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[1] We believe that the paper by Thiemann et al. [2001]
(hereinafter referred to as TTGS), while formally correct
within the limitations of the underlying assumptions of their
analysis, does not lead to sensible results in respect of the
uncertainties normally associated with the parameters of
hydrological models. Moreover, we feel that where these
assumptions are reasonable, there may be more effective
ways of achieving the same ends. In effect, the BARE
methodology and the GLUE approach that they contrast it
with, represent two extreme positions in a spectrum of
possible Bayesian approaches to the problem. For instance,
the results presented in the paper suggest that, in the BARE
algorithm as implemented by TTGS, all of the error is treated
as if it were ‘‘measurement error’’ and the estimated model
parameters are obtained without any appreciable uncertainty.
In other words, the estimated model appears, from the TTGS
results, to be an almost deterministic, or true, representation
of the system. In GLUE, on the other hand, the sources of
error are treated implicitly in weighting the predictions of
multiple (non-error free) models, without strong assump-
tions about a measurement error model (which might indeed
vary from model realization to model realization). However,
both of these extremes are only partially adequate: a pref-
erable approach would be to separate out the effects of errors
in the inputs, the errors in the model structures and real
measurement errors in the outputs.
[2] The most critical issue raised by the TTGS paper is

the implicit assumption that the model structure is correct.
In particular, the BARE parameter estimates, as reported by
TTGS, effectively converge to point estimates with appa-
rently little parameter uncertainty. This result is surely
difficult to justify in any practical terms; indeed, it certainly
cannot be justified in the first simulation example (which
involves a linear, two term Nash Cascade (NC) model with
assumed known rainfall input and white, Gaussian measure-
ment noise). In this case, the presence of additive noise
means that the parameter estimates should converge to a
normal probability distribution with mean and covariance
that depend on the number of samples that have been
processed. Moreover, the required parameter estimates and
their associated covariance matrix can be estimated in a

much more computationally efficient manner than in
BARE, using a recursive Bayesian parameter estimation
algorithm in which only the first two moments of the
distribution (mean and covariance) are updated sequentially,
so that no Monte Carlo simulation is necessary at all.
[3] For example, the optimal, refined instrumental variable

(RIV) parameter estimation algorithm [Young, 1984] yields
recursively updated Maximum Likelihood (ML) estimates of
the parameters in an unconstrained transfer function model
[Young, 2002a]. In this example, the NC is a second order
transfer function that is constrained (the two first order
elements are identical), so the standard RIV estimates are
sub-optimal in an ML sense. Even so, the algorithm clearly
identifies that the TF is second order (using the YIC criterion
[Young, 1990]) and the recursive estimates of the TF param-
eters (true values: 0.8521 and 0.0219) based on the estimates
obtained at the end of the data set are 0.8568(0.0124) and
0.0214(0.0009). Here the figures in brackets are the estimated
standard errors and the estimate of the eigenvalue at 0.8521,
is based on the mean of the two estimated eigenvalues
(normally slightly different because the estimates of the TF
parameters are unconstrained). If complete optimality is
required, then it is necessary to use a more complex, con-
strained ML numerical optimization procedure (still much
simpler than BARE) and this yields estimates 0.8511(0.0023)
and 0.0213(0.0007). Converted to the residence time (or
recession coefficient) estimate, as obtained by BARE (true
value 25), the unconstrained RIV estimates at the end of the
data set are 25.8766(+2.6574, �2.2340) and the ML esti-
mates are 24.8187(+0.4221, �0.4093). (The range is given
here because the transformation of the eigenvalue estimate to
the residence time estimated distorts the error distribution.)
Clearly, uncertainty in the model parameters still exists at the
end of the data set and this is what would be expected for any
finite set of data with measurement noise. Finally, in contrast
to the BARE situation shown in figure 3 of the TTGS paper,
the estimated standard error band on the model predicted
output encompasses all of the modeling errors, as it should do
[see Young, 2002a].
[4] It is worth noting that, in practical terms, the compli-

cation of constrained estimation in the NC example would
not be necessary, except in exceptional circumstances,
because the linear, identical element, NC is not normally
considered a good TF model of the obviously nonlinear
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rainfall-flow process. A more appropriate model is a non-
linear TF model in which nonidentical TF elements are
connected in parallel, rather than serial form [e.g., Jakeman
et al., 1990; Young, 2001a, and references therein]. In this
case, the RIV algorithm is optimal for white or colored,
Gaussian measurement errors; and consistent (asymptoti-
cally unbiased) for other non-Gaussian noise processes (see
later comments). For example, using the same rainfall data
used in the NC simulation example but modeling in terms of
the actual measured flow, rather than the NC simulated flow
[Young, 2002a], results in a third order nonlinear model of
the parallel flow type mentioned above, with a coefficient of
determination (Nash-Sutcliffe efficiency) of RT

2 = 0.865;
whereas for the equivalent third order NC model, the
explanation of the data is poor, with RT

2 = 0.647.
[5] The convergence of the model parameter values to

(essentially) a single parameter set is repeated for the real
world example, where the SAC-SMA model is applied to
the Leaf River catchment, as shown in Figure 6 of TTGS
This is certainly a convenient outcome for all sorts of
reasons: for example, it is possible to use the set of
parameter values to relate to catchment characteristics in
some regionalization exercise; or to change one or more
parameters to reflect some aspect of change in the catch-
ment; or simply to compare different sets of deterministic
outputs under different input conditions, such as might
result from climate change scenarios. However, we do not
see how such an outcome can be a justified conclusion in
this case. There are (unknown and time variable) errors in
the inputs to the model; there are (unknown and probably
time variable) errors in the model structure; and there are
(unknown and time variable) errors in the observed model
outputs. The result (particularly under the additionally
restrictive assumption that the errors are independent) is a
dramatic overconditioning of the model to a single param-
eter set.
[6] It is well known that ignoring correlation in the errors

(as is only too evident in Figure 5 of TTGS) should be
expected to lead to biased parameter estimates unless the
model includes a stochastic representation of the correlation
in the errors (i.e. a noise model is included); or, more simply
and robustly, an instrumental variable estimator is used (see
above). There is a strong hint of this overconditioning in
Figure 6 of TTGS, which reveals significant jumps in the
high probability density region of individual parameter
values, prior to settling down to their final values (as noted
by the authors in their final discussion). In effect, it would
appear that small changes in the calibration data (or possibly
even in the input and output measurement errors) would
result in convergence to quite a different set of parameter
values. In addition, the final model (plus error estimates)
does not bracket the observed discharge data for parts of
nearly all the hydrographs in the calibration period; again an
indication that their assumptions in this regard may not be
justified. In addition, the authors give no demonstration that
the parameters would converge to the same parameter set in
another calibration period, which would be implied if there
is no estimated uncertainty on the parameters.
[7] It is also well known that most of the difficulties

associated with the calibration problem for rainfall-runoff
models comes from assuming conceptual model structures a
priori that are not reasonable representations of the system

and are effectively overparameterized with respect to the
information content of the (non-error free) input and output
data series. This is still a common practice, despite the
problems of trying to find global optimal parameter sets
with either single or multiple objective functions (as amply
demonstrated by previous work of the Arizona group).
There are several responses to these problems.
[8] The first is to improve the identifiability of the chosen

model. This is a viable strategy where only discharge
prediction is required. The data-based mechanistic (DBM)
methodology of Young [e.g., Young, 1998, and references
therein], in which a parsimonious model is determined from
the nature of the data itself, will lead to significantly
improved identifiability in many cases. Applications to the
rainfall-runoff problem are given by Young [2001a, 2001b,
2002b]: see also the nonlinear TF modeling results dis-
cussed above in relation to NC simulation model example.
As in the NC example, such parsimonious models are easily
set within a recursive estimation framework. Although, in
the standard application of such an approach, this yields
only the first two moments of the distribution, it can yield
reasonable results in practical situations at a very modest
computational cost when compared with the alternative,
computationally expensive BARE approach, with its
requirement for extensive Monte Carlo simulation.
[9] The second is to improve identifiability by the use of

‘‘better’’ single and multiple performance measures. The
Arizona group pursued this strategy with the use of the
Pareto optimal set approach of Yapo et al. [1998] and Gupta
et al. [1998]. We would agree that the commonly used
Nash-Sutcliffe efficiency criterion is not an adequate meas-
ure, despite its common usage, for many reasons. These
include the effects of timing errors, the possibility of
obtaining biased parameter estimates, and the possibility
that it underestimates the information content of the data.
However, we would also argue that the formal Bayesian
measure used in this paper appears to grossly overestimate
the information content of the data by underestimating the
effects of the noise, resulting in the overconditioning
evident in the results.
[10] The third strategy is to confront the problem of

model structural error directly. It is true that this can be
incorporated into the formal Bayesian framework as dem-
onstrated by Kennedy and O’Hagan [2001] who incorporate
a ‘‘model inadequacy’’ function into the identification
process (although the most complex inadequacy function
they include is a constant bias!). A full acceptance of model
structural error, however, requires a change in philosophy
because it means that the calibration problem can no longer
be considered as simply a matter of finding the parameter
values of the model [Beven, 2001c, 2001d]. This is the
philosophy that underlies the GLUE methodology. Rather
than being a rather poor approximation to the formal
Bayesian methodology as suggested by TTGS, GLUE is
(as the name suggests) intended as a wider-ranging method-
ology that accepts the possibility of equifinality of models,
and allows for multiple competing model structures and
parameter sets. From this perspective, the Bayesian method-
ology proposed in the TTGS paper is a special case of
GLUE, within which the formal assumptions about the
model structure (that it is true) and error structure (additive,
independent and converging to near constant (transformed)
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variance) can be justified and tested. The results presented
by TTGS suggest that in the application to the Leaf River
example, the formal Bayesian methodology cannot be
justified, despite its apparent objectivity.
[11] The question then is what is an appropriate like-

lihood measure for use in a Bayesian context. GLUE is
often criticized (as by TTGS) for being subjective in this
respect and not properly Bayesian. However, just as the use
of subjective priors is perfectly acceptable, the use of
subjective likelihood measures does not preclude a Baye-
sian analysis [see Howson and Urbach, 1993]. It just means
that the posterior cannot be considered a ‘‘true’’ probability
distribution. It is rather a representation of subjective
probabilities or probabilities that are conditional on the
specific (and explicit) set of assumptions made [Beven et
al., 2000; Beven, 2000, 2001a, 2001b, 2001c, 2002a; Beven
and Freer, 2001]. As well demonstrated in this paper, being
objective about the likelihood measure does not mean that
true probabilities result if the assumptions are incorrect.
[12] The differences, however, perhaps run a little deeper

and here we disagree, even between ourselves, about what
might be an appropriate strategy. In formal Bayes theory, as
used by TTGS(2001), the posterior likelihood is intended to
represent the probability of predicting an observation, given
the (true) model, L(Yj�) where Y is the observation vector
and � is a parameter vector. However, Bayes equation can
be stated in the more general conditioning form for hypoth-
eses H given evidence E as

Lp H jEð Þ / Lo Hð ÞL EjHð Þ

or in the discrete form for k potential hypotheses proposed
independently by Laplace as:

Lp Hk jEð Þ / Lo Hkð ÞL EjHkð Þ=�kL Hk jEð Þ

Where Lp(HkjE) is the posterior likelihood for hypothesis Hk

given the evidence E; Lo(Hk) is a prior likelihood for Hk;
and L(EjHk) is the likelihood of predicting the evidence E
given Hk [see Howson and Urbach, 1993; Bernardo and
Smith, 1994]. Allowing that feasible models can be treated
as hypotheses in this sense, then the GLUE methodology
aims to estimate the likelihood of different models
reproducing the observables, rather than the likelihood of
an error given some true model (i.e., Lp(HkjE) as L(�kjY),
rather than as L(Yj�)). It can equally be applied on a
recursive time step by time step basis (although it has
usually been applied recursively over a block of time steps
or calibration periods rather than single time steps).
[13] Thus the predictive uncertainty estimated by GLUE

can be considered to result from the uncertainty of models at
the expense of estimating errors associated with individual
models. Errors resulting from both input and output meas-
urements are then treated implicitly in the estimation of the
likelihood associated with a model. Estimating a measure of
belief in a model is really the much more interesting
problem. As hydrologists, we are, after all, really much
more interested in identifying the set of model representa-
tions that are consistent with our observations, than we are
in soaking up the prediction errors in some (nonphysical)
statistical error model [Beven, 2002b]. Different model
structures as well as different parameter sets can be included
within this framework, subject only to computationally

constraints. Different error structures could actually be
included as well, where this might have some advantage,
for example in improving short term forecasts [see Roma-
nowicz et al., 1994, 1996], but at the expense of introducing
additional parameters of the error model and computational
complexity.
[14] In their response to this comment, TTGS note that

the BARE approach is not limited to cases that assume the
model is correct, and that the convergence to a single
parameter set is largely a result of the limited sampling
used in the current implementation and should not be
interpreted as suggesting that there is no residual uncer-
tainty, only that the final model was identified as the most
likely of those available. Formally, this may be true and it
may be that the essence of the argument is what likelihood
function/measure(s) to use in the face of both data errors
and model structural errors. We are still worried that a
Bayesian estimation algorithm, applied to data that are
admittedly noisy and using a model with undoubted struc-
tural error, should result in estimates with little or no
uncertainty. Surely this is unacceptable in any stochastic
analysis?
[15] We cannot currently separate all the potential sources

of error without making very strong and specific assump-
tions about their nature. In BARE we would argue that the
assumptions are too strong and cannot be justified; in
GLUE it is not entirely satisfactory that they are treated
implicitly in the model evaluation. It is perhaps in the
middle ground between these two approaches, taking full
advantage of modern techniques for recursively identifying
and estimating parametrically parsimonious models, prob-
ably combined with Monte Carlo-based estimation (e.g.,
particle-filter methods and the estimation procedures sug-
gested by Kitagawa [1996]), where future advances in
calibration methodologies might be found. We would join
with TTGS in hoping to stimulate a new generation of
graduate students to start to think deeply about the problems
of how to identify models of appropriate complexity in
applications to difficult environmental systems.

[16] Acknowledgments. The authors are most grateful to Hoshin
Gupta for providing the relevant Leaf River data set.
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