
UC Irvine
ICS Technical Reports

Title
IP characterization and reuse in behavioral synthesis

Permalink
https://escholarship.org/uc/item/7b98h432

Authors
Fan, Nong
Chaiyakul, Viraphol
Gajski, Daniel D.

Publication Date
2000-01-06

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7b98h432
https://escholarship.org
http://www.cdlib.org/

Characterization and Reuse
Behavioral Synthesis

Nong Fant
Viraphol Chaiyakult

Daniel D. Gajskit

Technical Report #00-01
January 6, 2000

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

tDepartment of Information and Computer Science
University of California, Irvine

Irvine, CA 92697
(949) 824-8059

tY Explorations, Inc.
20902 Bairn Parkway, Suite 100

Lake Forest, CA 92630
(949) 457-0294

nfan@ics.uci.edu
viraphol@yxi.com

This report presents a usage-based component characte'rization to facilitate reuse of
presynthesized complex component in behavioral synthesis. It identifies necessary at­
tributes needed to be obtained for component reuse, and demonstrates the importance of
these attributes in behavioral synthesis tasks, such as allocation, scheduling and binding.

Contents

1 Introduction

2 Previous Work

3 Problem Statement and Target Architecture

4 Usage Based Component Characterization

4.1 Specifying component usage . .

4.2 Describing structural attributes

4.3 Describing interface template for each usage

4.4 Describing mapping protocols

5 Use of Attributes in Behavioral Synthesis

5.1 Use of component usage in allocation

5.2 Use of left mapping protocol and interface template in scheduling

5.3 Use of right mapping protocol in component binding

6 Experiments and Conclusions

7 References

1

2

3

3

3

4

4

6

6

6

7

8

10

10

List of Figures

1 (a) Use gate to design adder and put it back to the database (b) use the adder to design SAM

and put it back to the database.

2 Target Architecture.

3 One usage for Shift-and-Add Multiplier (SAM).

4 Structural attributes for SAM.

5 (a) One usage of the SAM (b) Interface template of the SAM (c) Component SAM

6 Use of component usage in allocation. .

7 Use of interface template in scheduling.

8 Use of right mapping protocol in binding.

11

1

3

4

4

5

7

8

g

1 Introduction

Recent advances in semiconductor technology al­

lows companies to build complex designs containing

millions of gates on a chip. The need for design au­

tomation on higher abstraction levels where function­

ality and design tradeoff are easier to understand. is

unavoidable. Meanwhile, the time-to-market require­

ment is becoming increasingly aggressive. A quan­

tum jump in design productivity is necessary and

that is obtainable through the reuse of pre-designed

and pre-verified IP blocks or cores, such as memories,

FIR filters, or DSP cores that perform MPEG encod­

ing and decoding algorithms. Thus, design reuse in

behavioral synthesis is becoming the methodology of

choice for improving design quality, productivity and

predictability.

To make design reuse in behavioral synthesis a re­

ality, synthesis tools need cutting-edge libraries con­

taining various components, which can be as simple

as gates or as complex as DCT and MPEG cores to

support a variety of applications. Synthesis system

can not use a component until it is properly charac­

terized. Component characterization is a process in

which the component attributes, which are necessary

for it to be reused, are extracted and stored in design

libraries. If behavioral synthesis algorithms are going

to support reuse, components in the library have to

be characterized in such a way that the algorithms

can handle those components.

Figure l(a) shows an adder which are designed

by using gates as building blocks in a design library.

Once the design is finished, we can put the adder

back to the library by extracting such attributes as

bitwidth, delay, area and power consumptions and

1

Shift-and-Add Mult (SAM)

CLK

Add DP

~

(a) (b)

Figure 1: (a) Use gate to design adder and put it back to
the database (b) use the adder to design SAM and put it
back to the database.

storing them into the library. We have already known

that with these informations, this adder can be reused

in behavioral synthesis systems.

Figure l(b) shows an shift-add-multiplier (SAM)

which are designed by using gates and the adder

which are just designed in Figure l(a) as the building

blocks. Let us assume that this SAM has only one

input port to get operands. Thus, two operands are

fed into it at different clock cycles. Once the com­

putation is done, it sets done signal to one, notifying

that the result is ready. After finishing this design,

we still want to put it back into the library for future

reuse. Now the question is: what attributes about

the SAM need to be extracted and stored in the de­

sign library such that behavioral synthesis systems

are able to reuse it? Obviously, the attributes used

to characterize the adder are not enough for the SAM

to be reusable in behavioral synthesis systems. The

reason is that, compared to the adder, the SAM is a

sequential circuit, has its own Finite State Machine

{FSM), and has a much more complex I/O interface.

So there is a need to investigate how to character­

ize such complex components such that behavioral

synthesis algorithms can handle them.

In this paper, we will present a novel usage-based

component characterization approach for design reuse

in behavioral synthesis. Section 2 will present the

previous work on component characterization. Sec­

tion 3 will present the problem statement and target

architecture. Section 4 will present our usage based

component characterization approach. Section 5 will

briefly present the importance of the attributes in

support of reuse in behavioral synthesis. Section 6

will show some experiment results and conclude the

paper.

2 Previous Work

Traditionally, component characterization is com­

ponent based, that is, for each component, informa­

tion regarding timing, area and power consumption is

extracted and stored in the design library. The tim­

ing information may include clock constraints, input

setup/hold timing constraints, input to output de­

lays, and clock to output delays. The area informa­

tion may include gate counts or height/width of the

layout. For more complex components, e.g., sequen­

tial components with handshaking protocols, signal

relationships are specified using timing diagrams in

data book. With the help of detailed documenta­

tion, designers would be able to reuse the components

through manually transforming original algorithmic

descriptions into RTL descriptions with selected com­

ponents instantiated. However, every time an alter­

native component is selected, the RTL code needs

2

to be modified to reflect the change of components.

Thus, the traditional component characterization ap­

proach does not provide enough component informa­

tion for behavioral synthesis algorithms to be able to

reuse them.

Recently, several works have been published on

how to abstract presynthesized components in de­

sign libraries such that they can be reused in be­

havioral synthesis. In AMICAL[l], each component

are abstracted at four different levels: the concep­

tual view, the behavioral view, the implementation

view and the high-level synthesis view. The forth

view is used to link behavioral and implementation

view. Though their approach supports characteriza­

tion of multi-functional components, it does not sup­

port components which perform the same operation

on different data types since in the synthesis view,

components are abstracted based on operation name

only. In OOCADSyn[2], an object oriented scheme

is used to model presynthesized components, where

each component is modeled as a class which has a

structure and behavior. The behavior of a class is

captured by messages and methods, while the struc­

ture of a class is used to describe the constituent com­

ponents of a circuit, and its various attributes such as

delay, area, and power etc. For every message there

will be an interface graph which captures the I/ 0 be­

havior of the message. Operations are performed by

sending appropriate messages to components. How­

ever, sending an appropriate message implies that

component selection needs to be decided manually

before writing descriptions.

On the other hand, our usage based component

characterization can support reuse in component se-

lection, scheduling and binding.

3 Problem Statement and Tar­
get Architecture

Given a presynthesized component, component char­

acterization is to identify necessary attributes about

the component and store them into design libraries

such that synthesis tools are able to reuse it.

SCLK

• l 1

y... FSM control DP/CC ...

t status J
t lr

Figure 2: Target Architecture.

ACLK1
Ell
@I

@I

ACLKn

j..ae-
@I

•
@I

I-cit-

Figure 2 shows the target architecture which al­

lows us to design a circuit using components with

various complexities. It is basically a Finite State

Machine with Datapath (FSMD) [4]. The FSM con­

trols components in the datapath. Besides tradi­

tional RTL components, the datapath may contain

complex components(CC). These complex components

may run at their own clocks and communicate with

the FSM through hand-shakings. Here we call the

clock going to the FSM as system clock (SCLK) and

the clocks going to datapath components as auxiliary

clocks (ACLKs).

3

4 Usage Based Component Char­
acterization

The usage based component characterization is to

characterize a component based on its usage, i.e.,

the functionality of operations it can perform and

the conditions under which it performs the opera­

tions. It includes 4 tasks: l)specifying component

usage, 2)describing component structural attributes,

3)describing interface template for each usage and 4)

describing mapping protocols.

4.1 Specifying component usage

The first step in usage based characterization is to

specify usages of a component. The usage of a com­

ponent is specified by the functionality of operations

it is to perform and the conditions under which it

performs the operations.

The functionality of an operation is specified by

giving the name of the operation and the data types

of operands. In an algorithmic description, opera­

tions are performed through subroutine calls with

appropriate parameters 'passed into them. The sub­

routines can be predefined functions or procedures

in description languages, or can be user defined. In

some Hardware Description Languages (HDLs), such

as VHDL, where subroutine overloading is allowed,

both the subroutine name and the parameter data

types need to be specified in order to uniquely iden­

tify the functionality of the operation. For example,

the functionality of multiplying two signed numbers

is different from that of multiplying two unsigned

numbers.

Conditions under which a component performs

behavioral operation

parameter data types and
constraints on parameter bitwidth

constraint on the minimum
system clock period

op1 op2

¥
res

op1: signed{7 downto O);
op2: signed{7 downto O);
res: signed(15 downto O);

elk~

Figure 3: One usage for Shift-and-Add Multiplier (SAM).

the required operation include the constraint on the

system clock, SCLK, used for synthesis and the con­

straints on the bitwidths of operands. The constraint

on SCLK specifies the requirement of the system

clock for using the component. Suppose that the

minimum period of 20ns is the constraint of a usage

on the system clock. If the period of system clock

used for synthesis is lOns, then the component can

not be used to perform the required operation. The

constraints on the bitwidths of operands specify the

size of the operands the component can take. For

example, if the constraints on operand bitwidth is 8,

then the component can not be used to perform a

16-bit operation.

One component may have multiple usages if it

can perform different operations or perform the same

operation under different conditions. On the other

hand, different components may have the same usage

since within one library, there may exist more than

one component which can perform the same opera­

tion under the same conditions. A component can be

selected to perform the required operation only if the

functionality of the operation is exactly matched, and

the constraints on the system clock and on operand

4

bitwidths are satisfied.

Figure 3 shows one usage for the Shift-and-Add

Multiplier, SAM. From the example, we know that

the SAM can be used to perform multiplication of

two 8-bit signed numbers if the system clock period

is not less than 1 Ons.

4.2 Describing structural attributes

The structural attributes need to describe port di­

rection and bitwidth, input port setup/hold timing

constraints, input to output delays, clock to output

delays and component clock constraints.

~8
__..,.. lk DIN

-----~c
SAM __..,..

~tart __..,.. RST
done

t
DOUT

~16

DIN: setup time: 2ns
hold time : 1 ns

TC: setup time: 3ns
hold time: 4ns

START: setup time: 2ns
hold time: 1 ns

done: clk->done delay: 7ns

DOUT: clk->DOUT delay: 15ns

elk: min period 20 ns

Figure 4: Structural attributes for SAM.

Figure 4 shows the structural attributes of the

SAM. It has four 1-bit control input ports, one 8-

bit data input port DIN, one 1-bit output port done

and one 16-bit data output port DOUT. It also lists

setup/hold timing constraints on input ports, clock

to output delays and constraint on clock.

4.3 Describing interface template for
each usage

For each usage of a component, there is one inter­

face template. The purpose of the interface template

is to hide the implementation details of a compo­

nent, while providing enough information about how

to perform the required operation under the given

conditions specified in the usage. It bridges the gap

between the behavioral operation and the compo­

nent. The usage shown in Figure 5 (a) specifies that

the SAM can perform multiplication of two signed

numbers. The operation takes two operands and gen­

erates one result. The constraints to perform the

operation are that (1) the bitwidth of both input

operands is 8, and the bitwidth of result is 16, and (2)

the minimum system clock period is lOns. Figure (c)

shows the structural component. The component has

one circuit reset signal rst, one clock signal elk and

one start signal START. The signal tc determines

whether the input and output data is interpreted as

unsigned (tc = 0) or signed (tc = 1) numbers. Both

operands are fed into the SAM through input port

DIN at different cycles. Due to the data dependent

execution time, it uses the signal done to denote the

validity of the result. From Figure (a) and (c) we can

obtain the following observations: first, the behav­

ioral operation and the SAM have different number

of ports. Secondly, the component has more compli­

cated mechanism to receive operands and send results

than the behavioral operation. To bridge the gap be­

tween the behavioral operation and the component,

an interface template is needed.

The interface template is modeled as an design

entity with two sets of ports, left ports Li and right

ports, Rj. Left ports are used by the interface tem­

plate to get operands and to send out results. For

every parameter of the operation specified in the us­

age, there must exist a corresponding left port. Right

ports are used by the interface template to commu­

nicate with the component. They will be connected

to the ports of the component. A right port can be

5

connected to more than one component port.

The behavior of the interface template is specified

using a state transition diagram, where the nodes

represent I/O operations of the component, and the

edges represent state transitions, which are controlled

by the system clock.

CLK

'
stO 1

~ :
op1 op2 st1 R1 - - -:- - - - - - - - :

Y
-_:-_:-_:-- 1--~ L1 R3<='1' R

2
-----:: ~o

: R2<='1' R3 -ta--:: ~-P--clk DIN

~ - --~ L2 Rl <= L1 R4 --- ', :_·_:-.:::::::~~art SAM
st2

----: ~R-1 <~=L-2~ ----mt done DOUT

res :
16

sta R5 = 'O' 10

' - - -"""'7" L3

op1: signed (7 down to O);
op2: signed (7 downto O);
res: signed (15 downto O);

elk~

Usage

(a)

res<= R6
R3 <='0'

Interface Template

(b)

I

R5 ------------'

R6 I...,_·- -- - --- --

SAM

(c)

Figure 5: (a) One usage of the SAM (b) Interface tem­
plate of the SAM (c) Component SAM

Figure 5(b) shows the interface template of the

SAM for the usage specified in Figure 5(a). It has 3

left ports and 6 right ports. The state transition di­

agram inside the template shows how to control the

SAM to perform the required operation, i.e., multi­

plying two signed numbers. In the initial state STo, it

resets the SAM by sending '0' to it through the right

port R4 . In the state ST1, it gets the first operand

through the left port Li and sends it to the SAM

through Ri. It also sends '1' to the port TC of the

SAM to notify that operands should be treated as

signed numbers. After sending the second operand

in the state ST2 , it waits in the state ST3 until the

signal from the port R5 becomes 'l ', indicating that

the result is ready. In the next state, ST4, it gets the

result from the port R 6 and sends it out through the

port L3.

4.4 Describing mapping protocols

The mapping protocols consist of two parts, left map­

ping protocol and right mapping protocol. The left

mapping protocol specifies the one-to-one correspon­

dence between operation parameters and left ports of

the interface template. For each parameter or result

of the operation, there must exist one and only one

corresponding left port, and vise versa. The right

mapping protocol specifies the connections between

the right ports of the interface template and the ports

of component. As shown in Figure 5, the dashed lines

between the operation in the usage and the interface

template represent the left mapping protocol. For

instance, the parameter "opl" of the operation "*"

corresponds to the left port L1 . The dashed lines be­

tween the interface template and the SAM represent

the right mapping protocol. For instance, the port

Ri is connected to the port DIN of the SAM.

5 Use of Attributes in Behav­
ioral Synthesis

In this section we present the use of the attributes

described in the previous section in behavioral syn­

thesis. Behavioral synthesis is a process of synthesiz­

ing a design from a given behavioral description into

a structural implementation. It consists of three ma­

jor tasks, allocation, scheduling and binding. Thus,

the use of the attributes in these three tasks will be

discussed here.

5.1 Use of component usage in alloca­
tion

The task of allocation is to define the number and

type of resources used in the design. The resources

6

include functional units, storage units and intercon­

nection units. The component usage can be used

to select functional units (components) from design

libraries to perform the operations specified in a be­

havioral description. Allocation algorithms can use

as keys operation name, parameter data types, to­

gether with synthesis constraints to search design li­

braries. The design library search engine compares

operation name, parameter data types and the given

constraints with usages of each component, and re­

turns the matched components. In this way, synthe­

sis systems can automatically find appropriate com­

ponent candidates which can guarantee to perform all

the operations specified in the behavioral description.

When multiple components are identified as candi­

dates, other attributes, such as performance, size and

power, can be used in cost functions to evaluate de­

sign alternatives and explore design spaces.

The design shown in the top of Figure 6 is de­

scribed in VHDL hardware description language. The

constraint on the minimum system clock period is

20ns. Since the operations needed to be performed

are two additions and one multiplication of signed

numbers under the given system clock constraint,

three search keys are formed as shown under the

description. Suppose that the design library con­

tains three components, a full adder ADDER, an

array multiplier AM, and a shift-and-add multiplier

SAM. On the right side of each component are the

usage(s) of the components. The constraint on the

clock in each usage is the minimum clock period. For

instance, a clock with the minimum period of 8ns

is required to use the SAM. It is obvious that the

ADDER is able to perform the specified addition op­

erations, and both AM and SAM are able to perform

Behavioral Description

entity eX2 ls
port (A, B, c, D : In slgned(7 downto O);

o: out sfgned(15 downto 0)):
end eX2;
architecture behav of eX2 Is
begin

process (A, B, C, D)
vartable T1, T2 : signed (7 downto O);

begin
T1 :=A+B;
T2:=C+D;
0<=T1 'T2;

end process;
end behav;

T1 :=A+ B;

A: signed (7 downto O);
B : signed (7 downlo O);
T1 : signed (7 downlo O);

T2:=C+D;

A : signed (7 downto O);
B : signed (7 downlo O);
T2 : signed (7 downto O);

res :=op1 +op2;
op1 : signed (1 downlo O);
op2 : signed (1 downlo O);
res : signed (1 downto O);

System Clock

0<=T1 'T2;

T1 : signed (1 downlo O);
T2 : signed (1 downlo O);
O: signed (15 downlo O);

res := op1 x op2;

op1 : usslgned (1 downlo O);
op2 : usslgned (1 downlo o);
res: ussigned (15 downlo O);

clock:~ -~el<--'--~ clock:~

co

res := op1 x op2;
op1 : signed (1 downlo O);
op2 : signed (7 downto O);
res: signed (15 downto O);

clock:~

\i'
12

ADDER Cl AM

0 0

0 16

tnrt
-...rst do

12 -t· stnrt _,.,

res := op1 x op2;

op1 : signed (7 downlo O);
op2 : signed (7 downlo O);
res : signed (16 downlo O);

clock:~

Figure 6: Use of component usage in allocation.

7

the specified multiplication operation in the descrip- .

tion. Allocation algorithm could further select one

ADDER and one SAM to implement the specified

design.

5.2 Use of left mapping protocol and
interface template in scheduling

The task of scheduling is to sequence executions of

operations in a behavioral description by assigning

each operation to control steps, where each control

step corresponds a clock cycle in the synthesized de­

sign. Since execution of an operation on a compo­

nent may take several clock cycles with complicated

I/O protocols involved, it is important to ensure that

I/O operations of the component be sequenced prop­

erly as well. I/O operations of a component include

sending control signals and data to the component,

and fetching status signals and results back from the

component. Since the interface template describes

the sequence of the I/O operations with cycle based

accuracy, it can be embedded into the schedule to

control the execution of the operation on the compo­

nent. This concept is illustrated using the example

shown in Figure 7.

Figure 7(a) shows the Data Flow Graph (DFG) of

the design described in VHDL in Figure 6. Suppose

that the SAM is allocated to perform the multipli­

cation operation. From the interface template shown

in Figure 5 we can see that, with the help of the

left mapping protocol, the multiplication operation

in the DFG can be substituted by the SAM and its

interface template as shown in Figure 7 (b) and (c).

In Figure 7 (b) we use the dashed box to represent

the interface template since it will be implemented

into the controller, instead of as an individual entity.

fn Figure 7 (c) we use the dashed box to represent

the SAM since the SAM is not a real component,

and needs to be mapped to a real component dur­

ing binding. Therefore, every time we substitute an

operation with an interface template and a compo­

nent, we call the component as virtual component

and it is subject to be bound to a real component.

The left mapping protocol, shown as the dashed lines

between the DFG and the interface template, repre­

sents the intercepted data flows. From the Figure we

can see that data Tl and T2 flow into the left port L1

and L 2 of the interface template, respectively. The

interface template shows that Tl is fed into SAM's

DIN in st1 and T2 is fed into SAM's DIN in st2.

Thus, operation Tl :=A+ B needs to be scheduled

before st1 , and T2 := C + D needs to be scheduled

before st2. Figure 7(d) shows the transformed design

with the final schedule in the left box and the allo­

cated SAM. Note that the multiplication operation

0 <= Tl x T2 in the original description has been

replaced by a set of assignment statements, which as­

sign data and control signals to SAM and fetch sta­

tus and data from it, and the allocated component. A

scheduling algorithm, which can handle the interface

templates during scheduling, is discussed in [5].

5.3 Use of right mapping protocol m
component binding

The right mapping protocol is used during virtual

component bindings. As mentioned in the above, a

virtual component is introduced during scheduling

when an operation is replaced by a component and

its interface template. Typically, the binding tasks

include Functional Unit (FU) binding, storage bind­

ing and interconnection binding. FU binding maps

8

Data Flow Graph

(a)

A

B

c

D

0

Interface Template

(b)

OLK

Transformed Design

(d)

Vlrtural Component

(c)

Figure 7: Use of interface template in scheduling.

~ach operation in a behavioral description onto a FU.

Storage binding maps data carriers (e.g., constants,

variables and data structures like arrays) in the de­

scription to storage elements (e.g., ROMs, registers

and memory units). Interconnection binding maps

each data transfer (i.e., a read or write) to a inter­

connection path between its source and its sink. The

only difference between traditional binding and bind­

ing for virtual components is in FU binding. The tra­

ditional FU binding maps operations onto functional

units, while binding with virtual components maps

virtual components onto real components.

Due to the existence of the right mapping proto­

col in our usage based component characterization,

the problem of binding virtual components to real

components can be solved using the same binding

algorithms as traditional FU binding.

First, component sharing conditions in FU bind­

ing and virtual component binding are the same. In

FU binding, one operation may be mapped onto a

FU only if the FU is capable of executing the oper­

ation and is idle during the control steps in which

the operation is scheduled to execute. The same is

true with virtual component binding: a virtual com­

ponent may be mapped onto a real component only if

the real component exactly matches the virtual com­

ponent and is idle during the control steps in which

the virtual component is scheduled to be active.

Secondly, the optimization goal for FU binding

and virtual component binding is the same, i.e., to

minimize the interconnection cost. In FU binding,

the interconnections are between storage units and

FUs or between FUs. In virtual component binding,

the right mapping protocol specifies the connections

9

between an interface template and a virtual compo­

nent. Since the sources/sinks of the connections in

the interface templates will eventually be mapped to

either storage units or other components, intercon­

nections are still between storage units and compo­

nents or between components.

Since component sharing condition and cost func­

tions are the same, the same binding algorithms for

FU binding can be used directly with virtual compo­

nent binding.

A B c D

L - - -1
I L - -1 I

J I - - -1
1 IT21 1VC21
I I I_ 1 _

J I I
I L __ _
I __ I

----:_~r- ~~ :: = ~ ~I
1 /T3 1 1VC31
I I I_ 1 _

J I I
I L - - _
I __ I

01 02

DFG with embedded interface templates
virtual components

(a)

FU1 FU2

allocation

(b)

Figure 8: Use of right mapping protocol in binding.

Figure 8 shows a DFG consisting of four multipli­

cation operations, X1, X2, X3 and x 4 , which are to

be executed on the two functional units of the same

type, FU1 and FU2. Assume that X1 and X2 can

not be mapped to the same FU since their execu­

tion times are overlapped, and neither x 3 and x 4

for the same reason. Traditional FU binding algo­

rithms may need to determine, for example, whether

to map operations x 1 and x 3 or x 1 and x 4 onto

the same functional unit. If virtual components are

used to perform the operations, the operations will

be replaced with the interface templates and the vir-

tual components, i.e., the operation x 1 replaced with

the interface template IT1 and the virtual component

VCi, x 2 with IT2 and VC2 , and so on. Virtual com­

ponent binding may need to determine, for example,

whether to map virtual component VC1 and VC3 or

VC1 and VC4 onto the same real component.

6 Experiments and Conclusions

Usage based component characterization has been

applied to characterize components with various com­

plexities, such as combinational RLT components,

shift-and-add multipliers, AMD 2901 ALUs, DCT,

and memory components. These components have

been inserted into component database of Interac­

tive Synthesis Environment (ISE) such that they can

be reused during behavioral synthesis.

7 ·References

[1] P.Kission, H.Ding, A. Jerraya, "VHDL Based De­

sign Methodology for Hierarchy and Component

Re-Use," Proc. EURO- VHDL, 1995

[2] S. Sarkar, A. Basu, and A.K.Majumdar, "Repre­

sentation and Synthesis of Interface of a Circuit

for its Reuse," Proc. Euro DAG, 1994

[3] E. Girczyc and S. Carlson "Increasing design

quality and engineering productivity through de­

sign reuse", Proc. 30th DAG, 1993.

[4] D. Gajski, N. Dutt, A. Wu, and S. Lin, High­

Level Synthesis: Introduction to Chip and System

Design, Kluwer Academic Publishers, 1992.

[5] H. Juan, Design Methodology and Algorithms for

10

Interactive Behavioral Synthesis, Ph.D. Disserta­

tion, University of California, Irvine, 1997.

