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Abstract

Extensible tools for movement ecology with applications for the study and conservation of
Namibian ungulates

by
Dana Paige Seidel
Doctor of Philosophy in Environmental Science, Policy, and Management
University of California, Berkeley

Professor Wayne Getz, Chair

Movement ecology is a young sub-discipline in ecology in which researchers apply high res-
olution location and activity data to analyze animal behavior across multiple scales: from
individual foraging decisions to population-level space-use patterns. These analyses con-
tribute to various other subfields within ecology—inter alia behavioral, disease, landscape,
resource, and wildlife—and may also facilitate novel exploration in fields ranging from con-
servation planning to public health.

Using a decade of GPS relocation data from zebra (Equus quagga), black rhino (Diceros
bicornis), and African elephant (Lozodonta africana) captured and collared in Etosha Na-
tional Park from 2008-2018, this dissertation reviews developing methods within movement
ecology, extends and applies these methods to a threatened and understudied species, and
presents a new software package distilling a growing movement ecology tool set for researchers
and managers unfamiliar with the domain specific analyses and /or the command line inter-
face of modern statistical analysis (e.g. R).

Despite the growing availability of animal movement data and the potential for broad ap-
plication in geographic analysis beyond animal ecology, the analytical methods of movement
ecology have yet to be fully incorporated in a broader understanding of geographic analysis.
Chapter 2, a review written for the Geographical Information Sciences (GIS) community,
provides an overview of the most common movement metrics and methods of analysis em-
ployed by animal ecologists and emphasizes the potential for movement analyses to promote
transdisciplinary research: comparing advances in the young field of movement ecology to



parallel developments within the broader field of geographic information sciences.

Two limitations remain common within the growing field of movement analysis. First,
within movement ecology, many, even most, analyses require clean, complete, and regular
time series of relocations, limiting the available research on species that are hard to track
and /or often return gappy, irregular data; including some of the world’s most endangered an-
imals, e.g. black rhinos. In chapter 3, extending and applying recursion analyses to irregular
spatio-temporal data from this understudied and critically endangered species, I investigated
daily, biweekly and annual recursion behaviors of rhinos, to aid conservation applications and
increase our fundamental knowledge about these important ecosystem engineers. Results in-
dicate that rhinos may frequently stay within the same area of their home ranges for days at
a time, and possibly return to the same general area days in a row especially during morning
foraging bouts. Initial results indicate that recursion at the daily and biweekly scales may
be driven by hydration and productivity cycles respectively. Recursion across larger time
scales is also evident and likely a contributing mechanism for maintaining open landscapes
and browsing lawns of the savanna.

A second, and equally challenging, limitation to the growing movement ecology tool kit is
accessibility. The growth in analysis techniques, and the concomitant growth of open-source
software for analysis, pose a stumbling block to general acceptance in interdisciplinary and
management settings, where researchers may be unfamiliar with the expansive set of tools
or the command line interface of modern analysis packages. In chapter 4, to reduce this
friction and enhance the accessibility of exploratory data analysis tools for animal movement
data, I built stmove, an R package designed to make report building and exploratory data
analysis simple for users who may not be familiar with the extent of available analytical
tools. Furthermore, stmove sets forth a framework of best practice analyses, which offers
a common starting point for the interpretation of terrestrial movement data, promoting
comparability of results across movement ecology studies.

The datasets, analyses, and tools presented in this dissertation seek to enhance communi-
cation, application, and accessibility of a growing movement ecology toolkit while providing
a special glimpse into a diverse ecological community and the individual and population
movement behavior through within Etosha National Park over the last decade. We demon-
strate new tools built for exploratory data analysis in movement ecology using this data and
explore how insights from movement ecology can help inform successful conservation efforts
in the region and beyond.
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Chapter 1

Introduction: Tools in Movement
Ecology, a new paradigm

Background

The miniaturisation of animal tracking devices and satellite-to-ground communications de-
veloped during the late-twentieth century allowed for the study of movement in ways not
before possible [93, 50]. Ecology can now be studied as a consequence of, and influence on,
movement both on a grander scale than before but also with greater resolution. Researcher
now seek to understand ecological patterns through the study of movement as a process,
or, alternatively, to understand processes in ecology, like foraging and breeding, as a con-
sequence of movement patterns. From out of this paradigmatic shift, the sub-discipline of
movement ecology emerged offering new clarity and dimension to concepts central to animal,
especially large animal, ecology for a long time, such as migration, dispersal, home range
and territoriality, to name a few; even more importantly, this discipline introduced concepts
not previously considered or studied, e.g. recursion or behavioral state analysis.

In general, the field of movement ecology seeks to answer questions regarding where, how,
and why individual animals move, placed within the context of diverse natural environments.
Movement ecologists consider movement the outcome of behavioral decisions influenced by
animals’ internal states (e.g. physiological needs), external biological factors (e.g. com-
petition) and their physical environment [126]. Given the importance of this interplay, it
is the movement pathway of an individual or group of individuals that is often the central
feature studied in movement ecology. Using high resolution tracking data to estimate an ani-
mal’s continuous path allows researchers to understand what various environmental elements
animals are exposed to that may positively or negatively impact long-term processes like re-
production and survival [56]. Using available relocation data and associated datasets, like
accelerometery or satellite imagery, researchers can extract and model behavioral modes and
decisions, test hypotheses regarding predictors of animal movement and attempt to explain



how individual behavior scales up to the landscape-level distribution of animal populations
that are often the focus of conservation concern or ecosystem management policy.

The study system

Within the chapters of this dissertation, I review, apply, and extend the movement metrics
available to researchers today using unique datasets from Etosha National Park’s remarkable
ungulate populations. Etosha National Park is an approximately 23000 km? national reserve
and park in northern Namibia. It is a semiarid savanna with a natural east-west rainfall
gradient of 450-200 mm/yr [199]. The park supports a high density of ungulate species
including zebra (Equus quagga), springbok (Antidorcas marsupialis), elephant (Lozodonta
africana), and rhino (Diceros bicornis). Within the bounds of the park, there is an estimated
population of 13,000 zebra, 15,600 springbok, and 2,600 elephant [173, 171, 44]. Etosha
National Park and conservations lands to the east and south of the park, support some
of the last remaining free-ranging populations of black rhino. While populations roam the
length of the park, a higher density of individuals were tracked in the eastern region. A large
pan lies in the interior of the park, uninhabitated by most individuals but bordered by highly
trafficked waterholes and animal corridors; beyond the pan, the landscape is topographically
featureless [139]. Etosha has been fully fenced since the early 1970s, though, from tracking,
it is apparent some individuals do occasionally cross the fences. Artificial waterholes provide
water year round throughout the park [171].

Methods & metrics for GPS relocation data

While the seminal paper on the new “movement ecology paradigm” is only a decade young
[126], telemetry data, and emerging methods and metrics to analyse them, have been around
for more than half a century. Indeed, the broader field of geographic information science
has been developing for just as long (the term was coined in 1968) and spatial analysis of
process and pattern much longer (see examples of epidemiological mapping as early as the
19th century) [37]. Within the field of movement ecology, multiple recent reviews have been
written that explore the development of individual analyses or metrics of space use (e.g.,
home ranges [43|, proximity /social networks [136], selection functions [102]). However, few
have attempted to outline the complete scope of metrics and tools used to analyze animal
movement data and none have explicitly identified movement ecology’s place within the larger
realm of geospatial analysis and its connections to the geographic information science (GIS)
community. While it is clear there is interest within the GIS community in applications of
movement analysis for spatial ecology [155, 96, 98, 97, 108], generally in the field, quantitative
analysis of movement takes a broader view, acknowledging the potential for similar metrics to
analyse movement of a variety of applications including a growing interest in human mobility
[50, 109, 33|. Indeed, questions relating to geospatial data analyses that address the behavior
of individuals, the demography of populations, and the structure of landscapes in the face of
global change are of interest to geographers and movement ecologists alike and the potential



for trans- and inter-disciplinary research great. To better facilitate communication and
research between these fields, Chapter 2 provides a broad exposition of metrics and methods
of analysis that are widely used in the movement ecology field, emphasizing their applications
beyond animal ecology into more general geospatial analysis. Throughout, similar metrics
already adopted or developed by researchers in GIScience and the advances made in the
field of movement research more broadly are highlighted. By identifying highlighting the
overlap between the two fields, Chapter 2 hopes to provide ecologists and geographers new
perspective on the tools available for movement analysis.

Extending movement tools for irregular data

A common requirement of many, perhaps even most, methods for spatio-temporal analysis,
across all fields, is a regular time series of data points, i.e. data sampled at consistent, equal-
sized, intervals. Analyzing irregular time series, i.e. data sampled at inconsistent intervals,
often requires downsampling, timestamp rounding, or various methods of interpolation to
achieve regular intervals. In the context of wildlife research, and particularly when trying to
identify or model animal behavior, these methods which often lead either to significant data
loss or high rates of interpolation, may bias or limit accuracy of results and the strength
of conclusions. The nature of animal movement, however, means tracking data is especially
prone to GPS error, missed fixes, satellite blocking, etc.. For example, animals may move
into forests to rest or forage, dive underwater, or wade in mud — all natural behaviors that
can have a nonrandom impact on error rates of telemetry. In the context of wildlife research,
state space models have recently become popular as a way to model the movement process
even in the presence of irregular data [133, 90, 108|, however these hierarchical models
however can be challenging to fit and validate. Overall, a lack of simple metrics for gappy,
irregular, or error prone datasets, no doubt limits the behavioral and ecological analyses
including these species. Furthermore, given the increasing ease of collecting GPS data but
the relative challenge of analysing it, there is likely a lot of GPS data going unanalyzed
because of the challenges and limitations of fine scale analysis methods for irregular spatial
time series data.

In a novel extension of recursion analysis, Chapter 3 addresses this issue using a never
before published dataset of relocations from 59 black rhino, a critically endangered and
understudied species (with respect to their meso-scale movement patterns). Recursion anal-
yses, broadly referring to methods for detecting returns to prior locations over the course of a
movement trajectory, allow researchers to ask questions about the distribution of important
resources within an individual’s range and can increase our understanding of factors gov-
erning movement dynamics [11, 18]. Furthermore, in the context of conservation planning
and range management across a fractured metapopulation of reserves, identifying habitats
or corridors with high recursion may have even greater importance. By extending recursion
analysis to look at daily movement patterns and applying analogous analyses at biweekly,
and annual scales as well, I was able to evaluate behavioral questions even confronted with



irregular data. Applying recursion analyses over multiples scales can offer new insight into
old assumptions about rhino movement behavior, may help us better understand the mecha-
nisms by which they engineer their environment, and how best to conserve these free ranging
populations across a fragmented reserve system.

Democratizing movement data analysis

Many, if not all, of the metrics I discuss in the first two chapters can be applied using modern
statistical programming languages like R, Matlab, or Python. Indeed, with the expansion of
metrics for movement analysis there has been a concomitant expansion of software to help
implement analyses. (The supplementary material to chapter 2 cites many such software
packages.) In fact, a recent review found 57 individual R packages solely dedicated to
movement or tracking analyses; critically, however, only 12 of these had good to excellent
documentation [92|. The proliferation of these tools is both a gift and a stumbling block.
For those fluent in a programming language or languages, as more and more young scientists
are, this software can expedite the analysis process and expand the possibilities of research
questions asked and answered. However, open-source software, especially that which is
developed by scientists rather than fluent programmers, comes with no guarantee, often
limited consistency and compatibility with other programs, and regularly, as noted above,
without the documentation necessary for effective communication and understanding of the
functionality contained. What’s more, for managers and researchers without this experience,
accessibility to this expanding tool set is limited and the sheer number of analyses and
packages available to learn can compound the problem.

The movement ecology paradigm [126], which effectively situated the emerging discipline
within the broader ecological context, fell short of dictating a set of baseline analyses that
should be run on movement data. The absence of a core set of standardized analyses among
the many novel tools available to researchers has made it difficult to contextualize the move-
ment patterns of an animal or species and to compare across studies and wildlife. Chapter
4 presents a new R package, stmove, designed specifically to address these issues. stmove
is designed to standardize exploratory data analysis for GPS relocation data by curating a
specific set of analyses necessary for exploring movement data. The primary advantage and
goal of this package is to provide a simple, single-command procedure to produce compre-
hensible and customized reports covering important baseline analyses one should conduct
on GPS movement data. By bringing together these analyses into one package, address-
ing compatibility issues, and carefully documenting each function, stmove tries to reduce
the accessibility challenge faced by researchers and managers unfamiliar with command line
programming or the breadth of available movement analyses.

In concert, the following three chapters serve to highlight and advance new methods and
metrics in the young field of movement ecology, emphasizing communication and accessibility
across disciplines, data, and applications.



Chapter 2

Ecological metrics and methods for GPS
movement data

Dana Paige Seidel Eric R. Dougherty Colin J. Carlson Wayne M. Getz

Originally published in International Journal of Geographic Information Sciences (2018; 5:19) and
reproduced here with the permission of Eric R. Dougherty, Colin J. Carlson, and Wayne M. Getz.

2.1 Abstract

The growing field of movement ecology uses high resolution movement data to analyze animal
behavior across multiple scales: from individual foraging decisions to population-level space-use
patterns. These analyses contribute to various subfields of ecology—inter alia behavioral, disease,
landscape, resource, and wildlife—and facilitate facilitate novel exploration in fields ranging from
conservation planning to public health. Despite the growing availability and general accessibility
of animal movement data, much potential remains for the analytical methods of movement ecology
to be incorporated in all types of geographic analyses. This review provides for the Geographical
Information Sciences (GIS) community an overview of the most common movement metrics and
methods of analysis employed by animal ecologists. Through illustrative applications, we emphasize
the potential for movement analyses to promote transdisciplinary GIS/wildlife-ecology research.

2.2 Introduction

The study of movement as a sub-discipline within the geographic information sciences is developing
rapidly, driven by advances in localization technologies used to collect movement data [50, 196].
Parallel to this expansion is the emergence of the field of movement ecology, which seeks to an-
swer questions regarding where, how, and why individual animals move, placed within the context



of diverse and varying natural environments [126]. In movement ecology, the movement pathway
of an individual (or a group of individuals) is often the central feature studied. These pathways,
considered within the heterogeneous landscapes they cross, expose individuals to various environ-
mental elements that may positively or negatively impact long-term processes like reproduction and
survival [56]. For example, an individual’s movement decisions, moving them toward or away from
a resource-rich area, will directly impact their foraging success and, hence, fitness |73, 74]. At a
broader scale, emergent spatial processes and patterns (e.g. the distribution of resources, disease
transmission, and human-wildlife conflict) are all influenced by the movement decisions of animals.
In this sub-field of ecology, the rapid technological advances driving data collection are facilitated by
a conceptual framework for considering animal movements (Nathan’s movement ecology paradigm
[126]) and catalyzed by the development of new metrics and analytical tools.

Where movement ecology has a limited focus and specific ecological applications, research within
the GIScience community into the quantitative analysis of movement takes a broader view, and in
many cases has developed or adapted similarly powerful methods for the exploration of movement,
both with and without specific ecological application. In movement ecology, multiple recent reviews
have been written that explore the development of individual analyses or metrics of space use (e.g.,
home ranges, proximity /social networks, selection functions; see [43, 136, 102], respectively). In the
same period, several special issues in the GIS community have been published on the topic of quan-
titative movement analysis and spatial ecology [155, 96, 98, 97, 50]. Despite these domain-specific
reviews and broader special issues, an exposition that provides an broad overview of metrics and
tools used to analyze animal movement data is still needed. Our intention here is to provide such
an exposition by reviewing metrics and methods of analysis that are widely used in the movement
ecology field, emphasizing their applications beyond animal ecology into more general geospatial
analysis. Throughout, we attempt to highlight similar metrics already adopted or developed by
researchers in GISscience and the advances made in the field of movement research more broadly.
For the most part, our review will emphasize methods most useful for analyzing high-resolution
(also referred to as fine-scale) spatio-temporal location data from GPS tags (on collars, harnesses,
or secured by other means), often paired with data from accelerometer, proximity, and physiological
(e.g., temperature) sensors. While we acknowledge the significant contribution of additional local-
ization technologies (e.g. acoustic arrays, light-based geolocators, VHF /radio data, ARGOS, and
the upcoming ICARUS initiative [135]) to the recent expansion of movement research, the metrics
developed for these pipelines are, for the most part, outside the scope of this review.

We begin our exposition by organizing movement ecology metrics according to whether they
summarize one- (i.e. having only the dimension of length) or two-dimensional (i.e. having the
dimensions of area) objects. This approach reflects Smouse’s 2010 [157] dichotomy of statistical
analyses of relocation data in terms of Lagrangian methods focusing on discrete-step, time-interval,
and turning-angle constructs (i.e., a one-dimensional view of movement pathways) and Eulerian
methods focusing on emergent space-use constructs (i.e. a two-dimensional view of movement path-
ways). Within this dichotomy, we distinguish metrics by whether or not they have an environmental
covariate context and whether they pertain to individuals or groups of individuals. The methods
we discuss represent the range of questions movement ecologists generally address, from inferring
animal behavior to understanding the structure and characteristics of the landscape. The first set



of metrics is associated with one-dimensional objects: those metrics intended to derive descrip-
tive statistics from individual movement trajectories and to investigate individual behavioral states
across a trajectory. The second set are applied to two-dimensional objects: those meant to describe
the frequency with which an individual or multiple individuals occur in a given area or to predict
spatial usage patterns for an entire population of a particular species, rather than a single individ-
ual. These latter analyses inform researchers about the relationship between landscape structure
and animal behavior. Throughout the review, we use data from a single zebra to demonstrate re-
producible examples of selected metrics across scales. See Zidon et al. [199] for details on the zebra
population from which these data were collected and supplementary information for specific details
on individual AG256, the zebra data used here.

2.3 Trajectory Analyses

The improvement of modern tracking devices has led to a considerable increase in the amount
of movement data available for analysis, specifically in the form of lengthy time-series of discrete
relocations in two or three dimensional space [168]. The level of correspondence between these
relocations and the actual movement of the animal will vary, depending on the spatial and temporal
resolution of the trajectory, but several metrics can be derived from the path to describe the general,
usually statistical, tendencies of individual animals (Table 2.1).

Path-level analyses

Path-level analyses rely on several straightforward metrics that can be easily extracted from consec-
utive relocations in a time series of geographical points. These metrics are broadly referred to to as
stepwise characteristics and can be split into primary and secondary metrics. Primary metrics, such
as step length and turning angle (Table 2.1) are directly derived from relocations at each time step.
However, they are highly sensitive to the spatial and temporal resolution at which the data were
collected [36, 68]. Secondary metrics may be summary statistics derived from primary metrics [56]
or they may be computed from the trajectory at coarser spatio-temporal scales than represented by
the raw data. These coarser scale metrics include net squared displacement (NSD) [26], which under
a pure diffusive movement process scales linearly with time [21], and residence time (Table 2.1).
They may used, as in the case of NSD, to characterize the functional mode of a movement path
(i.e., migratory vs. territorial; [13]). The coarser-scale at which they are calculated makes them
less sensitive to the spatio-temporal resolution of the data, provided the scale of the raw data is
sufficiently fine (i.e., an order of magnitude finer than these secondary measures).

Metrics have been developed to describe structural aspects of movement trajectories that include
many twists and turns. Two of these are the straightness index and tortuosity: both measure
the degree to which movement trajectories deviate from straight lines (Table 2.1). A third is a
trajectory’s fractal dimension: informally, it has a value between one and two, and is a measure
of the extent to which a one-dimensional trajectory fills two-dimensional space, as an individual
meanders around the landscape (values close to 2 represent trajectories that are more “space filling”
than those with dimensions close to 1). These three structure-characterizing metrics are calculated
across a series of steps (i.e. consecutive locations in space), typically using computer algorithms,



although the fractal dimensions of earthworms moving in vegetated versus unvegetated landscapes
have been computed by hand [144]!

Path Segmentation Analyses

One of the most active areas of research within movement ecology [56] is the development of methods
to infer the behavioral state of individuals from relocation data. Some of these methods seek to
segment movement paths into different behavioral phases (also known as canonical activity modes
[69]), such as distinguishing between active and resting phases [15] or between foraging and traveling
phases [55]. Segmentation methods may be based on threshold concepts [81, 162| or clustering
methods [177]; or they may be based on geometric or periodic properties of the trajectory, as in
recursion [11] and wavelet [191] analyses, respectively (Table 2.1).

One set of methods—change point analyses (Table 2.1)—are designed to detect changes in
the movement behavior of individuals, and then relate these to environmental covariates [67] as
possible causes for the behavioral shifts. These methods frequently use time-series analyses to
identify notable shifts in the autocorrelations of the sequential values of primary or secondary
metrics [79, 80]. Another set of methods—state space modeling approaches (Table 2.1)—are designed
to identify a set of states (hopefully with a behavioral interpretation) underlying variations in
movement behavior and, within the same analysis, determine the probabilities of switching among
states. These methods attempt to assign “hidden behavioral states” to each location point, as well
as a probability transition matrix that specifies the probability of an individual switching from one
state to any other as the individual moves to the next location point. Essentially, the method
produces a stochastic walk model, called a Hidden Markov Model (HMM; [132]). HMM movement
trajectory models are complicated generalizations of random walks [123], where movement elements
(step size and turning angle) depend on the current behavioral state, as does the probability of
changing behavioral state when reaching the next location. To demonstrate the HMM method, we
have analyzed the trajectory of a zebra using the moveHMM package [120] in the statistical analysis
program R (version 3.4.3; [143]). The results obtained constitute the most probable decomposition
of all of the 10,600 steps into a “two-state no-covariate model”. The distributions of step lengths
and turning angles associated with this model are depicted in Fig. 1.

Path or trajectory segmentation methods are one area of research common to both GIScience
and movement ecology, with the GIS community supporting significant research on pattern-oriented,
cross-scale, and cross-type segmentation methods [49, 5|. In a study designed to explore the role
of uncertainty in trajectory and segmentation analyses, Laube et al. [99] fitted 10 cows with GPS
collars taking sub-second fixes to investigate questions of scale, granularity, and uncertainty when
working with GPS data to assess movement parameters. The results of this work should be of
great interest to ecologists, who typically collect much coarser fix data and then either invoke a
straight-line assumption about the nature of paths between any two consecutive points in their
data or assume Gaussian diffusion, often relying on a Brownian Bridge method for constructing
likely trajectories between such points [85].

Often limitations regarding the temporal resolution of movement data may require analysis at
somewhat broader scales. Even at this higher level of abstraction, however, behavioral classification



may still be powerful. Indeed, Abrahms et al. 2] identified “movement syndromes” across 13 diverse
taxa (marine and terrestrial) using five standard metrics (mean turning angle correlation, mean
residence time, mean time-to-return, volume of intersection, and mean net squared displacement)
and a principle components analysis. Although the trajectories studied varied in movement mode
(e.g. flying, walking, swimming) and taxon, the analysis successfully differentiated among migratory,
nomadic, central place foraging, and territorial behaviors from GPS data alone.

Alongside the development of analyses to derive behavioral states from GPS data, new tags and
collars fitted with tri-axial accelerometers (and, often, additional sensors for light, barometric pres-
sure, temperature, etc. [190]) increasingly allow for direct observation of the dynamic behavioral
states of free-ranging animals [152, 184|. Using various machine learning algorithms, accelerometer
data (in the form of three-dimensional movement generally at a 20-40Hz resolution) can be pro-
cessed to classify basic behaviors (e.g. sitting, walking, diving, running, resting, foraging) across
multiple taxa with high accuracy [127, 20, 60]. Although these algorithms require high resolution
training data, often relying upon intensive observation of captive animals, this technology used in
combination with GPS relocations can aid in the exploration of links among the biomechanical, be-
havioral, and ecological processes that influence whole-animal movement and contribute to a unified
field of movement ecology [127].

Interactions

Although the majority of path trajectory analyses do not rely upon environmental covariates, often
the results and interpretation of these metrics can be enhanced by assessing their environmental
context. For example, taking account of the environmental context at a behavioral change-point can
help researchers infer why an animal is changing behavior or what behaviors are being exhibited.
Similarly, examining the environmental context alongside measures of first-passage time or residence
time can be useful for understanding how animals relate to and behave in different environments.
Inherently, the one-dimensional metrics we have highlighted here are applied only to individuals’
trajectories. However, when aggregated across a group of animals, their results can be useful in
distinguishing individual heterogeneity in a population or variation across species, just as done by
Abrahms et al. [2] in their study of movement syndromes.

Emerging technologies, such as proximity collars, are advancing the study of conspecific inter-
actions (and those among heterospecifics as well) along movement trajectories. The consideration
of contacts among individuals moving across a given landscape can be vital for understanding the
implications for resource use, competition, and disease transmission. Often interaction between
two animals is assessed using point-based measures rather than integrating proximity across path
segments, as in assessments of association coefficients or proximity analyses [111]. Recent advances
in the GIS community, however, have led to improved methods for analyzing dynamic interactions
(i.e. interactions that occur both in space and time using path-based metrics [110]). Often these
interactions are translated into and analyzed as contact networks (an application of graph theory).
However, since the majority of network analyses do not ask questions explicit to movement, we
direct readers to alternative reviews of this growing area of research (e.g [40, 41, 136, 154]).
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2.4 Space-Use Analyses

When scaling up from path-level to space-use analyses, movement ecologists employ a variety of
metrics designed to evaluate how an individuals’ movements, when viewed in the aggregate, partition
the landscape in meaningful ways. Such two-dimensional constructions can explore how and when
individuals use or share a given area or habitat in space or time with or without the consideration
of the underlying environment. Below we explore these methods in two sections. First, we highlight
methods based purely on movement metrics, irrespective of environmental context. These are
generally used for characterizing the size and shape of animal home ranges. Second, we describe a
suite of methods that combine movement locations with environmental covariates to make inference
about habitat selection and the influence of landscape factors on space use.

Feature-independent analyses

Metrics analyzing the frequency of relocations across space regardless of environmental covariates
broadly include the various methods for home-range estimation. These simple measures of animal
space use (see Table 2.2) are applied widely, even with low-resolution data: though daily fix rates
may prohibit fine-scale analyses such as behavioral state extraction, the aggregation of points at
this resolution (over appropriate temporal spans) can easily inform the general size and shape of an
animal’s home range [194, 63, 62].

Several alternative methods for describing the home range of an animal exist, ranging in com-
plexity from the construction of the minimum convex polygon containing the movement trajectory
to a construction of a wutilization distribution [180] that can be used to estimate the probability of
finding an individual in selected areas inside the home range; see Fig. 2 for a comparison across three
common methods for home-range construction. Most commonly, utilization distributions (UDs) are
derived using kernel density estimators, now widely incorporated in many spatial analysis packages
[194]. Subsequent development of other methods, based on Brownian movement models [85] and
Local Convex Hull unions [70, 72, 112, 51|, as well as autocorrelated kernel methods [64]| have en-
abled more realistic or robust estimates of the utilization distribution. In order to delineate areas
of most consistent use or offer conservative estimates of an animal’s typical home range, researchers
often include isopleths on maps of utilization distributions to identify the areas associated with a
given percentage of relocations (e.g., 50%, 80%, or 95%). Utilization distributions can be calculated
over any time interval of interest to delineate the space use of an animal over that time (e.g. a single
month, a particular season, an entire year, etc.). By assessing the volume of intersection or overlap
of successive short-term UDs for a particular individual, researchers can evaluate broad-scale site
fidelity and ultimately the stability of an animal’s home range (|63, 121, 35]; Table 2.2). Addition-
ally, these same metrics can be used across individuals to estimate concurrent or shared space use,
which can be important for understanding social structure, disease transmission, or competition for
resources.

Within the utilization distribution, ecologists often define a “core area” of use. Core area methods
refer to any one of a group of analyses that seek to identify the most intensely used areas from
individuals’ relocations histories. In their simplest form, these areas are defined as the smallest
area incorporating some subjective percentage of relocations, generally 30-50%. Although widely
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used, the selection of the 30% or 50% isopleth is ad-hoc. In an attempt to make this selection
more rigorous, [181] propose researchers fit an exponential model to the rate at which home-range
area increases for each percent increase in isopleth value; they define the core area as the point
at which the slope of this exponential curve is 1. Other approaches involve integrating time-use
patterns into the spatial analysis of movement data. In the simplest time-use metrics, researchers
evaluate the time to return and the return rate (frequency of returns) to pre-defined areas in the
home range, given some prescribed minimum time between “returns” [149, 179]. More elaborate
methods incorporate time-use into the construction of the utilization distributions themselves [17].
The T-LoCoH method (implemented in R through the tlocoh package; [112]), for example, allows
users to evaluate revisitation (a measure of separate visits) and average duration of visits (Table 2.1)
to all local hulls within an animal’s home range. These analyses can help elucidate spatial patterns
in time strategies: teasing out not only what habitats animals are using, but also separating those
they used in repeated short visits from those used for infrequent but extended visits.

In the GIS community, the competition in and for space and time that ecologists study as
habitat selection or home range analysis, has often been considered as an extension of classic time
geography [47, 108|. Various methods for illuminating space-time prisms, which map the potential
movements of an object in both geographic space and time given information about its movement
capabilities (e.g. travel velocity), can account for the time and sequentiality of measurements along
movement paths. Extensions of these space-time prisms has resulted in methods for constructing 3-
dimensional elements used to estimate the probability that an object was located at some location
at some particular time. This approach offers a sophisticated technique for understanding the
movements and activities (and potentially interactions) of animals at fine temporal and spatial
scales [54].

All simple home-range estimators that ignore the temporal autocorrelation inherent in move-
ment trajectories may be applied either to a single animal’s trajectory or to a combined dataset
across multiple individuals. Estimation methods that use the temporal nature of movement tra-
jectories (e.g., autocorrelated kernel density methods, Brownian bridges, T-LoCoH), however, must
be applied first to individual trajectories independently and subsequently combined if population
space use is of interest.

Feature-dependent analyses

Methods used to construct resource selection functions (RSFs; [22]) are arguably the most utilized
among spatially-explicit methods that incorporate environmental covariates (see Table 2.2). RSFs
are typically employed to infer the probability of use of any given resource unit within the range
of an individual or population, and thereby, represents the primary procedure for evaluating the
selection of resources by both individuals and populations [22, 116]. Within the genre of habitat
selection analysis, step selection functions (SSFs) function in a similar manner to RSFs, but are
constructed at a much finer scale. These models compare habitat attributes at points along a given
trajectory and estimate resource selection by comparing the environmental structure of the next
point along the trajectory to other possible points available to the animal (taking into account
step length and turning angle distributional structure). Thus, in short, SSFs offer a finer-scale



12

approximation of habitat selection along movement paths rather than the aggregate assessment
yielded by a traditional RSF (|164]; see Fig. 3); however, we note that SSFs are sensitive to
the frequency at which data are collected [68]. In fact, consideration of behavioral state, data
collection, and fix interval (i.e., sampling frequency) is crucial to accurate representation of both
habitat selection and connectivity [3, 2]. For example, when considering behavioral state in the
evaluation of resource selection by African wild dogs, Abrahms et al. [3| demonstrated that the
response of wild dogs to roads varied significantly depending on both the behavioral and landscape
context in which roads were encountered.

Beyond estimating the probability of use of any given resource in space, ecologists and conser-
vation biologists often want to evaluate the connectivity of a landscape for movement, both within
and between populations. Metrics for assessing landscape connectivity are expansive, but the most
common approaches involve various landscape pattern indices which serve to evaluate structural
connectivity, a characteristic inherent to the landscape (see [165, 27, 58]). Functional connectivity
can be calculated directly using movement trajectories |1, 3] or estimated indirectly using capture-
recapture data [146]. For example, least-cost modeling, a popular analytical approach familiar to
movement ecology and GIS alike, generates simulated paths based on estimates of the efficiency with
which an individual could move between two points. Efficiency can be a function of distance, time,
or any other weighted resistance layer. Traditionally, maps of landscape resistance have been gener-
ated from a mix of expert opinion, previous studies, species presence locations, habitat suitability
indices (often also derived by expert opinion), and radio-telemetry points [147]. More recently, these
maps have been generated using circuit theory [119] or by using the inverse of selection functions,
thereby integrating actual movement paths into the assessment of landscape permeability [34, 198|.

Often in the study of movement, dynamics within a population of animals, rather than those
of a single individual, are of primary interest. As such, although both landscape connectivity and
habitat selection analyses can be run on single trajectories, it is most common to run these analyses
on groups of individuals to infer population-wide behaviors. Of course, without comprehensive
tracking of all individuals in a population, general conclusions can be difficult to draw or, when
formed from empirical observation on a subset of the population, biased due to individual and
environmental heterogeneity (especially with small sample sizes). However, as GPS technology has
become more cost-effective and widely available, researchers with appropriate sampling schemes
and investigating data from multiple individuals within a population can begin to draw conclusions
about general space use and effectiveness of management strategies for a population or species.

2.5 Bridging Perspectives

In Ecology at Large

As a sub-discipline within ecology, movement ecology often has a somewhat narrow focus, con-
sidering foundational questions such as when, where, how, and why animals move [126]. Indeed,
despite its interdisciplinary origins, movement ecology tools are often used for ‘basic’ science (i.e.,
addressing research questions without specific applications beyond the creation of new knowledge
about a system) in contrast to GIScience’s often more applied focus. But the methods of movement
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ecology draw on several disciplines, including physics, biomechanics, behavioral ecology, landscape
ecology, and GIScience. Moreover, at its core, movement ecology is a means of cutting across scales,
linking the mechanical and physiological basis of behavior to continental-level patterns in animal
distributions. That cross-scale nature allows movement ecology to be adaptable and flexible for
solving real-world problems in human-dominated landscapes.

In conservation biology, movement tools have clear and well-tested applications for both policy
making and wildlife management. In particular, movement ecology provides an invaluable frame-
work for understanding, measuring, and predicting human-wildlife conflict. For instance, Moun-
trakis & Gunson [125] used kernel density estimation to evaluate spatiotemporal hotspots where
the risk of moose-vehicle collisions may be high. Further, in a study investigating the space-use
behavior of leopards in human-dominated landscapes, Odden et al. [129] found that home-range
size was markedly smaller and movement patterns (as defined by step-length distributions) more
nocturnal for leopards ranging closer to human settlements, results that reflect a behavioral shift
that may reduce conflict. Movement tools can also be used to plan and optimize mitigation efforts,
like highway overpasses and conservation corridors, and provide a means to evaluate the success
of management decisions. Indeed, policy for dealing with conflict can be expensive and retaliatory
[118], resulting in the death of endangered animals in an often misguided attempt to prevent future
conflict. In the case of leopards in India, for example, the common management practice of haphaz-
ard capture and relocation of problem animals has been shown to be counterproductive; although
translocations may provide temporary local relief, they were found to increase the subsequent overall
level of conflict [9, 129].

Movement research also has tremendous potential for addressing complex challenges where move-
ment is only an implicit part of the problem. In recent years, movement data has become an increas-
ingly valuable asset in disease ecology, with the vast majority of emerging human health threats
connected in some way to the human-wildlife-livestock interface [89]. Movement already plays a
key role in disease ecology, with many researchers interested in answering clear-cut questions like
whether host movement behavior changes their risk of disease, or whether infection alters host
movements. Movement tools are particularly useful for illuminating aspects of individual hetero-
geneity that may directly influence exposure and transmission processes; effective incorporation of
such knowledge into existing (or adapted) epidemiological models may result in a framework that
offers more accurate predictions of spatiotemporal disease dynamics [52|. In an example of this,
research into the spatial organization of badgers (Meles meles) has demonstrated that culling, a
widespread government control method for tuberculosis, can have an adverse effect—and actually
increases contact between badgers and cattle [192]. In the future, more real-time applications may
become increasingly prevalent not only in forecasting but also in surveillance, for example, in efforts
to prevent spillover of bat-borne viruses like Ebola and Nipah.

Further, although our focus here has been on analyses for GPS relocation data, in most cases the
metrics and methods presented may be used to assess other kinds of geospatial data. In fact, many
of the tools explored here have applications outside movement ecology and beyond the conservation
and disease ecology considered here. These tools have considerable potential for facilitating cross-
disciplinary research. For example, cluster analyses used in movement ecology to identify, inter alia,
kill sites and foraging patches [163, 149, 185] were originally developed by researchers to identify
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disease hotspots from disease-incidence records [95|. In the same vein, resistance mapping and
network analyses have clear implications for assessing transportation and traffic flow.

Outside Ecology

Many of the questions and methods used in movement ecology are not unique to animal behavior.
As the digital traces on human lives have multiplied (e.g., via mobile phones, geo-tagged social
media), the field of human mobility analysis (HMA) has become an increasingly important part of
sociology and human geography [33]. Movement ecology may be able to learn from the experience
of GIS and HMA communities, as the streams of passive data available from mobile phone records
and social media have already eclipsed those available to ecologists by several orders of magnitude.
Models and techniques used in HMA and movement ecology often ask similar questions (e.g. can
we infer activity or behavior from movement patterns?) and are motivated by a shared foundation
in physics and mathematics (e.g. diffusion models and stochastic processes; [77]).

Although the two fields often approach these questions at different scales, with different ap-
plications and impact, and using different nomenclature, movement ecologists can learn as much
from this realm as geographers may take from movement ecology, especially as the resolution of
available animal movement data increases to match that of HMA. In the future, both of these fields
will face challenges to develop new methods and metrics to handle the proliferation of “big data”
as movement tracking becomes lighter, easier, and cheaper to implement, and involuntary data
collection becomes more ubiquitous for human mobility [94]. Further, the historical frameworks in
transportation research for active data collection, using surveys and GPS loggers, can offer powerful
means for validating new models and methods that would be unavailable in wildlife research [32].

It is worth noting in this context that quantitative models and approaches can only go so
far, and behavior—human or animal—has limited predictability [159, 158]. Qualitative data and
systems to collect and analyze them—a realm that has been advanced by human geographers and
political ecologists who seek to document and understand the spatial nature of institutions and
policy—can help to fill in some of the gaps and bring greater understanding to the motivations
and patterns behind movement and human behavior more generally. In this vein, the application
of qualitative data is yet another area where movement ecology can benefit from an integration
with GIS. As there are no landscapes that remain untouched by humans, qualitative data and
perspectives should be considered crucial not only to human research but also to the understanding
of ecological systems. Research at the interface of ecology and human geography has the potential
to enhance our understanding of both the social and ecological impacts of global change (e.g. [82]).

The shared questions and challenges facing GIS and movement ecology may help facilitate
fruitful collaboration in the future, especially if undertaken with a shared commitment to open
science and its infrastructure, open data, and the development of open source tools on both sides.
Though proprietary software, such as ESRI ArcGIS, is regularly used by ecologists, the community
is moving toward open source solutions. Many of these tools are developed and maintained by
the GIS community’s own open geography advocates and organizations (OsGeo); open source GIS
software packages like GRASS and QGIS and spatial libraries in R and Python are becoming more
developed and widely used. However, open data sharing is often a bottleneck in both fields. Political,
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legal, and privacy issues with sharing data, especially when human subjects are involved, generally
limits open data availability |46, 161]. However even in movement ecology, data archival or sharing
has been slow to take hold, even with the existence of community-specific infrastructures, such as
Movebank, developed for the purpose [189]. Continued investment on both sides of GIScience and
movement ecology can help guide wider dissemination of these tools and the successful integration
of the two fields.

2.6 Discussion

Today, movement data are collected at increasingly high resolutions of time and space. This ex-
plosion of data demands new methods and techniques to analyze them efficiently [109]. Likewise,
improvements in technology for tracking animal movements has increased demand for toolkits able
to extract the behavioral and ecological factors behind animal movement and space use. Here we
have outlined a selection of methods for exploring movement data of free-ranging animals that can
answer animal behavior questions across scales, particularly as they may relate to conservation and
wildlife disease issues.

As has been noted, GIS is fundamentally based on the study of geographic information in
the context of processes that enhance spatial knowledge and support decision making, often on a
global scale [196]. It thus follows that GIS and movement ecology overlap where environmental
and landscape factors are considered in the context of space use by individuals and populations.
Although we have limited our review to applications of single population or community analyses,
studies of whole species distributions or long term range shifts [57, 8] are representative of active
areas of research in ecology. These distributions are rarely linked to movement ecology even though
they naturally emerge from animals’ individual movement decisions [91]. No matter how climate
suitability shifts over time, the ability of species to track changing climates ultimately depends on
their dispersal ability—but in global change biology, this is most commonly reduced to a single
maximum upper rate [170]. Movement ecology is on track to play an increasingly important role,
not just in refining those predictions, but also in tracking species’ actual responses in real time.

In short, many of the questions addressed in movement ecology overlap with those being asked
throughout the broader GIS community: questions relating to geospatial data analyses that address
the behavior of individuals, the demography of populations, and the structure of landscapes in the
face of global change. Given this overlap, we are confident this review will help stimulate further
transdisciplinary and interdisciplinary research among ecologists and geographers.

2.7 Tables



Table 2.1: Path Metrics & Ensuing Methods
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Metrics Description Suggested References

Step size (length) The displacement between two consecutive coordi- [30, 172]
nate fixes

Heading (or absolute angle)  The direction of heading relative to some standard [30, 172]
(e.g., initial direction, compass North)

Turning angle The change in heading from one step to the next [30, 172]

Displacement The straight-line distance from the beginning to the [30, 172]
end point of a path

Net squared displacement The square of the straight-line distance between the [30, 172]

(NSD) start of the trajectory and the current location

Persistence velocity The speed of movement in the direction of heading [79]

First passage time The time taken to exit a circle of prescribed radius r  [59, 117]
from a relocation point at the center of this circle

Straightness index The ratio of v/NSD to the path length (sum of the [16]
step sizes) of the trajectory segment of interest

Tortuosity The level of convolution in a movement path relative  [16]
to a straight line

Residence time The amount of time spent within a selected area [12]

Return time (inter-visit The amount of time it takes an individual to return [112]

gap) to a particular area after its last departure

Revisitation (or return) rate  The rate at which an individual returns to a particular ~ [112, 179]
area, where distinct visits are based on a minimum
return time ¢,

Mean duration The average amount of time spent per visit over a [112]
number of visits to a selected area

Time to return The duration of time between consecutive visits to a  [11]
selected area

Overall dynamic body The sum of the absolute values of three orthogonal [75, 142]

acceleration (ODBA) locally time-averaged accelerations

Behavioral state Association of one of several discrete modes of behav-  [69]
ior with each point on the trajectory

Methods (in the context of movement ecology)

Cluster analyses Methods for grouping trajectory points (or segments)  [177] (or [2])
that represent the same behavioral state (or syn-
drome)

Change-point analyses Methods for detecting points on a trajectory where [79]
switches in behavioral states occur

State-space analyses Methods for detecting underlying behavioral states [132]

(hidden Markov models) and estimating state transition probabilities

Accelerometry visualization — Using tri-axial accelerometer data (e.g., OBDA) to [152]
evaluate behavioral states

Wavelet analysis Method for detecting periodically varying movement  [140]
and behavior patterns across all temporal scales

Recursion analyses Methods for detecting movement trajectory recur- [18]

sions (returns to prior locations)



Table 2.2: Space-Use Metrics & Methods (in the context of movement ecology)

Featureless Description Suggested
Landscapes References
Home range The estimation of habitually-used areas with [141, 62]
estimation function-dependent boundaries (e.g.  summer
range, defended territory, core territory). Most
commonly accomplished using densities of use cal-
culated from estimates of the animals’ locations
across a landscape
Utilization Relative frequency distributions of an animal’s lo-  [194]
distribution cation over space for a specified period of time
Home range fidelity =~ Measures of home-range overlap among individu- [63, 121]
als (e.g., volumes of intersection) and home-range
stability over time
Core area methods ~ Analyses for identifying areas of most consistent [181]
use/selection from individuals’ relocation histories
Conspecific Methods for estimating and characterizing the in-  [45]
proximity methods teractions among and impact of conspecifics on
movement trajectories
Featured Landscapes
Resource selection Statistical models producing values proportional [116, 22|
functions (RSFs) to the probability of use of a resource unit. RSFs
are often constructed using a logistic regression
framework comparing points used by an animal
to those “available" to it within its home range
Step selection A model of resource selection that includes move- [164]
functions (SSF) ment behavior to constrain selection and availabil-
ity. In an SSF, each step at time ¢ is paired with
one or more random steps with the same starting
point drawn at random from a distribution of step
lengths and turning angles.
Landscape Measure of the relative difficulty (e.g., energy used [197]
resistance per unit distance moved) for individuals to move
as a function of topography and environmental
features
Least cost methods  Analyses for finding the least difficult (least en- [183, 4]
ergy expended) path between two points. May be
extended to avoid risks of encountering competi-
tors, predators, etc.
Circuit theory An application of electrical circuit theory to model [119]

landscape connectivity and resistance through
graph and random walk theories

17
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Figure 2.1: Results of a “2-state, no-covariate” behavioral model of zebra “AG256"
using the moveHMM package in R (see supplementary files for data and code). This analysis
assumed 2 distinct behavioral states and included only an intercept term, no environmen-
tal or other physiological covariates were included. Panels (a) & (b) show the empirical
distributions of step lengths and turning angles respectively, using yellow and blue lines to
depict the estimated distributions in each behavioral state. Panel (c) displays the particular
trajectory used to produce distributions (a) and (b), with each color-coded with respect to
their predicted behavioral state: yellow for state 1 and blue for state 2. Data exploration and
biological knowledge of the observed individual is necessary to determine whether a model
with more than two states clarifies or muddies interpretation of what each state is likely to
represent. In our example, it seems probable, given the relatively uniform distribution of
turning angles and the high density of short steps, that State 1 represents bouts of foraging
while State 2 represents more directed movement behavior (e.g., travel; notice the apparently
unbiased distribution of turning angles and larger step sizes).
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Figure 2.2: Comparative home range estimates for zebra “AG256" (using only the
data that pertains to the western part of its total range—cf. Panel (c) in Fig. 1) across 3
static (i.e., time-integrated) techniques. The simplest technique, a minimum convex polygon
(MCP), displayed in Panel (a), defines the extent of a home range as the smallest convex
polygon fitting a given percentage of points. Though still used widely, MCPs are criticized
as poor estimators of an animal’s true home range because they often contain large areas
unused, and potentially unavailable, to the observed individual, as evident in the upper-
center of our trajectory. Panel (b) displays a common alternative: the 95% kernel utilization
distribution. This method was developed to more rigorously quantify an animals actual
space use and ultimately defines an animal’s home range as a bivariate probability density
function, calculating the probability of relocating an animal in any given location [194].
Panel (c) offers a non-parametric approach, calculating the home range of the zebra using a-
LoCoH, the adaptive local convex hull method developed by Getz et al. 72| that constructs
kernels at each relocation using all points within a total distance a such that the distances
of all neighboring points to the reference point sum to a value less than or equal to a. In our
example, we used a = 75000 m, which provided a contiguous range that trades-off fewer false
positives at the expense of more false negatives than the other two methods. There is much
debate and continued development in the area of home-range estimation and researchers
must be conscious of the differences across metrics, because results often vary widely and
may offer different biological interpretations (e.g., defining the extent of the habitat available
to the animal for selection versus the area traversed in daily activity [62]). For more detail
on the construction of these three home range measures, see supplementary information.
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Figure 2.3: Predicted habitat selection using a step-selection function for zebra
“AG256". Fundamentally, selection functions calculate the selection ratio of any given re-
source unit by comparing characteristics of “used” units to those “available” to the animal,
typically using a logistic regression framework. Step-selection functions differ from tradi-
tional RSFs by defining what is “available” according to randomly drawn steps from each
point rather than a simple random sample of the home range as a whole. Here we display
AG256’s predicted selection ratio for a portion of Etosha National Park according to 4 en-
vironmental layers: distance to primary roads, distance to functional water sources, mean
greenness, and mean wetness. On top of the predicted selection layer, the original trajectory
is plotted in black. Note that only the western part of the trajectory, which occurs during
the wet season [199], is used to construct the home ranges depicted in Fig. 2.2). For a
complete discussion of the regression and details regarding the selection of available steps
and the environmental layers used, please see supplementary information.
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2.9 Supplementary Materials

Details regarding empirical trajectory used

All example analyses were run on a single trajectory from zebra AG256, a free-ranging female
zebra collared in Etosha National Park, Namibia. Data were collected from AG256 from October
2009 through August 2010 in an intentionally irregular manner (two fixes separated by one minute,
then a third 19 minutes after that). Before analysis, this trajectory was regularized using the
adehabitatLT package such that only the first and third fix of each set remained, thereby resulting
in relocations every 20 minutes. Additionally the trajectory was cut to include only the 10800 points
from February through June 2010 to limit the dataset size for rapid analysis and because this time
period corresponds with the wet season in Namibia. For the purpose of the home range analyses,
this trajectory was further trimmed to only the 4247 points from February 15, 2010 - April 15, 2010
while AG256 remained in the western part of her range.

Details on example analyses

A link will be provided to all data and analysis code according to our Data Availability statement
upon acceptance after anonymous review.

Home Range Analyses
Minimum Convex Polygon

The 100% minimum convex polygon was calculated using the mep function within the
adehabitatHR package in R.

Kernel Utilization Distribution

The 95% kernel utilization distribution was calculated using the kernelUD and getverticeshr func-
tions within the adehabitatHR package in R. The kernelUD function was implemented using the
default bivariate normal kernel and default smoothing parameter calculation. Please see the ade-
habitatHR manual for more information regarding this functions implementation. ‘getverticeshr’
was then used to extract the 95th percentile contour for plotting.

Local Convex Hull

The 95% local convex hull union was constructed using the t1ocoh package in R with parameters
a = 75000 and s=0. The a-LoCoH method creates convex hull sets from the maximum number of
nearest neighbor points such that the sum of their distances from the point of interest is less than
or equal to a. To select the appropriate a value, we examined the resulting hullsets and investigated
plots of a vs. isopleth area and a vs. isopleth edge-area ratio for a values from 30,000 to 80,000
at intervals of 5,000. For more information about the appropriate selection of LoCoH parameter
values, please see [72, 112, 51].



23

Behavioral State Analysis

After projecting the zebra trajectory (WGS84 UTM Zone 33S), the step lengths were transformed
from meters to kilometers. A two-state model with no additional environmental covariates (a "two-
state, no-covariate" model) was fit to the data. The initial values for the Gamma (step length) and
von Mises (turning angle) distributions are in Table 2.3 whereas the final estimates are displayed in
Table 2.4.

Table 2.3: Initial parameter values for the Hidden Markov Model

Step Lengths (Gamma) Turning Angles (vonMises)

mu sigma ZEero-1ass mean concentration
0.1 0.1 1 s 1
1 1 0.05 0 1

Table 2.4: Parameter estimates for the Hidden Markov Model

Step Lengths (Gamma) Turning Angles (von Mises)

mu sigma  zero-mass —mean concentration
0.049 0.062 0 0.096 0.286
0.381 0.338 0 0.010 2.728

Step Selection Analysis
Selection of available points:

Step length and turning angles were calculated for each step in the empirical trajectory of AG256
using the adehabitatLT package. To inform the regression analysis, five ‘available’ points were
sampled for each ‘used’ point. Sampling was achieved by randomly selecting paired sets of step
lengths and turning angles observed in the empirical trajectory. By maintaining the step lengths
and turning angles in pairs, we can maintain the behavioral mode underlying each step.

Environmental layers:

- Landsat 4-5 TM - Greenness Calculated based on the tasseled-cap transformation equa-
tion presented by Crist & Cicone [39], which utilizes 6 of the 7 bands in a regression framework
to calculate several measures, including Greenness, Wetness, and Brightness. Resolution: 30
meter.
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- Landsat 4-5 TM - Normalized Difference Vegetation Index (NDVI) Resolution: 30

meter
- distance to functional water

- distance to primary roads

Regression:

Available and used points were given a binary variable for identification (1 for used, 0 for available)
and combined into a single dataset. Values of each of the 4 environmental layers were extracted at
each point using the extract function in the raster package. The resulting dataframe was passed
to the glm function in package 1me4 and a binomial logistic regression with a logit link was run:

Used ~ By + 1 * distRD + By * distH20 + (83 x Greeness + 84 * NDV I

The resulting model fit was fed into the predict function (in the package raster) and used to
predict the selection ratio for the full extent of all 4 environmental layers. This predicted layer is
what is displayed in Figure 3. Fitted coefficients of the model can be seen in Table 2.5.

Table 2.5: Fitted coefficients from example SSF

Coefficients: Estimate Std. Error z value P value
(Intercept) -1.859¢4+00  5.558e-02  -33.447  <2e-16 ***
Dist PrimaryRoads 5.863e-06 5.698e-06 1.029 0.30353
Dist _ Water -5.785e-06  2.195e-06 -2.636  0.00839 **
Mean _Greenness 2010 7.462e-03 1.328e-03 5.618  1.93e-08 ***
Mean _Wetness 2010 -6.962e-03 1.174e-03 -5.931  3.00e-09 ***

! Significance codes: 0 “¥¥¥ 0.001 “**’
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Table 2.6: A selection of current R packages for spatial data analysis

Desired Analysis/Function

Selected Packages

Importing, manipulating, projecting spatial sp, sf, rgeos

vector data in R

Importing, manipulating, projecting raster raster, velox

data in R

Plotting spatial data in R ggplot2, mapview

Behavioral state analysis in R moveHMM, bcpa

Manipulating movement data in R move, adehabitatLT, BBMM,
ctmm

Home range estimation in R adehabitatHR, tlocoh, move,
BBMM, ctmm

Habitat selection in R lme4, adehabitatHR

Connectivity in R grainscape, gdistance

Dynamic interaction analysis in R wildlifeDI
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Chapter 3

Mesoscale movement and recursion
behaviors of Namibian black rhinos

Dana Paige Seidel Wayne L. Linklater Werner Kilian Pierre duPreez Wayne M. Getz

Originally formatted for submission to a Special Edition Issue Movement Ecology and reproduced
here with the permission of Wayne L. Linklater, Werner Kilian, Pierre duPreez, and Wayne M.
Getz.

3.1 Abstract

Background Understanding rhino movement behavior, especially their recursive movements,
holds significant promise for enhancing rhino conservation efforts, and protecting their habitats
and the biodiversity they support. Here we investigate the daily, biweekly, and seasonal recursion
behavior of rhinos, to aid conservation applications and increase our foundational knowledge about
these important ecosystem engineers.

Methods Using relocation data from 59 rhinos across northern Namibia and 8 years of sampling
efforts, we investigated patterns in 24-hour displacement at dawn, dusk, midday, and midnight to
examine movement behaviors at an intermediate scale and across daily behavioral modes of foraging
and resting. To understand recursion patterns across animals’ short and long-term ranges, we built
T-LoCoH time use grids to estimate recursive movement by each individual. Comparing these
grids to contemporaneous MODIS imagery, we investigated productivity’s influence on short-term
space use and recursion. Finally, we investigated patterns of recursion within a year’s home range,
measuring the time to return to the most intensively used patches.

Results 24-hour displacements at dawn were frequently smaller than 24-hour displacements at
dusk or at midday and midnight resting periods. Recursion analyses demonstrated that short-term
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recursion was most common in areas of median rather than maximum NDVI values. Investigated
across a full year, recursion analysis showed rhinos most frequently returned to areas within 8-21
days, though visits were also seen separated by months likely suggesting seasonality in range use.

Conclusions Our results indicate that rhinos may frequently stay within the same area of their
home ranges for days at a time, and possibly return to the same general area days in a row especially
during morning foraging bouts. Recursion across larger time scales is also evident, and likely a
contributing mechanism for maintaining open landscapes and browsing lawns of the savanna.

3.2 Background

Movement ecology holds considerable promise for understanding rhino ecology and their conserva-
tion. However, an ISI Web of Science keyword search using “movement ecology” and “rhinoceros"
yields no published studies. Make the same search for elephant or whales and many published
studies appear. It is interesting to contemplate why rhino are so much less studied in this regard.
Foremost among the reasons is probably that elephant and whales range over great distances and
migrate, thus making movement a more obvious feature of their ecology and germane to their con-
servation and management. Rhinos, however, are attached to comparatively small home ranges
with intensively used core areas [78]. Movement ecology studies of other large herbivores that are
similarly sedentary, such as giraffe and hippopotamus, are also scant. Fitting GPS collars to rhino
has also proved more difficult [84] and controversial [6, 167] than many other species, including
elephants. Rhinos do not have slender necks to hold a collar between their heads and shoulders; and
they treat their collars roughly, breaking them on the vegetation and rocks on which they push and
rub, or reducing satellite antennae functionality through a coating of mud when wallowing. Until
recently, rhino movement studies were limited to short-range horn-implant transmitters [153, 107]
that yielded comparatively small amounts of discontinuous movement data. These studies, however,
provided movement data at both the micro (step-by-step foraging) and macro (seasonal ranging)
scales, but not at the meso (daily or weekly) scale.

The study of movement is central to addressing the challenges of rhino species conservation be-
cause recovery now depends on growing and managing meta-populations in, largely fenced, wildlife
reserves that are networked by rhino translocations for reintroduction and restocking. For exam-
ple, simulating source-sink dynamics in the larger reserves has met with some, but mixed, suc-
cess for rhino [71]. Evaluating its usefulness and limitations depends on our understanding of
rhino movement, particularly dispersal [106]. Where an entire population is a donor for the meta-
population, rapid compensatory reproduction depends also on dispersal and range recolonization
[106]. Moreover, mitigating the significant environmental and social risks inherent in rhinos’ release
into unfamiliar habitat and populations [107] depends also on anticipating the movement behavior
of released individuals. Concern exists that competition with elephant [156] and calf depredation
by large predators, such as spotted hyena and lion [137] might slow species recovery. Rhinos’ move-
ments in relation to competitors and predators could be revealing and may address such concerns.
Studies of home range have been crude and analyses are still plagued by facile comparisons [105,
138] that would be greatly improved by meso-scale movement analyses. Lastly, and perhaps most
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importantly, rhino habitat is increasingly shared with people and their infrastructure. They may be
in rhinos’ habitat to view or hunt them or other wildlife, or they may be poachers. Rhino poaching
continues to be the largest cause of population decline and places the greatest limits on rhino species
recovery [61]. Movement of individual rhinos in response to encounters with humans, whether they
be tourists or hunters, sanctioned or illegal, promises to facilitate co-existence and persistence in
rhino habitats that are increasingly anthropogenic.

Movement has been particularly central to studies of rhino food and habitat choice, and the
configuration of home ranges and territories. At the micro scale, feeding tracks have been the
mainstay of monitoring and research for several decades, most often to understand food preferences
[148, 130, 103|. More than other large mammals, rhinos’ micro-scale movements have been studied
because of the ease with which individuals could be identified and tracked over sandy or muddy
substrates that constitute the landscape of many rhino populations [88, 100]. At the macro-scale,
the description of home ranges or territories, especially using horn-implant transmitters, has also
been common and applied to understand habitat requirements |76, 83, 187, 138]. Nonetheless,
missing from the literature on rhino is an understanding of movement at the meso-scale and thereby
constricting our ability to answer the questions: How do micro-movements translate into home
ranges and spatial-use patterns? Are rhino spatial and temporal movements cyclic? Can we use
rhino movement to understand ecological processes other than foraging? Research on black rhino is
yet to take best advantage of the tools and ideas of the (relatively) young sub-discipline of movement
ecology.

Despite the need and opportunity, the application of concepts and tools from animal movement
research to understanding rhino ecology and conservation has not advanced appreciably since the
literature was last reviewed over 15 years ago [104]. Our understanding of the fundamental ecology
of rhino movement is still rudimentary in that it relies largely on anecdotal observations at the
micro- and macro-scales, rather than extensive sets of movement data. For example, it is routinely
assumed that rhinos’ movements are driven by resource heterogeneity and optimal foraging of re-
source patches. We might expect, therefore, meso-scale movements to be bimodal, whereby short
distance movements within patches are punctuated by fewer longer-distance movements between
patches, especially in more arid environments. It is also assumed that daily drinking at a few
sources of standing water, mostly soon after dusk or before dawn [148], causes rhino movements
to be circuitous around waterholes. It is also known that rhino are crepuscular and thus assumed
that the movement cycle is during active, mostly feeding periods around dawn and dusk. What is
not known is whether daytime or nighttime feeding cycles generate more displacement and to what
degree resting sites, such as waterholes, create centrality in meso-movement patterns.

Furthermore, rhinoceros, like other mega-herbivores, are considered to be ecological engineers
[131] based on their potential to impose spatial and temporal heterogeneity on landscape vegetation
structure and regulate other causes of disturbance, such as fire. For example, evidence suggests that
white rhino grazing imposes vegetation heterogeneity on the landscape by creating grazing lawns.
Those lawns appear to facilitate feeding by other smaller-bodied grazers and regulate fire extent
and intensity [182]. A similar effect has been suggested for large browsers [115, 65, 42|, such as
black rhinoceros. Hedging of its favoured browse may make trees and shrubs more productive and
prevent their growth into inaccessible height classes and vegetation succession towards a canopy.
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Thus, rhino movements should betray recursive movements, returning individuals repetitively to
the same feeding areas with elevated productivity and biodiversity. Recursion may be critical to
understanding rhino impact on habitat structure and ecosystem function, however, to our knowledge,
this has not yet been rigorously studied using GPS relocation data from continuously monitored
individuals.

In this manuscript, using a unique relocation dataset for 59 black rhinos (Diceros bicornis)
ranging across national parks and community conservation parcels in northern Namibia, we seek to
answer some of these questions, evaluate long-held assumptions, and build an empirical understand-
ing of rhino recursion across scales. To begin, we explore 24-hr displacement cycles at times of day
associated with foraging and resting to understand daily movement behaviors and inspect tracks
for evidence of circuitous movement. Secondly, we identify areas across rhinos’ ranges with high
recursion or long-duration visits and explore how spatial-distribution of resources (i.e. functional
water and productivity) may influence rhino movements and subsequent home range development.
By exploring meso-scale movement in rhinos, our goal is contribute new foundational knowledge
of rhino ecology and to identify useful next questions for future research of this important and
threatened species and the biodiversity they both represent and support.

3.3 Methods

Telemetry data and study area

The rhinos in this study had ranges in northern Namibia, in the unfenced Kunene Region to the
west, in Etosha National Park to the east and in Waterberg National Park to the southeast. The
ranges occur in several distinct ecoregions and across a marked precipitation gradient with the
western coast being significantly dryer than the eastern region (Fig 3.1; [48]). GPS locations were
acquired from multiple studies across two sampling periods and multiple rhino clusters. All rhinos
were fitted with IR-SAT Iridium satellite foot bracelets with GPS and UHF (AWT Wildlife Tracking,
Pretoria, South Africa). Rhino immobilization was done from a helicopter by veterinarians from the
Ministry of Environment and Tourism, Namibia. The capture, collaring and transportation (when
necessary), of rhinos was done following Standard Operating Procedures in compliance with the
best veterinary practices.

Our dataset includes relocations from 59 individual rhinos: 41 individuals were sampled between
October 2011 and January 2014 and an additional 18 individuals were sampled between July 2017
and November 2018 (Fig. 3.2). Four rhinos ranged within Waterberg National Park, all of which
were sampled in 2013. Sixteen individuals ranged freely to the west and south of Etosha National
Park boundaries in community-based conservation lands. Finally, relocation data from across the
full expanse of Etosha National Park was collected from 39 individuals. Thirty-eight of the rhinos
were female, with 15 of those identified as pregnant or accompanied by a calf at capture. 20 rhinos
were male and the sex of one individual was not recorded.

As is common among rhino telemetry studies, fix rates across all individuals were irregular
ranging from roughly 1 fix per hour for some individuals to less than 3 fixes per day for other
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individuals. All trajectories had some degree of fix lag, missed fixes, or inconsistent fix rates whereby
regularization would result in observation loss and interpolation methods would likely have biased
movement analyses. Therefore, analyses were chosen and results interpreted with data irregularity
in mind. Coordinates for 63 known waterholes across Etosha National Park were used in analyses
to evaluate hypothesized recursion behaviors. All data manipulation and analyses were done in
program R (v. 3.5.1) [143].

24-hour displacement cycles

Rhinos are known to be crepuscular creatures, with their most active feeding periods around dawn
and dusk and their longest period of rest during the heat of midday. To investigate whether day-
time or nighttime feeding cycles generate more displacement and to what degree resting sites or
resources, such as waterholes, create centrality in meso-movement patterns, we began by standard-
izing individuals’ daily fixes to roughly 6 hour intervals represented by a fix at “dawn" (07:00 +2:30),
“midday" (13:00 +2:30), “dusk" (23:00 +2:30), and “midnight" (23:00 +2:30). Because of the con-
siderable variation among collar fix rates, we liberally interpreted a fix as within 2.5 hours of each
nominal time of interest. If there were multiple fixes within the interval, we selected the one closest
to the hour of interest. For example, a rhino with a fix at 5:45 am and no other before 9:30 am
would have this fix recorded as a “dawn" fix for that day. Using this standardized dataset, we then
calculated the displacement between each ~ 12 hour interval (e.g., dawn to dusk), and ~ 24 hour
interval (e.g., dawn to dawn).

For initial analyses, we selected 9 individuals with at least 30 days consistent fixes at likely
foraging hours dawn and dusk. We then plotted the 24-hr displacement time series (calculated from
dawn to dawn) for each individual and visually inspected for periodicity. Additionally, we built
and visually inspected density plots for 24-hr displacement measurements as measured from dawn
to dawn and dusk to dusk. We hypothesized that daily displacement by rhino individuals would
demonstrate a bimodal frequency distribution indicating support for day-to-day movement patterns
that include high rates of short-term residency interspersed with occasional long distance movements
to new parts of the greater home range. To further investigate our hypothesis, we repeated our
analyses using the complete data set: i.e., requiring no daily consistency and calculating distances
for any complete pairs of points. With this data we additionally calculated displacement at an
~ 6 hour interval (e.g, dawn to midday) to allow us to investigate resting cycle displacement for
comparison. Since rhinos are known to visit waterholes daily to drink, mostly soon after dusk or
before dawn [148|, we hypothesized that dusk and dawn displacement would be more conservative
than resting period displacement. In other words, we expected that daily recursion to waterholes,
tied to hydration demands, would result in a high frequency of smaller displacement measures.
To further evaluate our hypotheses regarding waterhole use, we calculated the frequency of points
from each time of day within a 500m radius of known waterholes in Etosha National Park. A two-
sample Kolmogorov—Smirnov test was used to test for differences across empirical 24-hr displacement
distributions. Daily displacement patterns were additionally investigated across wet (November -
March) and dry (April - October) seasons and between the sexes. Seasons were determined using
rainfall data sampled from 7 sites within Etosha National Park in 1981-2013.
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Biweekly recursion analysis

For optimal foragers, patch visitation and revisitation on spatially heterogeneous landscapes is
thought to be driven, in part, by the productivity cycle. Feeding in a patch leads to local resource
depletion, potential individual satiation, and optimal patch-leaving decisions [31, 160]; after the
animal leaves a patch, environmental resources replenish incentivizing revisitation [178]. It’s this
visitation cycle, when done by rhinos or other megaherbivores, that is thought to be a mechanism for
browsing lawn maintenance and prevention of canopy growth. To estimate how landscape structure
and productivity may influence rhino movement and short-term patch recursion, we downloaded 16-
day, 250 m? resolution, composite images from MODIS satellites using NASA’s earthdata search for
all 16-day intervals in 2011-2018 and extracted the NDVI product layer. The Normalized Difference
Vegetation Index (NDVI), is a commonly-used, remotely-sensed measurement of productivity and
an index of canopy cover. Previous studies have shown a linear relationship between NDVI and
percentage vegetation cover, with increased correlation to canopy structure (i.e green biomass, green
leaf area index) in areas of sparse canopy [66, 166].

To estimate patch recursion, we divided individuals’ trajectories into 16 day intervals aligned
with MODIS satellite collection periods in each year of sampling. Using the t1ocoh and
tlocoh.dev packages [113, 114], we built time use grids for each 16 day trajectory where at least 1
fix was recorded per day for at least 15 days of the interval (as a means of removing any trajectories
with large gaps that could bias our results). These time-use grids were built across the complete
extent of each individuals’ relocations during each interval and calculated two statistics: the number
of separate visits (nsv) to each cell and the mean locations per separate visit (mlsv) in each cell,
which estimate recursion and duration of visit respectively [112]. For this analysis, locations were
considered separate visits if more than 12 hours passed between locations within the same grid
cell and each grid cell has an area of 1 km?. This spatial resolution was chosen given the relative
temporal coarseness of our relocations and the fact that foraging groups for large herbivores can
span large areas.

Overlaying the constructed time-use grids on to the contemporaneous MODIS imagery for each
available trajectory, we used R packages sf and velox [134, 86| to extract the average, median,
minimum, maximum, and standard deviation of NDVI values for each 1 km? grid cell. We visualized
the relationship between nsv, mnlv, and mean NDVI using the ggplot2 package in R [188|.

Annual recursion and home range analysis

To understand how meso-scale rhino movements may translate into home ranges and landscape
level spatial-use patterns, we need to examine recursion over a much larger temporal and spatial
scale. To begin, we identified 6 individuals within Etosha National Park with consistent fixes for a
complete year, from April 2012 to April 2013. Using the same T-LoCoH method as above, we built
time use grids for all 6 individuals over the course of their entire trajectories (including fixes beyond
the April 2012-2013 interval) identifying separate visits using an inter-visit gap (ivg) of 7 days (as
compared to ivg = 12-hr used above). Using a spatial join, we then identified each separate visit
within each individuals’ time use grids and measured the time to return in days between all visits for
all grid cells receiving at least 3 visits within the year. Grid cells including a known watering hole
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were removed from this analysis in order to investigate patterns of recursion to presumed foraging
sites independent from watering hole use.

As the annual range sizes of our 6 individuals varied widely, we sought to explore how size
of range influenced recursion patterns. Are individuals in a constricted range using all parts of
their range more frequently than individuals in larger ranges? Are they returning to select areas
more or less intensively than their large-range conspecifics? Does range size affect the number of
patches, or proportion of an individual’s range, an individual uses most intensively? To evaluate
these questions, we calculated the mean, median, and standard deviation of the number of separate
visits across cells that received at least two visits within the year for each individual. Additionally
we calculated the proportion of sites revisited by dividing the number of cells with at least 2 visits
by the number of cells with at least 1 visit by the same individual. Finally, we tallied the number
of cells for each individual whose number of separate returns was within the top quartile of nsv
values observed for that individual. Using Pearson’s correlation coefficient, we evaluated the linear
relationship between range size (measured as the number of grid cells visited at least once within a
year’s trajectory) and the mean number of returns to cells, and the standard deviation in number of
returns to cells. Additionally we evaluated the relationship between range size and the proportion
of cells revisited.

Finally, once again considering all 59 individuals available, to understand how productivity of
resources within an individuals’ range may inform the size of a range used or needed, we built
polygons representing the 90% isopleths of utilization distributions estimated using k-type local
convex hull estimation (k-LoCoH), a conservative non-parametric estimator of home range especially
good at identifying ranges including hard boundaries or unused areas (e.g., the Etosha Pan) [70, 72].
Isopleths were built on the 16 day intervals identified to align with MODIS imagery for all trajectories
including at least one fix per day for 90% of the interval. We then extracted the mean and variance of
greenness (viz., greenness=NDVI from MODIS imagery) within each intervals home range using the
velox and sf packages in R [86, 134]. To evaluate the relationship between area and greenness, we
fit a generalized linear mixed model using packages 1me4 [14] to handle our unbalanced, longitudinal
data, including repeated measures across individuals. AREA measurements were log-transformed
before analysis in order to better meet the assumptions of linear regression.

3.4 Results

24 hour displacement cycles

Displacement time-series plots (x-axis, Julian day), for 9 individuals that had consistent 12-hr fixes
for at least 30 days, provided some visual evidence for our hypothesized pattern of a series of
short displacements followed by occasional large displacements; however, there was little consis-
tency across individuals and no visible pattern across time of year or sex (Fig. 3.3). Across the
individual density plots for these individuals, only minor bimodality is seen in some individuals
24-hour displacement (Fig. 3.4).

Investigating 24-hr displacement measures, across 4 different starting times (dawn, midday rest
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period, dusk, midnight rest period), revealed that the dawn-to-dawn displacements where on average
smaller than displacement measures starting at the other three times of day (midnight, midday, and
dusk), which where similar among the themselves (Fig. 3.5). A two sample KS-test between dawn
observations and a random sample of measurements from the other three sets of observations (down-
sampled to correct for sample size imbalance) rejected the null hypothesis that the samples came
from the same underlying distribution (p = 0.024). This pattern may indicate that, in general,
rhinos are staying within the same area of their home ranges for days at a time, and possibly
returning to the same general area days in a row, especially during morning foraging hours.

Investigating the pattern of 24-hour displacement across sexes revealed that, in general, males
moved larger distances than did single females or females with calves, but the dusk/dawn pattern
held. Investigated across seasons, we would expect that the increased availability of resources in
the wet season would erase this effect by reducing the need for long distance movement to find
productive resources. As expected, across midnight, midday, and dusk points, more shorter 24 hour
movements occurred in the wet than dry season. Twenty-four-hour movement patterns at dawn
remained consistent across seasons indicating that dawn-dawn displacement is less water-dependent.

When investigating the time of day of relocation points nearest to watering holes, dusk and
midnight had the highest number of relocations found within 0.5 km of a watering hole (n = 139 and
n = 138 respectively). Midday and dawn followed (n = 109 and n = 62 respectively), supporting
previous research that rhinos predominately drink after dusk but also indicating that drinking
before dawn is less common. The relationships confirm the importance of the hydration cycle to
daily movement with dawn foraging away from water in favoured feeding areas, dusk foraging nearer
water and resting site in between.

Biweekly recursion analysis

By splitting trajectories into 16-day intervals and ensuring at least 1 fix per day on 90% of the days,
we obtained 480 unique coarse-grained 16-day trajectories, across 48 unique individuals. Time-
use grids for each unique 16-day trajectory showed different patterns for those cells that had high
recursion rate (high nsv) and those that had long visits (high mlsv) (Fig. 3.6). This likely indicates
that features or regions exist that rhinos regularly return to but do not stay long and conversely
places where they may not visit frequently but upon arrival stay for extended periods. It’s worth
noting that while our methods removed intervals with large gaps (> 24 hrs), to maximize the
number of individuals included, fixes were not regularized or interpolated before building time-
use grids. Therefore, estimates of nsv and mlsv may be underestimated for some intervals and
individuals and should be interpreted as estimates of the lower bounds. Across all grid cells used
by the 48 individuals and across all intervals (n = 10733), the average number of separate visits
(nsv) to each grid cell was 1.86 (0 = 1.50) and the average visit duration (mnlv) was 1.52 (o = 1.20
fixes).

Our plot of number of separate visits against mean NDVI extracted for each grid cell visually
shows a hill-like relationship with NDVI whereby areas with mid-range NDVI values are most
revisited (Fig. 3.7). The duration statistic, mnlv, shows a similar pattern. The mean NDVI of all
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cells visited at least once equaled 0.23 (z = 0.23, o = 0.12); Globally, NDVI values of 0.2 to 0.3
generally reflect shrub or grassland ecosystems which is consistent with the study site [186].

Annual recursion and home range analysis

Our investigation of time-to-return between visits on an annual scale showed high variation. Rhinos
most commonly returned to sites with high recursion rates (nsv>= 3) within 8-21 days of the last
visit; however, across all individuals, some returns occurred months apart (Fig. 3.8), particularly in
individuals with larger ranges. Longer times between returns were more common among individuals
with larger ranges. When examining recursion across the year, we also found that high levels of
recursion were influenced by the size of the overall range of the individual. Two out of six of
our investigated individuals had notably constricted ranges; in, at least, one case due to obvious
environmental barriers within the range. Range size was also strongly negatively correlated with
median number of separate visits (r = —0.97) and standard deviation of number of separate visits
(r = —0.85), indicating a relationship between smaller ranges and higher revisitation to grid cells
overall but also support for higher variation among grids cells of smaller ranges. The proportion of
revisited cells was also negatively correlated with range size (r = —0.649) but appeared skewed by a
single point (without SAT280: n =5, r = —0.96). Interestingly, the proportion of visited grid cells
that had the 25% highest number of separate returns for each individual was fairly stable across all
individuals and range sizes (z = 0.22, o = .03). Investigating the relationship between range size
and productivity, we found that (log-transformed) area of home range was inversely correlated with
mean NDVT values within the short-term ranges (intercept = 16.25+0.19, 8 = —1.67+0.54).

3.5 Discussion

Our results confirm that black rhinos make recursive movements at daily, biweekly, and annual
scales; but, for the first time, we have measures for the intensity of these activities among black
rhino in northern Namibia and the relationship between recursive movements and spatial resource
heterogeneity within rhinos’ home ranges. Daily displacement measurements did not strongly sup-
port long held assumptions about the potential mesoscale movement of rhinos. Instead they raise
new ideas and questions about the daily movement cycle, especially with regards to differences
between the dusk-to-dusk and dawn-to-dawn displacement patterns. Our investigation of recursion
at the biweekly scale suggests that individuals are returning most frequently to patches with mid-
range NDVI values; which, perhaps, is evidence of preference for intermediate shrub environments.
We found a strong negative relationship between short-term range size and NDVI indicating that
individuals in smaller ranges incorporate higher NDVI on average than individuals with larger range
estimates. Recursion to patches across rhino annual home ranges, most often occurred within 2-
3 weeks of the last visit, although we also found evidence of seasonal recursions (months apart),
particularly in individuals with larger ranges.

Before investigating daily displacement of rhino movement, we hypothesized that daily dis-
placement by individual rhino would produce a bimodal frequency distribution, thereby indicating
support for day-to-day movement patterns that include regular short intra-patch movements inter-
spersed with occasional (e.g., weekly or bimonthly) long distance inter-patch movements to new
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parts of their larger home ranges. Our results, however, showed only weak support for this hypoth-
esis in some individuals, but no bimodal pattern at a monthly or shorter level. Instead, we found
that 24-hour displacement measures have a distinct daily cycle to them, with daily recursion more
likely at dawn, whereas dusk-to-dusk and midday and midnight resting cycles produced greater
displacement. In contrast to our hypothesis that movements should be more conservative at both
dusk and dawn as they are both feeding periods, we found only dawn-to-dawn displacements were
conservative.

Rhinos are known to visit waterholes daily to drink, mostly soon after dusk or before dawn.
Thus, we also hypothesized that dusk and dawn displacement would be more conservative than
resting period displacement. However, in Etosha National Park, where we had coordinates of
known watering holes, dawn fixes were among the least likely to be found near watering holes when
compared to the other 3 times of day. Also, daily dawn displacement was significantly smaller than
at other times of the day. Lastly, comparisons in 24-hour displacement between wet and dry seasons
revealed a reduced dusk-to-dusk and midday and midnight displacement suggesting, as expected,
that when resources are more plentiful, shorter movements are more viable or attractive. However,
dawn-to-dawn displacement was similar among the seasons.

These observations of 24-hour dawn displacement and other times of day in the different seasons
inspires new questions and hypotheses about rhino movement. Rhino appear more likely to adopt
a recursive strategy to favoured foraging patches in the morning than night-time foraging periods
which are more influenced by the need to rehydrate after dusk. The 24-hour displacements we
observed may illustrate a trade-off between optimal patch foraging and rehydration where water-
holes and favoured forage are distant from each other. Further investigations of the role watering
holes and a daily hydration cycle play in daily rhino movements are necessary to obtain a better
understanding of this dawn-to-dawn conservative movement phenomenon, especially in cases where
complete knowledge of water source locations are available. Furthermore, we suggest that investigat-
ing distributions of 24-hour displacement is a useful way of analyzing intermediate-scale movement.
In addition, with appropriate interpretation, it is a way to usefully analyse low resolution, gappy
animal movement data. Given that much of rhino relocation is commonly gappy and coarse, our
approach could help researchers further probe long held intuitions about the way rhino—as well as
species such as hippo, with similarly challenging or underutilized data sets—move between and use
different areas of their home range.

By investigating biweekly recursions, we were able to link intermediate movement patterns with
the finest available temporal resolution for an index of dynamic spatial heterogeneity, NDVI. Our re-
sults demonstrate that patch recursion occurs even within as short a time scale as 16 days. Further,
the most frequently returned to patches reflect a preference for mid-range NDVI of around 0.25.
This range is consistent with global expectations of grassland and shrub ecosystems (higher values
would generally correlate with more canopy cover and forest greenness); but, it is interesting to
hypothesize why rhinos may select for median rather than maximum available productivity within
this system. The intermediate disturbance hypothesis [145] predicts that some moderate level of
herbivore feeding provides the spatially and temporally heterogeneous conditions for greater biodi-
versity and increased productivity of favoured forage. Given this hypothesis, we should expect that
rhinos’ foraging would spur productivity, which in turn may attract recursion. If such productivity
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dynamics are accurately reflected in NDVI, mid-range NDVI patch selection might accurately reflect
an intermediate greenness value maintained in the most preferred and hedged browse (like grazing
lawns) with the highest rates of recursion. Of course NDVT is only one measure; and, in this case,
perhaps an imperfect one. Further study with the aid of LIDAR or other imagery that provides
vegetation height and structure data would help to better understand the foraging environments
rhinos use intensively.

Interestingly, although home-range size varied among individual rhino, we found that the pro-
portion of grid cells in their range that each frequently revisited did not vary. This would be true if
rhino adjusted their range size to include some satisfactory minimum number of feeding patches. In
lower quality ranges, patches are sparse and so the range must be larger. In addition, rhino in larger
ranges had the longer recursion intervals and lowest recursion frequencies. These patterns are con-
sistent with the idea that feeding patches support more frequent recursion over shorter time frames
because they are in more productive habitat. It also supports the idea that rhinos use recursion to
engineer productivity in their ranges. Both ideas can be true in a positive feedback between habi-
tat quality and recursive feeding. Further meso-scale rhino movement studies are needed to fully
explore these ideas and test whether rhinos are in fact engineering their habitat or just responding
to its resources.

An understanding of intra-home-range movement is crucial to bridge existing research at the
fine (step-by-step) and macro (home-range) movement scales. By analyzing recursion requiring
7 days between unique visits over an annual cycle, we were able to identify patches within the
home range of prolonged, and possibly sustained, value to rhinos over the course of the year. Our
results offered new insight into how range size may affect resource use within an animal’s range long
term, an especially relevant topic given that the surviving populations of rhinos are often in small,
fenced, and sometimes isolated reserves or ranges. Our analysis of grid cells with known watering
holes provided evidence that these cells often received a very high frequency of separate visits with
low average duration at a 7-day inter-visit-gap resolution, although our sample size was too small
for this evidence to be definitive. Additionally, though our analysis included all known watering
holes within the park, it is likely that some seasonally available, or small, unmarked waterholes
went unidentified. Our results suggest, however, that our scale of recursion analysis can become
an effective tool for identifying locations of previously unknown watering holes. Future analysis
is needed to investigate how long-term recursion patterns and time to return track directly with
productivity and may change in the wet versus dry season. If recursion is driven by resources
and productivity, one might hypothesize given the increased resource availability and productivity
during wet seasons that time to return would be significantly shorter than during the dry season
where biomass regeneration is slowed.

3.6 Conclusions

These results are a rare glimpse into meso-scale movement patterns of the black rhinoceros across
a majority of its remaining range in Namibia. The black rhino population sampled here is the
third largest in Africa and the only viable population of Diceros bicornis bicornis. The endemism
of this unique sub-species and the rhinos’ unique adaptation to the arid habitat in the west makes
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it all the more crucial to conserve. However, the impact on global biodiversity of conserving the
black rhino goes well beyond the conservation value of a single species. Globally, megaherbivores
(> 1000 kg [131]) support an extraordinary amount of biodiversity as ecosystem engineers. Through
their feeding behavior and long distance migration and dispersal, megaherbivores maintain open
landscapes by reducing tree cover, transport seeds and nutrients, and significantly influence the
species composition and carbon storage in the ecosystems they inhabit [122, 53, 19, 182, 38]. A
better understanding of their recursive movement patterns, particularly at the meso-scale, is crucial
for understanding and conserving this species and the unique ecosystems they help fashion.

3.7 Figures
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Figure 3.1: Study area map. Distribution of geo-tagged individuals across Namibian
ecoregions as specified by Dinerstein et al. [48].
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Timeline Plot of Tagged Individuals
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Figure 3.2: Timeline plot of individual sampling regimes. Timeline plot indicating
sampling intervals for all individuals used in the study. Produced using R package stmove
[150].
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Dawn-Dawn 24-displacement through time
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Figure 3.3: Twenty-four-hour displacement time series for individuals with con-
secutive fixes Dark blue represents males. Note that plots are arranged so that Julian
dates get larger right to left and down the columns to aid the reader in evaluating seasonal
trends.
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Dawn-Dawn 24-displacement through time
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Figure 3.4: Density plots of 24-hour displacement across consistent individuals The
order of plots reflects that in Fig. 3.3 and the dark blue again indicates male rhinos. The
bimodality in some plots offers weak support for the notion of short movements interspersed
with occasional long movements within and between areas of the home range.
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24-hr displacement distributions across time of day
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Figure 3.5: Density plots of 24-hour displacement across 4 regularly spaced diurnal
starting times. Dawn-to-dawn times are significantly different from the other three (p <
0.024 see text for details), driven by a higher frequency of shorter displacements.
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Figure 3.6: Example time-use grid plots, rhino SAT189. Side-by-side plots illustrate
two time-use metrics for a single 16-day interval for individual SAT189. Left panel: the
number of separate visits (nsv) to each grid cell (1 km? areas with an intervisit gap of 12
hours apart). Right panel: the mean number of locations per visit (mnlv) to each grid cell.
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Relationship between 16-day revisitation and grid cell NDVI
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Figure 3.7: Relationship between 16-day revisitation and grid cell NDVI. A heat
map showing the density of points along axes of number of separate points and mean NDVI
values. The color scale is log transformed to better visualize the variability at the lower end
of the nsv measure. Note that the highest density of grid cells have 2 visits and a mean
NDVTI of ~ 0.25. This plot does not include grid cells not visited or returned to, i.e. nsv
< 2.
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Annual recursion: time to to return across individuals
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Figure 3.8: Annual recursion: time to return across individuals. Side-by-side his-
tograms display the distribution of time between visits to grid cells for each individual. The
bin width of each bar is 7 days. Lighter colors indicate returns to grid cells with higher num-
bers of returns. The number of visited grid cells in each individuals range is included in the
top-right corner of each plot to highlight the variability in recursion patterns correlated with
range size. Across all individuals the most common time to return is within 8-21 days (the
first 2 weeks), but all individuals see at least some returns months apart. Individuals with
smaller ranges tend to have higher rates of return and shorter times between returns. Indi-
viduals with larger ranges, have much longer tails of their distributions potentially showing
support for seasonal returns to different areas of their home ranges.
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Chapter 4

Exploratory movement analysis and
report building with R package stmove

Dana Paige Seidel Eric R. Dougherty Wayne M. Getz

4.1 Abstract

Background As GPS tags and data loggers have become lighter, cheaper, and longer-lasting,
there has been a growing influx of data on animal movement. Simultaneously, methods of analyses
and software to apply such methods to movement data have expanded dramatically. Even so, for
many interdisciplinary researchers and managers without familiarity with the field of movement
ecology and the open-source tools that have been developed, the analysis of movement data has
remained an overwhelming challenge.

Description Here we present stmove, an R package designed to take individual relocation
data and generate a visually rich report containing a set of preliminary results that ecologists and
managers can use to guide further exploration of their data. Not only does this package make report
building and exploratory data analysis (EDA) simple for users who may not be familiar with the
extent of available analytical tools, but it sets forth a framework of best practice analyses, which
offers a common starting point for the interpretation of terrestrial movement data.

Results Using data from African elephants (Lozodonta africana) collected in southern Africa,
we demonstrate stmove’s report building function through the main analyses included: path visu-
alization, primary statistic calculation, summary in space and time, and space-use construction.

Conclusions The stmove package provides consistency and increased accessibility to managers
and researchers who are interested in movement analysis but who may be unfamiliar with the full
scope of movement packages and analytical tools. If widely adopted, the package will promote
comparability of results across movement ecology studies.
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4.2 Background

With the increased accessibility of GPS data and expanded computing power for analyzing such data,
a concomitant open-source software expansion has occurred for exploring spatiotemporal structure
in movement trajectories. With this expansion of data and tools, two vexing problems remain for
researchers and managers: 1.) lack of a unifying movement-pathway framework that would facilitate
comparisons across studies; and, 2.) lack of software-package accessibility (e.g., using R or Matlab)
to those not steeped in movement ecology or those lacking proficiency in command line program
implementation.

These two problems are exacerbated by the sheer volume of available tools, which has resulted
in an overwhelming landscape of analytical options. This is especially challenging for researchers
or managers who fortuitously get access to GPS relocation data, but have little or no experience
in analyzing movement trajectories. R has emerged as an open source programming platform
of choice for movement ecologists, primarily because of the large number of statistical and data
manipulation packages that have become available to aid researchers in conducting even the most
obscure domain-specific analyses. In a recent review of R packages solely dedicated to movement
or tracking analyses, 57 individual packages were listed, with only 12 having good to excellent
documentation [92]. It is also clear that, while these open-source, programming languages—with R
being a primary example—have made it possible for scientists to carry out an ever-growing list of
new and developing analyses, these packages constitute a variety of different, and not all together
compatible, methods and data structures. Thus, this burgeoning cornucopia of tools can be as much
a stumbling block as a godsend for many researchers and managers: even with access to a trove of
GPS movement data, they may not have the time or expertise to assimilate which of the available
toolkits is most appropriate for their analytical needs.

Building on the work of previous open source contributors, our stmove R package alleviates
the first of these problems—i.e., lack of a coherent framework—by setting forth a standard set of
first-pass exploratory analytical methods that should be performed before undertaking more specific
or targeted movement analyses. Further, it mitigates the barrier-to-use problem by conveniently
gathering in one place a disparate set of compatible tools and methodologies and providing a single
command (and optionally interactive) infrastructure for automated report building that can run
analyses and compile results into a digestible, visually rich report. From this report, researchers
and managers can then distill key insights needed to sharpen current interpretation and subsequent
exploration of their movement data. Of course, our package cannot streamline research to the
point where no additional analyses are needed: many questions require deep methods that are too
sophisticated to be included in a general entry-level R package. Instead, our package seeks to make it
much easier to carry out a first cut analysis, using a standard set of methods. We propose that such
analyses, as detailed in the implementation section, should to be undertaken before more powerful
methods, required to address complex questions, are applied.
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4.3 Implementation

R is an open source and system-agnostic language [143], with a growing user base in the ecology
and environmental science communities. Our stmove package can be used on any computer with R
installed regardless of operating system (e.g., MacOS, Linux, or Windows). Alternatively, stmove
may be used within a web browser when combined with external cloud computing services such
as RStudio Cloud. The primary goal of stmove is to preform a standard set of exploratory data
analyses and return a preliminary report with visualizations, interpretation aids, and suggested
next steps to empower managers or researchers new to movement analysis. In addition, it aims to
give all users a simple work-flow of best practice analyses from which to begin any movement study.
Although all analyses are standalone and can be preformed separately on individual trajectory data,
the primary advantage of this package is its report building function that conducts multiple analyses
and provides a PDF report for each inputted set of movement trajectory data. This report includes
4 central components: general distributions (step-size and turning angles [123]), interval statistics
(means, variances, auto and cross-correlations, and plots of running averages of these), wavelet
analyses [191, 140|, and home-range constructions [70, 193|. Additionally, stmove functions to
summarize multiple trajectories in space and time. Each of the packages main components and
their underlying methods are discussed below. Software design choices have been made to further
simplify the use of stmove, including sensible defaults and an interactive HTML add-in to help
guide report building for users implementing stmove within the popular RStudio IDE (integrated
development environment).

Individual analysis

The goal of stmove is to make more accessible the standard spatiotemporal approaches to analyzing
and interpreting movement data before implementing project-specific approaches to deconstructing
movement trajectories. Application of stmove requires a clean, reqular, GPS time series of reloca-
tion data consisting of a sequence of T'+ 1 points (x4, ¢, t) where t = 0,1,2,3, ..., T, and all missing
points have been interpolated and filled in. Additionally, locations (x¢,y:) are expected to be in a
projected coordinate system—the unit of measure in the coordinate system determining the unit of
measure for calculating the step-size (s;) and turning-angle (6;) time series of lengths 7" and 7' — 1
respectively [123], using the equations

St = \/$t2+yt2

a; = arctan (?ﬁ_gﬁ_l) (4.1)
Tt — Ti—1

Yt—1 — Yt—2
—arctan | ————
Tt—1 — Tt—2

All analyses are intended to be performed on a single individual’s trajectory to provide insight on
individual movement patterns; see our population analysis section to review the analyses available
for multi-animal datasets supported by stmove.
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Regularization and Interpolation

Ensuring that relocation data are complete and regular—that is, the data collection frequency
must be fixed and no values should be missing—can represent a sufficiently challenging hurdle to
movement analyses that it may be the reason why GPS data often go unanalysed. Even for telemetry
data collected at a set fixed rate, relocation timestamps can be imprecise, recorded within a few
seconds or even minutes of the scheduled time, due to lags in satellite connections, and fixes may
be missed altogether for a variety of reasons.

To help researchers easily regularize near-regular data, the popular adehabitatLT R package
[29] has two functions ‘setT0’ and ‘setNA’ which stmove has wrapped together in a new function
called ‘regularize’ to help users easily regularize their data. Given a reference date and time and
an expected fix rate, ‘regularize’ will round fix times to the nearest fix (within a set tolerance)
and insert NAs (formal missing value notation) for all missing values to build a regular time series.
Because further analyses require complete trajectories, stmove then provides the function ‘kalman’
for interpolation of missing values.

The ‘kalman’ function uses Kalman smoothing to interpolate missing values in the z and y
coordinates of a trajectory. The Kalman smoothing approach is a state-space model that uses all
available observations (rather than just the past and current observations, as in the case of Kalman
filtering) to derive the covariance structure of the data and predict the current state. This function,
based upon the ‘na.kalman’, ‘StructTS’, and ‘auto.arima’ functions of the imputeTs package [124],
selects the best fit structural (linear, Gaussian) time-series model for each univariate time series
in turn—i.e., treating the series z; and y; separately—and then applies Kalman smoothing (based
upon the chosen best fit models) to iteratively interpolate any missing values. Since our intention
is to provide a rapid, flexible way to interpolate missing points for the purposes of exploratory
data analysis, stmove’s ‘kalman’ function is optimized for rapid estimation rather then the most
accurate possible interpolations. For this reason stmove’s ‘kalman’ implementation reports the
ratio of interpolated to empirical points and issues a warning to users when interpolating more than
5% of a trajectory’s total points. Because errors associated with interpolation degrade the accuracy
of ensuing visualizations and analyses knowledge of this ratio forms part of an assessment (albeit
informal) of the reliability of the results obtained. If users are seeking to analyze trajectories with
large gaps between otherwise consistent fix intervals, they are encouraged to break trajectories up
into sub-individual trajectories or choose the largest continuous section of sampling for subsequent
analysis rather than interpolating over large gaps. For intentionally gappy or opportunistically
gathered telemetry data (e.g., from marine mammals when surfacing, or from older or failing satellite
collars), more rigorous models for interpolation may need to be considered. These methods, however,
are outside the scope of the stmove package and are discussed elsewhere [133, 90, 108].

Visualizations and Distributions

Before undertaking any exploratory data analysis, it is generally helpful to visualize the data. In
the case of movement data, visualization of a trajectory can show outliers, recursions |11, 18] and
syndromic movement behaviors [2|, and the individual’s general space use pattern. Implemented
using R’s ggplot2 package [188], the first plot returned by stmove’s ‘build report’ function is
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a simple scatter plot of the (z,y) coordinates of all locations defining a given trajectory (e.g., see
Fig. 4.4). The next plots in the report are histograms of step size s; and turning angle a;. These
are obtained by stmove converting a user-provided dataframe of relocations to an ‘ltraj’ object (an
object class defined by the popular adehabitatLT package [29]) and then calculating the step-size
and turning-angle time series using Equations 4.1 (e.g., Fig. 4.5). stmove then plots step-size and
turn-angle histograms using ggplot2 (e.g., see Fig. 4.5; [188]). From these plots depicting the
frequency of different step sizes or turning angles, users can begin to identify outliers and perhaps
detect behavioral modes or directional biases in the trajectory.

Rolling Statistics Our next step is to calculate the primary times series statistics using rolling
(sliding) windows W (¢, w) of a given fixed length w and starting at time ¢. Within windows W (¢, w)
fort =0,...,T—w, stmove’s ‘rolling stats’ function computes running step-size and turning-angle
means, as well as single-lag autocorrelations and cross-correlations of the s; and a; time series.
These rolling windows are implemented using RcppRo11’s ‘roll _meanr’ and ‘roll _sdr’, and TTR’s
‘RunCor’ functions [175, 174], all statistics are calculated with a right-aligned window. If fix rate is
sub-hourly, the rolling window defaults to three hours, if the fix-rate is one hour or more, the window
is increased to six hours. These defaults can be overridden with the optional ‘n_roll” parameter
allowing users to specify how many fixes they wish to “roll" over when calculating statistics. This
argument is particularly powerful if users are investigating a trajectory with a large fix rate (i.e.,
> 3 hrs), for which the default behavior will not provide especially informative results. Rolling
statistics are often used as inputs to more advanced types of movement analyses [56, 151]. These
rolling window plots offer users insights into behavioral patterns that may relate to the identification
of different modes of activity (e.g., using break-point analyses [79, 80]). In addition, we note that
auto- and cross-correlations are transformations of primary movement metrics that can estimate
persistence in either direction (acf ang) or distance/speed (acf dist).

Interval Statistics While rolling statistics can smooth patterns through time, interval statistics
are a preliminary means to identify patterns across discrete, biologically meaningful periods of time.
stmove’s ‘interval _stats’ function can be used to calculate the mean and variance of a trajectory’s
primary movement statistics across three intervals of interest: diurnal, lunar, and seasonal. Diurnal
analysis summarizes these statistics for 12 hour windows representing pre-noon (0-12) and post-noon
(12-24) hours, as determined by the time zone associated with user-inputted data. Lunar interval
analysis relies on the lunar package [101], automatically dividing a given trajectory according to
periods within the lunar cycle, full-waning, and new-waxing intervals according to date. Seasonal
interval analysis is customizable with stmove: ‘interval stats’ recognizes an optional ‘seas’ argu-
ment by which users provide a character vector of season start dates. In this way, users are allowed
to specify custom seasons over which to calculate the interval statistics. Which interval statistic is
appropriate may depend upon the length of a users trajectory and/or the biology of the tracked
animal. As such, when building a report, the user can specify which interval statistics they would
like to include using the ‘stats’ argument.
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Wavelet transform and visualizations

Many factors influencing movement are cyclic with periods that are linked to ecological relevant
frequencies (e.g., regular resource gathering trips, migration, or certain social and reproductive be-
haviors). Fourier and wavelet transformation methods are useful analyses to examine the cyclical
nature of animal movement and behavior [191, 140]. Especially as a part of exploratory analyses,
these time-frequency methods are useful for understanding dynamic movement responses to physi-
ological, ecological, climatic, and landscape factors [191, 140]. After stmove has calculated basic
path distributions and statistics, it implements a wavelets analysis on user-selected time series,
using Morelet filters, by importing functions from an existing open source R package, dplR [24,
25]. The user-selected time series are step sizes, turning angles, autocorrelation coefficients of both
coefficients and their cross-correlation coefficient. It then produces a plot of the local wavelet power
spectrum that users can then use to visually identify any possible periodic components (e.g., see
Fig. 4.7).

Basic space constructions

A crucial step to exploring movement data is understanding what a given trajectory can tell us
about higher order space use, notably an animal’s core area or home range [193]. There has been
considerable debate regarding the best tools for evaluating landscape level space use, including
methods from minimum convex polygons that are conceptually simple and computationally cheap
to more complex methods incorporating an animals probability of occurring in a given location
[62]. stmove incorporates two non-parametric spatial construction methods for users to choose
among when estimating 25, 50 and 95% home range isopleths: a Local Convex Hull construction
implemented with the tlocoh package and an auto-correlated utilization distribution analysis
implemented with the ‘akde’ function from the ctmm package |70, 113, 28, 64| (e.g., see Fig. 4.8).
Both methods have their particular strengths: the ctmm AKDE method (i.e., implemented using
the ‘akde’ function) provides a statistically rigorous construction when analysing correlated data
under the assumption that movement is an Ornstein-Uhlenbeck process—i.e., a continuous time
generalization of an autocorrelated random walk, sometimes with drift added [28, 128]; and, when
the latter assumption is not valid (e.g., when the frequency of relocation sampling is at the same or
longer time scales for which movement decisions are influenced by environmental factors) tlocoh
implicitly accounts for vegetation and landscape structures, as well as hard boundaries due to
irregular landscape features |70, 72, 112]. In stmove we implement k-LoCoH with k = v/n (rounded
to the nearest integer, where n equals the number of relocations in the time series). We also note that
the ctmm ‘akde’ method produces space-use estimates with confidence intervals that appropriately
account for the autocorrelation inherent in movement data. Either method can be implemented
using the ‘construct’ function and specifying the method with the ‘type’ argument.

Population analysis

Though the package is designed to build reports for individual trajectories, when provided with a
data frame storing multiple trajectories specified by four columns—z, y, date, and id—stmove is
able to create an additional cover sheet showing spatial and temporal overlap of the individuals
in the dataset using two important functions: ‘plot timeline’ and ‘dist _map’. These plots, built
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using ggplot?2 [188|, summarize the spatial and temporal overlap of trajectories. In the first plot, a
segment graph produced by ‘plot timeline’ is displayed, with lines identifying the duration of time
sampled for each individual in the data frame. In the second plot, built by ‘dist map’, all of the
included trajectories are plotted with a single point representing the mean x and y coordinate over
the course of the full path and colored according to the mean year of sampling. These visualizations
provide a straightforward summary of the spatial and temporal spread of trajectories within a data
set (see Figs.4.2, 4.3).

Report Building

The primary product of this package is ‘build report’, which produces a PDF report of the results
of the analyses described above, when given a clean, regularized trajectory. Beyond the initial
three plots discussed in the Visualizations and Distributions subsection, which are included in all
reports, reports can be customized to include any or all of the analyses by changing the arguments
passed to ‘build report’. ‘build report’ is implemented using the rmarkdown package [7, 195] and
parameterized templates that are distributed and installed with the package. The templates use the
popular visualization package ggplot2 [188] to deliver users a report with custom visualizations
of their selected analyses. To aid users in customizing their reports, we have implemented an
interactive HTML widget that can help guide users of the popular IDE RStudio in building their
own movement reports (Fig. 4.1).

4.4 Illustrative Example

We illustrate the implementation of the stmove package using relocation data collected from a pop-
ulation of African Elephants (Lozodonta africana) in and around Etosha National Park, Namibia.
We generate our stmove analyses and report using a data frame containing 15 individual trajec-
tories previously published by Tsalyuk et al. [171|. After initial regularization, each individual
trajectory contained between 5633 to 113652 empirical relocations. This unique data set contains
individuals tagged from October 2008 through July 2015 for variable-length sampling periods and
fixed rates.

Population Analyses

For data sets with multiple trajectories, the stmove population functions provide a powerful sum-
mary of our complete data set in a population level “cover page". The ‘plot timeline’ function
produces Fig. 4.2, a plot that immediately captures the coverage of and variability in sampling
intervals across the population. In a second plot, produced by the ‘dist plot’ function, Fig. 4.3, the
spatial and temporal distribution of individuals is displayed by plotting for each individual its the
mean location (Z,y) from all fixes available. Each mean x-y point is then colored according to the
average year of the relocations. These abstractions distill 724,925 points and 15 individuals con-
cisely to communicate the spatial and temporal spread of our population. From these plots we see
that we a group of one individual on the eastern end of our space, a group of four in the center top
and a string individuals in the eastern bottom half of our space. have at least one group of individ-
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uals clustered very close together, perhaps because of habitat constriction, opportunistic sampling,
or social structure. This sort of result immediately spurs questions for further analysis, including
those concerning the social structure of our population of interest, exemplifying the purpose of solid
exploratory data analyses and the stmove package.

Data regularization

To demonstrate the per-individual metrics of the package, we use data from individual AG195, a
female elephant collared from July 2009 through September 2011 with fixes taken at consistent
but irregular intervals, with points collected in repeating intervals of 1 minute and 19 minutes.
Before analysis with stmove, regularization was performed using ‘regularize’ and an expected fix
rate of 20 minutes — eliminating every other fix in order to standardize the interval to 20 minutes
for future analysis (50% observation loss). The complete regularized trajectory consisted of 55,524
relocations but for ease of demonstration and interpretation we will use only relocations from 2010
in the following analyses (n = 26277). This regularization procedure was followed by the execution
of the ‘kalman’ function to interpolate 3 missing fixes along the trajectory, 0.01% of the total path.
At this point, AG195’s clean, regular, and complete trajectory (n = 26280) is ready for analysis
with stmove.

Individual Metrics

Running ‘build report’ with our complete, and regular trajectory for AG195, three plots are pro-
vided to begin: an x-y plot of the path (Fig. 4.4) and two histograms (Fig. 4.5) showing the
distribution of step sizes (meters) and the distribution of turning angles (radians). Investigating
these plots, we easily identify the range and most common step sizes of this elephant, based on a
sampling interval of 20 mins: it most commonly moves less than 100 meters; but, on rare occasions,
it moves upwards of a kilometer in this time interval. From the empirical distribution of turning
angles we see that individual AG195 does not have a preferred turn direction and, from the strong
peak in the histogram around 0 radians, some correlation is evident in directional persistence over
periods that exceed 20 minutes. These empirical distributions are useful for identifying general
behavioral profiles or outliers. Additionally, it is common to sample from these same empirical
distributions when simulating movement tracks for future analyses.

In a stmove report that includes rolling statistics, three plots are provided of the running
values for mean dist, mean ang, acf dist, acf ang, and ccf. Plots of mean dist and mean ang
are, by default, faceted by month to handled long term datasets with high resolution. The third
plot displays smoothed conditional means splines across all rolled values of acf dist, acf ang, and
ccf to give a high level view of patterns in these statistics across the entire temporal extent of the
trajectory. Note in Fig. 4.6, the clear increase in mean step size in the months of February and
March 2010, possibly the marker of increased movement during the start of the wet season. Diurnal
interval statistics are plotted in similar fashion, with separate splines for morning versus evening
intervals to illuminate differences between them. Coarser intervals, i.e. lunar or seasonal, are plotted
using stair-step plots or bar charts to clearly demonstrate how estimates change from one interval
to the next (Table 4.1).
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When wavelet analyses are included within a report they can be applied to any of the 5 primary
statistics and return individual power spectrum plots (Fig. 4.7). As an exploratory data analysis
tool, these plots are intended to illuminate periodicity in the trajectory if it is present; for more
information on wavelet transformations and the interpretation of these plots, we direct readers to
Torrence and Combo’s practical guide to wavelet analysis [169]. Also, for examples of interpreting
wavelet plots in movement ecology see [191, 140].

Finally, our full report for AG195 includes two methods of home range construction: a k-LoCoH
hull set and an auto-correlated kernel density estimation both plotted with 25, 50 and 90% isopleths
(Fig. 4.8). The methods differ profoundly and produce notably different estimations of space use
with k-LoCoH often being quite restrictive and AKDE offering larger estimates with confidence
bands. LoCoH methods provide clear information of where the animals have been and the areas
locally bounded by the relocation points, while AKDE provides projections of where the animal
is likely to be found if environmental and landscape features do not play a role in the animals
movement behavior.

A final note of caution for users, although we have demonstrated a report including examples
from all possible analyses here, which analyses are relevant to study at hand will be dependent on
many variables including animal behavior, sampling rate and sampling duration—and, of course,
questions of interest. Although animal movement is inherently a continuous process, relocation
sampling is a discrete process in space and time. The sampling resolution influences the analyses
and the conclusions one is able to draw regarding animal movement behavior [36]. Therefore,
consideration of the resolution of your data is crucial before deciding which statistics to include
in your custom report. Rolling and diurnal statistics, as well as wavelet plots, often are more
appropriate for trajectories with higher resolution data. Interval statistics at the lunar or seasonal
level are appropriate for larger-grain data, provided that sampling continued for long enough. Both
home-range construction options can be used on data at any resolution, although AKDE is more
appropriate at relatively high temporal resolution (on the order of minutes and fractions thereof)
while LoCoH methods are appropriate and lower levels of temporal resolution (hours and large
fractions thereof). We encourage users to think critically about the nature of their data before
conducting even the most basic exploratory data analyses.

4.5 Conclusions

In 2008, Ran Nathan et al. [126] laid out the movement ecology paradigm, which effectively situated
the emerging discipline within the broader ecological context, but fell short of dictating a set of
baseline analyses that should be run on any newly-collected movement data. The movement ecology
paradigm has informed the hypothesis generation process and guided the data collection procedures
of innumerable studies, but the absence of a core set of standardized analyses among the many
novel tools available to researchers has made it difficult to contextualize the movement patterns of
an animal or species and to compare across studies and wildlife. stmove strives to fill the gap and
make it easy for researchers to employ a standardized set of tools that provide basic insights into
the movement of individuals. While this package is primarily an opinionated wrapper around other
open-source contributors’ work and packages, the primary advantage and goal of this package is
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to provide a simple, single-command procedure to produce comprehensible and customized reports
covering important baseline analyses one should conduct on GPS movement data. Once these
analyses have been undertaken and properly interpreted, one can then pursue various kinds of
analysis that address subsequent questions of interest (e.g., generalized linear models of location and
landscape [116], hidden Markov modeling to identify behavioral states [132, 120], or step selection
analyses [164, 10]). This package strives to set a standard for what is minimally needed before
embarking on such analyses and in doing so hopes to provide a framework and infrastructure that
democratizes foundational movement analysis and enhances comparability of studies.

4.6 Tables

Table 4.1: Interval Statistics. An example of Lunar statistical output (AG195)

interval start phase mean_dist sd_dist acf dist mean ang sd_ang acf ang ccf

1,12) Full-Waning 99.827 125.683 0.571 -0.001 1.313 -0.035 0.028
12,26) New-Waxing 117.765 122.113 0.517 0.015 1.217 -0.061 -0.012
26,41) Full-Waning 180.998 238.705 0.686 -0.036 1.317 0.020 0.041
41,56) New-Waxing 244.072 284.247 0.710 0.064 1.300 0.023 -0.026
56,71) Full-Waning 210.297 253.647 0.674 0.065 1.366 0.043 -0.018

4.7 Figures
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Figure 4.1: Rstudio AddIn Menu. A screenshot of the stmove Report Builder add-in.
This interactive menu guides users of the package within RStudio through the customization
of their movement reports.
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Figure 4.2: Sampling Timeline Plot. A segment graph demonstrating the sampling period
for each individual in the elephant dataset. This is the output of stmove’s ‘plot timeline’
function and is called by ‘build report’ when given a data frame including multiple ids.
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General Spatial and Temporal Distribution of Individuals
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Figure 4.3: Spatial Temporal Distribution Plot. A map demonstrating the mean x and
y locations of 15 individuals included in the elephant dataset.
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Figure 4.4: Simple Coordinate Plot. A simple z-y plot of coordinates along AG195’s

trajectory.
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Figure 4.5: Step Size and Turning Angle Distributions. stmove reports include two
histograms visualizing the distributions of primary movement metrics step size and relative
turning angle.
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Mean Step Size on a Rolling interval
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Figure 4.6: Rolling Step Size. A faceted plot of step size averaged using a rolling window
of 3 hours using stmove’s ‘rolling stats’ function. stmove reports include plots of rolling
means for step length (s;) and turning angle (6,), as well as rolling autocorrelations of both
(si—18; and 6;_16;) and a rolling cross-correlation between them (s;6;)
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Figure 4.7: Wavelet plot. In the top half of the plot, the time series used for the wavelet
analysis, in this case step length is plotted. In the lower plot, the power spectrum of the
Morelet wavelet transform of this statistic is plotted. The lower left axis is the Fourier period
corresponding to the wavelet scale of the top right axis. The bottom and top axes display
time, represented simply as a time series index. Thus the units of all axes are subject to the
underlying fix rate of the trajectory, in this case 20 minutes. The coloured power? contours
are added for significance, the thick contour encloses regions of greater than 95% confidence.
Cross-hatched regions on either end indicate the "cone of influence," where interpretation
may be impacted by edge effects and should be avoided. These power spectrum plots are one
way to investigate underlying periodicity in movement behavior from a trajectory’s primary
statistics.
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Figure 4.8: Spatial Constructions. A demonstration of stmove’s two spatial construction
types, k-LoCoH and autocorrelated kernel density estimation. Note the difference in area
estimation across the two non-parametric techniques.
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Chapter 5

Conclusion

As tracking and computing technologies continue to advance, so will the development of novel met-
rics and methods in the sub-discipline of movement ecology. Our power to characterize animal space
use and make inference and predictions regarding animal movement and behavior will only continue
to advance. This increased ability to predict animal behavior and decisions, has implications for
conservation, human-wildlife conflict, the spread of disease [52], and beyond. The chapters of this
dissertation are presented as a review of the current state of movement analysis, an example of
extending existing tools for use with irregular data, and a new package to better communicate and
democratize movement ecology to those outside the field and/or new to tools of modern statistical
computing.

This dissertation has focused primarily on methods and metrics used for understanding GPS
relocation data. One of the most exciting areas of research in movement ecology not considered
within these chapters is the application of complementary datasets [127] and recent advancement in
statistical methods for prediction and classification of behavioral states, notably machine learning
algorithms [20, 176, 23|. Also outside the scope of these chapters, but of interest to many movement
ecologists, are advances in hierarchical and state space modelling [90], network analysis [40, 41, 136,
87|, and methods for assessing dynamic interaction among conspecifics [110]. Though these are all
without a doubt exciting, important areas of research within the discipline, my emphasis here on
simple metrics applicable to a wide variety of data-sets was a conscious one; my goal to enhance
the overall applicability of these tools to a larger audience. The work contained in this dissertation
is meant to increase understanding, communication, and accessibility of movement ecology tools
by managers and researchers writ large with the hope for real conservation impact and greater
integration of movement analysis tools into science-based decision making. Movement data and the
movement ecology discipline has an important role to play in predicting and understanding animal
behavior, fitness, and range shifts, especially in the context of a changing climate.
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