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SUMMARY

New assays such as Perturb-seq link parallel CRISPR interventions to transcriptomic readouts, providing
insight into gene regulatory networks. Causal regulatory networks can be represented by directed acyclic
graphs (DAGs), but lack of identifiability and a combinatorial solution space complicate learning DAGs
from observational data. Score-based methods have improved the practical scalability of inferring DAGs,
but are sensitive to error variance structure. Furthermore, correction for error variance is difficult without prior
knowledge of structure. We present dotears [doo-tairs], a continuous optimization framework leveraging
observational and interventional data to infer causal structure, assuming a linear Structural Equation Model.
dotears exploits structural consequences of hard interventions to estimate and correct for error variance
structure. dotears is a provably consistent estimator of the true DAG under mild assumptions and outper-
forms other state-of-the-art methods in varied simulations. In real data, differential expression tests and
high-confidence protein-protein interactions validate dotears-inferred edges with higher precision and recall
than others.

INTRODUCTION

Understanding gene regulatory networks can identify mecha-

nisms and pathways linking GWAS significant variants to pheno-

type. Recent efforts to map regulatory networks through trans-

eQTLs are partly limited by power; for example, the GTEx project

finds only 143 trans-eQTLs in 838 individuals.1On the other hand,

Võsa et al. detect almost 60,000 trans-eQTLs in�31,000 individ-

uals, acrossmore than a third of trait-associated variants.2 These

results imply that trans-regulatory relationships are pervasive,

but our ability todetect small eQTLeffects is often limitedby small

sample size regimes, observational data, and a high multiple

testing burden. Importantly, since rare tissues are unlikely to be

sampled at sufficient sample sizes, capturing gene regulation

events across a wide array of cell types and tissues requires

another experimental method.

High-throughput genomic technologies such as Perturb-seq

provide a natural alternative for learning gene regulatory net-

works. Perturb-seq links high-dimensional transcriptomic read-

outs to known, highly parallel CRISPR interventions, allows the

direct interrogation of causal regulatory relationships, and has

scaled genome-wide.3–5 In particular, the effects of CRISPR

gene interventions are large in comparison to QTL effects,

facilitating inference of downstream regulatory relationships.

Notably, analogous experiments have already mapped gene-

gene networks in yeast.6–8

The inference of gene regulatory networks can be treated as a

causal structure learning problem, which considers learning rela-

tionships between variables in the form of a Directed Acyclic

Graph (DAG). Here, directedness gives a natural causal interpre-

tation, while acyclicity ensures that the causal interpretation is

valid. For example, in the mediator DAG i/j/k, we understand

that gene j has a direct causal regulatory effect on gene k, and

similarly that gene i (indirectly) affects gene k only through its

direct effect on gene j.

Identifiability and scalability are the primary difficulties in

learning DAGs from data. For identifiability, distinct DAGs may

contain the same conditional independence relationships in

observational data, and DAGs are only identifiable up to Markov

equivalence.9–11 For scalability, Zheng et al. introduced DAGs

with NO TEARS, a method that allows for continuous optimiza-

tion through a continuous, differentiable acyclicity constraint.12

As a result, DAGs with NO TEARS avoids combinatorial charac-

terizations of DAGs, and is a fundamental methodological
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building block for many structure learning methods.13,14 Howev-

er, NO TEARS and related methods infer DAGs whose topolog-

ical order follows increasing marginal variance, and re-scaling

data can change or reverse their inferences.15 This poses issues

for inferring gene regulatory networks from data, where the scale

of exogenous error between genes is likely not uniform.

Fundamentally, this is still an issue of identifiability. Because

NO TEARS uses observational data, it must choose a single

member of a class of Markov equivalent DAGs. The ‘‘tiebreaker’’

is then a function of the variance. However, we show that inter-

ventional data can correct for variance sensitivity in NO TEARS

and related methods, and further that this correction is sufficient

for the consistent estimation of structure.

Explicitly, exogenous error in the linear SEM drives variance

sensitivity. Let X be a p-dimensional random vector (e.g., the dis-

tribution of gene expression across p genes), W0 ˛Rp3p the

weighted adjacency matrix of the true DAG, and e a p-dimen-

sional random vector specifying the exogenous error. The linear

SEM gives the autoregressive formulation

X = XW0 + e;

where U0 := CovðeÞ = diagðs21;.;s2pÞ. For any node j we then

have

VarðXjÞ =
Xp
i = 1

w2
ijVarðXiÞ+ s2

j : (Equation 1)

VarðXiÞ is itself a linear function of s21;.;s2p. Critically, parental er-

ror variances thus propagate to downstream nodes to provide a

signal of structure. However, in observational data the exact

relationship between W0, U0, and VarðXÞ is unidentifiable.

Consequently, given U0 thenW0 is recoverable even in obser-

vational data.16 However, the estimation of U0 is difficult without

a priori knowledge of W0. Previous methods either ignore exog-

enous variance structure or use the conditional estimatebU0jW12,13. We show that both procedures are sensitive to exog-

enous variance structure even in the simplest two node DAG.

Hard interventions17,18 remove upstream variance in the linear

SEM to allow the marginal estimation of U0. We show that the

naive incorporation of interventional data into the NO TEARS

framework, without the estimation of U0, is insufficient for struc-

tural recovery. Finally, we show correction by this marginal esti-

mate is sufficient for structural recovery.

Accordingly, we present dotears, a novel optimization frame-

work for structure learning. dotears uses 1.) a novelmarginal esti-

mation procedure forU0 using the structural consequences of in-

terventions, and 2.) joint estimation of the causal DAG from

observational and interventional data, given the estimated bU0.

dotears provides a simple model that we show, by extending re-

sults from Loh and Buhlmann,16 is a provably consistent esti-

mator of the true DAG under mild assumptions. In simulations,

dotears corrects for exogenous variance structure and is robust

to reasonable violations of its modeling assumptions. We also

apply dotears to the Perturb-seq experiment in Replogle et al.5

dotears infers a sparse set of edges that validate with high preci-

sion in differential expression tests and in an orthogonal set of

protein-protein interactions. In both simulations and real data,

dotears outperforms all other testedmethods in all usedmetrics.

Model
We represent a gene regulatory network as G = ð½p�;EÞ, a DAG

on p nodes with node set ½p� : = f1.pg and edge set E. We

represent E with the weighted adjacency matrix W ˛D3Rp3p,

where D3Rp3p is the set of weighted adjacency matrices on p

nodes whose support is a DAG. We denote the parent set of

node i in the observational setting as PaðiÞ. For wij the i; j entry

inW,
��wij

��> 0 indicates an edge i/j with weight wij, equivalently

denoted i/
wij

j, or equivalently an inferred gene regulatory event

between genes i and j. k = 0;1;.;p indexes the intervention,

where k = 0 is reserved for the observational system, and ks0

denotes intervention on node k. Similarly, we denote ð$Þð0Þ for
observational quantities, and ð$ÞðkÞ for quantities under interven-
tion on node k. For brevity, a variable without a superscript is

assumed to be observational; for example, XhXð0Þ. X (bolded)

denotes n0 samples drawn from the p-dimensional random vec-

tor X (unbolded), and e (bolded) denotes n0 samples drawn from

the p-dimensional random vector e (unbolded). Similarly, if XðkÞ is
a p-dimensional random vector, then XðkÞ ˛Rnk3p represents nk
observations of X. We denote the total sample size n : =Pp

k = 0 nk , and the true weighted adjacency matrix W0.

The linear SEM is an autoregressive representation of XðkÞ and
weighted adjacency matrix W

ðkÞ
0 ,

XðkÞ = XðkÞWðkÞ
0 + eðkÞ; k = 0;.;p: (Equation 2)

Here, W
ðkÞ
0 is permutation-similar to a strictly upper triangular

matrix, representing the constraint W
ðkÞ
0 ˛D. For each k, eðkÞ is

a p-dimensional random vector such that EeðkÞ = 0p, and

U
ðkÞ
0 : = CovðeðkÞÞ. Denote ei as the ith element of e. Then e

ðkÞ
i

is the exogenous error on node i, such that Ee
ðkÞ
i = 0 and

e
ðkÞ
i e

ðkÞ
j for isj. We further define

U0 : = Cov
�
eð0Þ

�
= diag

�
s2
1;s

2
2;/;s2

p

�
:

Motivated by recent work on a genome-wide screen that per-

forms known single interventions on all protein-coding genes,5

we consider the linear SEM with known single interventions on

all p nodes. Accordingly, we obtain a system of p+ 1 structural

equations

Xð0Þ = Xð0ÞWð0Þ + eð0Þ

«
XðpÞ = XðpÞWðpÞ + eðpÞ:

In this setting we have complicated our problem. Before, with

the single data matrix X, we inferred a single W; now, with the

p+ 1 data matrices Xð0Þ;Xð1Þ;.;XðpÞ, it seems that we must infer

p+ 1 adjacencymatricesWð0Þ;Wð1Þ;.;WðpÞ. Our model assumes

hard interventions, i.e., that an intervention on node k removes

causal influences from observational parents of k.17,18 Hard in-

terventions relax the do operation doðXðkÞ
k = 0Þ to allow for
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residual noise, modeling the limit of experimental interventional

efficacy combined with a noisy readout.

Assumption 1. For an intervention ks0, if in the observational

setting

X
ð0Þ
k =

X
i˛PaðkÞ

WikX
ð0Þ
i + e

ð0Þ
k ;

then upon intervention on k

X
ðkÞ
k = e

ðkÞ
k :

Under Assumption 1, we can relateWð0Þ toWðkÞ by setting the

kth column of Wð0Þ to 0
!

p, giving

W
ðkÞ
ij : =

�
Wij jsk
0 j = k

: (Equation 3)

This gives p+ 1 data matrices XðkÞ to jointly infer a single

weighted adjacency matrix W. We now characterize the p+ 1

exogenous variance structures U
ðkÞ
0 . We assume that the exoge-

nous variance of non-targeted nodes jsk is invariant, modeling a

system where the effects of CRISPR interventions are restricted

to the target.

Assumption 2. For an intervention ks0, VarðeðkÞj Þ =
Varðeð0Þj Þ = s2j for jsk.

We allow interventions affect the error variance of the target,

but require the effect to be uniform across targets, modeling

an experimental intervention with uniform effects on noise.

Assumption 3. Let unknown a˛R. Thenc k, if Varðeð0Þk Þ = s2k

then VarðeðkÞk Þ =
s2
k

a2.

Here, a is shared across interventions. As a/N, this interven-

tional model is equivalent to doðXk = 0Þ.18 Under these as-

sumptions, the variance of the target is

Var
�
X

ðkÞ
k

�
=

s2
k

a2
:

Let dVar denote the unbiased sample variance. We then obtain

the estimator

bU0 = diag
�dVar�Xð1Þ

1

�
;.;dVar�XðpÞ

p

��
: (Equation 4)

RESULTS

dotears
DAGs with NO TEARS12 transforms the combinatorial constraint

W ˛D into the continuous constraint hðWÞ = 0, where + de-

notes the Hadamard product and

hðWÞ = tr½ exp ðW +WÞ� � p:

Define k $k1 as the vector l1 norm on vecðWÞ, i.e., k vecðWÞk1,
and k$kF the Frobenius norm. For some loss function F, the

differentiability of h allows for the optimization framework

min
W

FðW;XÞ+ l k Wk1 (Equation 5)

s:t: hðWÞ = 0:

We present dotears, a consistent, intervention-aware joint

estimation procedure for structure learning. Loh and Buhlmann

(2014) showed that the Mahalanobis norm is a consistent esti-

mator of W0, and is uniquely minimized in expectation by W0

given U0, but give no estimation procedure for U0
16,19. Note

the Mahalanobis norm’s characterization as inverse-variance-

weighted by U0,

kðX � XWÞU� 1
2

0 jj2F =
Xp
i = 1

1

s2
i

kðX � XWÞijj2F : (Equation 6)

dotears solves the following optimization problem:

min
W

1

p

Xp
k = 0

1

2nk

k
�
XðkÞ � XðkÞWðkÞ

�bU� 1
2

0 jj2F + l k Wk1

(Equation 7)

s:t: hðWÞ = 0;

where

W
ðkÞ
ij =

�
Wij jsk
0 j = k

:

dotears retains the continuous DAG constraint and l1 regula-

rization of W from NO TEARS,12 but incorporates exogenous

variance structure through bU0 as well as interventional data

ðk = 1;.;pÞ.
dotears successfully corrects for exogenous variance

structure

We show that dotears is robust to exogenous variance structure,

andmotivate the necessity of themarginal estimation of bU0 using

the simplest non-trivial DAG X1/
w
X2, where gene X1 regulates

gene X2 with effect size w. Assume X1/
w
X2 has true weighted

adjacency matrix W0 : =

�
0 w
0 0

	
and SEM

X1 = e1;Varðe1Þ = s2
1;

X2 = wX1 + e2;Varðe2Þ = s2
2:

(Equation 8)

Let g : =
s2
1

s2
2

, such that U0 =

�
g 0
0 1

	
and W0 =

�
0 w
0 0

	
.

The least squares loss used byNOTEARS isminimized in expec-

tation if and only if

jwjR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1

g

s
; (Equation 9)

which is true if and only if the topological ordering of the DAG fol-

lows increasing marginal variance, or equivalently a varsortable

DAG. For the full proof, see Supplementary Material S1.1, or Rei-

sach et al. and Kaiser et al.15,19 In Figure 1, we examine the
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performance of four different strategies of correcting forU0 in sim-

ulations. NO TEARS (black) uses the least squares loss, which ig-

noresU0, whileGOLEM-NV (orange) uses a likelihood loss that es-

timates bU0jW12,13. We also include the scenario when bU0 is set to

Ip in Equation 7. Call this NO TEARS interventional (green), the

simplest extension of NO TEARS to interventional data. NO

TEARS interventional is aware of hard interventions through the

structure WðkÞ, but ignores U0. NO TEARS interventional is thus

an ablation study on bU0. For each set ðw;gÞ˛ f0:1;.;1:5g3 f1;
2;4;10;100g, we draw 25 simulations of observational and inter-

ventional data, with sample size n = ðp + 1Þ � 1000 = 3000.

Forobservationaldata, this is3000observations fromtheobserva-

tional system; for interventional data, this is 1000 observations

from each system k = 0; 1; 2. For observational data, we draw

Gaussian data under the SEM in Equation 8. For interventional

methods, we draw Gaussian data under the system of SEMs in

Supplementary Material S1.4. To isolate the behavior of the loss,

we remove l1 regularization. Full simulation details and results

are given in Supplementary Material S1.4. NO TEARS does not

correct forU0 and uses only observational data. As a result, in Fig-

ure 1 it estimates correctly only on varsortable pairs of w;g. Note

that the gray dashed line represents the theoretical varsortability

cutoff jwj%
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1

g

q
given in Equation 9. GOLEM-NV uses the

maximum likelihood estimate bUjW under a Gaussianmodel. Sub-

sequently, joint estimation is performed over W; bUjW using the

Gaussian negative log likelihood and profile likelihood for U0,

which simplifies to

1

2

Xp
i = 1

log
�
kðX � XWÞi

���j2F�: (Equation 10)

This profile likelihood is insufficient to correct for exogenous

variance structure, and only infers varsortable structures in Fig-

ure 1. This evidence qualitatively holds in simulations on three

node topologies (Supplementary Material S1.5), where the

behavior of GOLEM-NV remains deterministic in w;g. Joint esti-

mation of W; bU0jW is thus still sensitive to exogenous variance

structure. Through NO TEARS interventional, we also see that in-

terventional data alone, without correction for U0, is insufficient

to infer the two node structure. The NO TEARS interventional es-

timate is also deterministic in w;g in Figure 1, and behaves

almost identically to NO TEARS and GOLEM. Note that since

NO TEARS interventional is given interventional data for all no-

des, it operates in a fully identifiable setting (where NO TEARS

and GOLEM-NV do not). We also show that CoLiDE-NV, which

uses observational data to try to correct for U0, is insufficient

to infer structure (Figure S1).20 Thus, neither interventional data

nor correction by bU0jW are alone sufficient to infer structure. do-

tears combines the two to give the marginal estimate of U0 in

Equation 4 and a robust estimate of W. We do not imply that

other methods using interventional data cannot infer the two

node case under interventional data; in fact, many do success-

fully (see Supplementary Material S1.4). Rather, we use 1.) an

observational procedure that ignores U0, 2.) an observational

procedure that corrects for an estimated bU0, 3.) an interventional

procedure that ignoresU0, and 4.) dotears, an interventional pro-

cedure that corrects for an estimated bU0, to motivate dotears as

most parsimonious model robust to exogenous variance struc-

ture under this line of thought.

Optimization and consistency

We now wish to show that dotears is a consistent estimator of

the true DAG. However, two natural problems arise from our us-

age of bU0. First, we have provided no estimation procedure for a,

but EbU0sU0 for as1. However, EbU0fU0 for all a, and constant

scalings of U are rescalings of the loss.16 bU0 is therefore well-

specified for inference on observational data k = 0. However,

if as1 then bU0 is still misspecified for interventional data ks0.

Under Assumption 3

Cov
�
eðkÞ

�
= diag

�
s2
1; s

2
2;.;

s2
k

a2
;.;s2

p

	
;

A B C

Figure 1. dotears successfully corrects for exogenous variance structure in two-node DAG simulations

Comparison of l1 distance (lower is better) between true structure and estimates from NO TEARS (black), GOLEM-NV(orange), NO TEARS interventional (green),

and dotears (blue). Eachmethod corrects differently forU0. For eachw = 0:1; 0:2;.; 1:0 and g = 1;2;100, we generate Gaussian data from the structure X1/
w
X2

such that s21 = gs22. For each pair w;g, we draw 25 simulations at a sample size of n = 3000. The dashed gray line represents the varsortability bound jwjRffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1

g

q
. a) Under the equal variance assumption g = 1, correction for U0 is unneeded. All methods are sufficient for structure recovery. b) At g = 2, NO TEARS

(black), GOLEM-NV (orange), and NO TEARS interventional (green) infer correctly on varsortable w. c) As g grows large, the varsortability bound approaches

jwjR 1. Only dotears estimates correctly for all w. Points represent mean estimates, and bars represent standard errors; some standard errors are too small

to see.
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and thus EbU0fCovðeðkÞÞ. A naive approach might estimate bU0

from interventional data only and then estimate cW from observa-

tional data only. However, this approach ignores amajority of our

data and performs substantially worse in simulations (Supple-

mentary Material S1.6). We show that bU0 is well-specified even

for ks0, and the estimation of a is unnecessary (see Corollary

2). Under a sub-Gaussian assumption, Loh and Buhlmann

show consistency of the Mahalanobis norm on observational

data given U0.
16 We extend these results, using bU0/

p
U0, to

show

arg min
W

k
�
XðkÞ � XðkÞWðkÞ

�bU� 1
2

0 jj2F

is a consistent estimator of W
ðkÞ
0 for each k, where /

p
denotes

convergence in probability. A full proof is given in Supplementary

Material S1.2.

Simulations
We evaluate structure learning methods across a range of DAG

topologies, effects distributions, and generative models. We

benchmark methods that leverage interventional data (dotears,

GIES, IGSP, UT-IGSP, DCDI) and methods using only observa-

tional data (NO TEARS, sortnregress, GOLEM-EV, GOLEM-NV,

DirectLiNGAM, CoLiDE-NV).10,12–15,20–24 dotears outperforms

all testedmethods in DAG estimation and is robust to reasonable

violations of the model. Some methods come with important ca-

veats for evaluation. sortnregress is not intended as a ‘‘true’’

structure learning method, but benchmarks the data’s varsort-

ability.15 UT-IGSP can infer structure with unknown interven-

tional targets, but we constrain to known targets for fairness.23

Most simulations use Gaussian data, but dotears, NO TEARS,

sortnregress, GIES, IGSP, and UT-IGSP do not assume Gaus-

sianity. The non-Gaussianity assumption is violated for Direct-

LiNGAM, and the equal variance assumption for GOLEM-

EV.13,24 We simulate synthetic data from large Erd}os-Rényi

and Scale-Free DAGs25,26 (p = 40), with 10 replicates each.

We simulate under four parameterizations: fLow Density;

High Densityg3 fWeak Effects; Strong Effectsg. Observational

and interventional data have matched sample size n =

ðp + 1Þ3 100 = 4100. Methods using 5-fold cross-validation

for hyperparameter tuning are denoted by *. For non-binary

methods, edge weights are thresholded. Methods are robust

to threshold choice (see STAR Methods).15 For simulation,

cross-validation, thresholding details, and memory and runtime

benchmarking, see STAR Methods. We note that the memory

usage of DCDI-G was extreme even with no hidden layers. On

average, dotears outperforms all testedmethods in structural re-

covery (Structural Hamming Distance (SHD), Figure 2) and edge

weight recovery (l1 distance, Figure S9). Furthermore, dotears

outperforms all other methods in most parameterizations. GIES

matches dotears in ‘‘Low Density’’ simulations, but performs

substantially worse in ‘‘High Density’’ simulations. We hypothe-

size that the greedy nature of GIES hinders performance in

more complex DAGs. The primary modeling assumptions of do-

tears are 1.) hard interventions (Assumption 1), 2.) shared a

across interventions (Assumption 3), and 3.) linearity of the

Figure 2. dotears outperforms other methods in large-scale random DAG simulations

Method performance on large random graphs (p = 40) using Structural Hamming Distance (lower is better) Rows index Erd}os-Rényi or Scale Free topologies.

Columns index parameterizations of edge density andweight, ordered in increasing difficulty. For details, see STARMethods. 10 simulations were drawn for each

parameterization with sample size ðp + 1Þ � 100 = 4100. * indicates cross-validated methods. Methods are sorted by average performance.
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SEM. In Supplementary Material S1.7.1 and S1.7.2 we assess

the sensitivity of dotears to each assumption. In addition, in Sup-

plementary Material S1.7.1 we also consider 4.) simulations un-

der different interventional models. We find that dotears perfor-

mance can change under violations of the hard intervention

assumption, but is robust to violations of its interventional model

and linearity. Surprisingly, dotears is the second best performing

method under a mean-shift intervention model. Moreover, do-

tears outperforms the neural network method DCDI-DSF in

nonlinear simulations, even with ‘‘imperfect’’ interventions,

where the main factor determining performance is denseness

of the DAG.

Genome-wide Perturb-seq
We apply all benchmarked methods in simulations to a genome-

wide Perturb-seq experiment from Replogle et al.5 We validate

inferred edges through 1.) differential expression tests in the

training data using DESeq227,28 and 2.) an orthogonal set of

high-confidence protein-protein interactions from the STRING

database.29 We also examine gene-gene correlations in held-

out observational expression data. High-confidence edges in-

ferred by dotears show differential expression and/or protein-

protein interactions more frequently than those found by other

methods, and dotears outperforms all other methods in preci-

sion and recall under reasonable thresholding. Replogle et al.

provide both normalized and raw data. We select the top 100

most variable genes in the raw observational data. We then

benchmark all methods on the normalized, feature-selected

data. Cross-validation is not performed due to low sample sizes

in some knockdowns; instead, the l1 penalty is arbitrarily set to

0.1 for all methods where appropriate. Figure 3A shows the

network inferred by dotears, thresholded at jwj< 0:2. For full de-

tails, see STARMethods.We use DESeq2 differential expression

calls and high-confidence protein-protein interactions from the

STRING database to validate inferred edges.27–29 For differential

expression, we call an edge i/j a true positive if either gene

shows differential expression under knockdown of the other.

This is because all methods struggle equally with predicting

directionality (see Table S7). For protein-protein interactions,

we take high-confidence physical interactions as true positives,

where here ‘‘high-confidence’’ is defined by STRING as having a

confidence level of over 70%.29 Figure 3B and 3C show preci-

sion and recall across thresholds for differential expression calls

and the protein-protein interactions, respectively. Vertical lines

indicate different thresholding regimes. Observational methods

were only given observational data; for results when given both

observational and interventional data, see STAR Methods. do-

tears shows much higher precision than all other methods at

equivalent recall. Over 65% of inferred edges validated by either

differential expression or high-confidence protein-protein inter-

actions. GIES, IGSP, UT-IGSP, and DCDI are excluded because

they infer binary edges. These methods inferred 3038, 3064,

3075, and 2039 out of a possible 4950 edges, respectively;

no other method predicted more than 700 even at a weight

threshold of 0.05. Accordingly, they had almost random preci-

sion - see STAR Methods and Tables S4–S6 for detailed results

for all methods at multiple thresholds. These results reinforce

concerns about the scalability of GIES to more complex sce-

narios. For DCDI, we report intermediate results, since conver-

gence was not obtained under 24 h on GPU training. CPU

training attempts ran out of memory even after the allocation of

180GB; GPU training attempts also repeatedly ran out of

Figure 3. Differential Expression tests and protein-protein interactions validate dotears-inferred regulatory networks in genome-wide

Perturb-seq data

(A) dotears-inferred network. Edges with magnitude less than 0.2, and genes without inferred edges, were removed

(B) Precision-recall curves across differential expression callsmade byDESeq2. Dashed red lines indicate recall of dotears at thresholds of jwj< 0:2; 0:1; and 0.05

respectively.

(C) Precision-recall curves across high confidence protein-protein interactions nominated by STRING. Dashed red lines indicate recall of dotears at thresholds of

jwj< 0:2;0:1; and 0.05 respectively. d) dotears infers HSPA5 / HSP90B1. HSPA5 knockdown increases expression of HSP90B1, but HSP90B1 knockdown

does not change HSPA5 expression.

(D) dotears inferred edges show correlated gene expression in hold-out observational data.
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memory. We re-run dotears on the same data excluding the

observational data, and use the held-out observational data to

validate inferred edges in the knockdown data. For each pair

of genes i; j, Figure 3E shows the inferred edge weight against

the r2 of i; j in the observational data. Note that we take the

largest magnitude weight between wij and wji. Figure 3E shows

a clear relationship between inferred edge weight in knockdown

data and the r2 in observational expression data.

DISCUSSION

We present dotears, a structure learning framework that uses in-

terventional data to estimate exogenous variance structure and

subsequently leverages observational and interventional data to

learn the causal graph. We showed that dotears is appropriate

for Peturb-seq data analysis and can recover high-confidence

gene regulation events and show that dotears outperforms all

tested state-of-the-art methods in simulations. Finally, we prove

that the loss function used by dotears provides consistent

DAG estimation under mild assumptions. In simulations, simple

methods generally outperform complex methods in structure

recovery. In particular, dotears and sortnregress regularly

outperform more complex methods, including neural network

methods, even under modeling assumption violations and

nonlinear data. Their strong performance also shows the effec-

tiveness of using variance patterns to infer structure. In real

data, dotears infers gene regulation events supported by knock-

down expression in training data, orthogonal high-confidence

protein-protein interactions, and gene expression correlations

in held out observational data. In general, dotears provides

robust inference of relevant gene regulatory events. We show

that dotears is robust to error variance structure or model mis-

specification. Furthermore, dotears-inferred edges validate

with higher precision than any other method without sacrificing

power. The relatively high precision of dotears-inferred regulato-

ry events provides confidence in identifying targets for potential

experimental validation.

Limitations of the study
One limitation of dotears not addressed in simulations is that it

assumes that every node has a corresponding intervention in or-

der to estimate the error variance. Without intervention on every

node, it is difficult to properly specify U0.
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STAR+METHODS

KEY RESOURCES TABLE

METHOD DETAILS

Large random graph simulations
Data generation

For evaluation, data is generated for DAGs with p = 40 nodes. Structures are drawn from both Erd}os-Rényi (ER) and Scale-Free

(SF) DAGs.25,26 We parameterize ER graphs as ER-r and SF graphs as SF-z, where r ˛ ½0; 1� represents the probability of

assignment of each individual edge, whereas z˛Z is the integer number of edges assigned per node. We simulate under two param-

eterizations fLow Density;High Densityg of the edge densities ðr;zÞ. In the ‘‘Low Density’’ parameterization, we give ðr;zÞ = ð0:1;2Þ.
To evaluate performance on higher density topologies, we also give ‘‘High Density’’ parameterizations, where ðr; zÞ = ð0:2; 4Þ.
Given an edge density scenario, we simulate under two parameterizations of the edge weights. In the ‘‘Strong Effects’’ parameter-

ization,w � Unifð½ � 2:0; � 0:5�W½0:5;2:0�Þ. We also give the ‘‘Weak Effects’’ parameterization, which edge weights are drawn from

w � Unifð½� 1:0;0:3�W½0:3;1:0�Þ such that jwj%1 is guaranteed. Here, there is no guarantee any two nodes will be varsortable

(although they may be in practice, as a function of U0).
15,19 Table S1 summarizes all four possible simulation parameterizations.

For each node i, we draw si � Unifð½0:5;2:0�Þ, and draw n0 observations from e
ð0Þ
i � N ð0;s2i Þ. For each DAG we generate an instance

of observational data, where n0 = ðp + 1Þ � nk = 4100, and an instance of interventional data, where nk = 100 for all k = 0.p to

match sample size. We set the distribution of e
ðkÞ
i according to Assumptions 3 and 2 for a = 4. For dotears, NO TEARS, sortnregress,

GOLEM-EV, GOLEM-NV, CoLiDE-NV andDCDI-G 5-fold cross-validationwas performed to select the regularization parameters. For

each drawn DAG, a separate data instance of interventional and observational data was re-drawn from the same distribution spe-

cifically for cross-validation. After choosing a l (or for GOLEM-EV and GOLEM-NV, the set ðl1;l2Þ) from the data for cross-validation,

the methods were evaluated on the original simulated data. For dotears, NO TEARS, sortnregress, and DCDI-G, 5-fold cross-vali-

dation was performed across the grid l˛ f001; :01; :1;1;10;100g. For GOLEM-EV and GOLEM-NV, 5-fold cross-validation was per-

formed across the grid l1 3 l2 ˛ f001;:01;:1;1;10;100g3 f:05;:5;5;50g. We threshold at 0.2 for ‘‘Weak Effects’’ simulations, and at 0.3

for ‘‘Strong Effects’’ simulations. Methods are generally robust to thresholding choice. Results for precision and recall on thresholded

edges are shown in Figures S7 and S8, respectively.

Benchmarking

In Figure S5, we benchmark wallclock time andmemory usage for all methods in p = 40 simulations30 on the UCLA hoffman2 cluster.

All continuous optimization methods (dotears, NO TEARS, GOLEM-EV, GOLEM-NV, and CoLiDE-NV) have significantly higher

average runtimes than other methods, which is partially explained by cross-validation procedures. dotears has relatively light mem-

ory usage, outperformed only byNO TEARS, sortnregress, andCoLiDE-NV. DCDI-G has enormousmemory requirements, especially

relative to other methods. We note that for DCDI-G, the reported benchmarks do not include memory usage or runtime from cross-

validation folds. Instead, we report only the ‘‘main’’ run of DCDI-G, and thus DCDI-G is not denoted with the * indicating cross-

validation.

Thresholding on large simulation results

Edge thresholding for weighted adjacencymatrices is necessary for accurate evaluation using SHD, but the choice of threshold can feel

arbitrary. We find that methods are generally robust to thresholding choice, following similar results from Reisach et al.15 Figure S6

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Genome-scale Perturb-seq experiment data Replogle et al.5 https://plus.figshare.com/articles/dataset/_Mapping_

information-rich_genotype-phenotype_landscapes_

with_genome-scale_Perturb-seq_Replogle_et_al_2022_

processed_Perturb-seq_datasets/20029387

STRING protein-protein interactions database Szklarczyk et al.29 https://string-db.org/

Software and algorithms

DAGs with NO TEARS Zheng et al.12 https://github.com/xunzheng/notears

Python 3.9 Python Software Foundation https://www.python.org/

R 4.1.0 R Software https://www.r-project.org/

DESeq2 Ahlmann-Eltze and Huber.28 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

Snakemake Köster and Rahmann30 https://snakemake.readthedocs.io/en/stable/
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examines the effect on thresholding of small weights inW in large randomDAG simulations, for methods that infer weighted adjacency

matrices (dotears,NOTEARS,sortnregress,DirectLiNGAM,GOLEM-NV,GOLEM-EV,andCoLiDE-NV).12,13,15,24Forsimplicity,wesum-

marize simulations in terms of the generative edge distribution. Simulations with ‘‘Weak Effects’’,w � Unifð½ � 1:0; � 0:3�W½0:3;1:0�Þ,
are shown in Figure S6a; simulations with ‘‘Strong Effects’’, w � Unifð½� 2:0; � 0:5�W½0:5; 2:0�Þ are shown in Figure S6b. We compare

the SHD between the ground truth adjacencymatrix and the inferred adjacencymatrix for eachmethod at all thresholds between 0 and

the absolute lower bound of the true edgeweight distribution (0.3 for ‘‘Weak Effects’’, 0.5 for ‘‘Strong Effects’’). Any edgewhosemagni-

tude isbelow thechosen threshold isset to0 forSHDevaluation.FigureS6shows that thresholding isnecessary for theevaluationofSHD

between weighted adjacency matrices, but also that methods are generally robust to thresholding choice. Without thresholding (equiv-

alently, a threshold of 0), SHD results are inflated, but recover even at low thresholds.

Edge weight estimation for large random simulations

Accurate estimation of edge weights is important for understanding structure. Figure 2 gives results on structural recovery through

SHD, but does not inform edge weight recovery. To measure edge weight recovery we use l1 distance, defined as the vector l1 norm

between the flattened true weighted adjacency matrix and the flattened inferred weighted adjacency matrix. l1 distance gives infor-

mation on both structure recovery and edge weight estimation simultaneously. In Figure S9, we benchmark the recovery of edge

weights for methods that return a weighted adjacency matrix (dotears, sortnregress, NO TEARS, GOLEM-EV, GOLEM-NV,

DirectLiNGAM, CoLiDE-NV).12,13,15,20,24 For fairness, we exclude methods that only return a binary adjacency matrix. Methods

are thresholded in the samemanner as in Figure 2 dotears outperforms all other methods in terms of effect size recovery. In addition,

the relative ordering of the methods stays consistent with Figure 2.

QUANTIFICATION AND STATISTICAL ANALYSIS

In simulations, we benchmark in terms of Structural Hamming Distance (SHD), the number of edge additions, removals, or reversals

needed to change one DAG into another. Figures either depict mean (point) and standard error (bar) (Figure 1) or boxplot quartiles

(Figures 2 and 3). Details of statistical tests can be found in the following sections.

Statistical significance of SHD distribution difference
For each method, and across all large random graph simulations, we compare the SHD distributions, marginalized across all simu-

lation parameterizations, against that of dotears. For each method, we perform a one-sided Mann-Whitney U test to test difference

between the method’s SHD distribution and the SHD distribution of dotears. Here, n = 80 is the total number of large random graph

simulations. The resulting p-values are reported in Table S2, and are significant for all methods.

Genome-wide Perturb-seq
Webenchmark all methods on a single-cell Perturb-seq experiment fromReplogle et al.,5 who provide both raw count data as well as

normalized data, where normalized here means a z-scoring relative to the mean and standard deviation of the control dataset, ac-

counting for batch. Here, the control dataset indicates a set of pre-selected control cells, and not simply cells with non-targeting

guides. For details, see Replogle et al.5 We perform feature selection in the raw data. We select the top 100 most variable genes

in the raw observational data, excluding 1.) genes coding for ribosomal proteins and 2.) genes without knockdown data. Here,

the observational data indicates cells incorporating non-targeting control guides. We then take the normalized expression data

for these selected 100 genes in 1.) the observational data, and 2.) each of the 100 knockdowns. This forms our training set in

Figures 3A–3D. In Figure 3E, we perform the same procedure as above, but exclude 1.) the observational data. In other words,

our training set is formed exclusively from expression data in the 100 knockdowns. Cross-validation is not performed due to low sam-

ple sizes in some knockdowns; instead, the L1 penalty is arbitrarily set to 0.1 for all methods where appropriate. Otherwise, method

settings are the same as simulations. For DCDI, we report intermediate results, since convergence was not obtained under 24 h even

on GPU training. CPU training was attempted with 30 cores and 180 GB memory, but was killed by the operating system. GPU

training was attempted, but was also repeatedly killed by the operating system for memory constraints. DCDI is run as DCDI-G, since

DCDI-DSF would not fit in memory, and is also run with imperfect interventions and known interventions. DCDI reported 2982 total

edges, but many of these are both causal and anti-causal; in total, 2039 ‘‘interactions’’ were reported.

Differential expression testing
We use DESeq2 to test for differential expression.27,28 We calculate size factors across the raw feature-selected data, and use these

in all downstream tests. Next, for each knockdown koðiÞ, we test for differential expression for all genes j compared to the observa-

tional data. For single-cell data, we run DESeq with parameters test = LRT, fitType = glmGamPoi, useT = TRUE, minmu = 1e-6, min-

ReplicatesForReplace = Inf, reduced = 1. We repeat this for each knockdown independently in turn. Here, n is the number of cells in

each knockdown, and can be found in Replogle et al.. At the end of this procedure, we have 1002 unadjusted p-values. We perform

Benjamini-Hochberg correction to an FDR level of 0.05. Subsequently, in koðiÞ, if gene j has an adjusted p-value less than 0.05, we call

that a true edge in downstream calculations of precision and recall.
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Protein-protein interactions
As a second validation edge set, we use protein-protein interactions from the STRING database.29 We pull protein-protein interac-

tions for Homo Sapiens down, and use only physical evidence for interactions. Protein-protein interactions were only used if the

STRING confidence score was over 70%.

Precision recall tables
We present precision and recall at three edge threshold levels (jwj> 0:2, jwj< 0:1, and jwj< 0:05) for all methods. We use both dif-

ferential expression calls and protein-protein interactions as true sets, and separate results for both. Tables S4, S5, and A6 denote

results for jwj> 0:2, jwj< 0:1, and jwj< 0:05, respectively. For differential expression calls we ignore causal direction, and instead for

two given genes denote any differential expression in either direction as a ‘‘true’’ edge. This is because all methods struggle equally

with inferring causal direction under differential expression, and call an equal number of edges in the ‘‘correct’’ causal direction as the

‘‘incorrect’’ anticausal direction (see Table S7).

Inclusion of interventional data for observational methods
In Figure 3, observational methods (sortnregress, DirectLiNGAM, GOLEM-EV, GOLEM-NV, NO TEARS, CoLiDE-NV) are only given

observational data. It is reasonable to wonder if their decreased performance relative to dotears is due to a substantial sample size

decrease (93691 total to 75328 purely observational). To test this, we also ran the observational methods on observational and in-

terventional data concatenated. Since these are observational methods, there is no way to label these data as interventional; instead,

these methods assume they are observational. Results are shown in Figure S21. No substantial relative performance difference was

observed in the new trials. All observational methods still perform worse than dotears, especially in high-confidence regimes.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study did not include experiments with a specific model or subject.

iScience 28, 111673, February 21, 2025 e3

iScience
Article

ll
OPEN ACCESS


	ISCI111673_proof_v28i2.pdf
	dotears: Scalable and consistent directed acyclic graph estimation using observational and interventional data
	Introduction
	Model

	Results
	dotears
	dotears successfully corrects for exogenous variance structure
	Optimization and consistency

	Simulations
	Genome-wide Perturb-seq

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Method details
	Large random graph simulations
	Data generation
	Benchmarking
	Thresholding on large simulation results
	Edge weight estimation for large random simulations


	Quantification and statistical analysis
	Statistical significance of SHD distribution difference
	Genome-wide Perturb-seq
	Differential expression testing
	Protein-protein interactions
	Precision recall tables
	Inclusion of interventional data for observational methods

	Experimental model and study participant details






