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Abstract: In cryogenic fracturing, a rock surface exposed to cryogenic fluids undergoes a large
thermal gradient, and the resultant local tensile stress overcomes rock strength and initiates fractures.
This study investigates the development of cracks generated from the cryogenic treatment of a
borehole under no external confining stress on specimens. The experiments were performed on
transparent PMMA specimens to observe fracture proliferation around boreholes. Liquid nitrogen
was flowed through the boreholes to cool the borehole surface. The results show that initial frac-
ture growth is characterized by abrupt starts and stops, and as the fracture propagates outward,
the growth appears more continuous. In an early stage, horizontal/radial fractures and vertical
fractures are the defining patterns. Horizontal fractures tend to be separated by a specific ex-
clusion distance (i.e., spacing between cracks). While distinct horizontal/vertical fractures and
exclusion distance manifest themselves at an early stage, fractures resulting from fracture interac-
tions and curvatures can develop into complex shapes at later stages. Cryogenic thermal loading
induces distinctively curved fractures. The tendency of curvature may prevent greater penetration.
An increase in the borehole pressure during liquid nitrogen flow, however, can lessen fracture tortu-
osity and facilitate radial propagation. A high flow pressure and rate are also advantageous in that
they accelerate cooling and fracture propagation.

Keywords: cryogenic fracturing; thermal fractures; liquid nitrogen; thermal shock; thermal stress;
hydraulic fracturing; well stimulation

1. Introduction

Cryogenic fracturing exerts a large thermal gradient on near-borehole formations by
creating contact between a cryogen and a much warmer rock under reservoir conditions
to induce fractures. A cryogen, such as liquid nitrogen (LN), takes a liquid form at low
temperatures and transforms into the gaseous phase in standard conditions. Specifically,
when LN is injected into a borehole in which the temperature is much higher, the heat from
the rock will quickly transfer to the LN and boil it (the boiling point of LN at atmospheric
pressure is −195.8 ◦C). This rapid cooling, or thermal shock, will cause the near-borehole
reservoir rock to contract and create local tensile stress. An increase in the tensile stress
to a sufficiently high level will initiate fractures orthogonal to the rock surface. These
newly induced fractures may extend even farther by high-pressure gas generated by LN
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vaporization. Note that nitrogen has a liquid-to-gas expansion ratio of 1:694 at room
temperature (20 ◦C) and atmospheric pressure.

Extensive laboratory and numerical studies have been conducted to explain cryogenic
fracturing and its implications for the field [1]. LN cooling decreases tensile, compressive
and shear strength, elastic modulus, and P-wave velocity [2,3] and induces a moderate
decrease in the stability of bedding planes and a relative increase in the propagation ability
of fractures [3]. Cryogenic treatments increase the pore size in saturated sandstone and
expand micro-fissures, resulting from thermal stress and frost force; they can also be
influenced by the rock type and water content [4]. The shale pore structure undergoes
significant alteration after freeze–thaw cycles, and some micro-pores are aggregated to
form micro- and macro-cracks [3]. Although LN cooling increases permeability [2,5,6],
it is less effective for sandstone than it is for other sedimentary rocks [7,8]. The surface
micro-structure of rocks raises the Leidenfrost point, thus shortening the duration of film
boiling and increasing the rate of cooling. Appropriately modifying the rock surface can
further enhance quenching rates [9].

Cryogenic treatment creates a strong thermal gradient and local tensile stress in
the rocks surrounding existing main fractures [10]. A faster cooling rate generates higher
tensile stress in the exterior region of rocks and higher tensile hoop stress [2,11]. Conductive
cracks are also generated on the surface and near the wellbore of shale, and the size and
number of these cracks increase with initial temperature, and most of the cooling-induced
cracks are inter-granular cracks [2,11,12]. Micro-cracks, or secondary cracks, perpendicular
to the joints or primary fractures can be generated in a reservoir, creating a larger and
more complex fracture network than the stimulation reservoir volume (SRV) in hydraulic
fracturing [1,3,4]. The density and brittleness of fractures in sandstone, shale, and marble at
cryogenic temperature under tensile loading markedly increase, promoting the generation
of complex fracture networks with a larger volume [13,14]. Phase transition during the
fracturing process and the low fluid viscosity of LN can facilitate fracture propagation
and network generation [11]. The fracability of shale increases after LN pretreatment,
especially under high confining pressure conditions, and after LN treatment, the strength
and brittleness of shale decrease, which reduces the initiation and propagation pressure of
reservoir stimulation [3,14,15].

Studies have also examined cryogenic fracturing stimulation to determine its effective-
ness at building enhanced geothermal systems in hot dry rock. Their results have shown
that LN cooling improves permeability while causing noticeable cracks in hot rock [16,17].
With increasing initial rock temperature, the number of thermal cracks increases, and a
more complex crack network forms [16]. Inter-granular cracking is the primary failure
mode during thermal treatment [17]. As heating temperature increases, reductions in
strength, elastic modulus, and P-wave velocities become more pronounced [17]. Heat-
ing and cooling cycles accelerate the mechanical deterioration of granite and augment
permeability, which mainly occur during the initial few cycles, and elevating the heating
temperature in cycles increases the damage rate of granite [18]. Compared to an abrasive
water jet, an abrasive LN jet, which creates a larger and more irregular cavity with lower
threshold pressure, exhibits better performance in perforation [19,20]. A high initial rock
temperature and a short perforation length can increase thermal stresses [19]. In addition,
nozzle pressure drop affects the depth, diameter, and stress-dependent shape of the cavities,
while the nozzle diameter affects the cavity-opening diameter. Increasing the abrasive
particle diameter and rock temperature increases both the cavity-opening diameter and the
cavity depth [20].

However, there is limited insight into how cryogenic fractures propagate from well-
bores. Although studies have performed the visualization of thermal crack propagation
in simple 1D or 2D geometries [21–23], none have attempted to explain the process of
cryogenic fracturing propagating over time from borehole geometry, which is relevant to
well stimulation. While reporting some cryogenic fracture patterns, notably tortuosity,
the studies inferred them from boundary observations [24–26] or post-mortem observa-
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tions after breakdown tests [15]. That is, the studies involved no real-time observations of
internal cryogenic fracturing processes around the boreholes of 3D specimens, an approach
similar to the CT-scan monitoring of hydraulic fracturing by de Borst et al. [27]. Rather
than flowing cryogen through boreholes, which maximizes the cooling rate and sustains a
cryogenic temperature at the boreholes, most studies involved injecting cryogen one way,
pressurizing the borehole and thus elevating the temperature, but the borehole temperature
was not monitored [11,28,29]. In addition, they did not consider the pressure of the LN
flow into the borehole as a parameter in cryogenic fracture propagation.

In response to gaps in the literature, this study investigates the initiation and propaga-
tion of cryogenic fractures from and around boreholes with time under LN flow through the
boreholes of transparent specimens. By internally observing the 3D transparent specimens
with time, we aim to understand the dynamics of the development and morphology of
cryogenic fractures around boreholes. We flowed LN through boreholes drilled through
the center of transparent PMMA blocks to visualize fracture initiation and propagation.
Fracturing processes, temperature, and borehole pressure were recorded during the cryo-
genic flow to visually assess fracture development and observe the behaviors. This study,
performed under no confining stresses, examines two cases of thermal shock with negligi-
ble borehole hydraulic loading during thermal flow, and for comparison, one case with
thermal shock with hydraulic loading.

2. Laboratory Study
2.1. Devices and Procedure

To maximize thermal shock and the thermal gradient on borehole walls, we contin-
uously flushed liquid nitrogen (LN) to cool the borehole as rapidly as possible. LN was
pumped from the dewar by a pressure difference using an LN withdrawal device (Figure 1)
and was transported through a vacuum-jacketed hose to the specimen and injected into
the borehole and then directed to an outlet. For the flow of LN through the borehole,
we utilized a coaxial flow design in which LN enters the borehole through the central
smaller-diameter inlet tubing (blue tubing and arrows—Figure 1), which passes through a
larger-size cross-shaped fitting. Then, warmed nitrogen exits through the annulus between
the inlet tubing and the casing, and then through the space in the cross-shaped fitting
(Figure 1). Insulation was applied to all transport lines from the dewar to the specimen
inlet to reduce heat loss.
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Temperature, pressure inside the borehole, and LN consumption were monitored
and recorded. Cryogenic temperature was measured by T-type thermocouples (range:
−200~150 ◦C, precision: ±0.5 ◦C), and its thin wires were selected for prompt response
to temperature changes and access to the borehole. The borehole pressure was monitored
by attaching a pressure transducer (range: 0–1.4 kPa, accuracy: ±0.25%) at the top of an
8” stainless steel extension tube (1/8” OD) (Figure 1), which created a vapor cushion and
dissipated the low temperature, which limited the heat transfer (the temperature was above
0 ◦C at the top of the tubing throughout the tests). LN consumption was monitored by a
dewar placed on a scale (range: 75 kg, repeatability: 0.02 kg). The accuracy of the measure-
ments within a range of ±1% was ensured for all the sensors by checking measurements
by other types of sensors and/or known values in certain conditions. For example, the
thermocouple measured room air temperature at a difference of less than 1 ◦C from that
measured by a thermometer and measured −195 ◦C when it was submerged in LN at 1 atm.
Images of the specimens were captured by a high-resolution digital camera throughout the
experiments. More information about the devices can be found in Cha et al. [30].

In the setup, LN was directly transferred from the dewar to the borehole, and thus the
pressure inside the borehole was closely related to the pressure inside the dewar. For Speci-
men 1–2 tests, cryogenic fracturing was performed by purer thermal shock; the pressure
inside the boreholes was less than 50 kPa during the LN flow. For the Specimen 3 test, flow
pressure was higher, about 400–500 kPa, and thus the flow rate was higher.

2.2. Specimens

Experiments were performed in poly (methyl methacrylate) (PMMA), a transparent,
thermoplastic polymer. An advantage of performing experiments in a transparent specimen
is that one can observe fracture proliferation through the media with time. Researchers
often use PMMA for hydraulic fracturing tests because of its known physical properties and
proximity to shale in terms of its mechanical properties, including its fracture toughness
and brittleness [31–33]. Table 1 summarizes the mechanical and thermal properties of
PMMA at both room temperature and cryogenic temperature as it exhibits temperature-
dependent properties. The compressive strength, tensile strength, and elastic modulus
of PMMA increase as the temperature decreases [34–36]. On the other hand, thermal
conductivity, specific heat, and the coefficient of thermal expansion decrease at cryogenic
temperature [37,38]. The properties of Niobrara shale, nitrogen, and water are compared
in Table 1. In addition to the differences in the material properties, Niobrara shale consists
of heterogeneous compositional contents (calcareous shale, marl, and a range of shaly
siltstones to silty shales) and has preferential cleavage subparallel to the sedimentary
bedding [39], which could affect fracture propagation differently from a plastic.
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Table 1. Properties of PMMA used and liquid nitrogen. The properties of shale, gas nitrogen, and water shown
for comparison.

Properties PMMA (a) PMMA (low-T) (b) Niobrara Shale (c)

Density (g/cm3) 1.18–1.19 − 2.39
Unconfined compressive strength (MPa) 90–120 250 (−40 ◦C) 54.6

Tensile strength (MPa) 55–76 100–110 (−40 ◦C) 8.48 (Splitting)
Static Young’s modulus (GPa) 2.4–3.3 5.1 (−173 ◦C) 41.4

Poisson’s ratio 0.35–0.4 - 0.27
Specific heat capacity (J/(kg·K)) 1450 450 (−196 ◦C) 990

Thermal conductivity (W/(m·K)) 0.18–0.19 0.14 (−196 ◦C)
Linear thermal expansion coeff. (K−1) (60–80) × 10−6 26 × 10−6 (−196 ◦C) 11 × 10–6

Liquid Nitrogen (d) Gas Nitrogen (e) Water (e)

Viscosity (cP) 0.158 1.76 × 10−2 1.002
Density (g/mL) 0.807 0.0012 0.998

Surface tension (dyn/cm)(against air) 8.85 − 72.8
Specific heat (kJ/(kg·K)) 2.04 1.04 4.18

Thermal conductivity (W/(m·K)) 0.140 0.025 0.591
(a) At normal temperature and pressure (20 ◦C and 1 atm) from the manufacturer. (b) At low temperatures [34,35,37,38] (Evonik.com). (c)

At normal temperature and pressure (20 ◦C and 1 atm); measured by the authors [15]. (d) At −196 ◦C (77 K) and 1 atm. (e) At normal
temperature and pressure (20 ◦C and 1 atm).

Three cylindrical PMMA specimens were used. The outer sizes of all of the specimens
were 10.2 cm in diameter and 23.1 cm in height (Figure 2). The dimensions of Specimen
1 are illustrated in Figure 2a. The borehole, with a diameter of 1.3 cm, was drilled from
the top at a depth of 17.6 cm. Then, a 1.3 cm O.D. stainless steel tube was inserted and
attached to the borehole wall using epoxy to the depth of 6.4 cm. An LN inlet tubing
(OD = 6.4 mm, ID = 5.1 mm for all cases) was inserted 12 cm deep from the top, 5.7 cm be-
yond the casing end, located in the middle of the open hole section (Figure 2a).
The drilled depth of Specimen 2 was the same as that of Specimen 1. Both the casing
and the inlet point were 3.8 cm deep (Figure 2b). The injection point was purposely placed
higher than that of Specimen 1 so that we could observe any effect of the injection point
location. For Specimen 3, the borehole was drilled 19.3 cm into the specimen. The casing
was embedded in the borehole 5 cm (Figure 2c). The tubing inlet was located 12.2 cm into
the borehole in the middle of the open hole.
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3. Results and Discussions
3.1. Temperature, Pressure, and LN Usage

The borehole temperatures of the specimens dropped rapidly with the introduction
of LN and reached the boiling point of nitrogen within five minutes in this laboratory
setup. The cooling rate was higher at the high flow pressure (1.5 ◦C/sec for Specimen 1,
2 ◦C/sec for Specimen 2, and 270 ◦C/sec for Specimen 3) (Figure 3); a higher mass flow
pressure/rate allows better thermal exchange and more depressed thickness of contact film
boiling (the Leidenfrost effect), which facilitate thermal conduction. A higher cooling rate
is favorable for thermal shock because it creates high local thermal gradients.
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The temperature at the outer side surfaces remained high, above 0 ◦C, and also
depends on their proximity to the cracks resulting from the entrance of LN into the cracks
(as will be shown in Section 3.6). During the flows, ∆T between the borehole surface and
the outer surface remained at or above 200 K, creating an average thermal gradient between
the borehole and the outer surfaces of about 46.0 K/cm.

Under the high-pressure injection, the terminal temperature on the borehole wall was
maintained between −175 ◦C and −180 ◦C, higher than −196 ◦C, due to the pressure-
dependent nitrogen phase boundary and boiling point (Figure 3c). Location #5 in Specimen
1 maintained almost constant room temperature because of no flow in the tubing, allowing
the safe use of a regular pressure transducer. Location #5 at the top of Specimen 3 showed
lower temperature than other external surfaces because of cold gas nitrogen leaking from
the above fitting. At the end of the tests, temperatures dropped by a small amount
(e.g., TC#2 of Specimen 1, TC#1 and 5 of Specimen 2, and TC#1 of Specimen 3), caused by
the pressure drop in the borehole (Figure 3).

The dewar lever was opened fully during the release of LN without an intermediate
closure. The experiment for Specimen 2 was terminated by the depletion of the LN tank.
Borehole pressure was mainly determined by the internal pressure of the dewar. Pressure
measured at the borehole fell in the range of 20–30 kPa for Specimen 1 and 35–50 kPa
for Specimen 2, which was sustained by pressure in the dewar tank (Figure 4). A larger
dewar that maintained a higher internal pressure applied greater borehole pressure in
the Specimen 3 test. Time plots of borehole pressure show that the borehole pressures
were initially higher and then decreased slightly over time because as the flow paths
(tubes, rock, and borehole) cool, the reduced vaporization of LN and contraction of already-
vaporized gas nitrogen cause the pressure to decrease and nitrogen consumption to increase
(Figure 4).
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The time plots of LN consumption are slightly curved (Figure 4). Initially, the LN
consumption rate was lower, but it increased over time before reaching a constant rate.
This is because more vaporization occurred in the early stages because of warm flow paths
and, as the system cooled over time, the consumption rate increased and the slope became
steeper. Although a substantial amount of LN (20 kg) flowed in the Specimen 1 test, most
of the fractures occurred at an early stage (within 15 min). When the Specimen 2 test was
terminated at 11 min, the amount of nitrogen that had flowed was only 7.6 kg because
of the depleted dewar. The ending transition for Specimen 2 for both LN consumption
and borehole pressure was smooth when the dewar became depleted and the flow ended
(Figure 4b).

Flow characteristics inside the borehole were observed. Upon the start of the flow,
nitrogen inside the borehole flowed as a gas for about 1 ~ 2 min, then as a gas mixed with
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liquid droplets, and finally as a more continuous liquid phase with a significant amount of
gas patches remaining in the mix.

3.2. Fracture Propagation

Rapid cooling induces large tensile stresses at the wellbore surface. If the stress equals
the tensile strength of a specimen, the specimen cracks. Changes in the tangential tensile
stress component induced by temperature changes on the wellbore wall are estimated by
Equation (1) [40,41].

σ∆T
max =

E
1 − ν

α·∆T, (1)

where ∆T is the temperature difference, α is the coefficient of linear thermal expansion
(K−1), E is the static Young’s modulus (GPa), and ν is the Poisson’s ratio. With the specimen
properties in Table 1 (E = 2.85 GPa, α = 70 × 10−6/K, and ν = 0.38) and ∆T = 210 ◦C, σ∆T

max
is calculated as 67 MPa, which is close to the tensile strengths of 55–76 MPa. Thus, cracks
will initiate at the borehole and propagate into the specimen as LN continuously flows.

For all cases, fractures started orthogonally from the borehole surfaces. Fracture
propagation was faster in earlier stages. As fractures propagated outward and approached
the outer surfaces, the propagation rate became slower because more areas needed to
be covered as fractures propagated outward and because local thermal gradients and
distances to unstressed outer surfaces decreased.

It was observed that fracture growth was jumpy, characterized by abrupt starts and
stops, especially in the early stages. The increased material’s brittleness at cryogenic
temperature could be attributed to the jumpiness. As the fracture propagated outward in
the later stages, the increments of jumps became smaller, so the propagation appeared to
be more continuous. During the experiments, audible sounds were emitted when major
fractures opened, hinting at the brittleness of materials.

In general, two patterns in crack development were observed: horizontal/radial
fractures and vertical fractures that tended to form between the horizontal fractures.
The horizontal/radial fractures constituted the dominant pattern of crack morphology.
An explanation for this is that as the specimen was cylindrical with a borehole height greater
than the borehole circumference, the thermal contractions became more pronounced in the
longitudinal direction, creating horizontal fractures. The horizontal fractures propagated
to roughly equal distances from the boreholes in all horizontal directions within the plane.
In all cases, the horizontal fractures emerged slightly earlier than the vertical fractures.

Fractures were generated in the vertical direction due to the circumferential thermal
contraction, in lesser magnitudes compared to the horizontal fractures. Following the
initiation of the horizontal fractures, vertical cracks initiated from and/or formed between
the horizontal fractures and bridged them. It appears as if starting from a pre-existing
defect (i.e., a horizontal fracture) and propagating toward another defect was energy
efficient (Figures 5–7). Because of the smaller circumference, only one major vertical
fracture initiated from the open borehole, compared to up to three horizontal fractures.

The average speeds of horizontal fracture propagation were quantified from the
middle 50–60% portion of propagation using the time lapse photos. The average speeds
of fracture propagation were 0.41 cm/min for Specimen 1, 0.40 cm/min for Specimen 2,
and 0.51 cm/min for Specimen 3. While the fracture in Specimen 3 grew the fastest,
the Specimen 3 test had a higher flow pressure than the others. For the initial crack to
emerge, Specimen 3 took only 4 s after initial flow while others took 20–30 s (the initial
flow took place mainly during the cryogenic gas phase). The fracture speed of horizontal
fractures was significantly faster than that of vertical fractures. As a fracture propagated
radially, the fracture propagation rate tended to decrease.
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Unlike in the other tests, in the Specimen 2 test, only one major horizontal/radial
fracture was created in the open hole (versus three in the other tests) (Figure 6), the cause
of which is unclear. However, the difference between the test conditions of Specimen 2 and
the others was the shorter stimulation time of Specimen 2 (11 min vs. 36 min of Specimen
1 test); thus, a smaller amount of LN flowed (7.6 kg vs. 20 kg in Specimen 1 test), which
could have led to an insufficient accumulation of thermal stress to generate additional
fractures. The higher location of the fracture may have been related to the high location of
the inlet port (Figure 2b).

3.3. Exclusion Distance

Horizontal fractures were spaced at a certain length, that is, an “exclusion distance.”
An exclusion distance exists because major cracks cannot form closer than a certain length
because of the limited amount of thermal contraction (Figure 8). Propagation is focused to
major fractures, rather than promoting in-between fractures. For example, photos 2–3 in
Figure 5 display a small horizontal fracture visible on the right between the middle and
bottom fractures. It stops growing at some point while neighboring fractures continue to
grow. The spacing (i.e., exclusion distances) between horizontal fractures in open-hole areas
measured 3 cm in Specimen 1 and 2.5 cm in Specimen 3 (Figure 8). The exclusion distance,
or crack spacing pattern, has also appeared and been modeled in thermal cracking in simple
two-dimensional media [21–23]. As there was only one vertical fracture, the exclusion
distance was not manifested for the vertical fractures. Exclusion distance is more obvious
in the early stages because fractures at later stages begin to interact in a complex manner.
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Many geomechanical/geochemical processes have been observed to show the behav-
ior of exclusion distance as an aspect of their manifestations. For example, in the acidizing
of carbonate formation, wormhole competition stops the growth of side branches and deter-
mines the final wormhole density [42]. In columnar joint morphology, the cross-sectional
area of a column is inversely proportional to the cooling rate [43]. When thermal stress
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reaches the tensile strength of a shrinking asphalt pavement, regularly spaced thermal
cracks form across the width [44].

3.4. Fracture Curvature and Interaction between Fractures

While hydraulically driven fractures are generally straight in uncased boreholes [45],
every cryogenic fracture in this study was curved after initiation orthogonal to the surface.
A curved thermally induced fracture was also observed around shale boreholes [15].
The curvature patterns, however, were not consistent (Figures 5–7). Some fractures curved
upward, and others curved downward. Some fractures deflected or their curvatures
changed after a certain propagation. In some cases, different curvature trends existed
within the same horizontal fracture plane.

The curvatures in this study had some similarities with “caged fractures” around un-
derbalanced wellbores where fractures curl around wellbores within a fracture cage [46,47],
within which the principal deviatoric compressional stress follows concentric rings, not
the far field stress. Thus, while curvature patterns seem arbitrary, distorted stress fields
induced by thermal treatments were presumed to determine fracture curvature.

It appears that with a continuous supply of LN, a fracture continues to grow, but its
curvature or tortuosity prevents large penetrations. In our tests, some major fractures
reached the outer surfaces even though the fractures were curved, possibly the result of
the relatively small distances from the borehole to the outer surface. Larger specimen
tests would reveal patterns that could hint to a field scale. In Specimen 3, however,
fractures were significantly straighter due to the higher borehole pressure, which reduced
the impact of internal thermomechanical heterogeneities and fracture curvature/tortuosity
and facilitated straighter and more radial propagation.

Between images 9 and 10 in Figure 5 for Specimen 1, the right portion of the middle
horizontal fracture propagated upward and suddenly connected to the top horizontal
fracture, and the left portion of the bottom horizontal fracture propagated upward and
connected to the middle horizontal fracture. In addition, between photos 6 and 7, a fracture
branched from the bottom fracture and connected to the small arrested horizontal fracture
located between the middle and bottom fractures. All of these connections between the
horizontal fractures occurred instantaneously (<0.03 sec) at different times. This instanta-
neous fracture merging indicates dynamic and complex thermal stress conditions, driven
by seemingly more than longitudinal and circumferential thermal stresses. At the end
of the experiment, the exclusion distance became less clear, and the specimen showed a
complex fracture skeleton resulting from interaction among the fractures (Figure 5).

3.5. Striation in Fractures

Another feature, the existence of striation, appeared to be precisely perpendicular
to the propagation directions for both horizontal and vertical fractures (Figure 9). Along
the many striations, various degrees of changes in the curvature occurred. Along some
striations, especially the vertical ones, the curvature changes were not noticeable. Figure 9c
illustrates distinct changes in curvatures. Distances between striations in fractures, however,
were not equal (Figure 9). In Specimen 3, striation was less distinct and less frequent, which
relates to the straighter fractures in Specimen 3, which again relates to the higher borehole
pressure applied. In general, striation spacing was smaller near the borehole. Close to
the borehole, roughly within 0.5 inch from the wall, striations appeared to be identical to
fracture jumps. As the fracture propagated outward, the fracture steps became smaller and
more continuous and spacings between the striations became larger. It is postulated that
striation could be determined by changing the thermomechanical conditions affected in part
by liquid nitrogen in the aperture and by borehole pressure fluctuations, albeit small in this
study. In Cha et al. [15], the application of breakdown pressure after cryogenic treatment
in shale boreholes created discontinuities in curvature between cryogenic fractures and
pressure-induced fractures. It is unknown whether striations in cryogenic fracturing are
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unique to certain materials; documented observations of cryogenic fracture surfaces in
rocks are rare.

3.6. LN in Crack Aperture on the Propagation of Fracture and Temperature

During LN flow through the boreholes, we visually confirmed that LN moved into
and flowed around the fractures created in open holes very close to the tip of thin frac-
tures. The random movement of LN in thin cracks in its liquid state up to ~0.25–0.5 inch
from crack tips was facilitated by low viscosity and possibly by low surface tension (vis-
cosity of LN 0.158 cP vs. water 1.002 cP and surface tension of LN 8.85 dynes/cm vs.
water 72.8 dynes/cm) (Table 1).
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The presence of LN in fracture apertures efficiently cooled fracture surfaces and
created a thermal gradient around the fractures, which helped further fracture propagation.
In the open borehole, fractures eventually reached the surface at an extended period
(Figures 5–7). Fractures formed from the casing, yet did not grow as much. Even though
they started at about the same time as those in the open hole, the growth of cracks from the
casing was limited by a lack of access to LN. Therefore, it follows that a continuous supply
of LN into cracks is important for their continuous growth.

The presence of LN in the aperture indicates that the temperature in the aperture was
close to the boiling point of LN, and therefore the fractures acted as heat sinks that reduced
the surrounding temperature. The temperature on the outside surface was affected by
its proximity to the cracks (Figure 10). Since the thermal conductivity of PMMA is low
(about 1/6 that of typical shale), the temperature difference between outer surfaces and in-
side the fractures was large, creating large thermal gradients that facilitated fracture growth.

3.7. Effect of Casing

For all tests, one major horizontal fracture was initiated early in the flow at the stainless
steel cased parts of the borehole (Figures 5–7 and Figure 11), although they were more
distant from inlet ports. The stainless steel casings had a much higher thermal conductivity
than PMMA (stainless steel: 16.3 W·m−1·K−1 versus PMMA: 0.185 W·m−1·K−1). Although
the fractures in the casing started early, the growth was arrested at some point or slower
because of a lack of or a lower rate of LN supply into the fractures caused by the casing,
which reduced heat transfer. The epoxy that bonded the casing and the acrylic wall might
have changed the stress condition and affected the fracture distribution.
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4. Limitations

While PMMA is homogeneous, isotropic, and impermeable in material properties,
sedimentary rocks are heterogeneous and have varying degrees of anisotropy and per-
meability. No confining stress was applied in this study. While detailed descriptions and
interpretations of the new observations will benefit analytical and numerical modelers,
extension to a field-scale understanding must be aided by further studies using large,
confined rock specimens and/or field tests.

PMMA, as a thermoplastic, exhibits brittle behavior below its glass transition tem-
perature of 105 ◦C and becomes pliable above its transition temperature. While drilling
boreholes, if continuous cooling is not applied, the temperature of PMMA can exceed the
glass transition temperature and even reach the melting point of 160 ◦C. We observed
that during drilling, borehole surfaces underwent local plastic deformation, creating a
texture. Residual stresses may be created near the borehole walls because of the cooling of
the hot surface during drilling. When this altered surface with residual stress is rapidly
cooled by LN, the development of internal stress can differ from that within a flat, polished,
and residual stress-free surface. These complexities can affect crack initiations. To prevent
the influence of these uncertainties, the temperature of materials should be kept low by
slow drilling and a continuous supply of cooling fluid.

We noticed that fractures were created mainly near the injection point, which may
suggest the effect of inlet port location on temperatures, possibly creating a lower tem-
perature near the injection point (Figure 11). However, this interpretation did not apply
for the Specimen 3 test; all the fractures were located above the inlet port in Specimen 3
(Figure 11c). This specimen was drilled twice. The first drilling created a hole to a point
below the lowest fracture. The second drilling completed the hole, shown in Figure 11c.
All fractures in Specimen 3 occurred in the hole created from the first drilling; different
levels of residual stress and/or surface textures could exist. An unbiased understanding
of the effect of the inlet port requires additional tests using boreholes created with clean,
low-temperature drilling, as stated in the above paragraph.

5. Conclusions

We conducted cryogenic fracturing experiments in the boreholes of transparent PMMA
specimens so that dynamic cryogenic fracturing processes could be directly observed with
time. The study describes in detail the initiation, propagation, morphology, and factors
controlling cryogenic fracture processes in a borehole geometry. Salient and unprecedented
observations of cryogenic fracture propagation are summarized below.

Cryogenic fracture growth was characterized by abrupt starts and stops owing to the
brittleness of the cryogenic PMMA specimens and the accumulated release of tensile stress
coupled with fracture propagation and heat transfer. As the fracture propagated outwards,
the increments of starts and stops became smaller and its growth turned more continuous.
Aided by its low viscosity, LN readily moved into the cracks, which facilitated continuous
crack growth.

At their initiation and in early stages, horizontal/radial fractures and vertical frac-
tures were the two defining fracture patterns, driven by longitudinal and hoop stresses,
respectively. Horizontal fractures were more dominant than vertical fractures because the
borehole length was greater than the borehole circumference, creating more pronounced
thermal contractions in the longitudinal direction.

Horizontal fractures tended to be spaced at a certain length, or an exclusion distance.
While distinct horizontal/vertical fractures and the exclusion distance manifest themselves
at an early stage, fractures later develop into complex shapes because of curvatures and
fracture–fracture interactions.

Cryogenic thermal loading induces distinctively curved fractures in homogeneous
and fine-grained media. Although all fractures start orthogonally from borehole surfaces,
which is favorable in terms of production, the tendency of tortuosity may lead to limited
penetration solely by thermal shock. On a positive note, the increase in borehole pressure
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during LN flow can lessen fracture curvature/tortuosity and facilitate radial propagation.
A high flow pressure/rate is also advantageous, for it accelerates the cooling rate and
fracture initiation and propagation.

The key features of cryogenic fracturing, that is, multiple set of cracks with spacing,
vertical and horizontal fractures, and curvature, differ markedly from those of hydraulic
fracturing, in which propagation mainly follows a bi-wing pattern, and is potentially
beneficial in that it could increase fracture network density and stimulated reservoir
volume even though the penetration depth is likely smaller than that of hydraulic fracturing.
Nevertheless, with simultaneous cryogenic and hydraulic loading, significant penetration
with multiple sets of fractures may be possible.
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