iteration. For example, for
the x component of velocity, vx, we evaluate

DV n
x =

∑

i,j,k

∣

∣vn+1
x, i,j,k − vn

x, i,j,k

∣

∣

2

∑

i,j,k

(

vn
x, i,j,k

)2
(23)

The iteration continue until fulfilling the stopping criterion

max
{

DV n
x , DV n

y , DV n
z , Dρn,

}

≤ εtol (24)

The numerical computations for the Poiseuille flow showed stability
of the algorithm for a wide range of artificial compressibility values.
Figure 9 shows plots of exact and numerical profiles of velocity com-
ponent vx = vx(y) for the flow in x direction for various cross-sections
by planes orthogonal to the z axis.

The Poiseuille flow example is very important in the context of sim-
ulation of the flow in the pore space. However, this example may not
be very indicative when testing a numerical scheme for the conver-
gence and stability. Indeed, the good convergence for the Poiseuille
flow example should not be surprising. Although the computations
are performed on a three-dimensional domain, the velocity component
vx remains independent of z in all iterations, and the other two com-
ponents remain identically equal to zero. Thus, the inlet and outlet
boundary conditions are satisfied automatically and the problem is ac-
tually solved in 2D. Moreover, due to the vanishing components, only
one Dirichlet boundary-value problem for a Poisson equation is solved.
In such a case, the stability and convergence of the DuFort–Frankel
scheme has been demonstrated theoretically [35]. An additional test-
ing of the algorithm on the Stokes problem of laminar flow around a
solid sphere of radius R in an infinite domain has shown that, actually,
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Figure 9. Comparison of computed and exact solutions
for Poiseuille flow. The stopping criterion εtol was set
equal to 10−8.

the convergence and stability of the algorithm are both sensitive to the
choice of the time step τ . We have found that values near τ = 10−3

were suitable both for the Poiseuille and Stokes problems.
On the surface of the sphere, the velocity satisfy no-slip bound-

ary conditions, and it is equal to v∞ at infinity. It is known, that
the creeping-flow approximation adequately describes the flow at suffi-
ciently small distances from the sphere surface [21]. The exact solution
is given by equation

v(r) = v∞ −
3R

4r
(v∞ + n(v∞ · n)) −

R3

4r3
(v∞ − 3n(v∞ · n)) (25)

Here r is the radius-vector from the center of the sphere, and r is the
distance from the center: r = ‖r‖. For the dimensionless pressure, one
has

p(r) = p∞ −
3R

2r2
u∞ · n (26)

where p∞ is the fluid pressure at infinity.
We evaluate numerically the flow near a sphere of the radius of 5

voxel widths. We embed the sphere in a 25×25×25 voxel surrounding
grid. At all outer boundaries of the entire domain, we impose Dirichlet
conditions for the velocities using the trace of the exact solution (25).
We found that an artificial compressibility near δ = 0.05 provided
for the convergence and stability of the iterations. The same value
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Figure 10. A central cross-section of the velocity field
evaluated numerically.

worked well in the simulations of flow in a more complex geometry of
the domain as well. A deviation from this value caused a loss of the
convergence.

Figure 10 shows a cross-section of the numerically-evaluated vector
field. The plot on Figure 11 shows three profiles of the x component
of the velocity, vx, plotted versus y for three different x. The bottom
profile corresponds to the line A in Figure 10. The top profile is near
the outlet boundary (line C), and the one in the middle is at a midpoint
between the sphere surface and the boundary, line B. To facilitate the
comparison, the analytical and numerical solutions are evaluated at
the voxel centers. The velocities obtained numerically are projected
on the voxel centers by taking the arithmetic mean of the values at
the opposite faces. The reason why neither the exact solution nor the
numerical one attain zero at the sphere surface is that none of the voxel
centers occurs exactly on the surface of the sphere. Figure 12 shows a
similar comparison for the pressure profiles.

Even though the resemblance between the discretized sphere and an
ideal spherical body is very approximate, Figure 14, the comparison
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Figure 11. Tree velocity profiles corresponding to
cross-sections A, B and C, Figure 10: a comparison be-
tween exact solution (Eq. (25)), shown as a solid line,
and numerical solution, pluses, in dimensionless units.
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Figure 12. Tree pressure profiles: a comparison be-
tween exact solution (Eq. (25)), shown as a solid line,
and numerical solution, pluses, in dimensionless units.

between the numerical and exact solutions is encouraging. One has to
note though that this accuracy has been achieved by applying a rather
stringent stopping criterion: εtol = 10−8. Attempts of relaxation of
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Figure 13. Velocity profiles shown in Figure 11 for re-
laxed stopping criterion: εtol = 7.5 × 10−7 on the left,
and εtol = 7.5 × 10−8 on the right.

Figure 14. Discretized spheres of the radius of 5 voxel
(on the left) and 10 (on the right) voxel units.

this criterion negatively affected the accuracy of the numerical solution,
Figure 13. At the same time, further enhancement of the tolerance in
the stopping criterion, εtol = 7.5 × 10−10, resulted in no appreciable
improvement of the accuracy.

The Darcy velocity is evaluated as the mean value of the fluid ve-
locity over the entire grid. Figure 16 shows that the estimate of the
component of the Darcy velocity in the downstream direction stabilizes
after a sufficiently large number of iterations. The relative increments
also stabilize near a value between 10−9 and 10−8, Figure 17.

A refinement of the discretization by reducing twice the voxel size has
not significantly improved the accuracy of the numerical solution. The
plots in Figure 15 compare the velocity profiles evaluated numerically
for two grids and the exact solution.
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Figure 15. Velocity profiles evaluated numerically on
coarse (pluses) and fine (circles) grids of voxels along
with exact solution (solid line).
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Figure 16. Stabilization of Darcy velocity estimate.

To summarize the results of testing the algorithms, two principal
conclusions are due. First, a reasonable accuracy of the numerical
computations requires a stringent stopping criterion. Second, the com-
putations on a refined grid show that for the overall accuracy of the
solution the convergence is more important than the voxel size.
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Figure 17. Stabilization of relative improvement near 10−9.

4. Evaluation of the permeability: partitioning of the

image into layers

To estimate the permeability of a sample, we solve the Stokes equa-
tions on the pore space. Averaging the velocity field leads to an es-
timate of the Darcy velocity. The Dirichlet boundary conditions for
the pressures at the inlet and outlet of the sample provide an estimate
of the macroscopic pressure gradient. Finally, from the Darcy veloc-
ity and pressure gradient, one obtains an estimate of the permeability.
We assume that the flow properties of the sample are isotropic. A
repetition of the flow simulations in three coordinate direction, that is
for three different choices of inlet and outlet boundaries, reduces the
uncertainty of the estimates.

Meeting the severe convergence requirements discussed in Section 3.4
can be computationally demanding. It was impossible to attain the
tolerance criterion on a large domain within a reasonable number of
iterations. To reduce the dimensions of the computational domain,
it is beneficial to split the entire sample into parts. Here we employ
partitioning of the sample into layers, so that the lateral dimensions
of each part significantly exceed the thickness. The simulations can
be carried out on each part separately, and the the results can be
combined by taking the harmonic mean of the permeability estimates
for the individual layers.
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The computations within this study have been carried out on layers
with the aspect ratios between the lateral dimensions and the thick-
nesses between 6 and 10. On each slice, the pressure boundary con-
ditions are imposed on the larger faces of the sample, Figure 18. The
permeability is evaluated three times by simulating flow in the three
coordinate directions x, y, and z. To reduce the uncertainty, the aver-
age permeability estimate is used as the final output.Doubling the layer
thicknesses produced very similar results. A more thorough analysis
of the limiting admissible values of the aspect ratio, sample size, the
number of layers, etc.would be a worthwhile task, but it is beyond the
scope of this work.

The no-flow lateral boundary conditions can block the flow pathes
which may leave or enter the sample. For example, if a rectangular
sample is selected as in Figure 19, then flow simulations will show zero
flow in the flow paths A, C, and D. If the image is sliced in the direc-
tion of the flow, the conductivity of these flow pathes will be non-zero
at least for some slices. At the same time, the conductivity of a flow
path of very complex geometry, like the one labelled by B, will be likely
overestimated in the shadowed slice. Figure 19 is a cartoon illustration
and cannot cover the full complexity of the 3D pore space geometry.
However it indicates that the partitioning of the entire sample image
into slices may result in an overestimate of the absolute permeability
if, for example the layer crosses some flow path more than once. At
the same time, the layers with large lateral dimensions reduce the im-
pact of the blocking of the flow at the lateral boundaries. There is an
uncertainty whether these two effects can compensate for one another.

4.1. Relative permeability curves. Two or multi-phase flows of im-
miscible fluids are described by the generalized Darcy’s law. Based on
the experiments by Wyckoff and Botset [27], the foundations of the
theory of multi-phase flows in porous media have been developed by
Muskat and Meres [26] and Leverett [22].

Consider, for example, simultaneous flow of water and oil. Since
each fluid occupies only a part of the pore space, the permeability to
this fluid is different from the absolute permeability of the rock. A
dimensionless relative permeability is a correction factor, so that the
Darcy’s law for each fluid has the form:

uo = −
kok

µ
∇po, uw = −

kwk

µ
∇pw (27)

The relative volume of the pore space occupied by each fluid is its sat-
uration. According to the classical theory, both relative permeability
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Figure 18. Partitioning of the image of the pore space
into layers and solving flow equations for the flow orthog-
onal to the layer.

factors, ko and kw, are functions of the fluid saturations, So and Sw.
Since the sum of both saturations is identically equal to one, the water
saturations, Sw, completely characterizes the volumetric fluid distrib-
ution. Thus, one can write

ko = ko(S), kw = kw(S) (28)

where S = Sw.
One of the main assumptions of the classical theory of multi-phase

flow in porous media is the local equilibrium of the fluid distribution
enforced by the capillary pressure. In general, the picture is more com-
plex and the flow rate, and the history of fluid displacement [31, 7] can
have a significant impact on the geometry of the fluid-fluid interfaces.

In this work, we assume that local equilibrium is entirely defined by
the capillary pressure. This assumption is suitable in a steady flow
where the flow rate is small enough. In such a case, the distribution
of the fluids in the pore space can be estimated using the method of
maximal inscribed spheres (MIS). Briefly, the idea of the method is in
assigning to each voxel the radius of the maximal sphere included in
the pore space and covering this voxel. Once a three-dimensional table
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Figure 19. Uncertainties associated with modeling of
the flow: Only path (B) is not blocked by the no-flow
boundary condition. Some flow pathes contributing to
the overall permeability may enter through a lateral
boundary (A), leave and return (C), and just leave (D).
Partitioning of the image may lead to an overestimate of
conductivity of channel (B) in some layers.

of such maximal radii is generated, one can simulate various invasion
scenarios using cluster search algorithms. A more detailed description
of the method is in [38, 41].

MIS method, in particular, involves evaluation of fluid distribution at
a given capillary pressure. With a due scaling, it produces a reasonable
approximation of the capillary pressure curve [43]. The calculated fluid
distribution yields a list of the voxel which are deemed to be occupied
by water or oil. The voxels occupied by one fluid can be considered
as a stand-alone pore space. Thus, the permeability of this system
of voxels scaled by the absolute permeability of the entire pore space
is an approximation to the relative permeability factor. Counting the
relative number of these voxels provides an estimate of the saturation.
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To summarize, the following procedure has been employed to evalu-
ate the relative permeability curves numerically.

(1) Estimate the absolute permeability of the pore space:
• Run flow simulations in three directions;
• In each direction, partition the image into slices, estimate

the permeability of each slice and take the harmonic mean;
• Take the average estimate for all three directions as the

final output
(2) Calculate fluid distribution using MIS algorithm and evaluate

the respective saturations:
• Evaluate the maximal inscribed radii;
• The total number of radii can be large, so choose a reason-

able number for the flow simulations;
• For each chosen radius, compute the fluid distribution and

saturation
(3) Evaluate relative permeabilities

• For each saturation chosen in the previous item, evaluate
the permeability to each fluid;

• Evaluate the relative permeability by taking the ratio of the
estimates of the permeabilities to each fluid to the estimate
of the absolute permeability;

• Plot the relative permeabilities curves as functions of the
saturation.

Figure 20 shows numerical results for CT images of a sandstone,
and a number of experimental points obtained in coreflood laboratory
experiments. A comparison can be only qualitative, since the images of
the rock pore space have been acquired from similar, but not the same
samples. One can see that the computed relative permeability curves,
shown as solid curves with various markers on the plots, are in the same
range as the experimental points. The variability of the computed
relative permeabilities is similar to that of the data. Note that the
scatter of the relative permeability estimated for the non-wetting fluid
is larger than that for the wetting fluid. The greater likelihood of the
non-wetting fluid loosing the connectivity can partially explain this
observation.

In the simulations, we used the same digital data as in [41]. Most
curves have been obtained using layers whose lateral dimensions are
significantly larger than the thicknesses. The range of thicknesses was
between 8 and 20 voxels. The images have a significant variability of
the porosity [41]. Nevertheless, the permeability curves for the wetting
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fluid are aligned near the average curve. This indicates that the charac-
teristic pore space geometry is a more important factor for the relative
permeability estimates than the porosity. Figure 21 shows plots of the
computed relative permeability curves for Finney pack [16]. All plot-
ted data points have been obtained from flow simulations on one and
the same domain of dimensions 160 × 160 × 160 voxels. The different
curves correspond to the different partitions of the image into layers of
the thicknesses of 8, 10, 12, and 16 voxels. The pair of solid thick curves
is the arithmetic mean of all four results. The results are consistent,
especially for the estimates of the relative permeability to the wetting
fluid. However, the variability increases significantly for simulations
on thicker layers. This variability mostly affects the estimates of the
relative permeability to the non-wetting fluid, and is concentrated in
the range of the “transient” saturations: between 40 and 75 percent. A
refinement of the image resolution and more advanced computational
algorithms for solving the Stokes equations apparently should extend
the range of consistency of the computational results.

The fact that all simulations have been performed with no-slip bound-
ary conditions also may introduce an uncertainty. Water is the wetting
fluid. Therefore, the water-solid contact is rough and the length scale
of this roughness is beyond the resolution of the image. This roughness
may require more elaborate boundary conditions based on an asymp-
totic analysis. At the same time, the interfacial tension forces make
the water-oil interface smooth, which cannot be captured by a digital
image, where the boundaries are jagged unless they are aligned with
the coordinate directions. At the fluid-fluid interface, such an artifi-
cial roughness of the surface may skew the momentum balance [34]. A
further study can lead to a better understanding of the relative contri-
bution of the roughness and discretization effects.

5. Summary and conclusions

Finite-differences solution of the incompressible creeping flow equa-
tions is a feasible approach to estimate flow properties of a porous
medium from a three-dimensional computer tomography image of the
pore space. In this work, we have studied numerical solution of the
Stokes equations based on the method of artificial compressibility. The
pore voxels of the digital image provide a natural mesh for discretiza-
tion of the differential equations and boundary conditions. A two-layer
Dufort–Frankel scheme on marker-and-cell staggered grid has been used
in the numerical simulations. The computational parameters, including
the coefficient of artificial compressibility, the magnitude of iteration
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Figure 20. Computed relative permeability curves
(solid lines with markers) and laboratory data (circles).
The thick solid curves are average relative permeabilities.
The coreflood data are courtesy of Statoil.

step, and the stopping criterion, have been selected by trial and er-
ror. The criterion for stopping the iterations has been formulated in
terms of the relative increment of the quadratic norm of the numeri-
cal solution. Numerical evaluation of the known analytical solutions,
Poiseuille flow in a pipe of a rectangular cross-section and Stokes flow
around a solid sphere, have demonstrated that the stopping criterion
significantly affects the accuracy of the results. In fact, it turns out
that a severe criterion is required to achieve a convergence suitable for
dependable estimation of the permeability.

To reduce the computational intensity, the entire image of the porous
sample is partitioned into layers. Prior to numerical simulations, the
clusters of voxels, which are not connected to the inlet and outlet faces,
are eliminated to reduce the size of the computational domain. Al-
though this operation does not dramatically reduce the dimensions of
the grid, it eliminates isolated stagnant-flow domains. The harmonic
mean of the coefficients of permeability computed for the individual
layers provides an estimate of the permeability of the entire sample.
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Figure 21. Computed relative permeability curves for
Finney pack [16]. The thick solid curves are average Dif-
ferent curves correspond to four different thicknesses of
the partitioning layers, Figure 18.

This approach makes possible to reduce the boundary effects intro-
duced by the no-flow conditions at the lateral walls. At the same time,
the partitioning into layers may lead to an overestimate of the perme-
ability, for example, by accounting some flow channels multiple times.
Evaluation of the permeability of a porous material from a small sam-
ple is always subject to a high degree of uncertainty. For an isotropic
medium, averaging the results of flow simulations in three different
coordinate directions can reduce this uncertainty.

The method of Maximal Inscribed Spheres calculates the capillarity-
dominated fluid distribution in the pore space of a water-wet rock.
This distribution has been used to evaluate the sample permeability to
each fluid at a given saturation. The relative permeability is defined
as the dimensionless ratio of the phase permeability to the absolute
permeability of the medium. The permeability to each phase at a
given saturation has been estimated using the same algorithm as for the
evaluation of the absolute permeability. The computations performed



on 3D micron-scale resolution images of a sandstone produced relative permeability curves 
reproducing the experimental data amazingly well. 

The approach discussed here is a promising tool for analysis of the petrophysical properties 
of natural rocks and other types of porous media. A direct analysis of the image of the pore space 
bypasses the challenges of network extraction unavoidable in the pore-network analysis. The 
proposed method can be applied to evaluate the impact of pore space geometry modifications on 
the rock flow properties. Such modifications can come from mechanical or thermal deformations, 
damage, formation or dissociation of hydrates, mineral deposition or dissolution. Exact numbers 
are subject to great uncertainty, both in numerical and laboratory experiments. Numerical 
simulations can generate trends and, therefore, provide useful insights for optimization of 
hydrocarbon recovery technologies, or efficient environmental remediation. The robustness of the 
algorithms makes the method suitable for routine applications, requiring minimum human 
interference. The current trends in the price of the computer time and data storage makes this 
approach even more attractive. 
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