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RITZ METHOD FOR DYNAMIC ANALYSIS OF LARGE DISCRETE
LINEAR SYSTEMS WITH NON-PROPORTIONAL DAMPING

A. Ibrahimbegovic, H. C. Chen, E. L. Wilson and R. L. Taylor

Department of Civil Engineering
University of California, Berkeley, CA 94720, U.S.A.

1. INTRODUCTION

The dynamic analysis of practical engineering structures requires the solution
of a large system of dynamic equilibrium equations. For the loading of short dura-
tion (impulse loading) step-by-step numerical procedures are usually the most
effective. However, for the loading of long duration, such as earthquake, mode
superposition procedure is the appropriate numerical method (see Wilson [1977]).

Traditional mode superposition procedure requires the solution of the eigen-
value problem as the first step. Once eigenpairs are known, modal transformation
that utilizes only a small portion of the complete spectrum will usually yield a very
good approximation to the exact dynamic response. To improve the approximation
properties of the eigenvector basis employed in modal transformation, the pro-
cedures of static correction and mode acceleration are used in order to account for
the contribution of higher truncated modes.

An alternative approach to ensuring good approximation properties of vector
basis used for modal transformation is the use of the Ritz procedure. We want to
emphasize the difference between the Ritz method on one side versus the Rayleigh-
Ritz and the Lanczos method on the other side. While the later two methods con-
sider the eigenvalue problem solution, the Ritz method (see Ritz [1909]) considers
the possibilities for the approximate solution of partial differential equations (e.g.
the equations that govern the motion of deformable body) as a series solution of
admissible functions. For the discrete system (or the set of semidiscrete equations),
we are confined to, a set of admissible vectors (further referred as Rirz vectors) is
easy to construct. An additional benefit of the Ritz method is that the eigenvalue
problem does not have to be solved. However, the numerical technique used to
generate Ritz vectors will strongly influence the quality of results obtained. The
load dependent vector algorithm, first proposed by Wilson et al. [1982], combines
the advantages of the Rayleigh-Ritz procedure and the static correction method.



Analogy of recurrence equations for generating vector basis with Lanczos process
for computing eigenvalues (see Lanczos [1950] or Parlett [1980]), provides satisfy-
ing Rayliegh-Ritz approximation properties to the true eigenvectors, while the
choice of starting vector, as a static response to fixed loading form, provides the
benefits of static correction concept.

For the structural systems where a reasonable degree of homogeneity in the
energy loss mechanism exists, damping is modeled as proportional or classical. The
general representation of proportional damping is first given by Caughey [1960] in
the series form proportional to powers of mass and stiffness matrix. Rayleigh
damping is included into the series as a linear combination of mass and stiffness
proportional terms. As an alternative to the series form of Caughey [1960], a pro-
portional damping matrix can be obtained directly from specified modal damping
ratio values as shown by Wilson and Penzien [1972].

However, for the problems where large differences in energy dissipation
mechanisms exist, assumption on proportional damping is not realistic. Some exam-
ples of the linear dynamic systems with non-proportional damping are mechanical
systems with special energy absorbing devices and coupled systems for analysis of
soil-structure and fluid-structure interaction. Several possibilities (see Clough and
Mohtajedi [1976]) exist to treat non-proportionally damped dynamic linear systems
by mode superposition procedure within the framework of real eigenvector basis. A
rigorous procedure to devise the coordinates that uncouple equations of motion util-
izes complex vector basis for modal transformation first given by Foss [1958].

Recent research (see Wilson et al. [1982], Nour and Clough [1984] and Leger
and Wilson [1987]) indicated the superiority of the load dependent vector algorithm
in generating Ritz vector basis for mode superposition in the case of proportional
damping. The Krylov subspace (commonly used name in mathematics community
for the vector sequence generated in the process) can be spanned by Lanczos vectors
as in Nour and Clough [1984] (which furnish tridiagonal modal stiffness form), or
alternatively, by Ritz vector basis as in Wilson et al. [1982] (which yields diagonal
form for both modal stiffness and mass matrix). Motivated by those results we pro-
pose the analogous approach to dynamic analysis of linear systems with non-
proportional damping.

Two procedures for generating real and complex vector basis by the load
dependent vector algorithm are compared in this study. The real vector basis is
generated by the load dependent vector algorithm with selective orthogonalization
(see Ibrahimbegovic and Wilson [1989]), and numerical integration of modal equa-
tions coupled by velocity proportional forces is performed by an efficient iterative
procedure as described in Ibrahimbegovic and Wilson [1988]. The complex vector
basis is generated by the load dependent vector algorithm as described in Chen and
Taylor [1988], applied to the adequate first order form of the equations of motion.
Both procedures are reviewed in sections 3 and 4, after some considerations of their
common characteristics are given in section 2. In section 5 we present a com-
parison of two vector basis, real and complex, for the two typical examples of



structures characterized by non-proportional damping : flexible mechanical system
with concentrated dampers and soil-structure interaction problem which arises in
analysis of dam-foundation system. In section 6 we give some closing remarks.

2. RITZ METHOD FOR DISCRETE SYSTEMS

The standard form of the semidiscrete equations of motion that describe how
small displacements from equilibrium evolve in time is

Miut)+ Cu(r) + K u(r) =1(r) (2.1)

where M,C and K are, respectively, the nxXn mass, damping and stiffness matrices,
while ti(r), u(s) and u(r) are nx1 acceleration, velocity and displacement vectors.

In many practical analysis of complex dynamic systems, the sheer size of the
problem turns the exact solution to (2.1) into prohibitively expensive computational
effort. Therefore, an approximate solution is often sought. One way to obtain an
approximate solution to (2.1) leads to the Ritz method, in which a series form is
assumed

m
u(r) = Y ¢; y;(1) = ® y(1) (2.2)
i=1
Since normally m < n, this approach can be interpreted as a process of projec-
tion of the original space u(r) = (uy(r),..,u,(t)) to the subspace y(t) =
(y1(2),-.5ym(t)). The set of projection vectors ® = (¢,...,¢,,), or the subspace vec-
tor basis, has to be admissible in accordance to the Ritz method. If @ is the set of
eigenvectors of the system (2.1), the traditional mode superposition method is
recovered.
By utilizing transformation (2.2) into (2.1), a new set of equations of motion
can be written in terms of generalized Rirz coordinates

M, ¥(r)+ C, ¥(r) + K, y(r) = f,(1) (2.3)
where

M, =®" M® (2.4)

C,=0" Co (2.5)

K,=®"Ka® (2.6)

f,() = @ f(r) 2.7)

Beside the reduction in size (from n to m), additional benefit of (2.3) versus
(2.1) is possibly gained in the uncoupled form of equations of motion. For M, C
and K being real, symmetric and positive definite matrices, it is always possible (see
Parlett [1980]) to choose a set of cigenvecrors @ which yields the diagonal form in
(2.3) for two of them. The traditional approach, with an important physical



interpretation, is to diagonalize M and K, i.e.
M, =1=diag(l,...1) (2.8)
and

2
m

K, = Q2 = diag(w?,... 02) (2.9)

If the matrix C shares the same set of eigenvectors as M and K, than (2.3)
reduces to uncoupled set of equations. This is more general condition on the form
of C that uncouples the equations of motion than the Caughey series (Caughey
[1960]).

By utilizing spectral decomposition theorem (see Parlett [1980]) the propor-
tional damping matrix C can be presented as a summation of rank-one matrices

C=Y ac ¢ ¢ 2.10)

i=1
However, the main interest of our study is associated with the case when the
damping matrix C is not of the form (2.10), i.e. we deal with non-proportional
damping.

3. REAL VECTOR BASIS

In this section we give a short review of the load dependent vector algorithm
used for generation of the real vector basis. For more extensive discussion we refer
to previous work by Wilson et al. [1982], Nour and Clough [1984] and Ibrahim-
begovic and Wilson [1989]. A simple and efficient procedure, described previously
in Ibrahimbegovic and Wilson [1988], is then used to solve modal equations of
motion coupled only by velocity proportional forces.

The real Ritz vector basis is generated for the system (2.1) disregarding the
nature of dissipative term. Namely, the equations of motion we start with are

!
Mii(r) + Ku(r) =1(r) = Y f; g;(1) (3.1

i=1
The loading of special form separable in time and space is required for suc-
cessful use of load dependent vector algorithm. For many applications (e.g. earth-
quake loading) series representation of loading in (3.1) contains one term only. For
simplicity let us proceed with those cases.
The starting vector in the subspace generation is chosen as a static response to
constant spatial distribution of loading

rp=K*f (3.2)

B =] M2 (3.3)



q, =r,/B, (3.4)

The choice of the starting vector in (3.2) is motivated by the static correction
concept (see Maddox [1975]), which accounts for the contribution of truncated
modes in the approximate static manner. The starting vector is then the static
response normalized (3.4) with respect to mass weighted inner product (3.3).

Other vectors are generated by the recurrence equation that employs dynamic
matrix K™ M (see Clough and Penzien [1975]), i.e.

T, =K'Mg; (3.5)

The dynamic matrix is self-adjoint with respect to mass weighted inner product, i.e.
for any two vectors (; and q; it holds

(4;K'Mq; )y = of M K™ M q; = (q;,K'Mg, )y (3.6)

The sequence of vectors is thus orthonormalized with respect to mass matrix by util-
izing the Gram-Schmidt procedure.

A typical three-term recurrence equation that will generate real vector basis for
use in modal transformation is :

Bit19j:1=Tj1 =K' Mgq;-a;q;+pq;, (3.7)
where

o; =q; MK Mg (3.8)
and

B; =4qj_; MK™' M g, (3.9)

as an alternative formula to compute j;.

The recurrence equations (3.7) are equivalent to the ones in Lanczos algorithm
(see Parlett [1980] or Nour and Clough [1984]). This analogy provides the load
dependent vector algorithm with a good Rayleigh-Ritz approximation for the funda-
mental eigenvalues of the system. Beside the special choice of the starting vector,
this is the major reason for the exceptional performance of the load dependent vec-
tor algorithm. The analogy can be also utilized in defining the selective orthogonal-
ization strategy (see Parlett [1980]). The selective orthogonalization strategy
requires monitoring the convergence of Ritz values to eigenvalues at each step;
hence, for the short runs full reorthogonalization (see Wilson et al. [1982]) is usu-
ally insignificant increase of the computational effort. Finally, the analogy was util-
ized to define the new spectral content truncation criteria in the process of vector
basis generation, that account for the different range of dominant exciting frequency
(see Ibrahimbegovic and Wilson [1989]).



After m steps of the process tridiagonal matrix 1,, is generated

o) By

B> oy B

T,=QTMKIMQ-= - (3.10)

ﬁm—l 1 ﬁm

Bn o,

The matrix T,, is uniquely defined by the dynamic matrix K~IM and the start-
ing vector a; (see Parlett [1980]). A set of vectors
(4, KM dp, ...(l\'”l M)""l (;), M-orthonormalized by Gram-Schmidt procedure
in recurrence equations (3.7), forms Lanczos vector basis which spans Krylov sub-
space. Additional possibility to span the same Krylov subspace is given by Ritz
vecror basis (g, ¥,, ... y,,) which can be formed after the standard eigenvalue
problem for T, is solved

T, S, = Q,;28S,, (3.11)
¥=0Q8S, (3.12)

The complete summary of the algorithm is given in table 3.1, at the end of this
section.

If we choose Ritz vector basis to span the subspace, the modal transformation
is u(t) = W y(r) and the set of modal equations of motion could be restated as

§(1) + C,, (1) + Q2 y(r) =1, g(1) (3.13)
where

¥IMY, =1 (3.14)

P CW, =0, (3.15)

¥ K ¥, = Q2 = diag (0?) (3.16)

Wl fg(t)=",g(t) (3.17)

Because of the non-proportional nature of damping matrix, equations of motion
remain coupled after transformation to Ritz generalized (modal) coordinates.
Efficient numerical algorithm, devised in Ibrahimbegovic and Wilson [1988], is then
used for the solution of system (3.13). First the additive split of modal damping
matrix C,, = diag (2§ o) + Cm is introduced and the system is rewritten in the
form



F(1) + diag(2 & w; ) y(1) + Qo y(1) =1, g(t) = ¥ C,, 5(1) (3.18)

System of equations (3.18) is then solved by iteration. The complete summary
of the iterative procedure is presented in table 3.2.



Table 3.1 Load dependent vector algorithm - real Ritz vector basis

Step 1 : Pick a starting vector

Operation count

solve Kq="f v(K)T
p=Mgq p(M)®
ﬁ] = (qT p)l/2 n
q < q/B, n
p <« p/B, n
solve Kr=p v(K)
o) = (rT pP) n
r < r-—oq n
oldp=Mr u(M)

BZ — (rT Oldp)l/z
store q as (,

n

Loop : For j = 2,3,...,m

Operation count

oldq « ¢

p <« oldp

q « r1/B;

P < P/Bj

solve Kr = p
a; = (rT p)
r<r-ogq

r < r— Bjoldq
oldp=Mr
Bisi = «T oldp)!2
store q as (;

n

n
v(K)

n

n

n
u(M)

n

After m steps

Operation count

Solve T, S, =Q;%S,,

10m°
2

Form Ritz vector basis ¥ = Q S, nm

7 v(K) represents the number of operations to solve K y = x
§ u(M) represent the number of operation to compute M x
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Table 3.2- Algorithm for the integration of modal equations
for systems with non-proportional damping
A. Initial Computations :
1.Precompute exponential and trigonometric expressions for constant time step
At =1t —1t
1 0

& w; At
B” = g I0)

cos wp; Al
—E.wA .
B"v =e Siwal Sin O)D[ At
B. For each tme step (Ar = 1; = 1) .
1. Set initial condition for iteration process

¥ O () =y (1)

2. Compute loading

i(t = ,'f)
f‘.(f)=a+bt, Wheré’ia=f,-(t0) B f I)A,f(o

C. Iterate through the number of modes :
1. Compute off-diagonal damping forces

(Cm y“““(r)) =c+d1t

i
2. Update loading
a«—a-c , be«b-d

3. Compute coefficients

2& b
Ag= L - , A =b/w}
Ay =y (1p) — A
1 .
Az = — ()’i (t) + & o; A, — Al)
WDp;

4. Compute the new values for displacements and velocities

¥ (1)) = Ag + A; At + A,B;) + A3 B,

¥y = A+ ( wp; A3 = §; O Az) Biy - ( wp; Ay + G; W;Aj ) By
5. Check convergence

if :
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4. COMPLEX VECTOR BASIS

Theoretical basis for formation of the complex vector basis that will uncouple
equations of motion (2.1), for the case of non-proportional damping, was introduced
three decades ago by Foss [1958]. Additional publications (e.g. Veletsos and Ven-
tura [1986]) tried to provide some physical insight into the use of complex vector
basis aiming to raise the popularity of the method in the engineering community.
However, in addition to the lack of physical understanding, the equally important
reason for the rare use of complex vector basis is that the method tends to be com-
putationally very expensive for practical large systems. Quite recently devised
Lanczos algorithm in Chen [1987] for the solution of quadratic eigenvalue prob-
lems can ease the burden of large computational expense.

Only a short summary of the algorithm we use to generate complex vector
basis is given here. For more thorough discussion the reader is referred to Chen and
Taylor [1988].

To generate the complex Ritz vector basis, the second order differential equa-
tion is transformed into a first order one (see Frazer et al. [1946]) as

A di(r) + Bii(r) = Tg(r) (4.1)

where
C M| 'K o

A=1M o B=19 _m i)

and
- r
_ u(r) ~ f
() = ["(r)_ f= 0 (4.3)

The equations (4.2) are not the only first order form of (2.1); however, they are
the most suitable for our purpose. Note that A and B in equations (4.2) are sym-
metric (induced by the symmetry of M, C and K). However, neither A nor B are
positive definite. Hence

@84 =d A q; (4.4)

is not always positive for §; # 0. Although we keep formally the same load depen-
dent vector algorithm (with appropriate quantities of size 2n instead of n denoted by
(7)), we have to warn about the dangers of utilizing improper (or indefinite) inner
product (4.4). Namely, a set of orthogonal vectors may be linearly dependent, a
nonzero vector can have zero norm and the reduced system can become unstable
even though the original system is stable (see Chen and Taylor [1988]).

A variant of the standard load dependent algorithm can be constructed (see
Chen [1987]) to generate an A-orthogonal set of vectors by applying the Gram-
Schmidt orthogonalization procedure on the Krylov subspace spanned by
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(q;, Dq;, D2(~|1 ey D’?"lql), where the new dynamic matrix is D = B! A. The
starting vector {; is A-normalized static response to fixed spatial loading distribu-
tion, 1.e.

_ -y K™

5,=TI AT,/ ITT ATl (4.6)

v, = ITT ATy 1Y2 (4.7)

QW=T1/n (4.5)

The three-term recurrence formula now is

Vis1 Qje1 = Ty = B! A G, —o; G; - B; G;_, (4.9)

where
sl -1 i =
~T - o~

B; =6 T ABT AT, 4.11)

5j+1=rj+1Arj+1/Irj+1Arj+1| (412)

Yi+1 = 'FJTH A Fj+1|1/2 4.13)

where §;, being +1 or -1, appears as a consequence of A being indefinite matrix.

The dimension of the Lanczos vectors {; here is 2n instead of n. However,
the cost of computing these Lanczos vectors is not doubled because the structure of

the matrices A and B can be exploited.

~

After #m = 2m steps, we have the Lanczos vectors Q =[ q, ..., ﬁm ] satisfy-
ing the following relation

QTAQ =4 (4.14)
and
Q"AB1TAQ=AT, (4.15)

where A is an 2mX2m diagonal matrix with the diagonal elements §;, and Tm 1s a
tridiagonal matrix
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ay B
Y2 Oy P

(4.16)

=
I

n

Va1 %1 P

% “m

The Ritz vectors are computed from ¥=0Q gﬁl, where 'Sm is the solution for
eigenvectors of the following eigenproblem

AT.S.=AS_ G (4.17)

7
Note that T_ is a real matrix, but ‘fl';ll contains complex eigenvalues (Ritz
values). Hence, complex arithmetics is not needed until the last moment.
Using the transformation U(s) = ¥ ¥(r), we can obtain the uncoupled form of
the equations of motion (2.1)

V(1) =@ §(0) = F ) (4.18)

where both the &; and the f;;,,(f) are complex-valued for underdamped modes.
J

For the piece-wise linear variation of excitation, exact solution of equation
(4.18) can be then utilized in the computational process (see Chen and Taylor
[1988]). The complete summary of the load dependent vector algorithm is given in
table 4.1.
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Table 4.1 Load dependent vector algorithm - complex Ritz vector basis

Step 1 : Pick a starting vector

Operation count

solve B q = T
P=Ayq

n=1lqa’ pI*?

8= p)/iq" pl
P< Pn

q < q/7,

solve Br = p

a; = (7 p)
r<r—oaq
oldp=Ar

y, = 1T oldp |2
5, = (rT oldp) / Ir7 oldp!?

store q as {q,

v(K)f
2u(M) + p(C)*
2n

2n
2n
viK) + v(M)
2n
2n
20u(M) + p(C)
2n

Loop : For j =23,...2m

Operation count

oldg « g
oldp «—p
q < r/y;

p <« ply;
solve Br = p
a; = (l'T p) 5j

B; = (" oldp) §;
r<r-oq
r « r — Boldgq

oldp=Ar
Visey = IrT oldp 112
8.1 = (rT oldp) / Ir” oldp!'?

store q as Qq;

2n
2n
v(K) + v(M)
2n
2n
2n
2n
2uM) + p(C)
2n

After 2m steps

Operation count

Solve Tﬁl §,72 =Q7!'S
Form Ritz vector basis ¥ = Q S

102m)3
2n(2m)?

T v(K) and v(M) represent the number of operations to solve K y

=xand My = x

§ (M) and p(C) represent the number of operation to compute M X and C x
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5. NUMERICAL EXAMPLES

Two typical dynamic systems with non-proportional damping are analyzed :
flexible mechanical system with concentrated dampers and a soil-structure interac-
tion problem for a gravity dam model.

5.1. Mechanical System with Concentrated Damper

The first example studied is a frame structure presented in figure 5.1, Structure
is modeled by a discrete model of 10 beam elements (each with length equals 1 m)
with a total of 24 degrees of freedom.

[ Figure 5.1.- A damped dynamic system l

Young’s modulus for the beam material is taken as 500 N/m?, while mass density
and section area and inertia are specified of unit value. The damping coefficient of
the concentrated damper equals 10 N sec/m.

This structural model could be considered as a representative of a control sys-
tem or a passively damped space structure. Due to the model flexibility its fre-
quency spectrum spans from 7.64 rad/sec as the lowest frequency to 1097.49 as the
highest.

To ensure that non-proportional damping arising from the damper attached to
node 3 is less than critical (underdamped system), the procedure described in Inman
and Andry [1980] is used. Namely, positive definiteness of the matrix (2 R C‘)
is checked (where : K = M2 K M~Y2, C = M2 C M™V?),

Structure is analyzed previously by Chen and Taylor [1988] within the frame-
work of complex Ritz vectors and eigenvectors that are generated from the first
order system (12). Analysis in Chen and Taylor [1988] is performed for loading
variation specified as step function. Equivalent computations were performed utiliz-
ing real vector subspace generated either by the exact eigenvectors or Ritz vectors
directly from the set of second order differential equations by Ibrahimbegovic and
Wilson [1988]. Two sets of 4 and 10 exact eigenvectors and 4 and 10 Ritz vectors
generated from both the second and the first order system are used in analysis and
compared with the exact solution (obtained with all 24 vectors included).

The same computation is repeated for another loading variation specified as
1952 Taft earthquake (ground acceleration record S69E with PGA=0.17935 g @ 3.5
sec). This loading variation is used as a representative of narrow-band excitation
which is illustrated by its Fourier amplitude spectrum presented in figure 5.2.

[Figure 5.2.- Fourier amplitude spectrum for 1952 Taft earthquake record S69E ’

Plots for horizontal displacement at node 8 computed by different number of real
vectors and complex vector pairs are given in figure 5.3 for the step function load-
ing variation and in figure 5.4 for Taft earthquake.
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‘ Figure 5.3 - Horizontal displacement at node 8 for step function loading ’

‘ Figure 5.4.- Horizontal displacement at node 8 for Taft earthquake loading J

From the plots presented in figure 5.4 we observe that the results computed
within the subspace spanned by either 10 pairs of complex vectors or 10 real vectors
are very similar (equivalent convergence properties), although, in theory, different
vectors are generated. That applies both for the eigenvectors and Ritz vectors and
both kinds of loading we used. Reason for that is partly due to low values of
equivalent damping ratios (on average 2% for all the modes) that is computed from
non-proportional damping matrix neglecting off-diagonal terms (see Warburton and
Sony [1977]). However, even for the larger values of non-proportional damping, it
is reasonable to assume that convergence rates for both vector bases, complex and
real, will be in a very good agreement. This we demonstrate in the second example.

For the computation performed utilizing a set of 4 real Ritz vectors or 4 pairs
of complex Ritz vectors much better approximation to peak response is obtained
than for the adequate computation performed by eigenvectors. To illustrate that, we
present the ratios of peak response computed by the different number of real vectors
and complex vector pairs versus the exact solution. These results are given for both
kinds of loading, step function and Taft earthquake, in table 5.1.

Table 5.1 Ratios of maximum response for different vector bases
versus exact solution

Complex vector basis

no. vect. step function Taft earthquake
4 eig. v. 0.754 0.830
4 Ritz v. 1.019 1.057
10 eig. v. 1.044 1.016
10 Ritz v. 0.992 0.994
Real vector basis
no. vect. step function Taft earthquake
4 eig. v. 0.775 0.850
4 Ritz v. 0.928 1.057
10 eig. v. 1.046 1.017
10 Ritz v. 1.011 0.999

5.2. Pine Flat Dam - Soil-Structure Interaction

A typical soil-structure interaction problem that arises in dynamic response
analysis of dam structure is presented in this example. Analysis is carried out util-
izing added motion approach first described in Clough and Penzien [1975]. Detailed
derivation of equation of motion is presented in Clough and Penzien [1975] and
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only its final form is presented below
Mii(r) + Cu(r) + Ku(r) =M, R uig(r) (5.1

where M, C and K are again mass, damping and stiffness matrices of complete
interacting system, u(t) are dynamic nodal displacements, while loading takes the
form of added structure "directional” mass M, R (in this example the dam structure)

multiplied by the time variation of earthquake excitation ui (t). The particular form
of the equation of motion (5.1) corresponds to the surface supported structures. For
the embedded structures an additional loading term in the equation (5.1) appears,
which corresponds to pseudo-static motion component (see Bayo and Wilson
[1984]).

Rayleigh damping is used to account for energy dissipation due to material
damping in dam and foundation material, constructed with the second (frequency
equals 13.27 rad/sec) and the fifth mode (frequency equals 21.39 rad/sec) chosen as
the control modes with modal damping ratio value equals 5%. Non-proportional
nature of damping matrix arises from the concentrated viscous dampers that simu-
late waves radiation condition (see Laysmer and Kuhlemeyer [1969]). Distributed
viscous damping is given the constant value as suggested in Cohen and Jennings
[1983] as a first order approximation to the local transmitting boundary conditions .
(see Enquist and Majda [1977]). Nodal lumping of distributed damping values is
done by row summation procedure as described in Chew [1985]. Modal transforma-
tion utilized in computation can be considered just a change of the basis (see Bathe
and Wilson [1976]) and the use of transmitting boundaries is still valid. However,
modal basis truncation can now be utilized to enhance computational efficiency.

Presence of overdamped modes which are the property of wave propagation
problems, as described by Wolf [1985], can be checked by the procedure described
in Inman and Andry [1980], applied directly to the truncated set of equations in
modal coordinates. In all the runs we performed, both the complex and the real
vector basis yielded the same number of overdamped modes, i.e. they both followed
the same pattern. Hence, this procedure to establish the number of overdamped
modes, can be used for the modal analysis that utilizes complex vector basis to a
priori indicates the problems that may occur in that case (see Chen and Taylor
[1988]).

The finite element model of dam-foundation system is presented in figure 5.5.

] Figure 5.5.- Pine Flat Dam |

Model of the dam used in this analysis is similar to the Pine Flat Dam analyzed for
hydrodynamic effects on dams by Chakrabarti and Chopra [1973]. In this analysis
hydrodynamic effects are completely disregarded. The dam and the foundation are
both made of elastic homogeneous isotropic material with mechanical properties :
Young’s modulus 22150 MN/m?, mass density 2.5 kN sec?/ m* and Poisson ratio
0.25.
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The computations are performed for two loading variations as in example 5.1,
step function and Taft earthquake. Two sets of 5 and 10 real vectors and complex
vector pairs in vector basis generated by both eigenvectors and Ritz vectors are used

in computations.

As a measure for computational efficiency CPU times spent in different phases
of analysis, performed on VAX II/GPX workstation under Ultrix 1.2 operating sys-
tem, are presented in table 5.2

Table 5.2 CPU times for complex and real vector basis (sec)

Complex vector basis

no. vect. Lanczos vec. Ritz vec. modal equations
5 eig. v. 1935.98 285.80 0.43
5 Ritz v. 570.23 27.70 0.43
10 eig. v. 2797.90 594.95 0.90
10 Ritz v. 1037.83 86.55 0.90
Real vector basis
no. vect. Lanczos vec. Ritz vec. modal equations
5 eig. v. 255.33 26.50 1.93
5 Ritz v. 71.97 4.31 1.89
10 eig. v. 301.12 52.80 4.82
10 Ritz v. 138.80 9.55 4.73

Extraction of a number of complex Ritz vector pairs requires on the average
7.75 times more effort than for the adequate number of real vectors. On the other
hand, for the solution of modal equations the average CPU time ratio is inverse to
the value above, which reflects the advantage of uncoupled equations set in the case
of complex vector basis. However, the effort involved in the modal equations solu-
tion is overall insignificant.

For both programs, FEAP (see Taylor [1977]) and SAP (see Wilson [1980]),
that we used to generate complex and real vector basis respectively, the common
computational expense of factorizing stiffness matrix required 220 CPU sec (without
the use of optimal equation numbering routine). Hence, from table 5.2 it is obvious
that generating Ritz vector basis of 10 real vectors which yields excellent approxi-
mation to dynamic response, is merely half the effort adequate to static response
computation.

To develop further appreciation for the efficiency resulting from the selection
of load dependent real Ritz vector basis in modal transformation, a complete com-
parison of CPU time for the different phases of dynamic mode superposition
analysis versus static analysis is performed. The comparison is performed for two
sets of 5 and 10 real Ritz vectors, and presented in table 5.3 below. Discretization
of dam model in figure 5.3 resulted in 1154 equations with the average band-width
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equals 104.
Table 5.3 CPU times for real Ritz vector basis
and static solution (sec)
solution phases static solution 5 Ritz vec. 10 Ritz vec.

input 10.97 10.96 10.93
element stiffness 45 88 45.67 45.52
structural stiffness 11.87 11.88 11.92
factorize stiffness 220.30 220.25 220.03
Lanczos vectors - 71.97 138.80
Ritz vectors - 431 9.55
modal equations (100 steps) - 1.89 4.73
displacement history (10 nodes) - 2.02 3.96
stress history (10 elements) - 446.76 461.60
nodal displacement 5.87 - -
nodal stress (10 elements) 4.78 - -
total time 299.67 815.71 907.04

From the table 5.3 above, we can note that the total solution process for the
case of dynamic analysis triples the effort of static solution process. This seemingly
unfavorable ratio results from the solution strategy of nodal stress recovery by time
history of stress, which essentially requires repetition of the same computation as in
the static loading case for each time step. However, for the design purposes, only
the maximum values of stress and displacement are of interest. To obtain design
values for earthquake input one can use a response spectrum approach for the case
of non-proportional damping, such as in the problem on hands. That procedure is
already introduced by Igusa and DerKiureghian [1983] as an extension of CQC
method suggested first by Wilson et al. [1981] for structural systems with propor-
tional damping. Since the time for recovery of maximum values for stress and dis-
placement by CQC method is only slightly larger than the adequate computation for
the static loading case, the ratio of the time for dynamic versus static analysis
reduces to 1.5.

Displacement at the dam tip computed for a set of 5 real vectors and 5 com-

plex vector pairs are plotted in figure 5.6 and for 10 vectors and vector pairs in
figure 5.7, together with the "exact" response, obtained by the set of 100 real vec-

tors.

| Figure 5.6.- Horizontal displacement at dam tip for step function loading |

| Figure 5.7.- Horizontal displacement at dam tip for Taft earthquake loading }
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For both vector basis, real and complex, remarkable approximation properties
are encountered if the Ritz vectors are used. This is illustrated in figures 5.6 and
5.7 and table 5.4.

Table 5.4 Ratios of maximum response for different vector bases
versus exact solution

Complex vector basis

no. vect. step function Taft earthquake
5 eig. v. 1.121 1.029
S Ritz v. 1.061 1.033
10 eig. v. 1.054 1.025
10 Ritz v. 1.007 1.017
Real vector basis
no. vect. step function Taft earthquake
5 eig. v. 1.030 0.951
5 Ritz v. 0.965 0.987
10 eig. v. 0.969 0.978
10 Ritz v. 0.996 1.007

For the nodal displacement computation, the eigenvector basis possess almost
equivalent fast convergence properties as the Ritz vector basis. However, for the
accuracy in the stress recovery, Ritz vector basis is superior, as elaborated further.

Error norm for the loading spatial representation can be computed as given in
Leger and Wilson [1987] by

I ezl 1A-MPEH 0 o (%) (5.2)
€/l = o ;
778 A

Error norm defined by equation (5.2) is presented in table 5.5 for different numbers
of real eigenvectors and real Ritz vectors used in modal transformation.

Table 5.5 Error norm for spatial loading representation
no. vect. error norm (%)

10 eig. v. 52.677

10 Ritz v. 24.396

100 Ritz v. 15.873

Spatial representation of loading with truncated vector basis is much better for the
case of Ritz vector basis. Consequently, stresses and forces recovery is much more
accurate within vector basis spanned by Ritz vectors constructed by the load depen-
dent algorithm. To illustrate that, dam structure base shear force computed by the
appropriate numbers of Ritz vectors and eigenvectors is presented in figure 5.8.
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Figure 5.8.- Dam base shear force for eigenvector and Ritz vector basis - Taft earth-
yuiahe

6. CLOSURE
The summary of the findings obtained in the study is :

Krylov subspace keeps its advantageous approximation properties versus exact
eigenvector subspace in the case of non-proportionally damped system. This is
enhanced in the case of broad band excitation.

The selection of proper load dependent real Ritz vector basis for the modal
transformation, combined with an efficient method for the maximum Stress recovery,
reduces the total effort required for the dynamic analysis to only 1.5 times of an
adequate static analysis of the same problem.

For the cases studied, the real vector basis yields comparable accuracy and
convergence properties as the adequate complex vector basis, but requires much
smaller CPU time for the total solution. However, the use of complex vector basis
may be advantageous for the analysis to loading with time variation given as large
piece-wise linear steps, where high accuracy can be ensured utilizing the exact solu-
tion of modal equations.
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Figure 5.3.a - Horizontal displacement at node 8 for step function
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