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Modern synchrotron beamlines often take the form of critical illumination

systems, where an incoherent source of limited spatial extent is re-imaged

to an experimental plane of interest. Unique constraints of synchrotron

sources and beamlines, however, may preclude the use of the simple Zernike

approximation for calculating the object-image coherence relationship. Here,

we perform a rigorous analysis of the object-image coherence relationship

valid for synchrotron beamlines. The analysis shows beamline aberrations

to have an effect on the coherence properties. Effects of various low-order

aberrations on the coherence properties are explicitly studied. c©2002 Optical

Society of America
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1. Introduction

Through spatial and spectral filtering, high brightness and high coherent power undulators

available at third generation synchrotron radiation facilities enable a variety of experiments

that require a high degree of coherence at short wavelengths. Undulator sources are regarded

as incoherent because the electrons in the synchrotron storage ring have uncorrelated motion

and thus are essentially independent radiators. Beamline optics are routinely used to re-

image this spatially confined incoherent source to an experimental plane of interest. Such a

configuration is readily recognized as a critical illumination system [1], where the beamline

acts as the condenser.

Undulator radiation has an intrinsic divergence angle, known as the central radiation

cone angle θcen, characterized by the electron forward-emitting radiation [2]. The beamline

acceptance angle, i.e. object-side numerical aperture (NA) of the condenser, is usually set

to be comparable but slightly smaller than θcen. This acceptance angle sets the effective

coherence patch size on the source as seen by the condenser system. For the Van Cittert-

Zernike theorem to correctly predict the spatial coherence distribution at the image plane of

the condenser, the dimension of the source must be much greater than this effective coherence

patch size, i.e.

dsource À d eff
coh ≈

1

2π

λ

θaccept

(1)

where dsource is the source dimension, d eff
coh is the effective coherence patch size at the source,

λ is the wavelength, and θaccept is the beamline acceptance angle. However, the distinct char-

acteristics of third generation undulator radiation, i.e. the small vertical source dimension
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and the constraint on the size of beamline acceptance angle, give rise to a condenser sys-

tem whose spatial coherence properties cannot be simplified by the commonly used Zernike

approximation [1, 3, 4]. For the λ = 13.4 nm application considered here, the Gaussian un-

dulator source has a vertical dimension (2σ) of dsource = 32 µm, and the beamline acceptance

angle is θaccept = 48 µrad, smaller than the central radiation cone angle of 80 µrad. The d eff
coh

thus equals to 45 µm, for which Eq.(1) is clearly not satisfied and the Zernike approximation

is not applicable.

Here, based on the Huygens-Fresnel principle, the analysis and numerical evaluation of

the spatial coherence properties of a representative undulator beamline are presented and

the results are compared with measurements conducted at Lawrence Berkeley National Lab-

oratory’s Advanced Light Source undulator beamline 12. Moreover, the effects of beamline

aberrations on coherence properties are studied.

2. Rigorous mutual coherence propagation for undulator beamlines

A. Undulator radiation as an incoherent source

Synchrotron-based undulator sources can be approximated as incoherent under the condition

that the coherence width at the source is smaller than the diffraction-limited resolution of

the condenser (i.e. beamline). Alternatively, this could be stated as requiring the intrinsic

divergence of the source to be larger than the acceptance angle of the beamline. For the

undulator source, the positions and motion of the electrons in the undulator are uncorrelated.

All point radiators originating from uncorrelated electrons can be treated as independent,

and the effective size of an elemental point radiator can be determined from the central

radiation cone divergence [2]. The intrinsic divergence of the extreme ultraviolet (EUV)
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undulator considered here [7] is θcen = 80 µrad, which is larger than the beamline acceptance

angle θaccept of 48 µrad. Therefore, it is evident that the incoherent source approximation

holds.

B. Zernike approximation for a condenser system

The Zernike approximation, first described by F. Zernike in 1938 [4], states that the con-

denser lens pupil, when illuminated by a large incoherent source, can be regarded as a

secondary incoherent source whose intensity distribution is given by the modulus square of

the pupil function. This approximation, described again by Born & Wolf [3] (sec.10.5.2) and

Goodman [1] (sec.7.2.2), is commonly used for condensers operating at visible wavelengths.

Starting with an incoherent source placed at the object plane of the condenser, the Van

Cittert-Zernike theorem [3, 1, 4] can be used to propagate this incoherent source to the

condenser lens pupil and the resultant mutual intensity at the condenser lens is given by a

Fourier transform of the source intensity distribution. The condition under which the Zernike

approximation is valid requires that the incoherent source subtends a sufficiently large angle

at the condenser lens, such that the coherence width at the condenser lens is small relative

to the pupil diameter. Satisfying this condition, the condenser lens pupil can be regarded

as a secondary source with a small coherence area and the generalized Van Cittert-Zernike

theorem [1] can then be used to propagate the mutual intensity from the condenser lens

pupil to the image plane of the condenser. The resultant coherence distribution at the image

plane of the condenser is thus determined solely by the modulus square of the pupil function

and aberrations in the condenser lens do not affect the coherence distribution at the image

plane.
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However, when the dimension of the incoherent source shrinks to the point where the

coherence width at the condenser lens is comparable to the pupil diameter, the Zernike

approximation fails and the generalized Van Cittert-Zernike theorem can no longer be used

to propagate the mutual intensity function from the exit of the condenser lens to the image-

plane. Under this small-source condition, a rigorous mutual coherence propagation based

on the Huygens-Fresnel principle is required [1]. As will be shown here, in this case, the

condenser pupil aberrations begin to affect the coherence properties at the condenser image-

plane.

C. Undulator beamline as a condenser: an example

Undulator Beamline 12, operational at Lawrence Berkeley National Laboratory’s Advanced

Light Source synchrotron radiation facility can be viewed as an incoherent source with a

Gaussian intensity distribution, (σξ, ση) = (260µm, 16µm). The beamline essentially acts

as a condenser lens with a de-magnification of 60 and an object-side NA of 48 µrad. The

distance z1 from the undulator source plane to the pupil is 16.7 m and the pupil radius a is

0.8 mm. The wavelength used here is λ = 13.4 nm.

Using the Van Cittert-Zernike theorem to propagate radiation from the incoherent source

to the lens pupil, the mutual intensity at the pupil is given by a Fourier transform of the

Gaussian intensity distribution of the incoherent undulator source. The resultant coherence

distribution at the pupil is then Gaussian distributed with rms radii

(σC
x , σC

y ) = (
λz1

2πσξ

,
λz1

2πση

) ≈ (0.14 mm, 2.23 mm). (2)

Comparing the vertical size of this coherence patch with the pupil diameter (2a = 1.6 mm),

the Zernike approximation is found not to be applicable and, therefore, the generalized
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Van Cittert-Zernike theorem cannot be used to propagate the mutual coherence from the

condenser pupil to the image-plane. However, should this invalidity be ignored, and the

Zernike approximation be used for the calculation of the spatial coherence distribution at the

condenser image-plane, the erroneous resultant coherence distribution would be calculated

to be an Airy pattern with a first null radius so of 2.84 µm. Noting that this radius is

approximately equal to the expected coherence patch size. This over-simplification results in

discrepancy with the experimentally measured coherence profile [5], which determined the

size of the coherence patch to be 4.4 µm and 6.8 µm in the horizontal and vertical direction,

respectively.

As demonstrated, the generalized Van Cittert-Zernike theorem does not apply for the

undulator case of interest here, and a more rigorous coherence analysis is required.

3. Object-image coherence relation

Using the Huygens-Fresnel principle [1], the object-image coherence relation, under quasi-

monochromatic and paraxial approximations, can be expressed as

Ji(u1, v1; u2, v2) =

+∞∫∫∫∫

−∞

Jo(ξ1, η1; ξ2, η2)K(u1, v1; ξ1, η1)K
∗(u2, v2; ξ2, η2)dξ1dη1dξ2dη2 (3)

where Ji and Jo are the mutual intensities at the image and object plane, respectively. The

amplitude spread function K is defined by

K(u, v; ξ, η) =
exp

{
j π

λz2
(u2 + v2)

}
exp

{
j π

λz1
(ξ2 + η2)

}

λ2z2z1

×
+∞∫∫

−∞

P(x, y) exp

{
−j

2π

λz2

[(
u +

z2

z1

ξ
)
x +

(
v +

z2

z1

η
)
y

]}
dxdy

(4)

where P(x, y) is the complex pupil function. The coordinate system used throughout this

paper is depicted in Fig. 1. Notice that the subscript i for (ui, vi) and (ξi, ηi) is dropped in
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Eq.(4) for ease of notation.

If an incoherent source is placed at the object plane, then Jo can be written as

Jo = κ Is(ξ, η) δ(∆ξ, ∆η) (5)

where Is(ξ, η) is the source intensity distribution, κ = λ2/π, and δ(·,·) is a 2-dimensional

Dirac delta function.

In this case, Eq.(3) simplifies to

Ji(u1, v1; u2, v2) = κ

+∞∫∫

−∞

Is(ξ, η)K(u1, v1; ξ, η)K∗(u2, v2; ξ, η)dξdη (6)

The mutual intensity function Ji at the image plane can now be determined by the integration

of the source intensity distribution Is and the two off-centered [by (u1, v1) and (u2, v2),

respectively] amplitude-spread functions of the pupil P.

In order to simplify the notation in Eq.(6), we define

G(u′, v′) ≡
+∞∫∫

−∞

P(x, y) exp

{
−j

2π

λz2

[
u′x + v′y

]}
dxdy (7)

Note that G(u′, v′) is essentially the Fourier transform (up to a scaling constant) of the pupil

P(x, y), i.e. the condenser point-spread function (PSF). Eq.(6) can now be written as

Ji(u1, v1; u2, v2) =
κ exp

{
j π

λz2
(u2

1 + v2
1 − u2

2 − v2
2)

}

λ4z2
2z

2
1

×
+∞∫∫

−∞

Is(ξ, η) G
(
u1 + Mξ, v1 + Mη

)
G∗(u2 + Mξ, v2 + Mη

)
dξdη,

(8)

The mutual intensity can be obtained by numerically evaluating the above double integral.

Equation (8), and its equivalent Eq.(6), are based on the Huygens-Fresnel principle and

are valid regardless of the Zernike approximation. Note here that the mutual intensity is a

function of the four individual coordinates, (u1, v1, u2, v2), not their differences.
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The numerical value of G(u′, v′) can be determined by evaluating the integral in Eq.(7).

This integral can be expressed as weighed summations of various Bessel functions for the

specific aberrations involved [3, 6]. Here we explore the effects of defocus/distortion, astig-

matism, and coma on the spatial coherence distributions at the condenser image plane.

4. Numerical evaluation results

Using the object-image coherence relation derived in Sec. 3, i.e. Eq.(8), the mutual intensity

at the image plane of the condenser can now be determined numerically by incorporating

the appropriate PSFs [i.e. G(u′, v′)]. To test the validity of the numerical evaluation, a large

(1.6 mm× 1.6 mm) uniform intensity incoherent source is used to illuminate the condenser.

Unlike the undulator source, this large square incoherent source can be shown to satisfy

the Zernike approximation. The resultant intensity and coherence distributions with various

pupil aberrations are shown in Fig. 2. As expected under the Zernike approximation, the

various aberrations have negligible effect on the spatial coherence distributions, which are

all essentially Airy patterns with first null radius of 2.8 µm. The intensity distributions are

all relatively uniform, again as expected by the Zernike approximation. In the case of coma,

the intensity distribution is shifted because the center of mass of the modulus square of the

coma PSF is off-centered.

Next, an actual undulator source having a size that does not satisfy the Zernike approx-

imation is studied. The intensity distribution of this incoherent undulator source is Gaussian

with (σx, σy) = (260µm, 16µm), given by the undulator beam size at the exit-plane. First,

an aberration-free condenser is assumed in order to determine the effect of smaller source

size. Figure 3 shows the failure of Zernike approximation for small sources, as the coherence
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distribution deviates significantly from an Airy pattern.

It has been shown above that the size of the incoherent source has affected the coherence

distribution at the image plane of a critical condenser and the apodized pupil function is not

the sole determining factor. Next, the effect of pupil aberrations on the spatial coherence

distribution is investigated. Several low order aberrations will be assumed in the condenser

to demonstrate this effect. The PSFs required by Eq.(8) are given in Ref.[3] for defocus

and distortion, and in Ref.[6] for astigmatism and coma. Figure 4 shows that in the case of

smaller source size, the effect of condenser aberrations on spatial coherence cannot be ig-

nored. With 0.5 waves of defocus in the condenser, the intensity and coherence distributions

at the condenser-image plane is shown in Fig. 4(a). Figures 4(b) and (c) show the distribu-

tions under 0.5 waves of astigmatism and coma, respectively. For the cases of defocus and

astigmatism, the high vertical coherence shown in Fig. 4(a) and (b) can be explained by the

small vertical source size. However, in general the two dimensional coherence distributions

cannot be treated separately in terms of vertical and horizontal directions. As demonstrated

in the case of coma, shown in Fig. 4(c), the two dimensional structure of coma dominates the

spatial coherence distribution in the condenser image-plane and the coherence distribution

cannot be explained simply by the vertical and horizontal source size.

Noting that the coherence distribution is not simply a function of the difference of the

coordinates, instead, it is a function of the four individual coordinates, i.e. (u1, v1, u2, v2).

Therefore, when displaying the coherence distribution, one of the coordinates is fixed at the

origin, i.e. (u1, v1) = (0, 0), and the coherence distribution is obtained as the correlation

factor |µ12| between various points (u2, v2) and the origin (0, 0).
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5. Discussion

As previously demonstrated experimentally [5], the Zernike approximation has been analyti-

cally shown to not hold for a typical EUV undulator beamline. Using the Zernike approxima-

tion significantly underestimates the coherence area, and hence the available coherent power.

This can have important ramifications for experiments requiring coherence. For example, in

speckle dynamics experiments [8] where coherent power is important but wavefront quality is

typically not, it is evident that the Zernike approximation would significantly underestimate

the usable beam size and power. We note, however, that for EUV point-diffraction interfer-

ometry [9, 10], these issues are less important. In this case, the spatial-filtering pinhole placed

at the focus of the beamline serves the dual purpose of improving the spatial coherence, and,

more importantly, generating a highly spherical probe beam. Even if the coherence area is

larger than predicted, the pinhole size cannot be increased because doing so would adversely

affect wavefront quality at the same time it increases the available coherent power.

We note that the results obtained here are valid for any condenser system that re-

images an incoherent source to its conjugate plane (critical illumination), regardless of the

Zernike approximation. We have demonstrated that for a condenser system employing an

EUV undulator as the radiation source, the commonly used Zernike approximation is violated

and numerical spatial coherence propagation based on Huygens-Fresnel principle is required.

We note that the validity of the Zernike approximation is wavelength dependent as seen in

Eq.(2). Based on requiring the coherence patch width to be 1/10 the pupil width or smaller,

the Zernike approximation can be shown to be applicable when using wavelengths of 1 nm

or shorter, assuming all else being equal. Using the Zernike approximation requires caution
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and the validity of Zernike approximation has to be verified before application. Also shown

is that pupil aberrations pose significant effect on the spatial coherence distributions at the

condenser image-plane when Zernike approximation fails.

11



References

1. Joseph W. Goodman, Statistical optics, (Wiley, New York, 1985).

Critical illumination: Sec.7.2.1, pp306.

Zernike approximation: Sec.7.2.2, pp311.

Van Cittert-Zernike theorem: Sec.5.6, pp207-211.

Generalized Van Cittert-Zernike theorem: Sec.5.6.4, pp218-222.

Huygens-Fresnel principle: Sec. 5.4.1, pp196-198. Sec7.1.4, pp296-300.

2. D. T. Attwood, Soft x-rays and extreme ultraviolet radiation : principles and applications,

(Cambridge University Press, 1999).

3. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference

and diffraction of light, (Cambridge University Press, UK, 1997).

Zernike approximation: Sec10.5.2, pp522-524.

Van Cittert-Zernike theorem: Sec10.4.2, pp508-512.

Displacement theorem: Sec.9.1, pp460-464.

4. F. Zernike, “The concept of degree of coherence and its application to optical problems”,

Physica V, 785-95 (1938).

5. C. Chang, P. Naulleau, E. Anderson, D. Attwood, “Spatial coherence characterization of un-

dulator radiation”, Opt. Commun. 182, 25-34 (2000).

6. Bernard R. A. Nijboer, The diffraction theory of aberrations, (Batavia, 1942). Chapter 4.

12



7. D. Attwood, P. Naulleau, K.A. Goldberg, E. Tejnil, C. Chang, R. Beguiristain, P. Batson, J.

Bokor, E.M. Gullikson, M. Koike, H. Medecki, J. Underwood, Tunable coherent radiation in

the soft X-ray and extreme ultraviolet spectral regions, IEEE J. Quantum Electron. 35, 709-20

(1999).

8. A.C. Price, L.B. Sorensen, S.D. Kevan, J. Toner, A. Poniewierski, R. Holyst, Coherent soft-X-

ray dynamic light scattering from smectic-A films, Phys. Rev. Lett. 82, 755-8 (1999).

9. P. Naulleau, K.A. Goldberg, S.H. Lee, C. Chang, C. Bresloff, P. Batson, D. Attwood, J. Bokor,

Characterization of the accuracy of EUV phase-shifting point diffraction interferometry, Proc.

SPIE 3331, 114-23 (1998).

10. P. Naulleau, K.A. Goldberg, S.H. Lee, C. Chang, D. Attwood, J. Bokor, Extreme-ultraviolet

phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom

reference-wave accuracy, Appl. Opt. 38, 7252-63 (1999).

13



η

ξ u

v

z1 z2
z

y

x
a

(ρ,θ)

condenser lens/
beamline

undulator source/ image-plane
object-plane
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Fig. 2. Simulation results for a large (1.6 mm × 1.6mm) uniform source. Intensity

(left column) and coherence (right column) distributions resulting from the various

pupil aberrations (a defocus, b astigmatism, c coma). The coherence distributions

are all essentially Airy patterns as predicted by the Zernike approximation.
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Fig. 3. Simulation results: Intensity and coherence distribution at the condenser

image-plane resulting from the un-aberrated condenser pupil and the Gaussian-

shaped incoherent source of (σx, σy) = (260µm, 16µm).
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Fig. 4. Simulation results that show the effect of aberrations for the Gaussian-shaped

incoherent source: Intensity (left column) and coherence (right column) distribution

at resulting from the various aberrations (a defocus, b astigmatism, c coma).
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