
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Amorphous and structurally disordered quantum materials

Permalink
https://escholarship.org/uc/item/7b89n10m

Author
Corbae, Paul

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7b89n10m
https://escholarship.org
http://www.cdlib.org/


Amorphous and structurally disordered quantum materials

by

Paul Joseph Corbae

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering- Materials Science and Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Frances Hellman, Chair
Professor Ramamoorthy Ramesh

Professor Joel Moore

Fall 2022



Amorphous and structurally disordered quantum materials

Copyright 2022
by

Paul Joseph Corbae



1

Abstract

Amorphous and structurally disordered quantum materials

by

Paul Joseph Corbae

Doctor of Philosophy in Engineering- Materials Science and Engineering

University of California, Berkeley

Professor Frances Hellman, Chair

Crystalline symmetries have played a central role in the identification and understanding of
quantum materials. The use of symmetry indicators and band representations have enabled
a classification scheme for crystalline topological materials, leading to large scale topological
materials discovery. Amorphous materials lack long-range order and therefore fall outside of
this classification scheme, casting them aside for consideration as topological quantum ma-
terials. The work described in this thesis suggests that amorphous systems provide a good
materials space to study the topological and quantum properties of the electronic structure.
The basis of this observation lies in the fact that amorphous materials have a well defined
local environment. Due to this environment, it will be shown that an amorphous material
can have dispersive, spin-momentum locked surface states, which can be a consequence of a
topological electronic structure. I will also show that by modifying this local environment in
a trivial material, a topological phase transition can be achieved with disorder. Nanocrys-
talline materials also lack long range order, however work shown in this thesis suggests that
nanocrystals are detrimental for topological properties since the grain boundaries lack a well
defined environment. These systems aren’t devoid of interesting properties, the disorder can
increase electronic interactions. Given that amorphous materials can host topological states,
a method to predict which amorphous materials will be topological with chemical specificity
is developed.

In this work an amorphous analog of a well known three-dimensional strong topological in-
sulator, which lies beyond this classification due to the lack of long-range structural order,
is investigated and our experimental observations suggest it has topological properties in
the solid state. Amorphous Bi2Se3 thin films are studied, which show metallic behavior
and high bulk resistance. The observed low field magnetoresistance due to weak antilo-
calization demonstrates a significant number of two-dimensional surface conduction chan-
nels. Our angle-resolved photoemission spectroscopy data is consistent with a dispersive
two-dimensional surface state that crosses the bulk gap. Spin resolved photoemission spec-
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troscopy shows this state has an anti-symmetric spin texture, confirming the existence of
spin-momentum locked surface states. These experimental results are discussed in light of
a theoretical photoemission spectra obtained with an amorphous tight-binding topological
insulator model, contrasting it with an alternative Rashba explanation. The discovery of
spin-momentum locked surface states in amorphous materials suggests new ways to charac-
terize amorphous matter. The dispersive, spin-momentum locked states motivates the study
of an overlooked subset of amorphous quantum materials outside of current classification
schemes, as a novel route to develop promising scalable quantum devices.

Much of our world is comprised of amorphous materials, which lack periodicity and long-
range order but retain short-range ordering such as bond-lengths and preferred local environ-
ments. Here, it is demonstrated that, even in the absence of long range order, a well-defined
real-space length scale is sufficient to produce dispersive band structures. Moreover, for the
first time, a repeated Fermi surface structure of duplicated annuli is observed, reminiscent of
Brillouin zone-like repetitions. Our simulations using amorphous Hamiltonians reveal that
the typical momentum scale where repetitions occur is the inverse average nearest-neighbour
distance, the direct fingerprint of the local order of the underlying atomic structure. Many
electronic phenomenon rely on momentum-dependence such as momentum pairing or spin-
orbit coupling and therefore, under this description, amorphous materials can be reevaluated
as a source for generating novel phases.

We investigate using local structural disorder to induce a topologically nontrivial phase in
a solid state system. Using first-principles calculations, structural disorder is introduced
in the trivial insulator BiTeI and observe the emergence of a topological insulating phase.
By modifying the bonding environments, the crystal-field splitting is enhanced, with spin-
orbit interactions producing a band inversion in the bulk electronic structure. Analysis of
the Wannier charge centers and the surface electronic structure reveals a strong topological
insulator with Dirac surface states. Finally, a prescription for inducing topological states
from disorder in crystalline materials is proposed. Understanding how local environments
produce topological phases is a key step for predicting disordered and amorphous topological
materials.

Strong disorder has a crucial effect on the electronic structure in quantum materials by
increasing localization, interactions, and modifying the density of states. In this work amor-
phous BixTeI thin films were grown at various compositions and growth temperatures in order
to study the effect of structural disorder on electronic properties. By decreasing the growth
temperature, the structural disorder is increased and we observe a metal-insulator transition
as a function of composition in films grown both at room temperature and 230K. By tuning
the disorder of several compositions with growth temperature, a several magnitudes decrease
in the conductivity is observed. The metal-insulator transition is accompanied by a disap-
pearance of weak-antilocalization and increased electron-electron interactions. This work
shows that disorder can be used to study strongly correlated topological materials. Disorder
is controlled to study the effect of interactions and localization in quantum materials with
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strong spin-orbit coupling, and by doing so we shed light on how quantum materials can be
tuned for spin transport with disorder.

While topological phases of matter are not restricted to crystals, there is no efficient method
for predicting which amorphous solids are topological. In order to enable a high-throughput
screening of amorphous topological materials, it is desirable to find a computationally effi-
cient indicator of topology, compatible with first-principles calculations. In this work, the
structural spillage is introduced, an indicator that predicts the unknown topological phase of
an amorphous solid by comparing it to a known reference crystal. To illustrate its potential,
it is benchmarked using tight-binding and first-principles calculations of amorphous bismuth
models. Using DFT the structural spillage predicts that amorphous bilayer bismuth is topo-
logical, and thus a novel topological material. Our work sets the basis to predict topological
amorphous solids efficiently, opening up a novel and large material class to high-throughput
searches of topological materials.
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4.1 Well-defined reciprocal length scale from real-space short-range order. (a) Fourier
transforms for three real-space point distributions (crystalline, normal random,
and disordered hard pack) demonstrates that reciprocal-space structure persists
in the presence of well defined nearest-neighbor distance. (b,c) The large scale
HRTEM image indicates no regions exhibiting crystalline order or even nano-
crystalline precursors (the contrast visible in the main image is associated with
columnar microstructure that is common in thermally evaporated amorphous ma-
terials). The inset displays an expanded 2 nm x 2 nm field of view displaying a
speckle pattern due to phase contrast resulting from the lack of long-range peri-
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4.4 (a) Average site occupations for wavefunctions with energy within the bulk gap
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Chapter 1

Background and Motivation

Topological materials have been an exciting field of research over the past two decades. They
are robust to disorder and have quantize physical responses. Recently, a classification scheme
has discovered that around 30% of the materials around us could have topological bands
[1, 2, 3]. However an even larger percentage of the materials around us are amorphous.
Topological properties have not been explored in amorphous systems until recently due
to the lack of translational invariance. In the field of topological materials it has been
shown theoretically that topological properties exist in the amorphous phase. In this thesis,
I present an experimental observation of spin-momentum locked surface states providing
evidence of topological states in an amorphous solid state system. Amorphous materials
have many benefits for technology and topological materials are key for next generation
technology. Therefore the intersection of these two fields is very exciting.

Figure 1.1: Cartoon version of different atomic structural arrangements. (a) A crystalline
structure. (b) An amorphous solid. (c) A random distribution such as a gas. Taken from [4]
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Material Crystal Tc Amorphous Tc

Bi 10−4 K 6 K
Ba 0.026 K 9.9 K
Mo 0.9 K 9 K

Table 1.1: Tc in elemental crystals and their amorphous counterparts

1.1 Amorphous Materials

Amorphous materials make up a large portion of the tangible world around us from window
glass to golf clubs to solar cells. However, due to the lack of translational symmetry amor-
phous materials do not benefit from the full machinery that has been developed for solid state
physics. For this reason, they are typically not considered when discussing quantum mate-
rials. Amorphous materials are not expected to have any electronic states with well-defined
momenta, but are nonetheless known to support metallic conduction and superconductivity.
Table 1.1 shows three elemental superconductors Bi, Ba, and Ge that have higher critical
temperatures for the superconducting state (Tc) in the amorphous phase than the crystalline
phase. This is due to an increased density of states at Fermi level and increased electron
phonon coupling [5].

Figure 1.2: Cartoon version of different atomic structural arrangements and the resultant
radial distribution function.

Structure

It is important to understand the structure of amorphous materials before discussing the
relevant features of the electronic structure. Amorphous materials are materials where long-
range order is absent and the equilibrium positions of the atoms are not translationally
periodic as in a crystal, Fig. 1.1. However, there exists short-range order (SRO) (well
defined nearest neighbor) and even medium-range order (MRO) (second and third nearest
neighbor). The short range order manifests itself as preferred bond lengths and angles as well
as a well defined coordination environment (well defined number of nearest neighbors). This
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is a result of the electronic configuration of the atoms involved in bonding. For example,
covalent bonding typically leads to a lower coordination number z. The nature of chemical
bonding and the electronic states is implicit in producing short range order. One way to
characterize the structure of the amorphous solid is by considering the radial distribution
function (rdf). The SRO manifests itself as peaks in the radial distribution function which
is the probability that an atom will be found at a distance r from another atom. Picking an
atom as the origin we can consider its nearest and next nearest neighbors. These well defined
coordination environments and distances lead to the peaks in g(r), Fig. 1.2. For a crystal
with well defined long range order the rdf is a sum of delta functions which correspond to well
defined coordination shells. For amorphous materials where nearest and next nearest (and
even third) neighbors are defined, the rdf shows peaks corresponding to these coordination
shells but broadened. The structure of amorphous solids is picked up in diffraction where
the well defined interatomic spacing from the short-range order leads to a larger diffraction
amplitude at certain angles leading to diffuse rings in the diffraction pattern. Additionally,
medium range order exists further away from short range order from weaker but longer range
interactions. This is the next-level structural organization beyond the SRO, for example,
how the local structural ‘units’ are connected and arranged to fill three-dimensional (3D)
space. Operationally, we define medium-range order as physical structure beyond the length
scale which produces peaks in g(r), but below the length scale which yields Bragg peaks
in the structure factor. In summary, the local environment in amorphous and crystalline
solids are very similar and the structural difference lies in the lack of long range order.
Nanocrystalline systems also do not have long range order, but are quite different from
amorphous systems. There is no continuous pathway from the crystalline phase to amorphous
phase but instead a discontinuous phase transformation associated with the nucleation of
crystalline domains. The presence of grain boundaries and the atomic disorder associated
with them makes nanocrystalline systems inherently more disordered than amorphous films
with lack long range order but retain well defined atomic environments.

Electronic structure

We lose the ability to write the wavefunctions as Bloch states, which are periodic in the lat-
tice, due to the lack of translational invariance. However this does not mean amorphous ma-
terials are devoid of interesting and important electronic properties. The electronic density
of states N(E) is equally valid for crystalline and non-crystalline materials. N(E) has been
shown through experiment to not drastically vary between crystalline and non-crystalline
systems. However, disorder produces band tails which are localized states at the top of the
valence band or bottom of the conduction band. The localized states are separated from
the extended states at an energy called the mobility edge. Amorphous Germanium is an
example of the primacy of the short range order in the electronic structure of an amorphous
solid. In this system the local ordering resulting from chemical bonding is similar which pro-
duces similar N(E) seen in Fig. 1.3. The similarity in the density of states results in similar
experimental measured quantities such as the reflectivity. This is a result of the overall
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Figure 1.3: Cartoon of how local ordering affects the electronic structure in elemental Ger-
manium.

density of states and electronic structure arises from short range order. Long-range disor-
der produces states in the gap but the overall features remain the same. The well-defined
local environment and subsequent electronic structure in amorphous systems has important
implication on the topological properties. The local environment (similar crystal field en-
vironment) determines the coarse properties of the density of states such as spectral gaps
(allowing for observation of band inversions), while long-range correlations or periodicity,
determine the finer details. If the local environment produces an electronic structure with a
band inversion then this system cant be adiabatically connected to an atomic insulator. Also
in non-crystalline materials if the Fermi wavevector kF is large (since the mean free path is
∼ 1Å) such that the Ioffe-Regel limit is kF l >> 1, then the magnitude of the wavevector
k is still a good quantum number (due to its relationship to energy) and a Fermi surface
can still be defined for metallic systems. The Fermi surface will be spherical because of the
isotropic nature of the amorphous system. If the is a deviation from free electron form then
this concept breaks down. This will be important for how we interpret our photoemission
data.

The reasons for use of amorphous materials in the field of quantum materials and for
use in technology is that they can be grown under less stringent conditions than single
crystals require. Secondly, they can be grown in a range of compositions rather than an
exact composition that a crystalline compound requires for a given crystal structure.
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Anderson Localization

Anderson’s famous discovery states that electrons traveling in an amorphous solid will be-
come localized due to the random potential they see from the random atomic positions. The
electrons will become localized around a well and the wavefunction decays exponentially with
r. This occurs when the ratio of the disorder potential and the bandwidth V0/B approaches
a critical value. The wavefunctions of the localized states take the form:

ψ =
∑

Anϕ(r−R)e−αr. (1.1)

Anderson showed that disorder introduces localization which has important implications
on the electronic structure [6]. A random potential will produce localized states in the
bandtail, Fig. 1.4. There is a critical energy that separates the localized from extended
states EC called the ’mobility edge’ where the conductivity σ(T → 0) = 0 below EC . If the
Fermi energy lies blow the mobility edge then there are two forms of conduction above T = 0:
1) the electrons have thermally activated hopping from one site to another called Variable
Range Hopping (VRH) or 2) the electrons are thermally excited above the mobility edge.
VRH can be nearest neighbor hopping or to distances much larger than nearest neighbor
and depends on the overlap of the wavefunctions. The conductivity in the VRH regime takes
the form [7]:

σ = Ae−(T0/T )1/4 . (1.2)

Structural disorder in electronic systems is typically accompanied by electronic interactions
(structural disorder in bosonic systems is not accompanied by interactions and is the only
place that Anderson localization is observed in the original sense). Coulomb interactions
create a gap in N(E) and causes the problem to require a many body approach, i.e. quasi-
particle description does not work. In the case of interactions Efros and Shklovskii showed
the conductivity in the VRH regime takes the form [8]:

σ = Ae−(T0/T )1/2 . (1.3)

.

1.2 Topological Materials

Topology enters condensed matter and specifically insulators since we can separate all gapped
Hamiltonian’s into different topological classes, only are they in the same class if they can be
smoothly connected without closing the bulk gap [9]. To provide a reference, insulators are
labeled trivial if their Hamiltonians can be smoothly brought back to the atomic limit, which
corresponds to a bandstructure that admits localized atomic orbitals when the separation
is taken to infinity. Therefore, topological materials present an obstruction to the atomic
limit. Topological phases are defined such that the wavefunctions cannot be described by
purely localized orbitals, or there is an obstruction to create localized Wannier functions.
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Figure 1.4: Cartoon of Anderson Localization. Anderson modeled the disorder as random
well depths which localize the electron wavefunction around a well.

Since the information about these phases is non-local and spread amongst the entire system,
their physical properties are robust to local perturbations (as long as they obey symmetry),
making them some of the most robust phases of matter.

Wannier Functions

In solid state physics we traditionally deal with En(k) dispersion’s for a band in the Brillouin
zone resulting from the Bloch functions ψnk. The Fourier transformed partner to the Bloch
functions are known as Wannier functions and live in three dimensional real space. They
are defined as:

|wnR⟩ =
Vcell
2π3

∫
BZ

e−ik·R |ψnk⟩ d3k, (1.4)

|ψnk⟩ =
∑
R

eik·R |wnR⟩ . (1.5)

The Wannier functions can be thought of as the Fourier components of the Bloch functions
expanded in a plane wave basis set. We assume the Bloch functions are smooth functions
of ψnk(r); this means the Wannier functions are localized in real space since the Fourier
components will be large for a few R near the origin (wnR(r) decays rapidly with |r − R|
for a given R). Since the Fourier transform above is a unitary transformation, the Bloch
and Wannier states provide two different basis for the same manifold of states of an electron
band. There are four properties of Wannier functions worth mentioning:
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1. They are localized. wnR(r) → 0 with increasing |r−R| for a given R

2. wnR(r) = wn0(r−R)

3. ⟨wnR′ |wnR⟩ = δR′R

4. The Wannier functions span the same subspace of the Hilbert space as the Bloch
functions from which they were constructed. The projection operator is:

Pn =
Vcell
2π3

∫
BZ

|ψnk⟩ ⟨ψnk| d3k =
∑
R

|wnR⟩ ⟨wnR| . (1.6)

The Hamiltonian matrix elements being ⟨wn0|H|wnR⟩ = EnR means that Wannier func-
tions reproduce the tight-binding representation of En(k). The position operator r matrix
elements are:

⟨wn0|r|wnR⟩ = e−ik·R ⟨unk|i∇kunk⟩ d3k, (1.7)

this will be important when discussing Berry phases. Another important quantity is the
Wannier center of charge rn = ⟨wn0|r|wn0⟩.

Hybrid Wannier functions (HWF) are very useful to calculate topological invariants along
planes in the Brillouin zone. HWF’s are obtained by doing the Fourier transform in only
one direction:

|hn,k1k2l3⟩ =
1

2π

∫ 2π

0

e−il3k3 |ψnk1k2k3⟩ dk (1.8)

|ψnk1k2k3⟩ =
∑
l3

eik3l3 |hn,k1k2l3⟩ . (1.9)

This means the states are localized in one direction and extended in the others.

Berry Phases

The notion of a geometrical phase is central to defining topological invariants. The Berry
phase is such a phase is defined as the global phase evolution of a complex vector as it is
carried around a closed loop in a complex vector space. The vectors are taken to be the
wavefunctions of the quantum system. The Berry phase is defined as

ϕ = −Imln [⟨u0|u1⟩ ⟨u1|u2⟩ ... ⟨uN−1|uN⟩] (1.10)

where the |ui⟩ are the N representative vectors around the loop and |u⟩0 = |uN⟩. The Berry
phase can be described in terms of the parallel transport gauge. This is where we choose
the representative vectors in such a way to have a positive, real inner product. This means
Imln [⟨ui|ui+1⟩] = 0. On a loop |u0⟩ and |uN⟩ describe the same state but the phase will be
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different because |uN⟩ was chosen to be positive and real with |uN−1⟩. This phase difference
is exactly the Berry phase and seen in Fig. 1.5. Since |uN⟩ and |u0⟩ only differ by a phase:

ϕ = −Imln [⟨u0|u1⟩ ⟨u1|u2⟩ ... ⟨uN−1|uN⟩ ⟨uN |u0⟩] (1.11)

so that the Berry phase becomes:

ϕ = −Imln [⟨uN |u0⟩] (1.12)

because all of the inner products were chosen to be real and positive. In the continuum the
Berry phase is written as ϕ =

∮
⟨uλ|i∂λuλ⟩ dλ where λ is some parameter of the quantum

system that varies on the path [10]. The Berry connection

Figure 1.5: Parallel Transport. The vector (red) picks up a geometric phase as it is taken
around a closed path C. This phase is the Berry phase.

A(λ) = ⟨uλ|i∂λuλ⟩ (1.13)

is not gauge invariant. This is seen by performing a gauge transformation |uλ⟩ = e−iβ(λ) |uλ⟩,
which makes the Berry connection

A(λ) = ⟨uλ|i∂λuλ⟩ dλ+ dβ/dλ (1.14)

. This leads to the Berry phase being ϕ = ϕ + 2πm meaning the Berry phase is gauge
invariant modulo 2πm with m being an integer, therefore its gauge invariant when thought
of as a phase angle. The fact that the Berry phase is gauge invariant means it is physical
and can have direct implications via interference effects. The possible gauge transformations
(e−iβ) that lead to different integers m can be classified topologically and the integer m is
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called the winding number. It tells how many times e−iβ winds around the unit circle as λ
varies around the closed path. The Berry phase can also be derived by inserting |ψn(t)⟩ into
the time dependent Schrodinger equation with a geometric phase included.

The Berry curvature is defined as the the Berry phase per unit area in the parameter
space (λx, λy, λz) and can be thought of as a magnetic field. It is defined as;

Ωµν = ∂µAν − ∂νAµ (1.15)

. If the parameter space is three dimensional then in vector form (related to the tensor via
the Levi-Civita tensor) it is:

Ωn(λ) = ∇λ × An(λ) (1.16)

. This now enables the use of stokes theorem to compute the Berry phase

ϕ =

∫
S

Ω · dS =

∮
P

A · dλ (1.17)

where dS is the differential surface element. The Chern theorem states that the integral of
the Berry curvature over a 2D closed manifold is 2πC for some integer C. C, also known and
the Chern number, can be thought of as a topological invariant for the manifold of states
|u⟩λ defined on the surface S. On a torus, the Chern number can be viewed as the winding
of the Berry phase.

Applying all of this to electrons in a solid, we can use the wavevector k as the parameter
which we vary our states. The Berry phase, connection, curvature, and Chern number are
now defined as follows:

ϕ =

∮
An(k) · dk (1.18)

Anµ(k) = ⟨unk(k)|i∂µunk⟩ (1.19)

Ωn(k) = ∇k ×An(k) (1.20)

Cn =
1

2π

∫
BZ

Ωnd
2k (1.21)

. If the system has inversion symmetry Ωn(k) = Ωn(−k). If the system has time-reversal
symmetry Ωn(k) = −Ωn(−k). If both time-reversal and inversion are present then Ωn(k) =
0. In the presence of spin-orbit coupling the Berry quantities are computed using spinor
wavefunctions. Recall that the Wannier charge center is defined as

rn =
Vcell
2π3

∫
BZ

⟨unk|i∇kunk⟩ d3k =
Vcell
2π3

∫
BZ

An(k)d
3k (1.22)

which means that the Wannier charge centers are related to the Berry phase and in some
cases are equal (in addition to some scaling factors)! This will become useful for calculating
topological invariants.
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Topological invariants

A topological invariant is a quantized property that cannot be changed without chang-
ing the topological phase. An example of this would be the genus for closed, orientable
two-dimensional surfaces. In real materials, we need an object on which to define topo-
logical properties. This ends up being a set of bands, typically the occupied set of bands
{|un,k⟩}∈occupied. This set of states span a vector space Vk and the smoothness of this vector
space can be broken if the order of the states changes. To avoid this, topological properties
are defined on a isolated set of bands separated by an energy gap. Another constraint for
topological insulators imposed is that when smoothly changing the Hamiltonian the band gap
must not close to stay in the same topological class. The boundary consists of points in space
between the topological phase and vacuum which is connected to the atomic limit (trivial).
To smoothly change the Hamiltonian between these two topologically distinct phases the
band gap needs to close, making the boundary states gapless. This argument only depends
on bulk band gaps and symmetries which makes these boundary states insensitive to local
perturbations.

The Chern number can be calculated by tracking the Berry phase along lines of constant
k in the Brillouin zone. This is done constructing the Wilson loop which is matrix that maps
the states are some starting ki onto their images along the k line in the Brillouin zone

W (C) =Mk0,k1 ...MkN−1,kN (1.23)

Mki,kj
m,n = ⟨um,ki

|un,kj
⟩ (1.24)

. The Berry phase is computed by taking the sum of the argument of the Wilson loop
eigenvalues (ϕ =

∑
argλi). As we saw earlier the Berry phase is also related to the Wannier

functions. Therefore the Chern number can be calculated by calculated using hybrid Wannier
functions (ϕ = 2π

a

∑
xn). This approach provides more provides more intuition since it is

understood that as the electrons move through Brillouin zone by varying k their average
position changes. They must come back to the same place in the unit cell after a cycle, but
it can be a different unit cell, therefore this process is charge pumping C electrons to the
neighboring unit cell.

Since the Chern number is attached to a set of Bloch states in the 2D Brillouin zone,
these states can be classified topologically and the Chern number is used as the topological
invariant. Haldane [11] proposed a model that allows for the consequences of topology to
be easily seen. By varying a hopping parameter, a band inversion is introduced where the
character of the states in the valence and conduction bands have changed. The system went
from a trivial insulator to topologically nontrivial since the two cant be connected without a
band closing. This is accompanied by a Chern number jump from 0 to 1 and the nontrivial
winding of the Wannier functions. Regarding bulk-boundary correspondence, the winding of
the Wannier centers has a corresponding flow of surface states due to charge conservation.
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Topological phases can be enhanced in the presence of symmetry. One important symme-
try is time-reversal (TR) symmetry where t→ −t. In the presence of time reversal symmetry
the topological classification is different to the one described above. There are different ap-
proximations that allow us to understand the classification of a system with time-reversal
symmetry and spin-orbit coupling. One is where we consider spin-orbit coupling only using
the σz term in HSOC = ℏ

4m2c2
σ · ∇V (r × p) which decouples the spin-up and spin-down

system. Obviously this is less physical but we will see by adding σx and σy terms the con-
clusions don’t change. Time-reversal symmetry reverses p, meaning H↑ is interchanged with
H↓, but time-reversal also flips the spin. So compounding these two actions, time-reversal
symmetry is still present. This means that the spin-up Chern number is equal and oppo-
site to the spin down Chern number and the total Chern number is zero because TR is
present. We consider a system with (C↑, C↓) = (1,−1) as a pair of Haldane systems with
one being a complex conjugated partner. Therefore we know there is a nontrivial winding
of the Wannier functions and a gapless edge mode. Kramer’s theorem states that in the
presence of time reversal symmetry that each Bloch state |ψn,k⟩ is degenerate with |ψn,−k⟩.
The time-reversal invariant momenta in the Brillouin zone come in degenerate pairs. The
Wannier charge centers also come in degenerate pairs at the TRIM. Now due to Kramer’s
theorem, we expect time reversed partners in the Wannier function spectrum and edge state
dispersion’s. Another consequence of Kramer’s theorem is that even when consider the full
effect of SOC the degenerate pairs at the TRIM stay degenerate. These degeneracies cant
be gapped out by any TR perturbation and they cant be moved out of the gap in the bulk
continuum.

The above discussion tells us that by taking what we know from Haldane’s model with
the Chern number as the topological invariant, the Wannier spectrum flow and boundary
dispersion are crucial for classifying the topology of the bulk. Applying this to systems
with TRS, we now discuss the Z2 topological classification. By analyzing the edge state
dispersion in the half Brillouin zone or the Wannier charge centers across the entire BZ
we notice there will be an even number of crossings of a line for trivial states and an odd
for topological states Fig. 1.6. The Hamiltonian of system with even number of crossings
(Nc) cannot be adiabatically connected to a system with an odd number without closing
the bulk gap. Now we have a Z2 classification where the invariant is {0, 1} or Ncmod 2.
Computing the Z2 invariant boils down to calculating the Wannier center flow of the bulk
Hamiltonian when inversion symmetry isn’t present or the Fu-Kane criterion [12] in the
presence of inversion symmetry. In three dimensions one would calculate the Z2 invariant
for one of the six TR invariant planes in the Brillouin zone which generates the topological
index set ν = (ν0; ν1ν2ν3) where ν0 is the strong topological index and ν1,2,3 are the weak
indices [13, 14].

Classification of crystalline topological materials

The field is at a point where we can classify the topological properties of all crystalline
materials using the symmetry in each space group and by combining real and momentum
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Figure 1.6: Cartoon version of the band structure and hybrid Wannier center flow for trivial
and topological systems. (a) A trivial band structure. The boundary states that lie in the
bulk gap can be pushed into the bulk continuum with a perturbation. (b) A topological
band structure. The boundary states that lie in the bulk gap cannot be pushed into the
bulk continuum with a perturbation. (c) A trivial Wannier spectrum flow where a line
will cross the hybrid Wannier centers an even number of times. (c) A topological Wannier
spectrum flow where a line will cross the hybrid Wannier centers an odd number of times.
This corresponds to charge pumping into another unit cell as well as an obstruction to
constructing localized Wannier functions.

space pictures of the electronic structure, with Wannier functions provide the link between
the topology of Bloch functions in momentum space and the localized orbital description
of chemical compounds [2, 15]. To do this we need three things: the crystals space group,
description of the orbitals, and the positions of the orbitals. With this we map between the
locations of atoms and orbitals within the crystal unit cell and allowed band structures. To
identify topological crystals one asks if the band representations of a particular space group
admit a trivial insulator limit (exponentially localized Wannier functions) compatible with
the crystal symmetries. So basically one takes the bands arising from a global momentum
space picture and compares them to the band representations generated in real space and
topological crystalline bands are those that do not admit a description in terms of localized
Wannier functions. From this one can also use symmetry indicators directly from the crystal
symmetry like the Fu Kane criterion to enable the ability to directly diagnose the topological
phases. However, many materials are not classified due to the lack of a crystal lattice. We
now shift focus to the idea of topological states in non crystalline materials, specifically
amorphous and disordered systems. Noncrystalline materials fall outside of this classification
because they do not have a space group. While we don’t have a crystal lattice we still have
orbitals and the position of those orbitals are well defined. We cant calculate band structures
or use the symmetry indicators of the crystal lattice but the DOS is well defined. So do
amorphous topological materials exist? It isn’t a question of if they exist but in what solid
state systems can we discover them.
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1.3 Topology in non-crystalline materials

It is commonly discussed theoretically that strong disorder will close the bulk band gap and
create a trivial topological phase. However there is never a random distribution of atoms with
arbitrary potential well depths - there is always a hard sphere core distance and some local
order. ”Strong disorder” means disorder in the depths of potential wells that are comparable
to their depth, which typically does not happen. Topological phases can survive even in the
absence of a crystal lattice. Theoretically, amorphous solids can be topological since there
are non-spatial symmetries that protect topological phases, such as time-reversal symmetry.
In this case, topological states remain robust and do not localize, so long as disorder respects
time reversal symmetry and there is a non-zero mobility gap [16].

Topological Anderson insulators have been discussed in the context of disorder and topo-
logical systems. Remarkably disorder actually creates a nontrivial topological bulk [17]. In
these systems random onsite disorder renormalizes the onsite energy pushing a topologically
trivial system that is close to being topological to have a topologically nontrivial gap. Two
similar works by Agarwala and Shenoy [18] as well as Mitchell, et al. [19] showed that topo-
logical states exist in amorphous systems. Agarwala and Shenoy approached the problem
theoretically and defined their tight-binding Hamiltonian as;

H =
∑
iα

∑
jβ

(t(r)Tαβ(r̂) + ϵαβδij)c
†
iαcjβ (1.25)

where the hoppings depend on the angular part T and the distance part t. The authors
then formulated the onsite and hopping terms to enable a topological bulk (such as a Chern
insulator) when the lattice sites come from a random point set. They saw that by tuning some
of the parameters and the atomic density that with open boundary conditions there are states
that fill the band gap which are localized to the edge. When the Fermi level is brought into
gap the conductivity is quantized to Ce2/h. Additonally they computed a topological marker
called the Bott index to prove the bulk is topologically nontrivial. They also generalized the
model to the 10 different symmetry classes given by the Altland–Zirnbauer periodic table.
Separately Mitchell, et al. performed similar theoretical as well as experimental work on
a mechanical metamaterial of coupled gyroscopes showing the possibility of a topological
phase in an amorphous mechanical system. They provided additional insight by constructing
different point sets and applying connectivity rules to each site more closely resembling a
real amorphous material. They show in most cases that a topological Chern insulator phase
was realized. Now the field has taken off theoretically with many new works [18, 25, 26, 19,
27, 28, 29, 30, 31, 20, 21, 22, 23, 24]. The most realistic model for amorphous topological
phases was created by Marsal, et al. [30] where they retained the most important aspects of
amorphous materials: a coordination environment that closely resembles the crystal. They
show with a well defined local environment and fixed coordination that they were able to
analytically and numerically compute the energy spectrum and saw was that the the local
environment of a site is enough to determine the broad spectral features, and where the gap
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closures appear. They also were able to the apply the concept of symmetry indicators to an
amorphous system since the model has equivalence between orbitals and fixed coordination.
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Figure 1.7: Cartoon of how modifying the local environment and subsequent electronic DOS
could produce a band inversion.

Topological order must reflected in the electronic structure of systems where k is not de-
fined. Our interpretation of how topological physics arises in amorphous materials is based
on the similarity of the local environment of sites. The chemical bonding and connectivity
produce the relevant aspects of the electronic structure for discussing band inversions and
topology. We also rely on the definition of a topological phase: one that cannot be adiabat-
ically connected to an atomic insulator without closing the bulk gap. This can be coupled
with ”topological markers” that are rely on many of the above expression but formulated in
real space. For a system where the crystalline phase is topological, if the amorphous phase
retains the local environment of the crystal then the density of states should resemble the
crystalline phase (maybe lacking some sharp features). In this case if the adjustment of
the atomic sites to make the system amorphous does not close the mobility gap then the
inverted band gap can still exist. In the case of a trivial crystal to topological amorphous
system, if the local environment in a trivial crystal changes in a way that does not allow the
electronic structure in the amorphous state to be connected to the atomic limit then there
can be topological states in an amorphous system that are not present in the crystalline
system. Upon increasing disorder and removing the long range order associated with the
crystalline atomic positions, the new local environment in the amorphous system can create
a new crystal field that can push the states closer together in energy, similar to the effect of
pressure. The incorporation of SOC then can invert these states producing a topologically
nontrivial bulk. A cartoon of this shown in Fig. 1.7. In some cases localization can also
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increase the impact of SOC, likely to increase band inversion due to increased wavefunction
mixing.
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Chapter 2

Techniques

2.1 Thin films and Physical Vapor Deposition

Thin film growth is a critical technique in developing materials for technological advance-
ments. Thin films are deposited onto bulk materials, substrates, to achieve properties the
bulk materials cannot achieve alone. Thin films have been critical in science by being able
to tune the thickness/dimensionality of materials or used for coatings in experiments such
as LIGO. Thin films enable the growth of some materials that aren’t achievable in bulk
form, by stabilizing the structure using lattice matching or protecting it from atmospheric
degradation with capping layers. It also enables heterostructures where the properties of
an adjacent thin films influence each other. They also have been critical for technological
applications such as magnetic memory. There are many different thin film techniques such as
Physical Vapor Deposition (PVD), Chemical vapor deposition, Sputtering, etc. The princi-
ples of PVD are vapor transport to the substrate in an Ultra High Vacuum (UHV) chamber.
Pure elemental sources are made into a vapor form via many different techniques such as
effusion cells or electron beam evaporators. Then this vapor is transported to the substrate
by various means like a vacuum, plasma, or liquid. The vapor arrives at the substrate and is
deposited depending on many factors such as surface condition, reactivity, and energy. The
vapor phase techniques have significant advantages. They are applicable to any material,
the substrate temperature is variable, and the surface is accessible during deposition.

PVD is a particularly useful growth technique regarding amorphous materials and has
been found to make amorphous (glassy) materials which are not available by liquid quench-
ing, and in some cases to produce ”better” amorphous materials than are found by the best
liquid quenching techniques. The standard way to produce amorphous materials are: cooling
from the liquid state (slow cooling, moderate quenching, rapid quenching) and PVD. PVD
has several advantages in this realm since we can tune many knobs such as the substrate
temperature, growth rate (affects the time absorbed atoms have to diffuse to ideal positions),
irradiation, and chemical dopants to frustrate crystallization. Modifying the substrate tem-
perature enables the growth of amorphous films with different local ordering and produces
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what is called an ”ideal glass” [32, 33].

Substrate Prep

The substrates used in this thesis are 300 nm of amorphous SiNx on top of 500 micron Si(100)
(10x10x0.5mm3). Stoichiometric Silicon Nitride has a composition of Si3N4, but the LPCVD
Silicon Nitride used in our lab is not stoichiometric, slightly Si rich of stoichiometric, which
enables it to be low stress and hence able to be used as a thin membrane after removing
the Si substrate. The substrates are cleaned in a sonicator using a sequence of solvents:
first acetone, then methanol, finally isopropanol. After this each substrate was taken out of
the beaker with UHV tweezers and blow dried with Nitrogen gas. The substrates were then
mounted onto a sample plate with clips, Fig. 2.1. Once introduced to the UHV chambers
the substrates are heated to 150 oC to remove any atmospheric contaminants that impinged
on the surface while moving from flow hood to UHV chamber.

Figure 2.1: Sample plate post deposition.

For TEM measurements a 10 nm thick SiNx membrane was used. The window array TEM
grid has 9 evenly-spaced 0.1×0.1mm square windows (in a 3×3 array pattern) centered on a
200µm thick circular or octagon shaped silicon frame that fits inside a 3mm diameter circle.
These windows aren’t cleaned in the sonicator or heated in the chamber (expansion and
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contraction) due to the delicate nature of the membrane. The membranes are fabricated
in a cleanroom and determined to be UHV clean. After sample mounting they are gently
blown with nitrogen gas to remove any dust.

Growth

As stated above the growth technique used is PVD. In this technique pure (6N) elemental
sources are melted or sublimated from the solid phase to produce a vapor. Attempting to
evaporate alloys will typically lead to non-stoichiometric films since there are differing vapor
pressures of the constituents. When the sources vapor pressure reaches ∼ 10−3 Torr there
are appreciable evaporation rates (≥ 0.1Å/s). There are useful vapor pressure curves which
can be used to determine if PVD growth is feasible. If the temperature at which the vapor
pressure is ∼ 10−3 Torr is above the melting point the material will melt then evaporate.
If it is below then it sublimates. In my research I used three different evaporation sources:
thermal evaporation from boats, effusion cells, and electron beam evaporators.

Thermal evaporation boats, typically made out of Tungsten, are used by running a current
through them and resistively heating them to a point where the source material evaporates.
The boats are made of metals with low vapor pressure so there is no concern of contamination.
Thermal boats are best to evaporate high vapor pressure materials at low temperatures.
Trying to grow materials with high melting points will sometimes alloy to the metal boat
which changes the mechanical materials properties and lead to cracking. Coating thermal
boats in materials such as Al2O3 can prevent alloying. It is best to just use electron beam
evaporators when growing with high melting point materials.

Effusion cells are a way of using indirect resistive heating to grow. These are made up of
long tungsten filaments wrapped around a Pyrolitic Boron Nitride ceramic crucible. These
cells reach a temperature around 1200 oC with a thermocouple to monitor the temperature
and a PID control for accurate and stable growth rates. Bi, Se, Te, and I were all grown out
of a K-cells. Sources that emit from a central point follow what is called the ”cosine distri-
bution” characteristic flux. K-cells that aren’t fully filled don’t follow the same distribution
and follow a more direct beam characteristic.

E-beam sources are evaporation sources that use field emission of an electron from a hot
tungsten filament at 7kV below its anode to create an electron beam. This charged beam is
steered by a magnetic field onto the source which is sitting in a copper crucible. The beam
position and size is controlled by changing the current in the electromagnet sweep coils.
Depending on if the source material sublimates or melts, the sweep coils need to be moved
or can stay stationary. If the source sublimates then then beam spot must be moved to not
drill through the source and crucible. If the source melts then the beam is moved on the
first melt to homogenize the surface but then stays stationary until the source is refilled.

The growth rate is monitored by multiple quartz crystal monitors in the chamber. A
quartz crystal sensor measures the mass of the material deposited over time using the piezo-
electric effect to measure a shift in the resonant frequency of a standing shear wave in the
crystal as mass is deposited. Prior to growth input parameters such as the molar mass and
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Figure 2.2: XRR scan for for an a-Co-Si thin film alloy of thickness determined to be 67.4
nm on a 300 nm thick a-SiNx-covered Si substrate which would produce interference fringes
at about 1/5 the angles seen here, and are unresolved in this scan. The interference fringes
are seen which enable measurement of the thickness.

density are put into the rate monitor to convert the mass into a growth rate. When growing
with more than one element, one must take into account the growth rate at the substrate
will see flux from all of the sources. Also there are geometric factors in a chamber that
lead to the growth rate at the source not equaling the growth rate at the substrate. For
this reason the tooling factor is simply a geometric factor that accounts for this. Prior to
doing a production run, one should calibrate the sources by determining the correct tooling
factor, TF = (measured thickness/QCM thickness)×100. Once this is done you can grow
any material composition with high accuracy.

Profilometry

It is important to have accurate readings of thickness for TF calibrations and for growing
materials with desired properties. In my research I used KLA-Tencor ASIQ surface profiler.
This rasters a fine tip across the sample and measures the vertical displacement from its
baseline position with sub nanometer accuracy. There are inevitably thickness variations
across a substrate so performing profilometry measurements along each edge of the film is
important. The films are typically grown using a shadow mask, which should in principle
create a sharp edge to measure using the profilometer. However depending on the shape of
the evaporation flume there can be shadowing at the edges making it important to measure
sufficiently far into the sample.



CHAPTER 2. TECHNIQUES 20

XRR

Another method to calculate thickness is using X-ray reflectivity measurements. This is a
low angle X-ray diffraction technique. The X-rays scatter and reflect off the surface of the
sample and interfere. The spacing between interference minima, called Kiessig fringes, are
proportional to 1/t where t is the film thickness. This measurement is done using a 2θ-omega
scan on a PANalytical X’pert system. Software such as GenX is used to analyze the XRR
data. An example is shown in Fig. 2.2. The film has to be very flat to get many fringes/make
this technique work. Typically nanocrystalline films won’t work, but amorphous is generally
flat enough to enable clear interference fringes.

2.2 Composition

It is important to grow materials with very accurate compositions since physical proper-
ties vary quite dramatically with even small changes in composition. Multiple composition
characterization techniques were used to ensure the composition was accurate in addition to
tooling factor calibrations. Additional uses are to look for composition gradients, clustering,
and even valence state bonding characteristics.

XPS

Figure 2.3: Bi 5d and Se 3d core levels. The peaks are spin-orbit split and are fit (pink and
green Gaussian curves) to determine the composition. The position of the peaks also give
information about bonding.

X-ray photoelectron spectroscopy is a powerful tool not only for composition but also
for understanding bonding and the electronic structure. It also can be thought of as the
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angle-integrated version of ARPES presented below. XPS involves irradiating the sample
surface with soft X-rays (typically using Al-Kα hν = 1486.6 eV) and analyzing the emitted
electrons (photoelectric effect) based off their binding energy (EB = KE − hν + ϕ). Each
element has a unique spectrum (unique set of binding energies of energy levels) therefore this
method is used for identification of elements in your sample and the spectrum of a mixture
of elements is the sum of the peaks of the individual constituents. The mean free path of the
electrons in the sample is small so XPS is a very surface sensitive technique. Quantitative
analysis is done by considering the height of the peaks and the integrated area under the
peaks. Additional processes such as Auger electrons are a result of the photoionizing process.
Variations in the elemental binding energies (the chemical shifts) arise from differences in
the chemical potential and polarizability of compounds. These shifts elucidate the chemical
state the material is in. An example is shown in Fig. 2.3.

EDS

Figure 2.4: (a) Bi elemental map taken in a TEM from a 10 nm nanocrystalline Bi2TeI film
grown at room temperature. The scale bar is 60 nm. (b) EDS spectrum for a Bi2.5TeI film.
The peaks correspond to characteristic radiation from each element and are fit to determine
composition.

This technique is opposite to XPS, where it is a high energy electron beam hits your
sample, electrons are ejected from an inner shell, an electron falls to fill that shell giving off
characteristic radiation. Practically speaking an electron goes in and a photon is emitted in
the X-ray regime. The characteristic X-ray again is unique to the elements in your material
enabling composition analysis. This is done in the lab by placing a sample in an SEM or a
TEM with an EDS (X-ray) detector. One benefit of EDS is in a TEM you can measure the
composition with spatial resolution. A benefit of EDS over XPS is it is less surface sensitive
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and depending on the energy of the electron beam you can begin to see the substrate. An
example is shown in Fig. 2.4.

RBS

The golden standard for composition analysis in the Hellman lab is Rutherford Backscatter-
ing spectroscopy (RBS). The technique involves shooting a beam of alpha particles (4He++)
at your sample at high energy (2-3 MeV). The alpha particles will undergo Rutherford
backscattering from the atomic nuclei of the constituents in the sample. The scattering is
related to the Z of the atomic nuclei. One benefit of RBS is the depth analysis that the
technique provides. The energetic alpha particles pass through the sample and into the
substrate losing energy the entire way from the backscattering processes. Therefore the
RBS spectrum gives the ability to depth profile the film and works even better when con-
sidering heterostructures. The spectrum is then simulated using the SIMNRA software to
determine the atomic density (density determination requires combining RBS with thickness
measurement) and composition. An example is shown in Fig. 2.5.

Figure 2.5: Bi2Se3 RBS Spectrum. The simulated curve gives information on composition
and atomic density. The sample is 100 nm on a-SiNx.

2.3 Structure

XRD

X-ray diffraction is one of the most common methods for characterizing the crystal structure
of single crystals. The principles of XRD are built upon Bragg’s law which states nλ = 2dsinθ
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Figure 2.6: Amorphous Bi2Se3 2θ-ω scan with λ = 1.5406 Å. The peak at 69o is due to to
the substrate. The hump around 17o is related to diffraction from the short range order in
the amorphous film. The film is 100 nm.

where n is an integer, λ is the wavelength of radiation, d is the interatomic spacing between
planes, and θ is the angle of incidence of the X-rays on the sample. To summarize, two parallel
waves reflecting off adjacent planes separated by d will constructively interfere if the path
extra path traveled is an integer number of wavelengths. In practice we align our samples
by using known d-spacing for the substrates so the X-ray scattering vector is aligned normal
to the planes being measured. Measurement and analysis of the diffracted X-ray intensity
allows us to extract structural information from the peaks in diffraction pattern.

Perfect crystals will diffract X-ray in relatively few directions because there is destruc-
tive interference among waves that do not satisfy Bragg’s condition, the so called structure
factor. As stated in the background section on amorphous materials, they tend to arrange
themselves where there is a well defined nearest neighbor, and even second or third nearest
neighbors depending on the medium range order. Therefore incident X-rays diffract and
constructively interfere to produce one or two broad maxima in the diffracted intensity.
In practice performing XRD on amorphous materials is beneficial to inform whether there
are large crystalline grains. The absence of peaks does not mean the material is definitely
amorphous. This is because of the Abbe diffraction limit. Essentially the wavelength of the
incident X-ray radiation isn’t small enough to resolve small crystallites in the film. Therefore
it is necessary to perform other techniques to ensure your sample is amorphous such as TEM
or synchrotron based techniques. An example is shown in Fig. 2.6.
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Figure 2.7: Bi2Se3 Raman Spectrum. The Raman spectrum, Fig. 1(f), shows one broad
peak between 135 cm−1 and 174 cm−1 which correspond to the broadened bulk E2

g and A2
1g

vibrational modes, respectively. The A1
1g van der Waals mode at ∼72 cm−1, which is created

by the layered structure of the crystal, is absent in our amorphous samples. Instead, we
observe a peak at 238 cm−1 not present in crystalline Bi2Se3, which we attribute to amorphous
Se-Se bonding.

Raman

Raman spectroscopy is a method that relies on the inelastic scattering of light with matter.
It is a versatile method as it does not depend on whether the material has a crystalline or
non-crystalline structure. The incident light induces a rotational, vibrational, or electronic
transition in the material. In my research we used Raman to probe the vibrational modes of
a material to understand the structure and bonding. It should be noted that performing Ra-
man in metallic samples is not possible due to screening from the conduction electrons which
hinders the excitation of vibrational modes (there are exceptions). In the lab monochromatic
light is shined on your sample, some of which is inelastically scattered (Raman scattering
vs elastic Rayleigh Scattering). The resulting Raman spectrum plots the intensity of the in-
elastically scattered light as a function of the wavenumber shift from the incident light. The
peaks in the spectrum correspond to the vibrational modes in your material. In crystalline
materials, Raman is an effective tool to probe the symmetry of the structure as different
vibrational modes are allowed by symmetry. In amorphous materials Raman is useful tech-
nique to first give a rough idea if your sample is amorphous and then to understand the
local environment and bonding characteristics. Since amorphous materials have short and
medium range order the Raman spectrum sheds light on a few interesting properties. Due
to the distribution of bond length, angles, and coordinations the Raman modes change. De-
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pending on the bond strength the peak in your Raman spectrum shifts. Since there is a
distribution of bonds, the Raman modes typically broaden. Observing broad, shifted peaks
in the Raman spectrum of your amorphous film enables you to make statements regarding
the local ordering in your material. An example is shown in Fig. 2.7.

TEM

Figure 2.8: TEM modes. (A) Parallel beam. (B) Convergent beam. Image used from [34].

Transmission electron microscopy (TEM) is arguably the best technique for understand-
ing the structure of any material. As stated earlier to perform these measurements we
grew thin films, approximately 10-25 nm, on amorphous SiNx membranes. These are then
placed into the TEM column and pumped down in vacuum. This enables transmission of
the electron beam through the sample to be captured on the screen.

There are two main modes to operate a TEM, parallel beam or convergent beam opera-
tion, Fig. 2.8. The first mode is primarily used for imaging and selected area diffraction. The
second mode which is typically referred to as STEM is primarily used for scanning images,
analysis such as EELS, and scanning nanodiffraction. In the parallel mode the incident beam
of electrons is µm in diameter and then the electrons scatter (directly or through appreciable
angles) from the sample to be collected by a detector for imaging or diffraction patterns. The
parallel mode is best used for producing the sharpest diffraction patterns and traditionally
has the best image contrast. If you wish to focus the beam more to observe a specific area
or perform elemental analysis on a small part of the sample then convergent beam mode is



CHAPTER 2. TECHNIQUES 26

the best option. In this mode the converged nature of the beam destroys image contrast
which means to get an image you must scan across the sample. The convergent beam can
be thought more of as a probe that must be scanned across the sample.

(b) (c)
(a) e-

Figure 2.9: Parallel TEM modes. (a) A cartoon of a parallel beam measurement. Parallel
beams of electrons are incident on the sample, then depending on the mode the diffraction
pattern or real space image can be taken. (b) High resolution real space image of amorphous
Bi2Se3. (c) Diffraction pattern of of amorphous Bi2Se3.

In parallel mode, the objective lens takes the emerging electrons from the sample and
disperses them to create a diffraction pattern in the back focal plane or recombines them to
create an image in the image plane. To form an image we can insert an aperature in the
back focal plane of the objective lens. The image is made out of the central direct beam
of electrons or by using some of the scattered electrons. This is called either bright field or
dark field imaging, Fig. 2.9

In convergent or STEM mode the beam must be scanned parallel to the optical axis to
ensure the same scattering processes. To create an image the detector picks up intensity
from the direct beam which varies depending on where is illuminated on the sample. Both
bright and dark field imaging are possible in STEM. Additionally, diffraction patterns can
be generated in STEM mode, this is called convergent beam electron diffraction, Fig. 2.10.

Another method of electron microscopy is fluctuation electron microscopy (FEM). This
method studies the medium range order in amorphous materials. In this method fluctuation
refers to the changes in local structure and orientation of the atoms in the amorphous
material. We perform FEM by doing STEM diffraction with a beam size of 2 nm (which is
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(b) (c)
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Figure 2.10: Convergent TEM modes. (a) A cartoon of a convergent beam measurement.
A convergent beams of electrons are incident on the sample, the diffraction pattern and
real space image can be taken simultaneously. (b) Scanning nanodiffraction pattern of of
amorphous Bi2Se3. (c) Real space STEM image of amorphous Bi2Se3.

on the order of the length scale of medium range order) and rastering it across the sample.
The normalized variance in the diffracted intensity gives the relevant information on the
MRO, Fig. 2.11. The speckle visible in the scanning nanodiffraction images is associated
with local ordering and orientations of clusters of atoms, which correspond to near- and
off-Bragg conditions. The diffracted intensity originates from nanoscale volumes within the
sample. When the speckle observed across the diffraction images is highly uniform, this is
indicative of many randomly oriented nanoscale clusters of atoms with short range ordering
in the amorphous structure. If the speckle varies greatly in intensity then this originates
from more ordered structures.

One consideration when doing TEM on amorphous materials is that the beam can crys-
tallize the films, Fig. 2.12. To achieve atomic scale images some TEM operate at 300 kV,
which depending on your measurement, can lead to large electron doses in your material.
The high energy of the incident electrons can promote growth kinetics when interacting with
the amorphous sample such as nucleation of crystallites. Ways to mitigate this are to use
lower energy electron beams (although this affects resolution and contrast), lower exposure
times, and not letting the beam stay parked on your sample before measurement.

Finally, it is possible to obtain the radial distribution function from parallel beam TEM
diffraction patterns. This is done by radially integrating the the diffraction pattern to obtain
the radially integrated diffraction intensity this gives you I(q) where I is the intensity and q
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Figure 2.11: Cartoon FEM experiment. The convergent beam is rastered across the sample
taking nanodiffraction patterns and the variance in intensity is computed. Variations in
medium range order give rise to peaks in the V (k).
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(c)

Figure 2.12: Beam crystallization in Bi2Se3. (a) Amorphous Bi2Se3 (b) After the beam has
been left stationary which produces large electron doses in the sample. There is obvious beam
damage and incipient crystallization. Orange circle indicates beam damage and red circle are
nucleated nanocrystals. (c) Atomic resolution HRTEM of Bi2Se3 after beam crystallization.

is the scattering vector. To then obtain the structure factor, we subtract off the single atom
scattering factors for the atomic species in the material, now we have ϕ(q).

ϕ(q) =

[
I(q)−Nf 2(q)

Nf 2(q)

]
q (2.1)
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Then we can mask out the high/low angle noise. Finally the RDF, g(r), is calculated
from the structure factor using

4πr
[
g(r)− ρ0] =

∫ ∞

0

ϕ(q) sin(qr)dr (2.2)

.

2.4 Transport

Transport measurements provide a great deal of information regarding the electronic struc-
ture and carrier dynamics whether the sample is under an applied electric field, magnetic
field, thermal gradient, or some combination. Transport provides insight into the scattering
mechanisms and the electronic band structure. These measurement are one of the best ways
to study and observe quantum properties like superconductivity. Measuring the longitudinal
resistivity gives insight into low temperature quantum corrections, electron interactions, and
even the Fermi surface. The transverse resistance give insight into the carrier concentration
and type via the Hall effect. The measurements enable the utilization of structures that
are easily implemented into technological devices. We use transport measurements to shine
light on the spin orbit entanglement in the materials of interest and to understand different
length scales in the films.

Lithography

The first step for transport measurements is to fabricate the thin film into a device structure
that enables the study of the physical mechanisms of interest. The two measurement con-
figurations performed in the thesis research were Hall bar and Van der Pauw configurations.
Van der Pauw measurements required no lithography and processing post growth. There
are a variety of ways to to create Hall bars using lithography such as wet etching, plasma
etching, or electron beam lithography. A majority of the Hall bar devices fabricated in this
thesis were made using a lift-off technique for which I will go the most into detail. The
main difference the former growth methods and lift-off is related to whether the photoresist
is developed pre- or post-growth, Fig. 2.13

A common feature to both conventional lithography and lift-off processes are the use of
photoresist. There are different types of photoresist (positive or negative) that can best suit
your needs. In this work we use LOR5A and MIR701. The difference between standard
and lift-off is in standard the photoresist coats the sample where in lift-off it coats the
substrate. One key consideration for standard lithography is that the photoresist needs to
bake after being spun on. Therefore if you plan to study amorphous films you must pick your
photoresist carefully and bake at temperatures below the crystallization temperature. For
this reason we opted to use the lift-off technique where there is no post growth processing
other than stripping the resist.
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Figure 2.13: Standard steps in a lithography process. Image courtesy of the Berkeley
Nanolab.

Once the photoresist has been spun on you must expose it to pattern your sample.
Typically this is done by exposing your film to light in the UV range. There are different
ways to produce the device structure that is needed (such as a Hall bar). They range from
masks patterned in the shape of your device, direct writers, or even electron beams. Electron
beams have the highest resolution with features of the order of ∼10 nm. Once the film has
been exposed it must be developed to dissolve portions of the photoresist. This is where
standard and liftoff techniques diverge. At this point for lift-off techniques we simply grow
on the developed pattern and then post growth we strip the photoresist and we have a
beautiful Hall Bar, Fig. 2.14. If we do standard lithography we now have to find a way to
etch our film. This is done by wet etching using liquid chemicals to remove the film from the
substrate. This process requires development to figure out the best etch times and solvent
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concentrations. A good place to start is the Handbook for Metal Etchants. Another method
of etching is dry etching where a plasma is used instead of liquid chemicals where the ions
in the plasma will hit the sample and dislodge the sample that isn’t covered in photoresist.
There are some considerations here for amorphous films since this process can impart some
energy/heating. After removing the film we remove the resist and then we have a Hall bar
device used for transport measurements.

Figure 2.14: (a) Liftoff process. Image courtesy of the Berkeley Nanolab. (b) Example liftoff
hall bars used in this thesis.

The final method used in my research was to pre-pattern Cr/Au contacts onto a SiNx

substrate with 2 large current pads and two voltage pads. We then grow our material of
interest in a long bar using a metal shadow mask, Fig. 2.15. This method enabled quick
and accurate results that were similar to Hall bar devices (used to measure Vxx only, for
magnetotransport we need to use a Hall bar or Van der Pauw) without the need to perform
lithography steps. It should be noted that scratching the films into a hall bar device also
work but it quite brute force. However, the first observation of the QAHE was using this
method.

Contacts

Having ohmic contacts is critical for performing any transport measurement to get sensible
results. The low resistance contacts allow easy flow of electrons into your sample with an
immediate response of the voltage with change in the current, the I-V characteristic should
be linear. The way in which charge carriers enter the material depends on how large the
barrier height is from the contact to material (Fermi level matching). If the barrier is large
then there must be thermionic emission over the barrier because the depletion region is
large (to equilibriate the Fermi level carriers move from region near the interface). The I-V
characteristic is Schotkey like. If the barrier is small then the depletion region is small and
the carriers can tunnel through the barrier, this is Ohmic. In all transport measurements we
checked that the I-V characteristic is linear throughout the entire measurement. Interfaces,
defects, and dopants can pin the Fermi level in the material which makes injecting a current
into it harder. Therefore it is beneficial to make deposit contacts onto your thin film in-situ
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or to grow onto pre-patterned contacts. We do this by growing a sticking layer of Cr (2nm)/
Au (8nm) pre thin film deposition to ensure high quality interfaces between the thin film
and contacts. We then wirebond contacts from the measurement puck to the gold pads to
ensure high quality contacts. Much of this does not need to be taken into consideration if
you are measuring a metallic thin film, the semiconductor is highly doped, or you are not
doing high frequency applications. If the above conditions are satisfied then there are a few
methods to produce contacts that work reasonably. The first is pressing soft metallic indium
blobs onto the film then contacting those blobs with the wire. This should be done carefully
by not making the contacts too large (if performing Van der Pauw). Also, depending on the
purity, Indium can be superconducting at low temperatures. Another method is using silver
paint that works quite well.

Figure 2.15: (a) Schematic of Bi2Se3 bars used in this thesis.

Measurement

Configurations

The first four point measurement configuration is the Van der Pauw configuration to measure
the sheet resistance (Ohms/square) of thin film. This method is nice because it means there
is no need to performing any patterning prior to measurement. The method works for a thin
film or arbitrary shape, however growing the thin film into a square using a shadow mask
makes measurement and contacts quite easy. Contacts are meant be as small as possible
and located on the perimeter of the thin film. Using complex analysis and the conformal
mapping theorem Van der Pauw showed that the sheet resistance is calculated using the
following equation:

e−πRab,cd/Rs + e−πRbc,da/Rs = 1 (2.3)

where Rab,cd = (Vd − Vc)/Ia→b, t is the film thickness, and Rs is the resistivity [35]. This
is then made into a resistivity by ρ = Rst. In practice for for ρ (T ) and ρ (B) measurements
we inject current into two of the leads then measure the voltage in the other two, then we
permute the configuration clockwise and measure again. This is done at each T or B. If the
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ratio of Rab,cd/Rbc,da is large then the validity of this equation becomes questionable. For
Hall measurements, the ρxy =

t
4
(Rac,bd +Rbd,ac +Rdb,ca +Rca,bbd).

Figure 2.16: (a) Indium blobs in Van der Pauw configuration. (b) Hall bar with indium
blobs on a PPMS puck. (c) Hall bar with silver paint on a PPMS puck. Wired bonded
sample not shown.

The other measurement configuration is using a Hall bar which has two current pads and
four voltage pads. The aspect ratio used in all of our samples was 3. This method enables
simultaneous measurement of the Vxx and Vxy. Due to the design of the Hall bar there
should be little to no longitudinal component in the Hall signal and vice versa. To calculate
resistance values with a Hall bar you simply do R = V/I for longitudinal and transverse
components. Examples are shown in Fig. 2.16

Equipment

Many of the room temperature to 3K ρ (T ) measurements done in my thesis were done
in a custom built Janis closed cycle refrigerator. This system is dry with a cold head
that recirculates helium gas. The closed cycle has 8 pins for contact to samples enabling
measuring two samples at once. It has a quick prep, pumpdown, and cooldown time which
cuts down on the time from when the samples leave the UHV chambers to when they are
being measured under vacuum. We perform these measurements using DC current with
a Keithley 2400 sourcemeter and measuring the voltage using a four-point probe. The
temperature is measured using a Silicon thermometer and a Lakeshore. The closed cycle
is a workhorse in the Hellman lab. There are a lot of insights into the bandstructure and
quantum interference effects that can be extracted from only an R(T ) curve.

While the closed cycle is great it lacks a magnetic field which enables the measurement
of carrier density and is a probe to understand quantum interference. For magnetotransport
measurements I used the Hellman lab MPMS and the Analytis Lab PPMS. The MPMS has
a 7T magnet and the PPMS has a 14T. Measurements were done using AC techniques
which provides a better SNR and higher sensitivity. In these measurements a constant AC
voltage is applied which induces a current in the sample, this current is deduced by placing a
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resistor (much larger than the resistance of the sample) in series with the sample. Then Vxx
and Vxy are measured with two lock-in amplifiers. It is important for these measurements
the contact resistance is not excessively large and the impedance if the sample is small. It is
also important for high resistance samples, which is common for amorphous and disordered
systems, to use a low lock-in frequency. This is because the wire connecting to the sample
acts as a capacitor to ground therefore making RC circuit or a low pass filter.

Figure 2.17: GDS pattern for Hall bars used in this thesis.

2.5 Angle resolved photoemission spectroscopy

The beauty of ARPES is that one can use the kinematics of the electron in the material before
it has been ejected to map the crystal momentum ℏk to binding energy EB. It has been the
gold standard measurement for topological materials and quantum materials for this reason
[36]. Similar to XPS (described above), Angle-resolved photoemission spectroscopy utilizes
the photoelectric effect. The electrons photoemit in all directions and an analyzer captures
the kinetic energy and the emission angles. From the emission angles (θ is the polar angle
from the surface normal and ϕ is the azimuthal angle) one can determine the components of
k, Fig. 2.18. Using energy and momentum conservation:

Ekin = hν − ϕwf − EB (2.4)
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ℏk|| =
√
2mEkinsinθ (2.5)

where k|| is the crystal momentum parallel to the photoemission surface and is conserved
in the photoemission process. The photoemission process is described by the transition
probability of an N electron initial state to excited final state (ΨN

i → ΨN
f ):

wfi =
2π

ℏ
∣∣⟨ΨN

f |Hint|ΨN
i ⟩
∣∣2 δ(EN

f − EN
i − hν) (2.6)

Figure 2.18: Amorphous ARPES experimental setup

where the interaction Hamiltonian for the electron-photon perturbation can be approx-
imated as Hint ∼ e

mc
A · p with A being the vector potential. This is a single step process

where ARPES has been more practically described as a three step process: (1) The pho-
ton drives and optical transition for the electron in the bulk, (2) the electron travels to the
surface dependent on the mean free path lmfp, (3) the electron moves through the surface
barrier and is described by a plane wave in vacuum. An approximation can be made for
non-interacting systems. The N-electron system can be factorized:

|ΨN
i,j⟩ = A |ψN

i,j⟩ ⊗ |ΨN−1
i,j ⟩ (2.7)

where A is an antisymmetric operator enforcing the Pauli principle. The ψ are the
wavefunctions of the photoelectron before and after absorbing the photon and the N-1 sys-
tem remain unchanged. The non-interacting limit provides a great simplification, now the
intensity measured goes as:

Ii→f (k, ϵf ) ∝
∣∣⟨ψN

f |Hint|ψN
i ⟩
∣∣2 δ(EN

f − EN
i − hν) (2.8)

. The ARPES spectrum for noninteracting materials has a sharp peak that traces out
the electronic band dispersion ϵk for the single particle wavefunction ψ. Due to the fact the
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surface breaks translational symmetry the out of plane components of k are not conserved,
however one can recover k⊥ by parameterizing the photoelectron with a free electron dis-
persion modified by the inner potential V0. The inner potential can be thought of as the
average potential an electron feels in the solid. Therefore,

ℏk⊥ =
√

2m[Ekincos2θ + V0]. (2.9)

Because Ekin depends on the photon energy, we can use a synchrotron with tunable
energies to probe the out of plane component and the inner potential is determined employing
the fact EB(k||,k⊥) = EB(k||,k⊥+nG⊥). Because two-dimensional states don’t have an out
of plane component, changing the photon energy and measuring whether the states disperse
or not is a way to distinguish bulk vs surface states. Finally the dipole matrix element, M ,
was introduced above in the non-interacting picture. Manipulating this matrix element with
different polarization’s of light is used to understand the orbital character of the bands in
the material. Incorporating spin-dependent reflections from a magnetic thin-film due to the
exchange interaction enables spin-resolution of the ARPES spectrum.

2.6 Density Functional Theory

One goal of materials science and condensed matter physics is to understand the electronic
structure of a material, specifically the properties of electrons and atoms in the material. We
do this by calculating the many body wavefunction Ψ, where Ψ contains all the information
of the system. The Hamiltonian (in order to solve ĤΨ = EΨ) for many electrons and nuclei
goes as:

Ĥ = − ℏ2

2me

∑
i

∇2
i −
∑
n

ℏ2

2Mn

∇2
n−
∑
n,i

Zne
2

|ri −Rn|
+
1

2

∑
i ̸=j

e2

|ri − rj|
+
1

2

∑
n̸=m

ZnZme
2

|Rn −Rm|
(2.10)

where electrons are denoted by i, j and nuclei by n,m. The terms in Eq. 2.10, left to
right, are the kinetic energy of the electrons, the kinetic energy of the nuclei, the interaction
between electrons and nuclei, the Coulomb interaction between electrons, and the Coulomb
interaction between nuclei. An additional term is added to Eq. 2.10 for relativistic effects
such as spin orbit coupling. The term with Mn in the denominator is small meaning it can
be discarded, this is the Born-Oppenheimer approximation where the nuclei are treated as
fixed and provide a static potential V the electrons feel. Focusing on the Hamiltonian of the
electrons (nuclei information taken as parameters) we get:

Ĥe = − ℏ2

2me

∑
i

∇2
i −

∑
n,i

V (|ri −Rn|) +
1

2

∑
i ̸=j

e2

|ri − rj|
+ EH (2.11)

where V is the potential acting on the electrons from the nuclei and EH are interactions
resulting from the nuclei but not critical for describing the electrons. Now with the mean
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field potential V one can solve for Ψ and given Ψ we obtain observables. The density, n(r),
is one such observable defined as:

n(r) = N

∫
d3r2...d

3rNΨ
∗ (r, r2, . . . , rN)Ψ (r1, r2, . . . , rN) . (2.12)

Using this definition of the density, the total energy is:

⟨H⟩ = ⟨T ⟩+ ⟨Vint⟩+ EH +

∫
d3rV (r)n(r) (2.13)

with Vint representing the Coulomb interaction among electrons and T is the kinetic
energy operator. The ground state energy E0 corresponding to the the ground state wave-
function Ψ0 is the one with lowest energy. From this ground state we derive properties such
as total energy, electron density, correlation functions, and materials properties. Formulated
by Hohenberg, Kohn, and Sham, density functional theory (DFT) has been shown to re-
duce the quantum many-body problem to one of solving a self consistent field one particle
problem [37, 38]. They showed that for an interacting electron system in a static potential
the ground state energy can be expressed as a functional of the charge density rather that
E[Ψ (r1, r2, . . . , rN)]. There are a few important statements regarding DFT:

• The ground state energy is written as E0[n] =
∫
drv(r)n(r) + F [n] where n(r) is the

electron density, F [n] is a universal functional of density, and v(r) is an external static
potential

• E0[n] is at a minimum for the correct physical ground state density with N =
∫
n(r)dr

• E0[n] and n(r) can be exactly obtained from an associated one body problem in an
effective potential veff (r)

• The ground state wavefunction Ψ0 is uniquely determined by the ground state density
n0

The Kohn-Sham formulation [38] is the most widely used approach to find the one-body
equations to exactly determine n(r). The resulting Kohn-Sham equations give the same
ground state density and energy as the many-body problem. First the F [n] term contain
contributions from the kinetic energy and the electron-electron interaction energy. This can
now be split up as:

E0[n] =

∫
drv(r)n(r) + Ts[n] + Exc[n] +

e2

2

∫
n(r′)n(r′)

|r− r′|
drdr′ (2.14)

where Ts[n] is the kinetic energy for the non-interacting system and the last term in 2.14
is the interaction energy if exchange and correlations are neglected, EHartree (self interaction
energy of the density). The sum of these two terms should be close to F [n] and the term Exc

(the exchange-correlation functional) now contains contains everything beyond EHartree +
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Ts[n]. Every term other than Exc in 2.14 involves independent particles. Now we can use the
electron density of the fictitious system that is non-interacting coupled with the fact that
E0[n] is minimum for the correct density to vary the non-interacting density to minimize the
the energy functional.This this leads to the Kohn-Sham equations:(

− ℏ2

2me

∇2
i + v(r) + vHartree(r) + vxc(r)− ϵi

)
ψi(r) = 0 (2.15)

with vxc(r) = δExc/δn(r).
This formulation has removed the need for a very complex 3N many-body wavefunction

however we still don’t know Exc. One approach is the local density approximation (LDA)
where Exc[n] =

∫
n(r)ϵxc(n(r))dr where the exchange correlation energy density is ϵxc for a

uniform electron gas. Another approach is called Generalized gradient approximation (GGA)
which accounts for some spatial variation in the functional, Exc[n] =

∫
f (n(r),∇n(r))) dr.

PBE functionals are one particular approach to GGA [39]. These functionals do not describe
strongly correlated electrons well, such as d and f electrons which are localized. LDA and
GGA fail because they do not contain orbital information and underestimate the localization.
A formulation of Exc called LDA+U takes into account the orbital dependence.

In order to solve the Kohn-Sham equations, the Kohn-Sham orbitals need to be expanded
in a set of basis functions. The most common option is to expand in a plane wave basis:

ψn,k(r) =
1

Ω1/2

∑
G

CGnke
i(G+k)·r (2.16)

where Ω is the volume of the cell, k is the wavevector, and G is the reciprocal lattice vector.
To be exact the sum over G would be to infinity, but typically a plane wave cutoff energy
is specified that includes enough G that a total energy convergence is reached. Another
approximation introduced in DFT is the psuedopotential method which approximates the
core states. The core states contribution to binding energy and bonding in a crystal are
negligible. In order to accurately describe the highly spatially varying wavefunctions near the
core, many plane waves are needed. By constructing smooth pseudopotentials from the all-
electron wave function the number of plane waves is greatly reduced and the computational
demand is reduced. The Projector augmented wave (PAW) approach generalizes this by
creating an augmentation sphere that smoothly matches to the wavefunctions outside the
sphere [40]. A typical DFT workflow goes as: Initial guess of the charge density n(r),
then calculate the effective potential vKS, the solve the Kohn-Sham equations 2.15, evaluate
the density and total energy, check if it has converged, if yes then output quantities or if
no then return to initial guess. This was done using the VASP code [41, 42] on different
supercomputers around the country, mainly NERSC and Lawrencium.
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2.7 Tight-Binding Hamiltonians

DFT provides full calculations and very accurate results with chemical specificity. However,
sometimes it is more useful to consider a simpler representation that provides more physical
intuition of the low energy physics. This is a situation where tight-binding models using
localized orbitals is beneficial. For a 3D periodic system we can choose the tight-binding
orbitals to be

ϕRj(r) = φ(r−R− τj) (2.17)

where φ is an atomic-like orbital typically s, p, or d-like orbitals with the form of a radial
function times a spherical harmonic, R is a lattice vector, and τ is a basis vector for where the
orbital sits in the unit cell. The tight-binding orbitals are orthonormal ⟨ϕRi|ϕR′j⟩ = δRR′δij.
The Hamiltonian matrix elements are:

Hij(R) = ⟨ϕR′ i|H|ϕR′+Rj⟩ = ⟨ϕ0i|H|ϕRj⟩ (2.18)

This matrix element corresponds to a hopping from orbital j in cell R
′
+R to orbital i

in R
′
(in second quantized notation this is c†

R′ i
cR′+Rj). We can construct Bloch-like basis

functions:

|χk
j ⟩ =

∑
R

eik·(R+τj) |ϕRj⟩ (2.19)

with ⟨χk
i |χk

j ⟩ = δij. the Bloch eigenstates expanded in this basis are

|ψnk⟩ =
∑
j

Cnk
j |χk

j ⟩ (2.20)

. The Hamiltonian in this basis is

Hk
ij =

∑
R

eik·(R+τj−τi)Hij (R) (2.21)

Solving this Hamiltonian reduces to solving the eigenvalue equation Hk ·Cnk = Enk ·Cnk.
To generalize this so we are not just studying spinless electrons, we can double each tight-
binding orbital. Now each term has an additional index s to spin up or down along the z
axis. The Hamiltonian is now an L× L matrix with 2× 2 blocks and is written as

Hijss′ =
∑
a

hijaσass′ (2.22)

where σ are the Pauli matrices.
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Chapter 3

Spin-momentum locked surface states
in amorphous Bi2Se3

This chapter is based on an accepted paper in Nature Materials with explicit permission
from all co-authors. The full reference is P. Corbae, S. Ciocys, D. Varjas, E. Kennedy, S.
Zeltmann, M. Molina-Ruiz, S. Griffin, C. Jozwiak, Z. Chen, L.-W. Wang, A. M. Minor, M.
Scott, A. G. Grushin, A. Lanzara, and F. Hellman, Observation of spin-momentum locked
surface states in amorphous Bi2Se3 (2020), arXiv:1910.13412 [cond-mat.mtrl-sci].

Much of materials science and condensed matter physics has focused on exploiting crystal
symmetries to understand physical properties, headlined by topological phases and sponta-
neously broken symmetries in quantum materials. The unusual properties of topological
materials, such as the robustness to disorder and their quantized electromagnetic responses,
have prompted extensive efforts to classify crystalline topological matter. Non-magnetic
crystalline topological insulators and metals with topological bands close to the Fermi level
are relatively abundant, representing ∼50% of all materials [1, 2, 3], a number that may
increase by including magnetic space groups [43]. To identify topological crystals one asks if
the band representations of a particular space group admit a trivial insulator limit compati-
ble with the crystal symmetries; if not, the material is labeled topological. The absence of a
crystal lattice places amorphous matter outside this classification, even though it is a subset
of materials of comparable size to their crystalline counterpart. This raises the question we
have set to answer in this work: is there an amorphous topological insulator in the solid
state?

Theoretically, amorphous matter can be topological since there are non-spatial symme-
tries, such as time-reversal symmetry, that protect topological phases. Topological insulator
crystals are robust against disorder; topological states do not rely on a periodic crystal lattice
at all. In the presence of time reversal invariant disorder the topological states will remain
robust and not localize, unless the disorder closes the bulk energy gap, [16, 44]. Therefore,
amorphous materials, which lack translational symmetry and cannot be understood in the
context of Bloch states, can still present topological properties. Specifically, electrons in a
lattice of randomly distributed atoms with strongly disordered electron hoppings—so strong
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that no memory of a lattice can be used to label the sites—can present topologically pro-
tected edge states and quantized Hall conductivity, hallmarks of topological insulators [45,
25, 26, 19, 27, 28, 29, 30, 31]. As a proof of principle, a random array of coupled gyro-
scopes [19] was designed to act as a mechanical analogue of an amorphous topological state
with protected edge oscillating modes, but there has so far been no experimental realization
in a solid state material system.

In this work, we have grown and characterized thin films of amorphous Bi2Se3. The
temperature and field dependent resistance reveals the existence of low dimensional carriers
with a reduced bulk contribution. Angle-resolved photoemission (ARPES) and spin-resolved
ARPES show a two dimensional surface state with strong spin-momentum locking, the spin-
polarization changes with ARPES detection angle which is proportional to the plane-wave
momentum k. In its crystalline form Bi2Se3 is a textbook three-dimensional topological
insulator [46]. We find that amorphous Bi2Se3, despite being strongly disordered and lacking
translational invariance, hosts two dimensional spin-momentum locked surface states, while
nanocrystalline Bi2Se3 does not. By numerically simulating a model for amorphous Bi2Se3
with trivial and topological phases, we show that dispersive spin-locked surface states exist
in amorphous matter with strong spin-orbit coupling, allowing us to discuss their origin.

3.1 Growth and Structure

Amorphous Bi2Se3 thin films were thermally evaporated in a UHV chamber with base pres-
sure of 10−9 Torr. The films were grown at room temperature from high purity (99.999%)
elemental Bi and Se single sources. Stoichiometry of the films was confirmed using XPS
(X-ray photoelectron spectroscopy), EDS (Energy dispersive X-ray spectroscopy), and RBS
(Rutherford backscattering spectroscopy). High resolution TEM and Fluctuation electron
microscopy (FEM) were performed on 10 nm thick Bi2Se3 films deposited on a 10 nm thick
SiN window. FEM experiments were performed using an FEI TitanX operated at an accel-
eration voltage of 200 kV. Diffraction images were collected on an Orius CCD system with
an exposure time of 0.3 seconds and a camera length of 300 mm. The probe convergence
angle was set to 0.51 mrad by adjusting the third condenser lens current, resulting in a probe
diameter of 2.2 nm and a probe current of 15.5 pA. Nanodiffraction data were collected as
15-by-15 image stacks (225 total images). Multiple 225-image datasets were collected for
both the amorphous and polycrystalline Bi2Se3 for statistical averaging. Each data set cov-
ered an area on the film of approximately 77-by-77 nm. The first image from each dataset
was excluded to avoid including any potential sample damage or contamination in the data
resulting from the parked beam. The central beam was covered using a beam stop and the
beam position remained constant across all FEM images for each sample. Variation in peak
positions and intensities were negligible across data from different locations on a single film.
Imaging conditions were held constant for all data collection to prevent variations in micro-
scope alignment. The amorphous structure of the film was confirmed with XRD, Raman
spectroscopy, and TEM.
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Figure 3.1: Compositional characterization. (a) RBS spectrum fit indicating near stoichio-
metric films. 0.8 MeV peak is from Oxygen from the thermal oxide between the nitride and
the silicon wafer. (b) XPS spectra of the Bi 5d and Se 3d core levels indicating stoichiomet-
ric films; the quantitative comparison of these intensities allow us to confirm stoichiometry.
(c) EDS compositional mapping performed from STEM HAADF showing no composition
gradients and only statistical variations in composition across the sample. There are two Bi
maps and two Se maps.

The Bi2Se3 films used for this study were grown on 300 nm of amorphous SiNx on top of
500 micron Si(100) (10x10x0.5mm3) using a standard thermal evaporation technique. The
films were grown at room temperature with fluxes to match the stoichiometric ratio. The
use of an amorphous substrate, low base pressure to reduce impurities, and high growth
rates enabled us to grow amorphous films where previous studies only produced nanocrys-
talline films. Rutherford Backscattering Spectroscopy (RBS) was used to characterize the
composition and to look for impurities. RBS, Fig. 3.1(a), shows our films are within ±3% of
the exact stoichiometry of 40/60%. X-ray photoemission spectroscopy (XPS) measurements,
Fig. 3.1(b), of the Bi 5d and Se 3d core levels prove we are in fact measuring Bi2Se3 films.
EDS compositional map characterization, with a lateral resolution of 5 Å, were taken via
Scanning transmission electron microscopy high-angle annular dark field (STEM HAADF)
show there is no clustering or composition gradients in the films (Fig. 3.1(c)). The EDS
results constrain the size of possible Se clusters to be less than or equal to 5 Å. Large-scale
real space images are shown in Fig. 3.2(a) to show the lack of crystalline order, such as grain
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Figure 3.2: Structural characterization. (a) Larger scale HRTEM images showing an absence
of any long-range order and the tops of a columnar microstructure (”web”) which is common
in amorphous thermally evaporated films such as these and should not be mistaken for grains.
Light/dark regions correspond to less/more Bi2Se3. (b) FFT of HRTEM in (a). (c) Scanning
nanodiffraction with a 2.2 nm diameter probe and a 5 nm step size resulting in areas of
approximately 77 nm by 77 nm each. The films are amorphous in all the regions. A diffuse
ring attributed to the amorphous structure are observed at each spot. There are no signs
of any nanocrystalline order or puddling of crystalline Bi2Se3. (d) XRD patterns showing a
broad bump at low angle, associated with the short range nearest neighbor ordering of an
amorphous films (the amorphous halo, green line), and the contribution from the background
(red line). (e) Diffraction pattern of a decapped sample.

boundaries, nanocrystallites, etc. (FFT shown in Fig. 3.2(b)). Given HRTEM probes a
very small fraction of the sample, we performed scanning nanodiffraction to determine if the
sample is locally amorphous across the entire sample. A montage of all diffraction patterns
covering a 77 nm by 77 nm area is shown in Fig. 3.2(c). Each diffraction pattern shows a
diffuse ring and no diffraction spots, proving our sample isn’t just locally amorphous but
amorphous across the entire sample. The diffraction patterns showed the same ring pattern
that was seen in other HRTEM samples. XRD, Fig. 3.2(d), shows no peaks in the spectrum
that correspond to crystalline Bi2Se3 interatomic planes and at low 2θ values, where θ is the
incident angle, there is an amorphous hump. In order to check that the decap process was
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not crystallizing our films we performed HRTEM on samples undergoing the same decap
procedures Fig. 3.2(e). Raman was performed with a Renishaw inVia 488 nm Ar/Ne laser
using linearly polarized light and operating at 7-60 µW/µm2.

High resolution transmission electron microscopy (HRTEM) on amorphous Bi2Se3 thin
films, Fig. 3.3(a), shows no signs of crystalline order or even precursor lattice fringes which
would have suggested incipient nanocrystals were starting to form. The diffraction pattern
in the Fig. 3.3(a) inset is typical of amorphous materials with well-defined nearest neighbor
coordination and inter-atomic distance. There is a diffuse but well-defined inner ring cor-
responding to the short-range ordering of nearest neighbors. To further ensure we are not
probing nanocrystalline regions, scanning nanodiffraction was performed and shown in Fig.
3.3(b). Four select beam spots each separated by 5 nm show amorphous speckle [48] and no
signs of Bragg peaks. The speckle visible in the scanning nanodiffraction images from Bi2Se3
is associated with local ordering and orientations of clusters of atoms, which correspond to
near- and off-Bragg conditions. The diffracted intensity originates from nanoscale volumes
within the sample. The speckle observed across the Bi2Se3 diffraction images is highly uni-
form, which is indicative of many randomly oriented nanoscale clusters of atoms with short
range ordering in the amorphous structure. The diffracted intensity versus scattering vector
k for eight different regions is shown in Fig. 3.3(c), with a single peak corresponding to
the diffuse diffraction ring. The nearest neighbor spacing set by the ring is 2.39 Å, com-
pared to 3.2 Å in crystalline Bi2Se3 [49]. To further investigate the structure, fluctuation
electron microscopy (FEM) was used to determine the variance of the diffracted intensity,
from which medium range order (MRO) can be extracted and compared to that of nanocrys-
talline Bi2Se3. FEM is a scanning nanodiffraction technique that probes MRO in amorphous
materials through statistical analysis of the variance in diffracted intensity as a function
of scattering vector across many diffraction patterns. Fig. 3.3(d) presents the normalized
variance of the diffracted intensity for amorphous Bi2Se3 and nanocrystalline Bi2Se3. The
variance in diffracted intensity is a measure of the squared deviation (or fluctuations) in the
intensity from the mean intensity at a specific scattering vector. The variance is normalized
by dividing by the mean intensity for the specific scattering vector [50]. Bragg scattering
from crystalline regions induces large variations in intensity compared to scattering from
amorphous materials. The nanocrystalline sample shows a very large variance with multiple
strong peaks due to crystalline order while the amorphous sample does not, providing clear
evidence the amorphous samples are indeed amorphous. The electron diffraction scan shows
a diffuse diffraction ring over the entire sample; together with the HRTEM images which
show no sign of nanocrystals or precursor lattice fringes, these prove the amorphous nature
of the film. The samples require selenium capping and subsequent decapping in order to
preserve the surface for ARPES. To verify that the decapping process does not generate
nanocrystalline regions, Fig. 3.3(e) displays a XRD 2θ scan for amorphous Bi2Se3, showing
a strong substrate peak and a low angle bump typical of amorphous materials which lack
long range order but still maintain a well defined interatomic spacing. Electron diffraction
confirms the decapped film is still amorphous. The Raman spectrum, Fig. 3.3(f), shows
one broad peak between 135 cm−1 and 174 cm−1. As the laser power increases two peaks
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Figure 3.3: Structural and spectral evidence for the amorphous atomic structure of Bi2Se3.
(a) HRTEM image. Inset: Diffraction pattern for the amorphous Bi2Se3 films. We observe a
diffuse ring due to the amorphous nature of the film. (b) Scanning nanodiffraction patterns
taken with a beam spot of 2 nm separated by 5 nm. Each spot shows a speckled ring and
no signs of crystallinity. Detector defects are highlighted by a box throughout the figure.
(c) A 1D intensity cut, I(k), for 8 different regions as well as the average intensity. A peak
is observed ∼ 3.2 nm−1. Detector defects are highlighted by a box. (d) FEM variance,
V (k), as a function of scattering vector k for amorphous and nanocrystalline Bi2Se3. The
nanocrystalline sample exhibits substantial variation in intensity for a given k-vector from
crystalline Bragg diffraction peaks, the amorphous sample shows little variation. Detector
defects are highlighted by a box. (e) A XRD 2θ scan for amorphous Bi2Se3 after the Se decap
showing the same broad low angle peak near 17 o and no signs of incipient crystallization.
The substrate peak is labeled. (f) Raman spectra for 50 nm amorphous Bi2Se3 films using
a 488 nm laser. The peaks are labeled with their respective Raman mode. Different curves
(blue and purple) correspond to different laser powers, showing the bulk Raman modes
become more well-defined and do not shift. Crystalline data [47] (green curve) is overlayed
to show the lack of a Van der Waal mode at ∼72 cm−1 in the amorphous films and the extra
peak in the amorphous film at ∼250 cm−1 which is associated with Se-Se bonding.
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can be resolved, which correspond to the bulk E2
g and A2

1g vibrational modes, respectively.
The A1

1g van der Waals mode at ∼72 cm−1, which is created by the layered structure of the
crystal, is absent in our samples. Instead, we observe a peak at 238 cm−1 not present in
crystalline Bi2Se3, which we attribute to amorphous Se-Se bonding as seen in Se films [51].
The Raman peaks broaden compared to the crystalline system; the full width half maximum
of the E2

g mode is 23.7 cm−1 compared to 8.0 cm−1 [52]. Additionally, EDS maps confirm
there is no clustering of Bi and Se in our films and show minimal spatial variations, further
confirming that the films do not contain clusters or nanocrystals. These results show that
our samples are amorphous and, while lacking a layered structure with a van der Waals gap,
have a local bonding environment similar to the crystalline phase. Moreover, the decapping
process important for the following sections does not induce crystallization.

Fig. 3.4 presents structural data regarding the nanocrystalline Bi2Se3 thin films we grew
at slower rates. We find that the films are within 1 at% of stoichiometric. These films show
obvious lattice fringes and Bragg diffraction in the scanning nanodiffraction. The R(T ) curve
has an insulating behaviour and no metallic component (3.5(e)). The weak antilocalization
does not produce a sharp cusp at low fields as we see in our amorphous films and the fitting
doesn’t produce α values that correspond to two dimensional conductance channels. Finally,
there is no dispersion in the ARPES spectrum and no obvious midgap states (3.10(f)). These
results are in stark contrast to our amorphous data, further solidifying the fact we are probing
the spin-momentum locked surface states in amorphous Bi2Se3.

3.2 Transport

The amorphous Bi2Se3 samples ρ (T ) was measured using a four point probe. The samples
were grown as a bar using a metal mask onto pre-deposited Au(5 nm)/Cr(2 nm) contacts
to ensure ohmic contact (shown in Fig. 3.5(a) inset). Magnetrotransport was measured in
the Van der Pauw configuration with samples grown onto pre-deposited Au(5 nm)/Cr(2 nm)
contacts.

Figure 3.5(a,b) shows the temperature dependent transport data for different thicknesses
in amorphous Bi2Se3, as well as that for the nanocrystalline Bi2Se3 (Fig. 3.5(e)). The
resistivity, ρ (T ), is shown in Fig. 3.5(a). The ρ (T ) values (∼70-140mΩ·cm) are larger
than the crystalline system (∼1-2mΩ·cm [53]). The amorphous system also demonstrates a
much weaker T dependence than the crystalline counterpart [54]. As is typical in amorphous
metals, the carrier mean free path is determined more by disorder-driven localization than
phonon interactions, leading to a largely temperature independent resistivity [55]. Moreover
the high ρ and the weak temperature dependence is inconsistent with either a purely metallic
or purely insulating material, and suggestive of a metallic surface on a localized bulk state.
Due to the potential metallic surface, we consider the resistance in Fig. 3.5(b), R (T ) =
ρ (T ) · L/wt, where t is the film thickness. Again, the R (T ) values are greatly increased
compared to the crystal (∼5-250mΩ for similar thicknesses [53]). While R (T ) is largely
temperature independent, the thicker films show a more pronounced bulk behavior at high



CHAPTER 3. SPIN-MOMENTUM LOCKED SURFACE STATES IN AMORPHOUS
BI2SE3 47

Figure 3.4: Structural data for nanocrystalline Bi2Se3. (a) Real space HRTEM image show-
ing lattice fringes and crystalline order (red box) and FFT of HRTEM showing bright spots
from crystalline order. (b) Scanning nanodiffraction patterns from several places in the sam-
ple (2 nm spot size as discussed above) with obvious Bragg diffraction spots.

temperature [56], seen in the inset of Fig. 3.5(b). R(T ) for each thickness saturates at low
temperature; this is in contrast to crystalline Bi2Se3 which shows a low temperature upswing.
The low temperature values range from ∼ h

3e2
to h

e2
, similar to bulk insulating topological

insulators when gated to bring the Fermi level into the bulk gap [57, 58, 59, 60, 61]. The
low temperature R (T ) values vary with thickness, possibly a result of small variations in
composition between sample thicknesses (< 1 at% deviation) or thickness dependent defect
formation [53]. The effect of composition needs to be explored further. Transport and
ARPES results were reproducible on different samples. The R (T ) data was fit using a two
channel conductance model [62] represented by the dashed curves in Fig. 3.5(b). The model
requires parallel contributions from an insulating, variable range hopping bulk and metallic
surface states, and provides an overall good fit to the data. Below around 150K, the surface
contribution dominates for films of all thicknesses. These results indicate that the surface
state contribution to conduction is metallic and dominant over a large temperature range for
the amorphous samples. The conductivity in nanocrystalline Bi2Se3 (shown in Fig. 3.5(e))
drops over the entire temperature range and does not display any metallic behavior with
temperature.

The magnetoconductance (MC) provides another means to probe the transport. Fig.
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3.5(c) shows MC data for a 140 nm film, revealing a sharp decrease in the low field ∆G
(< 2 T) at low temperatures which is typical of weak anti-localization (WAL), consistent
with a metallic surface state in amorphous Bi2Se3 [63]. This is in contrast to other non-
magnetic amorphous systems which are topologically trivial and show a MC increase due
to weak localization [64]. The case of positive MC is likely due to a diminished spin-orbit
coupling (SOC) effect where disorder closes the mobility gap or a local environment that
does not produce topological states. In amorphous Bi2Se3 the nearest neighbor distance is
smaller than in the crystal, acting similar to pressure, which has been shown to lead to a
topological gap [65]. In amorphous Bi2Se3, due to strong SOC, backscattering is suppressed
when a field is absent and time reversal symmetry is present. When time-reversal symmetry
is broken with the application of a magnetic field, backscattering increases leading to a
positive MR. The magnetoconductance can be fit with the standard Hikami-Larkin-Nagaoka

(HLN) formula for WAL [66], ∆G (B) = α e2

πh

[
Ψ
(

ℏ
4eBl2ϕ

+ 1
2

)
− ln

(
ℏ

4eBl2ϕ

)]
where Ψ is the

Digamma function, B is the out-of-plane field, lϕ (the phase coherence length) and α are
used as fitting parameters. According to this model, each conductance channel with a π
Berry phase should contribute an α = −1/2 factor to ∆G [67]. Fitting our low field data,
Fig. 3.5(d), at 2K gives a value of α = −0.81, suggesting we have two decoupled surface
states [68]. At 20K, α = −0.51 suggesting the surface states are coupled to a bulk state,
causing the entire film to act effectively as one channel, as seen in crystalline Bi2Se3 from
2nm to 100 nm [69, 70]. As the temperature increases the WAL contribution is diminished.
Based on Hall measurements, the two-dimensional carrier density is n2D = 2.8× 1014 cm−2

and the three-dimensional carrier density is n3D = 1.9 × 1019 cm−3, leading to a mobility
of 21.8 cm2/Vs. According to the Ioffe-Regel criterion amorphous Bi2Se3 has kF l ∼ 1 [71]
and have similar µ,n3D values reported in the bulk insulating BiSbTeSe solid solution [72].
Additionally, the calculated mean free path at 2K is ∼ 1 nm. This n3D likely places EF

into the conduction band (seen in ARPES presented below), although the depth depends
on the effective mass [71]. Since our system is amorphous the bulk carriers are expected to
be localized and provide little contribution to the transport, leading to the observed high
ρ. The observed behavior in the amorphous Bi2Se3 sheet resistance and MR is a result of
metallic surface states that dominates over a wide range of temperatures.

The R (T ) data was fit using a two-channel conductance model. The total conductance
is the parallel sum of bulk conductance and a metallic surface conductance. The bulk
conductance consists of variable range hopping, while the surface conductance is metallic,

GT = 1/R(T ) = GBulk +GSurface (3.1)

GBulk = Ce(−T0/T )1/4 (3.2)

GSurface = (A+BT )−1. (3.3)

This model gives good fits to the resistance data and allows us to extract the surface state
contribution, Gsurface/Gtotal, as seen in Fig. 3.6(c).

The bulk conductance behaves as expected for different thicknesses, especially at low
temperature where extrinsic effects have been frozen out, as seen in Fig. 3.6(a). As thickness
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Figure 3.5: Electron transport in amorphous Bi2Se3 (a) ρ (T ) for 76 nm, 96 nm and 129 nm
films. All films show a high resistivity with little temperature dependence. Inset: Schematic
of the structure used to measure resistivity. (b) The resistance for 76 nm, 96 nm and 129 nm
films. All films show high temperature VRH behavior (inset) and low temperature metallic
behavior in R with a low temperature saturation. Two-channel conductance fits the data
reasonably well indicating a metallic surface and insulating VRH bulk behavior. (c) Con-
ductance change as a function of the magnetic field for a 120 nm film, measured at 2K, 4K,
10K, 20K, 40K and 80K, where ∆Gxx = G (B) − G (0). The deep cusp in the low field
regime is characteristic of the WAL effect. (d) Magnetoconductance HLN fits showing α
values indicating decoupled surface surface states at 2K and a single conduction channel at
20K. The dephasing length lϕ decreases with increasing temperature. (e) Nanocrystalline
Bi2Se3 conductivity as a function of temperature. The conductivity drops with decreasing
temperature. Resistivity is shown in the inset.
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Figure 3.6: Resistivity analysis for the three films of different thicknesses using a two-
conductance channel fit as described in the text, with the bulk modeled as VRH and the
surface as a metallic layer. (a) Bulk conductance as a function of temperature for vari-
ous thicknesses of amorphous Bi2Se3. The bulk conductance goes to 0 as the temperature
decreases, indicating a localized bulk. (b) Gsurface vs. temperature. (c) Surface state con-
ductance contributions taken from the ratio of Gsurf/Gtotal. Below ∼150K, the metallic
surface dominates the total conductance. (d) At low temperatures the resistance saturates
indicative of conduction dominated by the surface. (e) The variation of Hall resistance as a
function of magnetic field at various temperatures (2-300 K)in amorphous Bi2Se3 showing a
linear behavior indicative of electron carriers in the surface (metallic) layer. (f) Magnetore-
sistance in 140 nm amorphous Bi2Se3 (dark to light is increasing temperature).

goes from 129 nm to 76 nm the bulk conductance drops (bulk resistance increases). The
surface conductance is separated by a factor of three, Fig. 3.6(b). We find for the 76 nm,
96 nm, and the 129 nm the B (electron-phonon coupling) parameter to be 4.4, 3.4, and 1.3
Ω/K, respectively. These values are smaller than previously reported value of ∼ 6Ω/K in
the bulk insulating TI BiSbTeSe2 [56]. At low temperatures (<20K), resistivity values begin
to decrease in slope and level off indicating at lower temperatures the values saturate, Fig.
3.6(d). The resistivity data exhibits metallic and low temperature behavior that is consistent
with multiple channels of conduction. Fig. 3.6(e) shows the Hall resistance as a function
of magnetic field at various temperatures in amorphous Bi2Se3. Hall resistance is linear
with magnetic field and is nearly temperature independent. This indicates that transport
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is determined by a single carrier (electron type) and the lack of temperature dependence
implies that carrier density is unaffected by temperature as expected for a metallic surface
state. The magnetoresistance is shown in Fig. 3.6(f).

3.3 Theory

Figure 3.7: (a) Tight Binding Structure. Histogram of the relative positions of atoms in the
xy plane for a one-unit thick slice of the amorphous lattice structure used in the numerics.
The correlation hole for distances under one and an annular peak corresponding to close
packing are visible. (b) Topological phase transitions in the tight-binding model. Top
panel: total density of states as a function of onsite potential M in a sample with periodic
boundary conditions, brighter colors indicate higher density on a logarithmic scale. Overlaid
the eigenvalues of the effective Hamiltonian Heff (0) (red) and Heff (∞) (blue). Bottom
panel: number of pairs of occupied inversion odd states in Heff (0) (red dashed), Heff (∞)
(blue dashed) and their total modulo 2 giving the Z2 topological invariant (solid black).

Amorphous materials are not expected to have any electronic states with well-defined
momenta, but are nonetheless known to support metallic conduction and superconductivity.
However, since the nearest neighbor distance is well defined (inset Fig. 3.3(a)), there exists a
good reciprocal length scale. If sharp spectral features are observed, which is the case in our
ARPES measurements, there exist states with good momentum quantum numbers since this
corresponds to the overlap of the electronic wave-functions with plane waves of well defined
k, modulated by matrix elements. The coordinates θ and ϕ are experimentally measured
and refer to the respective angles of photoemission from the sample surface. The plane wave
components kx and ky are proportional to θ and ϕ at small angles, where θ is the azimuthal
angle and ϕ is the polar angle. In our work we refer to spin-momentum locking as the spin
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asymmetry around zero angle since at small angles, the momentum of the plane wave and
the detection angle are proportional.

To interpret our experimental data and determine if it is consistent with a topological bulk
we developed a numerical model that realizes a Dirac-like state in the absence of crystalline
symmetry. Motivated by the similarity of local environments between the crystalline and
amorphous Bi2Se3 found in Fig. 3.6, we use an amorphous variant of the three-dimensional
four-band (spin-1/2 x 2-orbital) BHZ model [46, 45]. From the model we numerically obtain
a spin resolved spectral function, shown in Fig. 3.10(a,b), for both the trivial and topological
phase of amorphous Bi2Se3, respectively. While inversion is expected to be an average bulk
symmetry in amorphous solids, it will be broken by the surface, allowing us to include a
surface onsite potential that breaks this symmetry. As for the crystal surface states, this
term spin-splits trivial surface states at EF . This surface potential depends on the details of
the surface termination (such as dangling bonds, Se vacancies, or surface reconstruction [73,
74]) and can tune the Dirac point to arbitrary binding energies [75, 76, 77]. However, it does
not affect the bulk topological properties. In the trivial phase we observe spin-split states
symmetric around ϕ = 0 above the gap, while in the topological state a Dirac cone pinned
to ϕ = 0 is visible, guaranteed by time-reversal symmetry, spanning the bulk gap (see Fig.
3.10(a,b)).

The Hamiltonian used to describe amorphous Bi2Se3 features direction-dependent spin-
orbit hoppings set by the normalized hopping vector d̂ and is the sum of onsite and hopping
terms

Honsite = mσ0τz, (3.4)

Hhop(d̂) = it1(d̂ · σ)τx + t2σ0τz (3.5)

where σi and τi are the spin and orbital Pauli matrices respectively, m sets the splitting
between the local s and p-like orbitals, t1 is the spin-orbit hopping, and t2 is the normal
hopping amplitude. In the crystalline case this Hamiltonian correctly reproduces key features
of the topologically nontrivial bands closest to the Fermi level [46]. We implement this
tight-binding model on large systems of short-range correlated amorphous structures and
investigate the topological surface states by calculating spectral functions using the Kernel
Polynomial Method [78, 79].

To construct an amorphous system, we randomly add atomic sites in a fixed volume from
an uncorrelated uniform distribution. Treating atoms as hard spheres, we reject atoms closer
than distance one to existing atoms and this procedure is performed until the goal density
is reached. This procedure minimizes density fluctuations and produces a peak in the radial
distribution function at the typical nearest neighboring distance, matching the distribution
function of an amorphous system more closely than independent uniformly distributed points,
see Fig. 3.7(a). We then connect each neighbor to its 6 other nearest neighbors with hoppings
of fixed magnitude, preserving the key features of octahedral coordination and fixed bond
lengths, as in crystalline Bi2Se3. We do not distinguish Bi and Se atoms in this simplified
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effective model. The Hamiltonian of the system contains an onsite and a hopping term,

H = Honsite +Hhop(d̂) (3.6)

Honsite = mσ0τz, (3.7)

Hhop(d̂) = it1(d̂ · σ)τx + t2σ0τz. (3.8)

where d̂ is the normalized nearest neighbor vector.
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Figure 3.8: Density of states for ten amorphous structures. The mean bulk gap is ∼ 300
meV.

To calculate the ground state (or finite temperature) expectation values of observables in
large systems we use the Kernel Polynomial Method (KPM) [80]. The observable relevant to
photoemission spectroscopy, sensitive to the topological nature of the system, is the energy
E and momentum k dependent surface spectral function,

A (k, E) =
∑
l

⟨k, l|δ (H − E) |k, l⟩ (3.9)

where |k, l⟩ is a plane wave state of wavevector k nonzero only in the local orbital l. When we
restrict the local part of the plane wave vectors to a certain spin or orbital polarization the
spectral function is spin-resolved, we consider the ±1 eigenstates of the local spin y operator
σyτz. We use the Kwant [81] software package to generate the tight-binding Hamiltonians
and calculate spectral functions using the code published in Ref. [79]. The results shown
were obtained using a sample of dimensions 80 × 80 × 20 and 0.4 average density, 51200
sites in total. The bulk parameter values are (in arbitrary units) t1 = 1, t2 = 1, M = 4
for the topological and M = 6.5 for the trivial case, and we use a constant electric field in
the surface layer of thickness d = 3 with electric field strengths Ez = −1. To obtain the
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surface spectral function we used plane waves with constant |k| = 7.5 in the xz plane and
exponential decay in the z direction with Imkz = 0.5i.

The emergence of a single cone around Γ in the topological case can be understood as a
consequence of average rotational invariance. This average imposes a rotationally symmetric
dispersion relation of the topological surface state. The existence of a single topological state
with an averaged Fermi velocity in amorphous topological insulators has been observed in
simulations and in synthetic systems, see e.g. Refs [45, 19].

Lastly, we point out that our 3D amorphous topological insulator model is adiabatically
connected to others discussed in the literature [45, 82]. Nontrivial bulk topology (beyond the
presence of edge states) in these systems has been demonstrated by calculating the Witten
effect [83, 82]. Here we take a different approach to demonstrate bulk topology, based
on effective momentum-space Hamiltonian invariants [24, 30, 31]. We rely on the average
inversion symmetry of the bulk amorphous model, with the local inversion operator given
by τz. Similar to inversion-symmetric crystalline topological insulators, the ±1 inversion
eigenvalues at time-reversal invariant momenta (TRIM) come in Kramers-pairs. Counting
the number of pairs of −1 eigenvalues at all TRIM in the occupied subspace modulo 2 gives
the Z2 topological invariant. In the amorphous system, momentum-space has the topology
of a 3-sphere [30, 31], with the only two TRIM being k = 0 and ∞. Hence we calculate the
topological invariant by the number of pairs of occupied inversion-odd states in the effective
Hamiltonians Heff (0) and Heff (∞). We illustrate this in Fig. 3.7(b), where we show the
topological phase transitions through the gap closings in the total density of states, as well
as the effective Hamiltonian eigenvalues at the TRIM. These gap closings coincide with the
changes in the number of inversion odd occupied states, clearly indicating a topological
regime for intermediate values of the on-site term M . The numerical calculations were
performed using KPM, with Fermi level at EF = 0, on a sample of size 50 × 50 × 50 with
periodic boundary conditions. The structure and parameter values are the same as above.

Ten representative amorphous structures were set up by constructing a box with 54 Bi
atoms and 81 Se atoms which underwent a melting step (at 2000 K), a quenching step,
and an annealing step (at 200 K) in a canonical ensemble, followed by a further relaxation
step. To calculate the band gap we performed Density Functional Theory calculations of
10 representative amorphous structures. The results of our calculations are shown in Fig.
3.8. Several of the structures have mid- gap defect states (the upper five), which are often
present in the electronic structure of amorphous materials [84]. Therefore, to estimate the
bandgap, we neglected any structures with clear mid-gap states as their appearance is not
uniform across the series. Averaging the bandgaps of the five remaining structures gives a
bandgap of 299 meV. We note that many of these also contain extended Urbach tails and
so this value is a lower bound. Finally, since GGA typically underestimates the bandgap
we also compare previous calculations of crystalline Bi2Se3 for different exchange correlation
functionals and experimentally determined values. Surprisingly, Park et al. [85] found that
the PBE gap of crystalline Bi2Se3 is 336 meV while HSE06 underestimates the gap at 37
meV compared to the experimental gap of 300 meV. We conclude, therefore, that PBE is an
appropriate choice for accurate gap calculations.
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3.4 ARPES

Figure 3.9: ARPES/SARPES experimental geometry. ϕ is the detector angle away from
the z-axis in which the z-axis is defined as the normal vector from the sample surface. ϕ

′

is the sample tilt angle and θ is the azimuthal angle. The measured spin polarization is Py

in which y points along the axis of rotation used in the experiment, parallel to the sample
surface.

We performed ARPES at the Advanced Light Source MAESTRO (7.0.2) and MERLIN
(4.0.3) beamlines with photon energies in the range of 65 - 125 eV. The experimental ge-
ometry used to obtain the ARPES/SARPES spectra is shown in Fig. 3.9. ϕ is the detector
angle away from the z-axis, ϕ

′
is the sample tilt angle, and θ is the azimuthal rotation an-

gle. ARPES results taken on different samples and at different beamlines produce the same
results. The decap procedure does not create any crystalline order in our samples. The
spin-resolved spectra were acquired from a high-efficiency and high-resolution spin-resolved
time-of-flight (TOF) spectrometer that utilizes the spin-dependent reflection from a magnetic
thin-film due to the exchange interaction [86]. The light source for the spin measurements was
a Lumeras 11eV Xenon gas-cell laser with 1MHz repetition rate [87]. Synchrotron ARPES
measurements and spin-resolved measurements were taken at 20K and 75K, respectively.
ARPES was analyzed using the PyARPES software package [88].

Fig. 3.10(c) displays the raw ARPES spectrum as a function of energy and emission angle
ϕ at a specific θ, a momentum space slice that intersects Γ (ϕ = 0o). The dispersion revealed
here in amorphous Bi2Se3 marks the first observation of an amorphous band structure with
sharp, momentum-dependent features. Notably, the dispersion exhibits two vertical features
at the Fermi level crossing the bulk gap. The raw spectrum reveals an intensity peak near
EF starting at −0.2 eV and a sharp rise in intensity below −0.5 eV. The increased intensity
of the surface states near EF may be due to photoemission enhancement from the less-visible
bulk conduction band. The increased intensity below −0.5 eV coincides with a less-dispersive
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Figure 3.10: ARPES spectra of electronic states in amorphous Bi2Se3 A calculated spin-
resolved surface spectral function as a function of ϕ for the (a) trivial and (b) topological
phase. In the topological phase the Dirac point is low in binding energies and Rashba spin-
split states develop near the Fermi level. (c) ARPES spectrum E vs. ϕ taken at normal
emission at hν = 117.5 eV. The spectrum reveals vertical states that cross the bulk gap
and meet at −0.6 eV near the bulk valence states. (d) The ring-like in-plane Fermi surface.
ϕ are the angles simultaneously collected by the detector referenced to normal incidence at
a given sample tilt ϕ′. (e) hν vs. ϕ with binding energy integrated from −0.6 eV to the
Fermi level and normalized by photon energy. The hν vs. ϕ plot displays no photon energy
dependence of the photoemission angle. Red dotted lines are fit to intensity peaks in the
hν vs. ϕ spectrum. (f) ARPES spectrum E vs. ϕ for nanocrystalline Bi2Se3 showing an
obvious lack of dispersion.

band which is most likely the bulk valence band. The exact bottom of the conduction band
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and top of the valence band is obscured in the ARPES spectra due to intrinsic broadening.
However, using angle-integrated photoemission, we can roughly estimate the band gap to be
∼350meV, consistent with the calculated DOS from amorphous structures using ab-initio
molecular dynamics (299meV).

Fig. 3.10(d) presents the experimental in-plane Fermi surface in amorphous Bi2Se3. The
annular Fermi surface is consistent with crystalline Bi2Se3, where the dispersion associated
surface state in Fig. 3.10(c) produces a ring at the Fermi surface. The dot product of
the p-orbital axis and the experimental coordinates is well defined and should lead to a
similar scenario as seen in the crystalline case in which p-polarized light couples asymmetrical
across k = 0, leading to the observed orbital effect in the Fermi surface. To confirm that
these states are localized to the surface, in Fig. 3.10(e) we show the photon energy plotted
versus emission angle ϕ. Due to conservation of energy, photon energy (hν) and k2 of
the photoemitted electron are nearly-proportional for large hν, and related by ℏ2k2/2m =
hν −W − Eb where W is the work function of the material and Eb is the binding energy.
In the plane (k2, ϕ) the states are nearly independent of photon energy (red lines in Fig.
3.10(e)). For a 3D amorphous system (or even a 3D polycrystalline system), bulk states must
be spherically symmetric and independent of ϕ due to the absence of an average preferred
direction. Therefore the strong ϕ-dependence and hν-independence suggests the electrons are
not from the bulk and instead originate from surface states. These observations motivate us
to interpret these states as two-dimensional surface states. It is important to note that there
exist significant density of states at the Fermi energy associated with the 2D surface states,
confirming a two-dimensional transport channel as determined by our magnetoresistance
measurements.

In order to understand the size of the bulk electronic energy gap, we consider the pho-
toemission spectrum seen in Fig. 3.11. Fig. 3.11(a) presents the ARPES spectrum at a
photon energy of 72 eV which demonstrates a bulk band gap as seen by the absence of
intensity in the blue area and exhibits strong surface state intensity as seen by the presence
of the broad vertical feature at an emission angle of -3 degrees. The black arrows indicate
an additional flat band feature near the Fermi level that we attribute to the bulk conduction
band. Fig. 3.11(b) provides the angle integrated intensity curves (integrating over -12 to
12 degrees) for three ranges of photon energy: 55 – 79 eV (dark grey), 80 – 96 eV (blue),
97 – 125 eV (red). The dark grey and red curves show heightened surface state intensity
seen in the intensity near the Fermi level and between binding energies -0.1 and -0.5 eV.
The surface state intensity is not present in the blue curves due to photon energy dependent
matrix elements, revealing the true bulk valence band below -0.5 eV. By taking the energy
derivative of these curves, Fig. 3.11(c) better illustrates the band edge energy for the bulk
conduction and valence bands by revealing the onset of changes in the spectral intensity
as a function of binding energy. The flat bulk conduction band is visible in the dark grey
energy range and upturn near -0.03 eV marks the band edge as indicated by the top arrow.
The bottom arrow points to the downturn just above -0.5 eV marking the valence band
edge. The Fermi energy appears as a sharp dip centered at 0.0 eV and should be ignored.
This provides a rough estimate of the band gap as approximately 350 meV and is subject
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Figure 3.11: (a) ARPES spectra at 72 eV demonstrating strong spectral intensity of surface
features as well as a bulk band gap shown as an absence of intensity in the blue region.
Arrows indicate a flat band near the Fermi level that we attribute to the bulk conduction
band enhanced by the overlap with the surface state at the Fermi level. (b) Angle integrated
spectral intensity vs. binding energy for photon energies between 55-125 eV. Dark grey
(55-75 eV) and red (98-125 eV) exhibit strong surface state intensity as observed by the
intensity near the Fermi level and the onset of spectral weight near -0.6 eV. Blue (76-97 eV)
demonstrates very little surface state intensity revealing the bulk valence band below -0.5
eV. (c) dI/dE vs. binding energy allows us to extract estimates for the bulk Eg. The arrows
indicate an upturn near -0.03 eV which corresponds to the flat conduction band edge and a
downturn near -0.5 eV which corresponds to the valence band edge suggesting a bulk band
gap of roughly 350 meV.

to intrinsic energy broadening which would lead to an underestimation of the band gap as
well as possible unobserved bulk bands due to poor photoemission matrix elements which
(if lying within the presumed band gap region) would lead to an overestimation of the band
gap. Momentum distributions curves (MDC) are presented in Fig. 3.12(a). The MDCs show
two peaks in spectral intensity in the bulk gap corresponding to the surface state dispersion,
providing evidence that these surface states are not gapped. The large peak in intensity at
lower binding energies can be attributed to the valence states. To get a better view of the
surface states, Fig. 3.12(b) presents an ARPES spectrum normalized by binding energy in
the gap and Fig. 3.12(c) presents the peak location and angular width of the intensity across
binding energy. If the increased intensity of these vertical features, at the Fermi level and
again near -0.4 eV seen in the raw spectrum (see Fig. 3.12(d)), were due to surface Rashba
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Figure 3.12: Midgap surface states. (a) MDCs of the surface state dispersion taken at hν =
117.5 eV. Increasing spectral intensity at higher binding energies is associated with the bulk
valence state. (b) Emission angle of surface states across the gap. ARPES spectrum taken
at hν = 117.5 eV normalized by binding energy to show the binding energy independence of
the photoemission clearly. (c) Fits to the peak locations and widths across binding energy to
the spectral intensity in (b). (d) Comparison between BiTeI Rashba bands from [89](dashed
lines) which have a Rashba splitting of 0.051Å−1, and the present data for amorphous Bi2Se3.
This comparison shows that the Rashba splitting would have to be drastically larger than
any reported value to match our observed spectra.

states and not a topological state, then the Rashba splitting of the conduction band near
the Fermi level would be larger than the Rashba splitting in the valence band, since the or-
bitals contributing to the conduction band are of different orbital character, they experience
stronger Rashba splitting from the SOC [90]. Fig. 3.12, on the other hand demonstrates
that the vertical features comprising the surface state remain at a constant photoemission
angle over greater than 500 meV on both sides of the gap, indicating that the intensity near
the valence band and near the conduction band are of the same origin. For this reason, the
ARPES is consistent with a topological surface state crossing the gap with a Dirac node
buried in the valence and not to energy broadened conduction and valence Rashba states.
This is further confirmed by the spin-ARPES data, which shows that the spin polarization
in the gap region flips towards the valence band. The distinct spin-polarization of the in-gap
states from the near-EF states indicates that the spin signal in the gap is not from inelas-
tic scattering smearing the conduction band states. The spin-integrated ARPES spectrum
taken in the spin time-of-flight system is shown in figure 3.13(a). The spectrum is broadened
at low photon energy, a feature of the amorphous electronic structure that will addressed in
future works (Fig. 3.13(d,e)). Photon energy dependent broadening and the 11eV spectrum
are consistent with our higher energy spectra, the spin degree of freedom allows us to disen-
tangle the key features in the electronic structure. Fig. 3.13(b,c) shows the spectrum E vs.
k · a where a is the nearest neighbor distance for both amorphous and crystalline samples.
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Multiplying k by a allows us to compare the dispersions and effective ”Brillouin zone” sizes
since k · a is adimensional. The amorphous Fermi surface is about double the crystalline.

Figure 3.13: Additional ARPES data on Bi2Se3. (a) Spectrum taken at 11 eV in the spin-
TOF system. The spectrum broadens substantially at low photon energy. (b) Comparing
the ”Brillouin zones” for amorphous and crystalline Bi2Se3. The momentum is scaled by the
nearest neighbor distance. (c) Momentum broadening as a function of photon energy. Second
panel shows MDC linewidth of Fig. 3.10(e) (green and red). The broadening increases at
lower photon energies and can be extrapolated by an inverse square root dependence on
photon energy. At 11 eV (grey bar) the two independent features are blurred together to
form a single broad Fermi surface feature. This explains the reason for the observed 11eV
spectrum in (a)

3.5 SARPES

The presence of strong SOC added to broken inversion symmetry at the surface in our system
should lead to a spin texture. Fig. 3.14 shows spin-resolved angle-resolved photoemission
spectroscopy taken with 11 eV photons. We observe an anti-symmetric spin-polarization, the
first observation in an amorphous system to the best of our knowledge. The spin-polarized
energy distribution curves (EDCs) with p-polarized light are shown in Fig. 3.14(a) at ϕ =
−6, 0 and 6o. The spin-polarization is measured by the relative difference between spin-up
and spin-down photoelectrons weighted by the Sherman function (S) of the detector in the
form Py = S ∗ (I↑ − I↓) / (I↑ + I↓). The most evident feature from the three spin-polarized
EDCs is the large positive polarization between −0.6 and 0.0 eV that reaches a maximum of
∼50%. This large polarization offset is due to spin-dependent photoemission matrix elements
(SMEs) in which SOC leads to selective emission of electrons with a particular spin-state.
This is observed in crystalline Bi2Se3 near the upper Dirac cone with similar intensity [91].

In order to uncover the intrinsic spin texture (i.e. the sign of the polarization) within
the SME background we follow a similar background subtraction to Ref. [91]. Fig. 3.14(b)
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Figure 3.14: Spin-resolved ARPES spectra of electronic states in amorphous Bi2Se3 (a) Spin-
resolved EDC’s taken at ϕ = −6o, Γ, and ϕ = 6o, respectively. The spin contributions at
each binding energy vary with respect to ϕ = 0o. (b) Spin-resolved EDC map of E vs ϕ with
SME background subtraction taken from ϕ = −9o to ϕ = 9o. The spin polarization switches
from red to blue (or vice versa on the other side of Γ) at −0.2 eV and from blue to red at
−0.55 eV.
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presents the spin polarization as a function of binding energy and ϕ after performing the back-
ground subtraction. From this spin-polarized map, three ranges of binding energy demon-
strate distinct anti-symmetric spin polarizations with respect to ϕ: EF to −0.20 eV (region
I), −0.20 eV to −0.55 eV (region II), and −0.55 eV to −0.75 eV (region III). The spin po-
larization has a magnitude of ±15% and changes sign between these ranges as a function
of binding energy. By comparing Fig. 3.14(b) with the spin-integrated spectrum in Fig.
3.10(c) we see that region I corresponds to the conduction band, region III corresponds to
the valence band, and region II corresponds to the in-gap states. The in-gap states of region
II have opposite spin-polarization to both the conduction band and valence band, suggesting
that these states are indeed separate features from region I and III and not a consequence
of inelastic scattering from region I states or from local variations in composition. The mea-
sured spin-polarization matches the expected spin-polarization from our tight-binding model
shown in Fig. 3.10(b) for the topological case with region I representing the spin texture
of the trivial Rashba split bulk states near the Fermi level, region II representing the spin
texture of the upper Dirac cone of the topological surface state in the bulk band-gap, and
region III representing the spin texture of the lower Dirac cone within the bulk valence band.
We conclude that the two-dimensional surface states form a node around −0.55 eV, and the
anti-symmetric spin-resolved spectrum around Γ at EF is associated with trivial states with
a large component at the surface stemming from Rashba-type spin-splitting in our system,
as seen also in crystalline Bi2Se3 [92].

The raw spin-polarized spectrum collected from the S-ARPES contains a large spin-
polarized background associated with spin matrix elements (SME) from -600 meV to 0 meV
that reaches approximately 60% at maximum. The magnitude of the SME is an interesting
phenomenon on its own with possible applications, needing further investigation. Moreover,
over the course of the entire measurement (the spectra at each angle took approximately
3 hours), the background maximum increased slightly. We captured each spectra in non-
sequential order with respect to angle in order to determine that the increase in background
was due to time-related changes to the sample in vacuum and was not dependent on emission
angle. Since the underlying spin signal is a fraction of the SME background, normalizing
by the SME peak value provides a more accurate spin-map after background subtraction.
Similar to Fig. 3.14(c), Fig. 3.15 displays four spin-polarized maps on amorphous Bi2Se3.
Fig. 3.15(a) is the total spin polarization including the SME after normalizing to the SME
peak intensity. Only the spin polarization of the bands near -700 meV are distinguishable.
To remove the SME to determine the underlying spin-polarization, we subtract the spin-
polarized spectra at ϕ = 0 since time-reversal symmetry requires spin-degeneracy at zero-
momentum. Fig. 3.15(b) and Fig. 3.15(c) show the SME subtracted spin-maps without and
with SME peak normalization, respectively. The difference between these two maps is subtle
and suggests that the normalization process is not drastically affecting the results. Lastly,
if, instead of subtracting the normalized map with the ϕ = 0 spectrum, we subtract off the
averaged spectrum with respect to ϕ, then we get Fig. 3.14(c). The difference between Fig.
3.14(c) and Fig. 3.14(d) are even less noticeable, suggesting that the final spin-maps are
robust to background subtraction methods. Fig. S12 and S15 show additional ARPES data.
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Figure 3.15: Spin map background subtraction. (a) spin-map before SME subtraction in
which the spectra at each ϕ are normalized by peak SME value. (b) SME subtracted spin-
map using ϕ = 0 spectrum for subtraction, no SME peak normalization. (c) SME subtracted
spin-map using ϕ-integrated spectrum as background, SME peak normalized. (d) SME
subtracted spin-map using ϕ = 0 spectrum as background, SME peak normalized.
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3.6 Conclusions

Electron microscopy in Fig. 3.3 confirms the structure is amorphous with a shortened in-
teratomic spacing. Fig. 3.5 shows the carriers in the system are weakly anti-localized,
suggesting two-dimensional decoupled metallic conductance channels. ARPES, Fig. 3.10,
shows dispersive surface states that cross the bulk gap. The midgap states are spin polar-
ized shown via SARPES in Fig. 3.14. Our data is consistent with a spin-momentum locked
two-dimensional surface state for which we discuss two main origins: non-topological and
topological. In the latter, a topological bulk state in amorphous Bi2Se3 would produce the
dispersive, spin-momentum locked surface states we observe. In this interpretation, the topo-
logical surface states cross the bulk gap, as in Fig. 3.10(b), forming a Dirac state similar to
the surface states observed in related topological insulator crystals [93]. In the amorphous
case however, the Dirac point can be hidden underneath the bulk valence band due to a
strong surface potential, as discussed above (recall that, although a Dirac node crossing is
a protected feature of topological insulators, the binding energy of the node is not). Addi-
tionally, from our tight-binding model, we expect trivial spin-split states of Rashba-type to
develop at the Fermi level, with opposite polarization from the topological surface state, due
to broken inversion symmetry at the surface, as observed in Ref. [92]; this will be discussed
below. For the topological explanation to be viable, we need to discard that the amorphous
spectrum is a result of averaging over nanocrystalline domains. Fig. 3.10(f) shows the result-
ing spectrum from nanocrystalline Bi2Se3 in which averaging over randomly rotated domains
leads to angle-independent photoemission. Our spectra is also distinct from the crystalline
spectrum [92], where the amorphous Bi2Se3 spectral features extend further in ϕ than the
crystalline case.

Although the topological origin of the surface state is consistent with our data, it is
important to discuss non-topological origins like two-dimensional Rashba states, and fea-
tures that are not captured by our model. Spin resolved ARPES shows an anti-symmetric
spin-polarization on either side of the nodal region observed at −0.55 eV. In the topological
scenario these would be attributed to a spin-polarized two-dimensional topological surface
state. Another possible explanation is that the lack of inversion symmetry at the surface
gives rise to trivial Rashba states, as in Fig. 3.10(a), and a spin-polarization in the bulk
conduction and valence bands. If the spin texture were a result of Rashba splitting, then
each near-vertical branch would need to be a single parabolic-like band that returns to the
Fermi level. This is because each near-vertical feature has only one spin character. This
Rashba interpretation could be plausible if the parabolic dispersion was obscured by the
momentum broadening. Indeed, the spectra are broadened by the atomic disorder as well as
the presence of vacancies and dangling bonds at the surface, which are a significant source
of final state scattering. However, it would also imply a gigantic Rashba momentum offset
of k0 ≈ 0.4 Å−1. For reference, the giant Rashba splitting in bulk BiTeI is demonstrated
by k0 = 0.051 Å−1 [94], nearly a factor of 10 smaller. While we cannot definitively settle
on either explanation, the topological scenario seems simpler as it could explain the spin
switching of all regions in Fig. 3.14, and because it seems that a gigantic Rashba splitting
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is needed to explain our results otherwise. Regardless of the explanation, our observation of
well-defined, spin-momentum locked dispersing surface states opens a new direction to char-
acterize amorphous matter, and to search for new materials with advantageous properties,
such as spin-momentum locking.

In the raw spectra ARPES features are perceived as near-vertical, yet the underlying
bands need not have infinite electron velocity. They are broadened to the point that the
electron velocity is hard to quantify yet we can appreciate that they do have an increased
Fermi velocity compared to the crystal. It is known that the surface environment can affect
the location of the Dirac node and the curvature of the bands significantly in the crystalline
case [95]. We expect that this is exacerbated in the amorphous case due to the presence of
dangling bonds. In fact, amorphous materials have been predicted to experience large band
renormalizations that lead to backbending of the dispersions as well as vertical features [96,
97, 98]. Combining these factors, it is reasonable to expect large deviations in the amorphous
surface state dispersion from the crystalline case, both in the observed band velocity from
renormalizations and burying of the Dirac node in the valence band. However, the spin-
polarization allowed us to argue that states crossing the gap-like region (II) are unrelated to
broadening caused by inelastic scattering of conduction band electrons. Specifically, the spin
polarization reverses sign going down in energy from the conduction band (I) at EF into the
the gap-like region (II), reversing again in the valence band (III) states (i.e. unrelated to
broadening caused by inelastic scattering of conduction band electrons) lie within the gap.
We do this by revealing the sign reversals of the spin near EF, in the gap-like region, and
again in the valence band.

TEM and Raman data suggests that the typical local structure of the amorphous system
are comparable to the crystalline case, indicating that a possible condition to preserve the
topological nature of the bulk in the amorphous state is to retain a local ordering similar to
that of the crystal [30]. However, it should be noted that there is no continuous pathway from
the crystalline phase to amorphous phase but instead a discontinuous phase transformation
associated with the nucleation of crystalline domains [99]. The nucleation process explains
why nanocrystalline Bi2Se3 has been shown to be topologically trivial, Fig. 3.5(e), due to
the presence of grain boundaries and other structural defects [100]. The impact of coupling
strengths and local field environments can be assessed theoretically via ab-initio calculations
to refine the Hamiltonian modeling of amorphous topological materials [46]. This approach
can be extended to amorphous material systems without topological crystalline counterparts,
where local ordering coupled with disorder and strong SOC can mix energy levels to produce
a topologically nontrivial electronic structure.

In conclusion, we have found that amorphous Bi2Se3 hosts a dispersing two-dimensional
metallic surface state with spin-momentum locking. This experimental observation of spin-
momentum locked surface states in an amorphous solid state system highlights that searching
for new quantummaterials with advantageous properties, such spin-momentum locked states,
or topological properties should not be restricted to crystalline solids. Our work provides
a study of an amorphous solid state system with chemical specificity and local bonding
environments, a system which can be implemented into devices. To the best of our knowledge
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there have been no previous reports of ARPES/SARPES on an amorphous solid. Our results
represent the first step towards realizing, in real materials, recently proposed non-crystalline
topological phases [24, 30] that lie outside the known classification schemes for topological
crystalline matter [101, 2, 3, 43, 102] and that may be more robust than their crystalline
counterparts [31]. We expect our work to motivate an effort to understand topological
amorphous matter, enabling materials discovery that can provide a path towards affordable
and better implementation into modern thin film processes.
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Chapter 4

ARPES study of dispersive features
in amorphous materials

This chapter is based on a submitted manuscript with explicit permission from all co-authors.
The author list is Samuel T. Ciocys, Quentin Marsal, Paul Corbae, Daniel Varjas, Ellis
Kennedy, Mary Scott, Frances Hellman, Adolfo G. Grushin, and Alessandra Lanzara.

How the atomic arrangement of an amorphous solid affects its electronic properties is a
challenging problem with implications ranging from technology [103] to the discovery of new
topological phases of matter [104, 105, 106, 107]. For crystalline solids, the foundations are
well established since the early days of quantum mechanics: translational symmetry leads
to well-defined peaks in the lattice structure factor, Fig. 7.1(a) top, that determine where
Bragg scattering of electrons occurs. The scattering planes are determined by the periodic
atomic potential, and define the edges of the Brillouin zone. Through Bloch’s theorem, the
crystalline momentum precisely describes electronic states within a Brillouin zone.

In the case of non-crystalline solids, the Brillouin zone description is less clear due to
the absence of long-range order. Indeed, the structure factor of random atomic positions,
such as an electron gas, is uniformly distributed, Fig. 7.1(a) middle, and lattice disorder
is expected to localize the electronic states, leading to a structureless dispersion relation
(i.e. featureless momentum-space) [108, 109, 110]. However, realistic amorphous solids are
not random. Often, the chemical bonding retains the local ordering(short and medium
range) [4, 111, 112, 113], even if long-range atomic order is absent. Structurally, this results
in an atomic arrangement which is locally similar to the crystal (bond lengths, angles, and
coordination) but globally the atomic sites demonstrate no periodic behavior [114, 115, 116,
4]. In this case, the diffraction pattern is not uniformly distributed, but rather presents a
set of rings, Fig. 7.1(a) bottom, each corresponding to characteristic real-space scales, such
as a well-defined nearest neighbour distance.

Whether long-range order is a necessary condition for structured momentum space is an
open discussion. Can an amorphous material, void of long range order but with correlated
local structure produce momentum-dependent electronic states? This question is motivated
by the recent experimental observation of strongly dispersive surface states in a purely amor-
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phous Bi2Se3 (a-Bi2Se3)[117]. While it is established that topology can survive in amorphous
matter, the difference between crystalline and amorphous spectra poses the more fundamen-
tal question of how to characterize the electronic structure of amorphous solids. These are
crucial questions since many technologically important materials are amorphous and many
other systems lack long range order but exhibit well defined structural length scales such as
quasicrystals, high-entropy alloys, and even dynamic systems such as liquids [118, 119, 120].

Here, we reveal novel and generic characteristics of an amorphous electronic momen-
tum space, demonstrating highly dispersive surface states that form repeated annular zones
analogous to Brillouin zones. The key insight is that the correlated structural disorder of
amorphous materials leads to characteristic real-space scales, which in turn translates into
characteristic momentum-space scales.

The phenomenology we observe is strongly reminiscent of the decades-old predictions
concerning the dispersion of electrons in liquid metals [121, 96, 122, 123, 124, 125, 126,
97, 127]. In liquids dispersive electronic features were predicted to remain contingent on the
presence of a well-defined nearest neighbor distance. They were recently used to explain why
disordered dopants on the surface of a crystal can lead to pseudo-gap-like band structures
[98]. However, this phenomenology has never been directly observed in an amorphous solid.
We report the first observation in amorphous materials of Brillouin-zone like repetitions and
present theoretical insights to interpret the photoemission spectra of electronic systems that
lack long-range translational symmetry, thus expanding the material pool to uncover novel
physics from these unexplored dispersions.

4.1 Structure

In this work, we utilize angle resolved photoemission spectroscopy (ARPES) on amorphous
Bi2Se3 (a-Bi2Se3) to identify generic momentum space features that result from electron
coherence in a system that lacks long-range order. Our findings will have consequences for,
but it is not restricted to, the spectrum of topological surface states.

To begin, it is useful to recall that crystalline Bi2Se3 (c-Bi2Se3) features a quintuple
layer structure of alternating selenium and bismuth planes with bismuth atoms octohedrally
coordinated with six adjacent selenium atoms. The quintuple layers are bonded by van
der Waals forces, the stacking of which defines the c-axis lattice constant (see top panel in
Fig. 7.1 (f)).

The accumulated knowledge on amorphous systems suggests that a realizable structure
for a-Bi2Se3 can share certain traits with c-Bi2Se3. For example, in elemental amorphous
materials, such as Si, Ge and monolayer carbon, or bi-elemental amorphous compounds such
as SiO2 and GaAs, the coordination of atoms and the nearest neighbor distances remain
peaked at the values of their crystalline counterparts. The structural disorder stems from
small variations in bond angles and smaller variations in bond lengths, which are peaked
at the crystalline values[116, 128, 129, 130]. Following suit, a-Bi2Se3 is expected to also
possess octohedrally coordinated bismuth atoms and similar local environment to c-Bi2Se3.
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The propensity for amorphous systems to retain the crystalline local order means that the
amorphous system has a tendency to retain a well defined length-scale. A notable difference
between the c-Bi2Se3 and a-Bi2Se3 however is that the van der Waals gap in c-Bi2Se3 is an in-
herently 2D structure with no obvious analog in the amorphous case. Indeed, in Ref. [117] we
have demonstrated through Raman spectroscopy that the van der Waals gap no longer exists
in a-Bi2Se3. Using ab-initio molecular dynamics to generate realistic a-Bi2Se3 amorphous
structures, we observe a peak in the coordination number at six (Fig. 7.1(e)), representing
the existence of majority octahedral environments.

To elucidate the real-space structure, we grew a-Bi2Se3 using physical vapor deposition
from two elemental effusion cells and characterized the structure using high-resolution trans-
mission electron microscopy (HRTEM) in shown in Fig. 7.1(b). The large scale HRTEM
image indicates no regions exhibiting crystalline order or even nano-crystalline precursors.
The inset displays a 2 nm × 2 nm field of view displaying phase contrast resulting from the
lack of long-range periodicity.

Fig. 7.1(c) shows TEM diffraction from the same film exhibiting the characteristic diffuse
rings of amorphous systems lacking long range order. The presence of rings is indicative of
well-preserved real-space length-scales. Using parallel-beam diffraction, we compute the
reduced radial distribution function, G(r), shown in Fig. 7.1(d). The a-Bi2Se3 film shows
clear peaks at 2.4 Å, 3.5 Å, and 4.9 Å, indicating well-defined real and reciprocal length-scales
in the system.

4.2 ARPES

Figure 4.2 summarizes the momentum-space structure from the electronic dispersion we
obtain from ARPES on a-Bi2Se3. Panel (a) displays a momentum-slice spectrum cutting
through (kx, ky) = (0, 0) at a photon energy of 120 eV revealing remarkably dispersive band
structure manifesting as vertical column-like features and an M-shaped valence band [117].
The near-vertical features are in stark contrast to the expectation that disordered and local-
ization lead to a broadened, momentum-independent electronic dispersion [108, 109, 110].

At large momentum, the band structure is replicated, resulting in copies of the electronic
states at −1.75 and 1.75 Å−1 with reduced intensity. The replicas occur at a characteristic
momentum, k∗ = 2π/a∗ ≈ 1.75 Å−1 corresponding to a∗ ≈ 3.6 Å, which closely matches
the second peak in the radial distribution function from Fig. 7.1(d). The consequent Fermi
surface, seen in Fig. 4.2(b) and visually enhanced by taking ∇2I (where I is photoemission
intensity), confirms that the momentum space structure is rotationally symmetric in the
form of concentric rings. Therefore, the dispersive structure is only repeated along the
radial direction, forming annular regions at larger momenta.

The repetition phenomenon is reminiscent of that occurring in crystalline systems, which
feature duplicated dispersions commensurate with reciprocal lattice vectors, outside of the
first Brillouin zone. Hence, we refer to the regions where duplicates appear as ”Brillouin-like
zones” (BLZ) because they demonstrate repetition akin to crystalline fermiology. Unlike
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Figure 4.1: Well-defined reciprocal length scale from real-space short-range order. (a) Fourier
transforms for three real-space point distributions (crystalline, normal random, and disor-
dered hard pack) demonstrates that reciprocal-space structure persists in the presence of
well defined nearest-neighbor distance. (b,c) The large scale HRTEM image indicates no
regions exhibiting crystalline order or even nano-crystalline precursors (the contrast visible
in the main image is associated with columnar microstructure that is common in thermally
evaporated amorphous materials). The inset displays an expanded 2 nm x 2 nm field of
view displaying a speckle pattern due to phase contrast resulting from the lack of long-range
periodicity, but has no sign of any nanocrystalline or even precursor nanocrystallites. The
electron diffraction pattern shows broad diffuse rings corresponding to short range order and
no high intensity spots from long range order. (d) The reduced radial distribution function,
G(r), has three peaks from a well defined nearest neighbor (2.4 Å), next nearest neighbor
(3.5 Å), and third nearest neighbor (4.9 Å). (e) Coordination number for amorphous Bi2Se3
calculated using a 200 atom cell and ab-intio molecular dynamics. The CN is peaked at 6.
Inset: an example coordination environment in amorphous Bi2Se3. (f) Ball-and-stick model
of crystalline and amorphous Bi2Se3. For the amorphous structure, van der Waals separa-
tion is absent and majority sites are octahedral coordinated, implying an isotropic nearest
neighbor distance.

for crystals, the repetitions occur only along the radial direction, which we interpret as a
manifestation of the rotational symmetry expected in amorphous structures. Fig. 4.2(c)
conceptualizes the BLZ, showing the typical BZ-relationship of the replicated bands with
respect to a reciprocal lattice constant (upper panel) and the annular zones in the Fermi
surface (lower panel). The essential difference in the amorphous case is that its uniformity at
long length-scales implies that reciprocal-space structure is rotational symmetric. Therefore
reciprocal lattice vectors cannot exist, otherwise there would be well defined preferential
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directions and therefore long-range order. However preferential momentum scalars, can exist
since local ordering, such as typical bond lengths, can persist in randomized directions. As
a note, an effect which is absent in our spectra is the possible long-range nematic ordering.
This can occur for instance via a compression or a strain which modifies the nearest-neighbor
distances along one axis resulting in an elliptic transformation of the BLZ [98, 131].

Expanding further out in momentum space exposes higher order BLZ. Fig. 4.2(f) shows
the photon energy dependence of the dispersion at the Fermi level along the same radial
direction panels as a and b at large detection angles. The white dashed lines represent the
photon energy dependence for 2D states at four different kz-independent momenta, indicating
that the features are in fact photoemission from 2D surface states as opposed artifacts from
photon energy-dependent matrix elements. The first two curves from the top-left follow the
1st order BLZ (0th order being at Γ0) and the last two curves follow the 2nd order BLZ.
Panel (g) displays the momentum space converted spectrum for hν = 120 eV (shaded region
in (f)) in which the bright 0th order dispersion is cutoff on the left edge and the 2nd order
BLZ can be seen near 3 Å−1. The intensity of the BLZs decrease and the dispersions broaden
at larger momenta.

To determine the origin of the BLZ we compare the results of the ARPES experiment on
a-Bi2Se3 to a numerical simulation with a tight-binding Hamiltonian of a-Bi2Se3 introduced
in [117]. However, to explain our ARPES observations we need to ensure that a degree of
local order is preserved when defining the atomic arrangement. To do so we construct a
3D arrangement of amorphous sites using thermalized hard packed spheres as in Ref. [117]
to which we add a relaxation step, resulting in a radial distribution function with peaks
corresponding to nearest, second-nearest, and third-nearest neighbours. The peak locations
define the characteristic length scales of the system. We use the nearest-neighbour average
distance r∗ to set the scale of the plots in position space. This choice defines the characteristic
momentum scale k∗ = 2π

r∗
, which we use to normalize momentum space.

On this atomic site distribution, we define a model with a spin 1
2
degree of freedom

and two orbitals per site, to generalize the crystalline Bernevig-Hughes-Zhang (BHZ) model
[132], For each site in the amorphous structure we find the six closest neighbours. We then
choose the coupling between neighbouring sites so that, if the lattice was cubic, it would
result in the original BHZ model. Because the hoppings are assigned sequentially for every
site, the six-fold coordination is preserved on average. The hopping term of the Hamiltonian
depends on the relative position of the two sites dij according to

⟨i|H|j⟩ = it1(d̂ij · σ)τx − t2σ0τz, (4.1)

while the onsite energy of a single site reads

⟨i|H|i⟩ =M
(
σ0τz + αe−

δi
2r∗ σ0τ0

)
. (4.2)

This system shows a topologically non-trivial gap that hosts a Dirac cone surface state forM
positive and close enough to zero[117]. The parameter α controls the strength of a symmetry-
allowed surface on-site potential that shifts the surface Dirac cone away from E = 0, where
δi is the distance from site i to the surface.
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We compute the spectral function of this system by projecting into a basis of plane waves
of light momentum k, illuminating a single surface with a finite penetration depth, simu-
lating an ARPES experiment. One can then define the two parallel and the perpendicular
components of the momentum without ambiguity. Due to the isotropy of amorphous sys-
tems, the problem is invariant up to an in-plane rotation. One can thus only focus on the
incident plane of light.

The ARPES spectra of a-Bi2Se3 and the numerical model (Fig. 4.2(d)) both show the
bulk gap, and within it a dispersive surface states that cross the gap around the Γ point.
Around each momenta comensurate with the characteristic momenta k∗,

∥∥k∥
∥∥ = k∗, 2k∗...

a copy of the central bulk states and surface Dirac cone appears. This is the amorphous
equivalent of the Brillouin zones of a crystal, enabled by the characteristic nearest-neighbour
distance retained by the amorphous structure. This suggests that in Figs. 4.2(a) and (b),
the repetitions we observe originate in the local order of the atomic sites. Fig. 4.2(e) shows
that the expected spectrum is isotropic in the two components of the momentum that are
parallel to the illuminated surface, as also observed experimentally. This theoretical analysis
combined with the experimental spectra strongly supports the conclusion that ARPES can
be used as a tool to extract the scale of local order of any non-crystalline solid by observing
BLZ repetitions.

Figure 4.2: Amorphous surface state dispersion. (a) Large momentum range ARPES spec-
trum uncovers duplicate dispersions approximately 1.75 Å−1 from Γ. (b) The Fermi surface
(∇2I of the raw intensity for visibility) demonstrates rotational symmetry of the primary and
duplicated dispersion. (c) Illustration of amorphous dispersion and Brillouin zone-like repeti-
tion contingent on a characteristic momentum. (d) Simulated dispersion along k∥ through Γ
showing duplicated structures. (e) Fermi surface from simulations showing repeated annuli.
(f) Photon energy dependence of the 2nd and 3rd BZ dispersion, obeying kz-independent
photoemission (dashed white). (g) ARPES spectrum at hν = 120 eV with repeated disper-
sions separated by 1.75 Å−1.



CHAPTER 4. ARPES STUDY OF DISPERSIVE FEATURES IN AMORPHOUS
MATERIALS 73

Figure 4.3: Amorphous versus crystalline Bi2Se3 (a) Deep binding energy ARPES spectra for
c-Bi2Se3 (Γ−K) and a-Bi2Se3. (b) XPS on a-Bi2Se3 (blue) and c-Bi2Se3 (red) displays similar
spectra for valence bands. Dashed lines indicate corresponding peaks, and the spectral hump
of the upper energy portion of the surface state can be seen near EF in both samples. (c)
Diagram of amorphous band structure geometry. Bulk states form spherical shells around
k⃗ = (0, 0, 0) (blue), whereas surface states form cylindrical shells around the kz axis (orange).
For a single photon energy, ARPES probes a section of an approximately spherical shell about
k⃗ = (0, 0, 0) (red). (d,e) Surface state spectrum at EF as a function of kz for c-Bi2Se3 (d) and
a-Bi2Se3 (e). kx-integrated intensity shown to the left with 3 characteristic peaks marked by
arrows.

It is illustrative to compare the momentum space structure of a-Bi2Se3 with c-Bi2Se3 and
to separate the roles of bulk and surface states. In Fig. 4.3(a), we show deep binding-energy
ARPES spectra at hν = 120 eV for c-Bi2Se3 along the Γ−K direction and for a-Bi2Se3 radial
from Γ. The intensity of the features near the Fermi level in a-Bi2Se3 has been enhanced by
10× for visibility. The most notable difference close to the Fermi level is that the Dirac state
in the crystal and the vertical features in the amorphous system have markedly different
Fermi wave vectors (kF), 0.08 Å−1 and 0.4 Å−1, respectively. We identify several factors that
can contribute to this difference. First, a surface potential (captured by α in Eq. (4.2)) can
shift the Dirac point downwards in energy, changing kF significantly. Second, the surface
state Fermi velocity is not universal, and can be strongly affected by disorder, as we will
exemplify later on.

Turning back to Fig. 4.3(a), and looking deeper in binding energy we see that the crys-
talline sample maintains strongly dispersive features, whereas the amorphous sample demon-
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strates flattened and broadened bulk band structure. Notably there is a broad nearly-flat
structure near −2 eV. Even though the curvature of the deep binding energy band structure
is reduced in the a-Bi2Se3, the angle integrated spectral response is intriguingly similar. In
Fig. 4.3(b) we plot the x-ray photoemission spectroscopy (XPS) spectra for c-Bi2Se3(red)
and a-Bi2Se3(blue) on shifted y-axes for visibility. The overall intensity as a function of bind-
ing energy follows nearly identical large-scale behavior with a dip near −8 eV and a broad
shoulder with substructure at −3 eV. The crystalline sample exhibits four peaked features in
the shouldered region that correspond to four peaks in the amorphous spectrum shifted by
∼ 0.5 eV. The similarity between the spectra indicates that the deep binding energy band
structure of the amorphous sample appears as the momentum averaged band structure in
the crystal.

The peculiar difference between the highly dispersive bands near the Fermi level and the
weakly dispersive bands at high binding energy in a-Bi2Se3 can be explained by reflecting on
the uncommon features that a rotationally symmetric system imprints in ARPES. Fig. 4.3(c)
illustrates the 3D momentum space structure of bulk bands and surface states given the sym-
metry of an amorphous system. The bulk bands (blue) are rotationally symmetric and are
allowed to vary along the radial direction contingent on a well-defined characteristic mo-
mentum, thereby forming repeated spherical shells at constant energy within BLZs. Surface
states (orange), spatially localized at the surface, are kz-independent and forming cylindri-
cal shells oriented along the kz-axis. ARPES is well suited for studying kz-dependence in
crystals with cartesian Brillouin zones by varying the photon energy, since:

kz ∝
1

ℏ
√

2 ∗me(hν − E − ϕ+ V0). (4.3)

where E is the binding energy of the electron, V0 is the fixed inner potential of the mate-
rial, ϕ is the material work function, hν is the photon energy, and me is the mass of the
electron. However, in a spherically symmetric momentum-space, ARPES faces an additional
challenge to observe kz-dependent bulk states. In ARPES, kx,y ∝ sin θ and kz ∝ cos θ,
where θ is the angle of photoemission, such that ARPES probes an approximately spherical
crossection in momentum space for a given photon energy. The solid red arcs in Fig. 4.3(c)
illustrate variable ARPES crossections given fixed photon energies. Moreover, typical inner
potentials, V0, are of order 10 eV, limiting the minimum probable kz to approximately 2
Å−1 so that the concentric structure at kz = 0 is out of reach. All in all, this means that
ARPES probes approximately spherical cross-sections of the spherically-invariant bulk band
structure. Therefore bulk dispersive features will still disperse along kz-axis by varying the
photon energy (shaded red region) but features in kx and ky will appear flat.

In contrast, surface states are kz independent and the concentric structure can be accessed
by ARPES at any photon energy (see red shaded region meets orange), revealing dispersive
bands in kx and ky. In panels (d) and (e), we display the kz-dependence of the c-Bi2Se3 and
a-Bi2Se3 surface states near EF, respectively. In the crystalline case, kF remains fixed for all
kz at 0.08 Å−1, manifesting as narrow vertical pillars in kz vs. kx with variable intensity due
to photon energy dependent matrix elements.
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Curiously, the amorphous surface state bands expand outward with increasing kz (Fig. 4.3(e)).
This is a non-periodic dispersive feature that occurs over the full measured 2.5 inverse
angstroms in kz. The lack of periodicity over this range indicates that this momentum
space feature cannot be due to a crystalline bulk structure since any such structure would
need to repeat on smaller intervals than 2 Å (π/2.25 Å−1). Moreover, this peculiarity does
not affect the conclusion that these are surface states since, given the lack of long-range
order, bulk states would necessarily form rotationally symmetric shells centered at (kx, ky,
kz) = (0, 0, 0) and would appear nearly horizontal in panel (e). Therefore these states must
be of surface state origin since they are coherent across many kz values.

Crucially, the momentum integrated intensity as a function of kz (panels (e) and (d),
right plots) are nearly identical, with intensity peaks occurring at the same three kz values
(horizontal lines). This indicates that the photon energy dependent matrix elements are
comparable in the two systems, advocating for similar orbital character.

Using the BHZ model defined by Eqs. (4.1) and (4.2), we can compare the localization
of the bulk and surface wavefunctions. Fig. 4.4(a) shows the average wavefunction site
occupation within a 2 Å slice of the amorphous cube for surface states between E−ED = −1.0
and 0 eV (yellow) and bulk states between E − ED = −9.5 and −4.0 eV (blue), where ED

marks the center of the band gap. The in-gap surface states are localized to the system edges
whereas the bulk states evenly fill the interior appearing completely delocalized. However,
the singular wavefunctions tell a different story. Fig. 4.4(b) shows a single wavefunction at
−0.45 eV (yellow), again localized to the surface but delocalized along the 2D surfaces. A
random selection of three bulk wavefunctions between −9.5 and 4.0 (red, green, and blue)
show a localized behavior, constrained to a small number of sites.

In fact, we are able to deduce a lower limit on the coherence length of the electronic order
from the momentum broadening of the states in Fig. 4.3(d) [119, 133, 134]. The momentum
Lorentzian linewidth of the two peaks in each case serve as a measure of the electronic real
space ordering, in so much as perfect electronic order leads to delta functions in momen-
tum (ignoring lifetime broadening) and spatial incoherence leads to smearing across the full
BZ. This represents a lower limit for the coherence length since final state effects, spatial
variations in doping, or lifetime broadening could introduce additional extrinsic broadening.

Fig. 4.4(c) plots the kz-dependence of the coherence length (or mean free path, MFP)
as 2π/Γk where Γk is the Lorentzian line-width. For c-Bi2Se3, MFP is largest at small kz
at nearly 400 Å, serving as our estimate of the lower limit of the coherence length in the
crystal. The MFP then linearly decreases towards larger kz suggesting a possible photon
energy dependence of the momentum resolution. In a-Bi2Se3 the maximal determined MFP
is near kz ≈ 5.2 Å−1 which gives a value of 13 Å for the MFP. This is a markedly reduced
coherence to the crystal yet coherent beyond three nearest neighbors, 3a∗. Interestingly,
the measured coherence length reduces towards lower and higher kz values indicating an
additional broadening mechanism in the low momentum regime as compared to c-Bi2Se3.

The delocalization of the surface state along the surface planes enables the electronic
wavefunction to encompass many atomic sites, which in turn enables dispersive coherent
structure in momentum space. In contrast, the localization of the bulk bands, inferred
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Figure 4.4: (a) Average site occupations for wavefunctions with energy within the bulk gap
(yellow) and below the bulk gap (blue). (b) Single surface state wavefunction (E − EF = 0
yellow) is delocalized along the surface plane, spreading across multiple unit cells. Single
bulk state wavefunctions (E − EF < −0.5 eV red, green blue) are localized within the
bulk. (c) Measure of mean free-path (or spatial coherence) of surface state electrons as a
function of kz as determined from 2π/σMDC for c-Bi2Se3 and a-Bi2Se3 from Fig. 3d. (d)
Spectral function of a linear dispersing state scattered on a disordered array of atoms with
interacting strengths (1)v0 = 0, (2) v0 = 2, (3) v0 = 3. When the interaction with scattering
centers increases, copies of the central Dirac cone appear at the peaks of c2, i.e. around

k = ±0.4 Å
−1
. For strong enough scattering potential, the dispersion is pushed into the

valence and vertical features form that cross the bulk band gap. (e) Experimental ARPES
spectrum and normalized along energy-axis spectrum for comparison with simulation.

from Fig. 4.4(b) would suggest a flattened band structure. This is indeed the case for
the amorphous structure in Fig. 4.3(a), in which strong dispersion occurs for the surface
state near EF and bulk bands deeper in binding energy are flat. It is possible that either
topological protection or spin-momentum locking of the surface states may enhance the in-
plane coherence for a-Bi2Se3 surface states, making it a particular good material for observing
a defined amorphous band structure.

Lastly we discuss why the amorphous surface state may exhibit broad near-vertical dis-
persive features at a dramatically enhanced kF with respect to the crystalline spectrum (see
Fig. 4.3(a)). These broad vertical features, particular to a-Bi2Se3, are not fully explained
by our tight-binding model used in Fig. 4.2. A tantalizing additional effect neglected in the
tight-binding approximation is that scattering on a disordered array of atoms can signifi-
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cantly alter the dispersion of a propagating state, creating the effect of a broad and vertical
dispersion [96, 122]. This is believed to be the case of liquid metals and surface electrons
propagating within a disordered but correlated array of atoms on crystal surfaces [98]. Trans-
lated to our situation, the hypothesis is that the surface Dirac propagating state experiences
scattering due to the correlated disorder intrinsic to amorphous structure. This weak scat-
tering effect is not captured by the tight-binding approximation [96, 122]. To explore this
possibility, we calculate the disorder induced self-energy caused by the experimental radial
density function of Fig. 7.1(d) to determine how a linearly dispersing surface state is affected
by this spatial distribution of atoms. Following Ref. [96], the scattering effect introduces a
self-energy that reads

Σs(k) = v0
∑
s′

∫
c2(k− k′)Fss′(k,k

′)G0s′(k
′)dk′, (4.4)

where v0 is the strength of the disorder, Fss′(k,k
′) is the overlap factor between the two

bands (labeled by s = ±) of the Dirac Hamiltonian, c2(k) is the Fourier transform of the
radial distribution function shown in Fig. 7.1(d), and G0s = (E − svF |k|)−1 is the bare
Green’s Function of the surface Dirac cone in the diagonal basis.

Fig. 4.4(d) shows that indeed correlated structural disorder reshapes the linear dispersion
for increasing disorder strengths v0. Without interaction, the spectral function only shows
a Dirac cone centered around Γ. When the interaction with scattering centers increases,

copies of the central Dirac cone appear at the peaks of c2, i.e. around k = ±0.4 Å
−1
. For

strong enough scattering potential, the dispersion and node (black arrow) is pushed into the
valence (shaded white region) and vertical features form that cross the bulk band gap (white
arrows). Thus the exact shape of the dispersion can be strongly affected by the surface
disorder, a mechanism that could explain why the ARPES spectrum measured in Fig. 4.3
differs significantly from the crystalline spectrum.

Comparing Fig. 4.4(d) with Fig. 4.4(e) (where the ARPES spectrum near EF is shown
along with the spectrum normalized along binding energy) demonstrates how both the ex-
periment and simulation exhibit broad vertical features that cross the gap, as well as an
apparent band crossing and node at the valence band edge.

4.3 Conclusions

The features we see arise from well defined short-range length scales, hinting at the possi-
bility of widely overlooked momentum-space structure in all non-crystalline solids with this
property, such as other amorphous materials, quasicrystals, and liquids. Diagnosing them
with further photoemission studies complemented by other probes, such as scanning tun-
neling spectroscopy, has the potential to change significantly the landscape of solid-state
properties. The presence of highly dispersive features in a-Bi2Se3 motivate the general-
ization of momentum-dependent phenomena to glassy systems, including spin-momentum
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locking [117], momentum-based paring in superconductivity, or new avenues to engineer
flat-bands in amorphous phase-change materials [135].

Based on a-Bi2Se3 specifically, another direction of further study is the origin of the
appreciable monotonic kz-dependence of the surface states of Fig. 4.3(d), which clearly differs
from bulk states, but is not completely kz-independent. A possible cause is the lack of
translational symmetry itself. ARPES is based on the notion that translational symmetry
conserves the in-plane crystalline momentum following photoemission. This may no longer
be the case in amorphous samples; while continuous translations can be recovered on average
to explain most of our results, discrete translational symmetry is lost, which may result in
more subtle kz dependencies, and may be a unique feature of non-crystalline media.

This work reveals dispersive surface electronic states on the surface of an amorphous ma-
terial, amorphous Bi2Se3, that exhibit a rotationally symmetric Fermi surface with repeated
Brillouin zone-like repetitions. This is made possible by the presence of a well-defined real-
space length scale from the disordered hard packing of atoms in the amorphous structure,
which corresponds to a well-defined reciprocal length scale. The amorphous analog to crys-
talline Bi2Se3 preserves the angle-integrated XPS spectral features yet exhibits remarkably
different valence state behavior, manifesting as vertical-like features with large Fermi wave-
vectors. Since the presence of local chemical order is ubiquitous in solids, our work calls for
a retrospective investigation of amorphous and other non-crystalline systems such as qua-
sicrystals, in search for dispersive features that reveal novel quantum effects in momentum
space, previously reserved for crystals alone.
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Chapter 5

Structural disorder driven topological
phase transition in BiTeI

This chapter is based on a published paper with explicit permission from all co-authors. The
full reference is P. Corbae, F. Hellman, and S. M. Griffin, Phys. Rev. B 103, 214203 (2021).

The discovery of nontrivial topological phases in materials has been at the forefront of con-
densed matter physics for both their fundamental importance and their potential in applica-
tions ranging from low-power electronics to quantum computing. High-throughput searches
and classification schemes for topological materials exploit crystalline symmetries, and how
these symmetries determine band connectivity [136, 2, 3, 43, 15, 137, 138]. Such symme-
try indicators have enabled the prediction of thousands of crystalline topological materials.
However, materials without intrinsic or long-range crystalline symmetries, such as amorphous
and quasicrystalline materials [139, 24], have no such classification scheme. Nonetheless, evi-
dence for topological surface states has been experimentally and theoretically observed in an
amorphous topologically insulating system [117, 18]. Recently, Marsal et al., [30] exploited
local environments to compute the topological phase diagram in a coordinated amorphous
structure. These works find that local interactions and connectivity determine the relevant
features in the electronic structure to produce topological phases, and emphasize the impor-
tance of local chemical environments in topological materials. Understanding how structural
disorder contributes to and enhances topological phases will drive predictions of disordered
and amorphous topological materials based on local structural properties.

Small gap semiconductors with strong spin-orbit interactions (SOI) are ideal systems to
probe how local environments affect the band topology. In such systems, a band inversion
and a topological phase can be induced by tuning the chemical environment to modify the
crystal-field splitting (CFS) [75]. Systems with a strong SOI and no inversion are subject to
Rashba spin-splitting: without I-symmetry, the degeneracy between ψ−k,↑ and ψk,↑ is lifted
so that the bands split at non-specific k-points, and a resulting band inversion can occur
away from Γ in the Brillouin zone (BZ). If the states near the Fermi level are of the same
orbital character and also close in energy, they can couple together effectively through a
Rashba Hamiltonian, further reducing the band gap at relevant points in the BZ [140].
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Several routes to inducing topological phase transitions (TPTs) from normal to topologi-
cal insulator (TI) have been proposed in solid-state systems, including using temperature[141,
142], pressure [143] and strain [144]. Topological Anderson insulators are an example where
onsite disorder pushes a trivial insulator through a gapless state into a topologically nontriv-
ial state [145, 17]. Typically, Anderson models incorporate an onsite disorder term which can
be applied to non-crystalline solids [7], however here we incorporate disorder with perturba-
tions to the atomic positions. No studies to date have looked at the effect of this random
structural disorder on the topological character.

In this work, we study how local structural disorder affects the CFS and SOI in the
small-gap semiconductor BiTeI and identify the structural motifs that play a crucial role
in producing the nontrivial band topology. First, we present our scheme for introducing
structural disorder in BiTeI and analyze the subsequent charge redistribution upon symmetry
breaking. Using first-principles calculations we show that, as bond lengths change, the CFS
is enhanced leading to a bandgap reduction. We observe a TPT from trivial insulator to Weyl
semimetal to TI originating from a bulk band inversion when spin-orbit coupling (SOC) is
included. These topological phases emerge in a crystalline material with reduced crystalline
symmetries. We confirm the TPT by studying the surface state spectrum and calculating
topological invariants from Wannier charge centers, observing a Dirac cone on the surface
resulting from a strong Z2 index. This work provides a pathway to understanding local
chemical environments in topological materials and their extension to amorphous systems by
using disorder in crystalline systems to elucidate the physical origin of the TPT, prompting
a route for materials discovery [117].

5.1 Structure

BiTeI is a trigonal, noncentrosymmetric material adopting the P3m1 space group (No. 156).
The primitive unit cell contains a single Bi, Te, and I configured in layers of triangular net-
works along the c-axis (Fig. 5.1(a)), resulting in a C3v rotational symmetry about the c-axis.
The Te-Bi-I network forms a trigonal prism surrounding the Bi atoms, which are separated
by a van der Waals gap. In this undisordered structure the equilibrium Bi-Te bond length is
3.07 Å and the Bi-I bond length is 3.29 Å, bond lengths in the PBE framework are typically
within 1− 2% (experimental values are 3.04 Å and 3.27 Å respectively). This structure is a
trivial insulator with an experimental bandgap of 0.36 eV [146]. To understand how topology
is influenced by the local chemical environment we generated disordered structures as follows:
We pull a random number from a uniform distribution between −0.15 Å and 0.15 Å and add
it to each Wyckoff position in the unit cell for each direction. This generated a disordered
structure with an average atomic displacement dav=0.62 Å per unit cell, similar in value to
the change in interatomic spacing between the crystalline and amorphous phases of Bi2Se3 in
experiment[117]. From this disordered structure, we created interpolated snapshots between
the undisordered and fully disordered crystal with dav=0.62 Å to track the electronic and
topological properties with increasing disorder. The final structure is in the P1 space group
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Figure 5.1: Structural disorder induced charge redistribution. (a) BiTeI primitive unit cell.
Blue spheres represent the allowed random displacements ∆x, ∆y, and ∆z. (b) Bi-Te and
Bi-I bond lengths vs. disorder/energy per unit cell. The Bi-Te bonds shift to a higher mean
length and develop a larger σ. The important bond for the TPT, Bi-Te = 2.9 Å, can be seen
developing around 0.4 Å. The Bi-I bonds initially develops a higher mean length with large
σ and then drops around 3.50 Å with low σ after the TPT. (c-e) Partial charge density of
the (001) plane for bands near the Fermi level in structures with dav=0.00 Å, dav=0.28 Å,
and dav=0.56 Å, respectively. As the structures become more disordered the charge density
distorts into the y-direction (indicated by the blue arrow in (d)) and the charge moves to
the Bi-Te bond.

after the C3v and remaining symmetry elements are removed by the structural disorder.
Fig. 5.1(b) shows the distributions (mean bond lengths with bars representing the stan-

dard deviation) for Bi-Te and Bi-I bond lengths for our disordered structures as a function
of average displacement and energy difference from the ground state. We see that with in-
creasing disorder, the distribution of Bi-Te bond lengths develops a larger standard deviation
while the mean bond length becomes larger. The smaller Bi-Te bonds shift to a value of
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BiTeI interpolation and Z2 Invariant
Crystal S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

dav 0.00 Å 0.06 Å 0.11 Å 0.17 Å 0.22 Å 0.28 Å 0.34 Å 0.39 Å 0.45 Å 0.50 Å 0.56 Å 0.62 Å

Bi ux 0.00 Å 0.005 Å 0.009 Å 0.014 Å 0.019 Å 0.024 Å 0.028 Å 0.033 Å 0.038 Å 0.042 Å 0.047 Å 0.052 Å

Bi uy 0.00 Å 0.004 Å 0.009 Å 0.013 Å 0.017 Å 0.022 Å 0.026 Å 0.030 Å 0.035 Å 0.039 Å 0.043 Å 0.048 Å

Bi uz 0.00 Å 0.001 Å 0.003 Å 0.004 Å 0.005 Å 0.007 Å 0.008 Å 0.009 Å 0.011 Å 0.012 Å 0.013 Å 0.015 Å

Te ux 0.00 Å −0.002 Å −0.003 Å −0.005 Å −0.006 Å −0.008 Å −0.010 Å −0.011 Å −0.013 Å −0.014 Å −0.016 Å −0.017 Å

Te uy 0.00 Å 0.011 Å 0.022 Å 0.033 Å 0.044 Å 0.055 Å 0.066 Å 0.077 Å 0.088 Å 0.099 Å 0.109 Å 0.120 Å

Te uz 0.00 Å 0.006 Å 0.011 Å 0.017 Å 0.022 Å 0.028 Å 0.033 Å 0.039 Å 0.044 Å 0.050 Å 0.055 Å 0.061 Å

I ux 0.00 Å −0.003 Å −0.006 Å −0.009 Å −0.013 Å −0.016 Å −0.019 Å −0.022 Å −0.025 Å −0.028 Å −0.031 Å −0.034 Å

I uy 0.00 Å −0.015 Å −0.031 Å −0.046 Å −0.061 Å −0.076 Å −0.092 Å −0.107 Å −0.122 Å −0.137 Å −0.153 Å −0.168 Å

I uz 0.00 Å −0.007 Å −0.014 Å −0.021 Å −0.027 Å −0.034 Å −0.041 Å −0.048 Å −0.055 Å −0.061 Å −0.068 Å −0.075 Å
Z2 0; (000) 0; (000) 0; (000) 0; (000) 0; (000) 0; (000) 0; (000) 1; (001) 1; (001) 1; (001) 1; (101) 1; (100)

Table 5.1: Atomic displacements for interpolated BiTeI structures

2.9 Å – this Bi-Te bond plays an important role in the TPT as discussed later. Additionally,
the distribution of Bi-I bond lengths spread out with large deviation and then moves to 3.5 Å
with lower deviation.

The Bi-Te bond shortening and Bi-I bond lengthening has important implications on the
charge density. Fig. 5.1(c) plots the charge density of bands at the Fermi level near the A
point which are involved in the TPT for the undisordered crystal. We also plot the charge
density for the bands projected onto the (001) plane depicting the C3v symmetry and the
charge sitting on the Te and I atoms. As we disorder crystalline BiTeI, Fig. 5.1(d-e), the
charge density moves from being centered on the Te and I ions to the Bi-Te bond. This
is important because, as we will describe later, the TPT band inversion occurs between
the Bi and Te p orbitals near the Fermi level. The charge density is redistributed in the
y-direction due to the increased py orbital presence at the Fermi level. This increase is
attributed to the shortening of the Bi-Te bonds, which happens primarily in the y-direction.
The y-direction is not specific, rather the important feature is a shortening of the Bi-Te bond
and the subsequent charge redistribution. In summary, in our disordered BiTeI, the Bi-Te
bond gets shorter causing a charge redistribution along the Bi-Te bond, resulting in a broken
3-fold rotation symmetry and a new crystal-field environment for the states near the Fermi
level.

Our crystal structure was obtained from the Materials project (mp-22965), which was
derived from ICSD no. 79364 with standard Materials Project settings.

To track the topological properties of BiTeI, eleven disordered structures were produced
by randomly displacing the atoms from their equilibrium positions. The average displace-
ment as well as the atomic displacements (ux,y,z) for each atom in the primitive cell are
shown in Table 5.1. The reason for the band inversion and topological phase transition is
the shortening of the Bi-Te bond and subsequent charge redistribution to this bond due to
the new crystal-field environment. From the ux,y,z’s shown in the table, it can be seen the
Bi and Te atoms get closer together in the x, y directions shortening the bond.
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5.2 Electronic Structure

Figure 5.2: Bulk electronic bandstructure. (a) Bulk bandstructure in the H−A−L direction
without SOC. Structural disorder modifies the CFS pushing bands near the Fermi level closer
and reducing the energy gap. Darker colors represent more disordered structures. (b) The
bandstructure with SOC for dav=0.00 Å, dav=0.28 Å, and dav=0.45 Å, respectively. The
Bi weight in green moves from the CB to VB and vice versa for Te in orange. (c) The
Bi/Te pz orbital weight at A as a function of average atomic displacement. With increasing
displacement the Bi and Te weight of the VB (CB) switch around 0.4 Å. (d) Energy level
splitting diagram for disordered BiTeI after the TPT. The three splittings represent chemical
bonding, crystal field, and SOC. By breaking the C3v symmetry the px,y orbitals are no longer
degenerate.

Our electronic structure calculations were performed using Density Functional Theory
(DFT) with the projector augmented wave (PAW) formalism in the Vienna ab initio Simula-
tion Package (VASP)[41, 42]. The exchange-correlation potentials were treated in the frame-
work of generalized gradient approximation (GGA) of Perdew-Burke-Ernzerbof (PBE)[39].
Bi (6s, 6p), Te (5s,5p), and I (5s, 5p) electrons were treated as valence, and their wavefunc-
tions expanded in plane waves to an energy cutoff of 600 eV. A k-point grid of 6x6x4 with
Gamma sampling was used. Spin-orbit coupling was added self-consistently.

Based on our first-principles results, we construct a Wannier function based tight-binding
model using the WANNIER90 code [147]. We include the Bi, Te, and I p orbitals in the
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model. We then calculated the topological invariants for different structures using the WAN-
NIERTOOLS package [148].

Next, we examine the influence of the structural changes on the electronic and topological
properties of disordered BiTeI. The calculated electronic structure is shown in Fig. 5.2 with
and without SOC included to disentangle how crystal-field effects and SOC change with
atomic displacement. Due to the lack of a center of inversion, we examine the states along
the H−A−L direction to track topological band inversion. Fig. 5.2(a) shows the calculated
electronic bandstructure for increasing values of dav without SOC. We find that for increasing
dav, the resulting changes in the CFS at A reduces the band gap and pushes the bands at
the Fermi level closer together. This large crystal-field enhancement is a result of the lifting
of the degeneracy between the px and py orbitals upon displacement when the three-fold
rotational symmetry is broken. This causes an increased py orbital contribution near the
Fermi level, seen in the partial charge density. The orbital overlap produces large splitting
pushing states near the Fermi level closer together as shown in Fig. 5.1(e) and Fig. 5.2(a).

To understand the role of SOC on the disordered electronic structure, Fig. 5.2(b) plots the
bandstructure for dav = 0.0 Å, dav = 0.3 Å, and dav = 0.5 Å, respectively, with SOC included.
SOC breaks the spin degeneracy giving rise to splitting at positions in the Brillouin zone away
from high-symmetry points and causes a large Rashba spin-splitting near the Fermi level in all
structures [149]. Importantly, by incorporating SOC we observe a reduction of the bandgap,
and, with increasing dav, a band inversion occurs at the A point. This band inversion
produces the TPT in disordered BiTeI. The origin of the band inversion can be understood
by considering the p-orbital projections of Bi, Te, and I onto the bandstructure. Initially the
Te (orange) and I (blue) weight is concentrated in the valence band (VB) and the Bi weight
(green) in the conduction band (CB). After the transition the Bi weight is in the VB and the
Te weight is in the CB, which is quantitatively shown in Fig. 5.2(c). The Bi and Te pz orbital
weights switch at dav ∼ 0.4 Å with the Bi weight decreasing in the CB and the Te weight
increasing (vice versa for the VB). Importantly, the average atomic displacement of 0.4 Å is
observed in amorphous TI systems and so is a physically reasonable amount of disorder that
could be induced in amorphous materials [117]. This allows us to reasonably assume the
electronic structure of the disordered crystal could reflect an amorphous phase. Additionally,
the peak in the distribution of coordination numbers in the disordered structures moves from
six to five exactly at the TPT, producing a new crystal field. A minimal tight binding model
incorporating disorder reproduces our results. The generality of this model capturing the
TPT with disorder can be applied to other structurally disordered materials systems with
strong SOC.

The electronic structure results are summarized in Fig. 5.2(d). We find the states at the
Fermi level, namely Bi-p in the CB and Te/I-p in the VB, dominate the TPT. As previously
noted, the in-plane C3v rotational symmetry in crystalline BiTeI results in degenerate px,y
orbitals split in energy from the pz orbital due to the semi-ionic polar trigonal prismatic
coordination of the Bi [150]. This results in Bi-pz and Te-pz states at the edge of the CB and
VB respectively [132], separated by a calculated band gap of 0.38 eV. Introducing disorder
that shortens Bi-Te bonds results in greater orbital overlap between the Bi-pz and Te-pz
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states, pushing bands near the Fermi level closer together. This disorder-induced reduction
in bandgap is then sufficient, once SOC is included, to cause a band inversion of the two
opposite polarity bands, resulting in a TPT to a TI.
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Figure 5.3: Computed RDF for different realizations of structural disorder in BiTeI. The
structure labeled topological corresponds to structure S7 in Table S1. The structure labeled
not topoligcal has dav = 0.4 Å but does not possess the required Bi-Te bond shortening and
charge redistribution for a topological phase transition.

Different realizations of structural disorder in BiTeI lead to non-topological systems. In
one set of ten randomly disordered interpolations the shortening of the Bi-Te bond and
charge redistribution causes a reduction in the band gap, but the crystal field splitting isn’t
enough to cause a band inversion, but larger amounts of disorder could potentially drive it
past a TPT. The radial distribution function is shown in Fig. 5.2 for another realization of
disordered BiTeI with similar average displacement to the topological structure. The short-
ening of the Bi-Te bond and the corresponding charge redistribution was not present in this
set of ten disordered interpolations, owing to the different local environments from nearest
and next-nearest neighbor atoms seen in the radial distribution function. The topological
structure has peaks in the RDF at ∼ 2.5Å and ∼ 2.8Å. The different local environment
leads to different modifications of crystal-field environment that push the bands near the
Fermi level farther apart. This is shown in Fig. 5.4, the energy gap at the A point in the
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Figure 5.4: Electronic bandstructure for non-topological BiTeI with orbital projections with
the Fermi level set to 0 eV. As the structural disorder becomes larger the Rashba splitting
is greatly increased. The conduction band splitting at the A point has ER = 0.4 eV and the

momentum offset ko = 0.17 Å
−1
.

BZ is larger than it is in the undistorted crystal. This different crystal field results from
random atomic displacements that do not produce the relevant orbital overlaps required for
topology (such as the pz orbital overlap). This can be seen in the Bi, Te, and I orbital pro-
jections, these states reside in the same bands as the non-topological crystal. Although the
system doesn’t undergo a topological phase transition it develops an even greater Rashba
splitting seen in Fig. 5.4. In these non-topological structures ER = 0.4 eV and the momen-

tum offset ko = 0.17 Å
−1
, larger than any previously reported in literature [89]. These results

demonstrate that structural disorder can generate both TPTs and colossal Rashba splitting
in SOC materials making it a new tuning parameter for quantum properties in small gap
semiconductors with large SOC.
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5.3 Topology

Since the TPT is that of an ordinary insulator to a TI in a noncentrosymmetric crystal upon
structural disorder, we calculate the Z2 topological invariant for the TR-invariant planes in
the BZ [14]. After the TPT Z2 = 1; (001) indicating a strong TI. Fig. 5.5(a) presents the
surface state calculations performed on a slab of structurally disordered BiTeI after the TPT.
The presence of a Dirac cone at the surface Γ confirms the nontrivial bulk Z2 invariant. The
Dirac cone sits mid gap and passes through the top of the Rashba split VB as Γ →M before
connecting to the VB at M . This complex surface spectrum allows for the interplay of bulk
Rashba split bands with the topological surface state. We plot the spin-momentum locking
of the surface states with H ∝ σ × k in Fig. 5.5(b). The annular structure is distorted in
momentum space due to the structural disorder in real space. Increasing structural disorder
produces a TPT leading to a strong TI with a spin-polarized Dirac cone.

Figure 5.5: Calculated surface state spectrum for disordered BiTeI. (a) The momentum
dependent local density of states shows a topological Dirac cone around the surface Γ point.
(b) The Fermi surface of the topological surface state. The Dirac cone is distorted due to the
structural disorder, the resulting Fermi surface is stretched in kx, ky in momentum space, a
result of the structural disorder in real space. Arrows correspond to the spin texture of the
Fermi surface. Brighter colors represent a higher local density of states.

The WCC for the k3 = 0.5 plane is shown in Fig. 5.6, there is clearly a single crossing of
the line cut with a WCC giving a Z2 index of 1. In conjunction with all the other planes, this
shows the system is in a topologically insulating phase. The Z2 index set for all structures
is shown in the last row of Table 5.1.
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Figure 5.6: Hybrid WCC evolution for the k3 = 0.5 plane. The red line is the largest gap
between WCC’s and the blue lines are the WCC’s. There is a single crosses indicating this
plane has Z2 = 1 and the system is topologically insulating.

These topological phases have been discussed before as intermediate phases between a
trivial Z2 insulator and a nontrivial Z2 insulator which lacks a center of inversion [151].
As BiTeI becomes more structurally disordered, the crystal-field splitting increases and the
bands approach a band inversion. When the valence and conduction bands touch at the A
point in the BZ, a pair of Weyl nodes should emerge. Calculating the Chern number for the
kx = 0 plane gives C = 1 meaning an intermediate Weyl phase in the structurally disordered
BiTeI. Since pairs Weyl nodes are sources and sinks of Berry curvature, we should observe
this phase by looking at the real part of Ω. Fig. 5.7 shows the real part of Ωx (x-component
of the Berry curvature). There are two nodes in the BZ, each with opposite Berry curvature
from the other (red vs. blue). This, in addition to the non-zero Chern number, signifies the
presence of a Weyl phase as BiTeI transitions from a trivial insulator to topological insulator.
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Figure 5.7: Real Ωx at the topological phase transition. Two nodes with opposite Berry
curvature are observed in the BZ at the Fermi level. Red and blue denote opposite Berry
Curvature.

5.4 Conclusions

The local structure and its disorder play a key role in the TPT. We generated several sets
of disordered interpolations via our random displacement process, different from the set
presented. In these, the bonds lengths develop different distributions leading to varying
local chemical environments and orbital overlaps. In one set, the shortening of the Bi-Te
bond brought the structures close to a TPT. In another set the charge redistribution to the
Bi-Te bond was not present, but led to a very large Rashba splitting in the bulk. These trivial
electronic structures show not all disorders and subsequent local environments produces a
TPT, highlighting the need for identifying key structural markers in TPTs. Our results
demonstrate that structural disorder can generate both TPTs and colossal Rashba splitting
in SOC materials making it a new tuning parameter for quantum properties in small gap
semiconductors with large SOC.

Studying the influence of random structural disorder in SOC systems has implications for
topological materials. We find that crystal-field engineering can be achieved with structural
disorder as a new theoretical tuning parameter for topological phases. Furthermore, disorder
can be employed to identify the physical origin of the TPT, making it also a marker for
topological phases. This leads us to a systematic prescription for inducing TPT in material
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as follows: (i) identify the orbital character of the states near the Fermi level, (ii) add random
atomic disorder to break the degeneracy of the states and distort along the corresponding
orbital direction to reduce the gap, (iii) close the gap and cause a band inversion. By
incorporating tight-binding models and topological markers [79, 24, 152], we can potentially
discover many disordered and amorphous topological materials candidates. The topological
phase and local environment in BiTeI, probed in our study via random atomic disorder,
could be realized in amorphous thin films grown via physical vapor deposition. Short range
ordering coupled with the atomic displacement in disordered or amorphous BiTeI could
potentially show a topological phase in experiment.

In conclusion, we show that by randomly introducing structural disorder a TPT from a
normal insulator to TI is achieved. Disordered BiTeI shows a bulk band inversion at the
A point in the BZ which manifests as a spin-polarized topological Dirac cone with a strong
topological invariant. The physical mechanism for this is broken crystalline symmetries
which produce a unique crystal-field environment that pushes the states near the Fermi
level closer together, inducing a band inversion. Our work is a step towards understanding
topological matter from a local bonding perspective and has implications for topological
states that cannot be classified using crystalline symmetry indicators. They suggest a route
to discovering topological states in disordered and amorphous materials by identifying the
local mechanisms (orbital inversions, etc.) which produce a TPT in the crystal in the presence
of disorder. Our work provides a study of disorder induced TPT in a real solid state system
with chemical specificity and bonding environments via first principles, a system which can
be readily synthesized and manipulated in the lab. Such small-gap systems with strong
SOC and well defined local environments, are promising systems to study the interplay of
structural disorder, symmetry breaking, and topology.
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Chapter 6

Disorder-driven localization and
electron interactions in BixTeI thin
films

This chapter is based on a manuscript in final preparation with explicit permission from
all co-authors. The author list is Paul Corbae, Nicolai Taufertshöfer, Ellis Kennedy, Mary
Scott, and Frances Hellman.

Quantum materials such as topological materials or correlated phases have revealed re-
markable emergent properties such as robust spin-momentum locked surface states and un-
conventional superconductors, and have the potential to revolutionize technology with ap-
plications ranging from low power electronics to quantum computing. Many studies involve
single crystals since disorder is typically seen as a drawback that hinders the emergence of
interesting quantum properties in materials. However, disorder is in fact useful in quantum
materials and the observation of certain phenomena rely on the presence of disorder, such as
the quantum anomalous Hall effect [153]. Quantum properties that exist in the amorphous
structure include superconductivity, magnetism, and topological phases, the latter seen via
spin-momentum locked surface states in an amorphous analog of a 3D topological insulator
[117].

It is well understood that structural disorder can lead to electron localization, specifically
via Anderson localization [6]. In these systems there is a finite density of states at the Fermi
level, but the states are localized within a localization length that is typically much larger
than the interatomic spacing. The Fermi energy is commonly tuned by composition and
the correlation length diverges when the Fermi energy lies at the mobility edge [154]. When
the Fermi energy passes through the mobility edge, the states become delocalized. This
transition is understood if interactions are not present which enables a single particle de-
scription. However, in systems where carriers are charged (electrons or holes), then Coulomb
interactions are important and these introduce many body correlation effects. Additionally,
disorder also increases electron interactions, and in some cases interactions can dominate
[155]. The presence of electron interactions opens a Coulomb gap in the density of states
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at the Fermi level [8]. The interplay of strong disorder and interactions is an open field of
research [156].

Spin-orbit coupling (SOC) has a particularly strong effect on materials which are disor-
dered, where localization increases the strength of SOC relative to electron kinetic energy
[157]. On the metallic side of the metal-insulator transition (MIT), the presence of disorder
leads to the suppression of the conductance due to the constructive quantum interference of
time reversed paths in zero magnetic field and is known as weak-localization (WL). In the
presence of strong SOC, the spins of time reversed paths rotate and destructively interfere
leading an enhancement of the conductance known as weak-antilocalization (WAL) [158, 66].
WAL and WL will manifest itself in the scattering lifetimes which can be studied via mag-
netotransport [159]. One important consideration is the dephasing time which corresponds
to the time an electron will stay in an energy eigenstate in the presence of disorder. Another
consideration is the spin orbit scattering time, which is the time it takes to randomize the
spin-orientation during scattering events. On the insulating side, carriers exhibit variable
range hopping (VRH) between sites which can be spin-dependent [160, 64].

The BixTeI system contains several distinct quantum materials with different emergent
properties. BiTeI is a small gap Rashba semiconductor with a very large spin splitting [89].
BiTeI can be tuned by disorder or pressure to different ground states, specifically a topological
insulator or Weyl semimetal phase [161, 65]. Bi2TeI is a weak topological insulator due to an
even number of band inversions which results in surface states on a distinct set of surfaces
[162]. It also is a topological crystalline insulator from a mirror symmetry in the crystal
structure with protected surface states on a set of surfaces, both which have been seen in
experiment [163]. Finally, Bi3TeI is metallic, and has been proposed to be a topological
metal [164]. In BiTeI, the layers are van der Waals (vdW) bonded together, leading to
a vdW gap. The Bi2TeI and Bi3TeI structures incorporate one and two Bismuth bilayers,
respectively, in the van der Waals gap of BiTeI. In single crystal form, BixTeI with x = 1, 2, 3
is experimentally found to show metallic behaviour with ρ(T ) decreasing with decreasing
temperature and ρ ∼ 0.5mΩ · cm at low temperature [165, 89]. The metallic behaviour
has been discussed as a result of non-stoichiometry leading to an n-type semiconductor for
x = 1, 2. This BixTeI system thus presents an opportunity to study the effects of disorder
in a material with a wide range of topological and quantum states.

In this paper we grow BixTeI thin films at both room temperature and 230K with vary-
ing levels of structural disorder to study how transport mechanisms are affected by disorder.
Electron diffraction is used to characterize the structure and shows that both a reduced
growth temperature and reduced Bi concentration x cause increased structural disorder.
Transport properties were measured as a function of temperature and magnetic field for
an extensive range of compositions and disorder. A metal-insulator transition is seen with
decreasing composition for both cold and warm grown samples. With increased structural
disorder from growth temperature, the MIT occurs at larger values of x. Temperature and
magnetic field dependent transport provides evidence for weak antilocalization associated
with strong spin-orbit coupling, which disappears with increased disorder, and evidence for
electron interaction effects. The dephasing length is extracted from the field dependence
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and decreases as a function of increased disorder with the dominant dephasing mechanism
changing from electron-phonon interactions to electron-electron interactions. Our work sig-
nals that strong disorder can localize spin-orbit entangled states and increase interactions in
the complex electronic structure in quantum materials, such as the BiTeI family.

6.1 Structure

We grew 100 nm thin films of BixTeI with various Bi concentrations on a-SiNx covered Si
substrates at room temperature (RT) and 230K (LT). The films were grown out of three
effusion cells (Bi,Te,BiI3) in a UHV chamber with a base pressure of 10−10 Torr. Different
compositions were achieved by varying the Bi rate relative to the Te and I rate. The film
thicknesses were confirmed using profilometry and the compositions were determined by
energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS). The
structure of the room temperature and cold grown BixTeI films was characterized using
high resolution TEM, parallel beam diffraction, and scanning nanodiffraction. For transport
measurements the films were patterned into Hall bar devices (l = 600µm, w = 200µm) using
conventional photolithography techniques. The films were measured in a custom closed cycle
cryostat and a Quantum Design PPMS using standard four-point DC and low frequency lock-
in techniques. We used pre-patterned thin Cr/Au (2 nm+8nm) contacts on the substrates
on which the films were grown and subsequently ex situ patterned into Hall bars using lift-off
techniques. The structure and electronic properties of this material is badly influenced by
any sort of annealing, which induces crystallization. The choice of pre-made Cr/Au contact
pads and a lift-off technique was made to eliminate any annealing. Large Cr/Au contact
pads were used to reduce contact resistance which can be significant on highly insulating
films.

Both growth temperature and composition affect the level of structural disorder. In
Fig. 6.1(a) high resolution real space images of room temperature BiTeI (RT-BiTeI) show
nanocrystals approximately 5-10 nm in size embedded in an amorphous matrix. In RT-Bi2TeI
and RT-Bi3TeI, the nanocrystalline regions approximately double in size with RT-Bi3TeI
having a larger volume fraction of nanocrystals. Low temperature BiTeI (LT-BiTeI) grows
amorphous, LT-Bi2TeI has 5−10 nm precursors in an amorphous matrix, and LT-Bi3TeI is
entirely nanocrystalline with nanocrystals ∼ 10−20 nm. Fig. 6.1(b) shows parallel beam
electron diffraction patterns for BiTeI, Bi2TeI, and Bi3TeI grown at RT and 230K. RT-BiTeI
has two diffuse rings resulting from the amorphous matrix and the embedded nanocrystals.
RT-Bi2TeI and RT-Bi3TeI are nanocrystalline, indicated by the sharp rings in the diffraction
patterns, with a larger crystallite size compared to RT-BiTeI and a decrease in the amount
of amorphous phase from x = 2 to x = 3. The LT-BiTeI diffraction pattern shows diffuse
rings which confirms the film is fully amorphous. In LT-Bi2TeI there is a single sharp ring in
addition to the diffuse ring from the amorphous matrix. In LT-Bi3TeI, the number of rings
increases and the rings appear sharper corresponding to the large crystalline domains. The
level of structural disorder in RT and LT x = 1, 2 is greatly affected by growth temperature
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Figure 6.1: Structural disorder in BiTeI thin films. (a) HRTEM images BixTeI for varying
composition and growth temperature. RT-BiTeI is amorphous with nanocrystals embedded
in the matrix. RT x = 2− 3 are nanocrystalline showing crystallites larger in size compared
to x = 1. The volume fraction of nanocrystals is greater for x = 3. Cold grown (230K)
films are amorphous for low x then nucleate crystallites with larger size as Bi concentration
is increased. Example nanocrystallites indicated by arrows. (b) The diffraction patterns
for RT-BiTeI has broad rings from small nanocrystals and the amorphous matrix, then as
Bi concentration is increased there is an increase in the intensity of the rings. LT-BiTeI
is amorphous with braod rings then LT-Bi2TeI, LT-Bi3TeI nucleate crystallites leading to
sharp rings with increasing x. (c) Radially integrated diffraction intensity for RT grown
samples. Higher intensity is seen for increased Bi concentration from an increased crystallite
size. Dashed line corresponds to dominant single crystal BiTeI diffraction peak. The peak
at k ∼ 2 nm−1 is from the Bi bilayer. (d) Radially integrated diffraction intensity for cold
grown samples. The peaks become sharper and more frequent for increased Bi concentration.
(e) Variance in the diffracted intensity as a function of scattering vector k for warm and cold
grown BiTeI, the film grown at higher T has more MRO and less disorder, evidenced by the
large second peak in the variance. (f) Variance in the diffracted intensity as a function of
scattering vector k for warm and cold grown Bi2TeI, the film grown at higher T has more
MRO and less disorder, evidenced by the large second peak in the variance.
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where RT and LT x = 3 the structure is unaffected by growth temperature with the levels
of disorder being the same.

These results are also seen in the radially integrated intensity, I(k), shown in Fig. 6.1(c,d)
which show additional features. For RT-BiTeI there are two broad peaks which correspond
to the diffuse rings in the diffraction pattern, of a sample which is largely amorphous. For
RT-Bi2TeI and RT-Bi3TeI there is an increase in the peak intensity observed with increasing
Bi concentration, indicating a larger fraction of nanocrystals in RT-Bi3TeI. Peaks at similar k
are observed in both RT-Bi2TeI and RT-Bi3TeI, indicating a similar structural order in both
films arising from the incorporation of Bi bilayers (2 nm−1 peak seen in crystalline diffraction
[165]) into the host BiTeI structure. The peak at 3.1 nm−1 in RT-BiTeI corresponds to the
amorphous matrix and the 4.4 nm−1 peak corresponds to a real space length scale of 2.3 Å
coming from the (110) or (003) planes in the single crystal [161]. The amorphous LT-
BiTeI has a broad peak at 3.1 nm−1 from the diffuse halo corresponding to local medium-
range ordering of 3.4 Å. In LT samples, with increasing Bi concentration the nucleation of
crystallites in an amorphous matrix are evidenced by the LT-Bi2TeI peaks that arise out of
the broad amorphous peak as well as the Bi bilayer peak. The LT-Bi3TeI films are completely
nanocrystalline with a large crystallite size and many peaks. Fits to the k = 2nm−1 peak
show a smaller FWHM as the composition increases from x = 2 to x = 3 indicating smaller
crystallite size in LT-Bi2TeI. The relative peak heights of the variance in diffracted intensity
between RT and 230K BiTeI, Bi2TeI are shown in Fig. 6.1(e,f). Fig. 6.1(e) compares V (k)
for the BiTeI films grown at RT and 230K, and shows that they have peaks at approximately
the same k’s, consistent with them both being amorphous as previously discussed, but the RT
has a significantly enhanced second peak, at 4.4 nm−1, which indicates an increased MRO in
the RT film compared to the LT film. Similarly, RT-Bi2TeI has pronounced MRO at 4.4 nm−1

compared to RT-Bi2TeI. Thus we see that growth temperature directly affects disorder for
these two amorphous samples, specifically visible in this V (k) data, and can be used to tune
structural disorder. Growth at colder temperatures increases the level of structural disorder
in the films, and enables the growth of amorphous films. Fig. 6.1 shows we are able to tune
the amount of structural disorder in BixTeI films which will have important implications on
the electronic structure and transport.

The rotational symmetries of the amorphous and nanocrystalline films can be extracted
using electron nanodiffraction [166, 167]. The sharp diffraction ring and peak at 4.4 nm−1

in RT grown BiTeI arises from a structure with 2-, 3-, and 6-fold rotation symmetry as
seen in Fig. 6.2(a). A phase that is structurally close to the P3m1 space group with 6-
fold rotation symmetry is P63mc [168]. The amorphous BiTeI system does not show such
a defined rotational symmetry associated with the dominant k seen in Fig. 6.2(d). The
dominant diffraction peak shows the dominant symmetry to be a 2-fold rotation with both
4 and 6-fold rotations also present. The secondary diffraction peak shows both 2-fold and
6-fold symmetries present, implying 3-fold is also present. Warm Bi2TeI shows a dominant
2-fold symmetry as well as 3, 4, and 6 fold angular symmetries. The case is the same for
the cold grown Bi2TeI as well as warm Bi3TeI. Angular symmetries larger than 6 stem from
dynamical effects [166].
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Figure 6.2: Angular symmetries in BixTeI thin films. (a,b,c) Angular symmetries in warm
grown BixTeI, the dominant symmetries are 2-, 3-, and 6-fold. 4-fold symmetries show up
at different k with decreasing disorder. (d,e) Angular symmetries in cold grown BixTeI. The
dominant symmetry is 2-fold for the main amorphous diffraction peak. There are also 3, 4,
and 6-fold symmetries.

6.2 Transport

Turning now to the electrical transport properties of these films, we find a transition from
insulating to metallic behavior with increasing x, for both RT and LT samples. Fig. 6.3(a,b)
shows the conductivity of RT and LT BixTeI samples versus temperature for a range of x,
showing clear evidence of a MIT in BixTeI for both RT and 230K grown films at different
x. All samples are plotted here on log scales (a,b) or linear scales (c,d) of σ vs T in order
to display the transition from metallic behavior at high x to insulating behavior at lower x.
The high x samples (both RT and LT) show a nearly temperature independent conductivity,
with σ ∼ 800Ω·cm−1, which increases slightly with increasing temperature, a common fea-
ture of amorphous metals above but near the MIT, and a sign of WL and quantum correction
effects. We note again that for single crystal x = 3, the σ ∼ 2000Ω·cm−1, and decreases
slightly with increasing temperature. With decreasing x, σ decreases and becomes increas-
ingly temperature dependent, with increasingly sharp downturns seen at lower temperatures,
particularly in the LT samples. By fitting the data to σ0+AT 1/2, an expression appropriate
to metals near the MIT, values for σ0 vs. x are extracted and plotted in Fig. 6.3(c). These
figures show σ0 vanishing for x near 1.5 (RT) and 2.4 (LT). For lower x (lower σ), the data



CHAPTER 6. DISORDER-DRIVEN LOCALIZATION AND ELECTRON
INTERACTIONS IN BIxTEI THIN FILMS 97

Figure 6.3: Metal-insulator transition in BixTeI for x = 1 − 3. (a) Conductivity σ vs.
temperature for BixTeI films grown at room temperature (RT) and (b) with substrates cooled
down to ≈ 230K (LT). (c-e) left RT, right 230K (or LT). (c) Fits to the conductivity based
on the presence of interactions, σ(T ) = σ0+aT

1/2, where σ0 = σ(T = 0K) and the T 1/2 term
is due to Coulomb interactions in a disordered system. (d) σ0 vanishes as a power law for the
metal-insulator transition approached from the metallic side. The critical Bi composition x
for RT grown is xc = 1.35 ± 0.19 and for films grown at 230K is xc = 2.38 ± 0.43. This
significant difference in xc displays how the increased disorder in films grown at reduced
temperature affects the electronic properties of the material. (e) VRH fits ∝ e−(T0/T )ν to
BixTeI films that show insulating behaviour. The fit range is indicated by the black bars. The
RT Bi1TeI curve (red) is close to the metal-insulator transition and therefore best described
for a temperature up to 10K by ν = 1/2. The insulating films grown at reduced temperature
(blue) are well described within a Mott-type VRH with ν = 1/4 for a large T range.



CHAPTER 6. DISORDER-DRIVEN LOCALIZATION AND ELECTRON
INTERACTIONS IN BIxTEI THIN FILMS 98

is best viewed on a log scale, with a fit to VRH, as shown in 6.3(e). Cold grown samples
with x < 2.4 were not measured below 50 or 150K (depending on x) because their resistance
exceeded MΩ, the limit of the measurement setup.

We now look in greater detail at the temperature dependence of σ(T ). Altshuler and
Aronov [169] described the effect of Coulomb interactions between electrons in a disordered
system which carve out a

√
E gap in the density of states and cause a T 1/2 term in the

conductivity for metallic systems, with a non-zero conductivity in the limit as T approaches
zero. Fig. 6.3(c) shows the low temperature fit including a T 1/2 term for both warm and
cold grown samples on the metallic side. Curves with nonzero σ0 = σ(T = 0K) allows us to
make an estimate of the composition x of BixTeI films where the MIT occurs. From scaling
theory of localization it is assumed that σ0 vanishes continuously when being approached
from the metallic side with a critical exponent ν such that σ0 ∝ (x − xc)

ν . In literature a
scatter of results for ν ranging from 0.5 to 2 is found, and a debate about the interpretation
of the transition is ongoing [170]. σ0 values for both warm and cold grown films were fit to
this expression, with a best fit value of with ν = 2 shown in Fig. 6.3(d). From this data we
report a critical composition xc of xc,warm = 1.35± 0.19 and xc,cold = 2.38± 0.43.

On the insulating side of the MIT, localized states contribute to conductivity by hopping
to states near the Fermi level. σ is proportional to e−(T0/T )ν where T0 is a temperature
which can be related to the localization length (length scale over which the amplitude of the
electron wavefunction decays) and ν = 1/4. Efros and Shklovskii showed that when Coulomb
interactions are taken into account the exponent is ν = 1/2 [8]. ν = 1/4 is normally obeyed
except near the metal-insulator transition where the Coulomb gap becomes large compared
to the hopping energy and ν = 1/2 is observed [8]. Fig. 6.3(e) shows curves with insulating
character (x < xc) for warm and cold grown films where the fits indicate the hopping regime.
In the warm grown films only RT-BiTeI is insulating and is well described by a VRH model
with ν = 1/2 up to 10K, indicating Coulomb effects are important. The cold grown samples
with a composition below xc,cold show highly insulating behaviour which is well described
within the ν = 1/4 model for a large temperature range (χ2 is better for ν = 1/4 fit vs.
ν = 1/2 fit).

The magnetoresistance (MR) is a probe of the different dephasing mechanisms from the
hopping to diffusive regimes in RT grown BixTeI films. Low temperature MR measurements
are sensitive to quantum corrections in the diffusive regime such as WAL or WL which man-
ifest as positive or negative MR (negative or positive magnetoconductance). In a magnetic
field the electrons acquire an additional phase which reduces the destructive (constructive)
interference of WAL (WL). In systems with WAL, the increased backscattering in a magnetic
field leads to a positive, sharp increase of the MR. Fig. 6.4 shows the magnetoconductance
(MC) curves as a function of temperature and field. RT-BiTeI, which is an insulator, has a
positive, linear MR even when it is in the hopping regime where previous works have shown
negative magnetoresistance [160, 64]. RT-Bi2TeI shows the onset of WAL with a larger de-
crease of the MC with applied field compared to RT-BiTeI. RT-Bi3TeI shows a sharp, clear
WAL cusp indicated by the rapid decrease of the MC at small magnetic fields. More quanti-
tative estimations of WAL effects can be made by fitting our data to the three dimensional
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Figure 6.4: Magnetotransport in RT BixTeI thin films (a) Magnetoconductance of RT-
BiTeI as a function of temperature. The film is highly resistive in the hopping regime
and shows a small negative MC that decreases with increasing measurement temperature.
(b) Magnetoconductance of RT-Bi2TeI, again negative and decreasing in magnitude with
increasing measurement temperature but two orders of magnitude larger than in x=1. Fits
shown are 3D weak antilocalization. (c) Magnetoconductance of RT-Bi3TeI with 3D weak
antilocalization fits. The sharp dip in the MC with field for 2K data is from the WAL effect.
(d) Hall resistance for RT-Bi2TeI. Rxy is nonlinear and the Hall coefficent is small below 5K.
(e) Hall resistance for RT-Bi3TeI. Rxy is linear, electron-like, and temperature independent.
(f) Dephasing length versus temperature for RT-Bi2TeI and RT-Bi2TeI. The RT-Bi2TeI data
is fit best as lϕ proportional to T−0.47±0.12 indicating dephasing due to electron interactions.
For RT-Bi3TeI the data is fit best as lϕ proportional to T−1.49±0.16 indicating dephasing due
to electron-phonon interactions.
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theory of WAL [171]. In three dimensions, the extension of the HLN [66] WAL goes as:
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with ζ being the Hurwitz-Zeta function and where N , lB, l, lϕ, and lSO are the number
of channels, magnetic length, mean free path, dephasing length, and spin-orbit scattering
length, respectively. N , l, lϕ, and lSO are used as fitting parameters. The MC for RT-BiTeI
is shown in 6.4(a) without a fit since it is in the hopping regime where the 3D WAL theory is
not applicable (see discussion). The fits to the 3D WAL theory for RT-Bi2TeI and RT-Bi3TeI
are shown in Fig. 6.4(b,c). The fitting range was up to 1T where the lB is ∼ 13 nm and
greater than the mean free path of our films. By reducing structural disorder, lϕ rises to
values of 35 nm and then 136 nm in RT-Bi2TeI and RT-Bi3TeI respectively (both magnitudes
larger than lSO). This explains the emergence of WAL. Hall effect data on RT samples is
shown in Fig. 6.4(d,e). Since RT-BiTeI is in the hopping regime, we don’t extract a carrier
concentration because the Hall effect is difficult to interpret in this regime, however the
Hall voltage is linear and temperature independent. The RT-BiTeI Hall voltage is shown
in Fig. 6.5. Below 5K, the RT-Bi2TeI Hall resistance Rxy is nonlinear signaling multiple
types of carriers. The Hall coefficient in RT-Bi2TeI is temperature dependent and below 5K
is a factor if two smaller than above 5K; this can be a linked to the presence of electron
interactions since δRH/RH = 2δR/R [172]. The ratio of (δRH/RH)/(δR/R) gives 2.8 for RT-
Bi2TeI. For this reason we do not extract a carrier density as the Drude picture is based on a
single particle picture. RT-Bi3TeI shows a temperature independent, negative (electron-like)
carrier concentration of n3D ∼ 1× 1022 cm−3. The dependence of the dephasing length lϕ on
temperature gives insights into the dominant dephasing mechanisms. The dephasing length
in RT-Bi2TeI follows a T−0.47±0.12 scaling, Fig. 6.4(e), indicating the dominant dephasing
mechanism is likely stemming from electron interactions. This is because the exponent p
is smaller than the value of p ∼ 1 − 3 for electron-phonon interactions in 3D disordered
systems [173]. This is also the expected exponent for electron dephasing in two dimensions.
In RT-Bi3TeI, lϕ follows the scaling of T−1.49±0.16 indicating the dephasing mechanism is
dominated by electron-phonon interactions [158], Fig. 6.4(f).

The role of enhanced correlations from disorder can be studied further in BixTeI films on
the metal side. The application of a magnetic field will suppress quantum interference effects
but not electron interactions since interaction effects occur through a particle-hole diffusion
channel that is insensitive to magnetic flux [158]. In Fig. 6.6(a) the RT-Bi2TeI samples
have a low temperature decrease in the conductivity while the MR is positive, indicating the
decrease is a result of electron interactions not WL, which is line with the dephasing length
power law. The slope of the line between 2K and 4K increases as quantum interference
effects are suppressed with increasing field (also seen by the decrease in conductivity above
10K), indicating the EEI is dominant and the cause of the low temperature conductivity
drop. The RT-Bi3TeI sample shows a low temperature upturn in the conductivity which is
destroyed with applied field and the breaking of time reversal symmetry, Fig. 6.6(b). This
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Figure 6.5: Hall voltage in RT-BiTeI thin films. The films are in the hopping regime where
the Hall effect is difficult to interpret yet the data looks linear in field and temperature
independent. The noise in the data is a result of using a low lock-in frequency which means
low frequency noise likely pervaded the measurement.

is consistent with the observation of weak-antilocalization in these films as well as our WAL
fitting. The observation of electron interactions in RT-Bi2TeI and not RT-Bi3TeI indicates
the electron interactions emerge as x approaches xc for the MIT in RT-BixTeI.

One of the most striking results is that the amorphous (grown at 230K) LT-BiTeI has
a conductivity that is orders of magnitude smaller than RT-BiTeI (grown at RT). There is
no change in composition, allowing the direct comparison of the structure in each system
and to quantify disorder. The relative peak height of the variance in diffracted intensity
between warm and cold grown BiTeI is shown in Fig. 6.1(e). The peak at 2.98 nm−1 for
RT-BiTeI has 3 times the intensity of LT-BiTeI and the peak at 4.35 nm−1 for RT-BiTeI has
128 times the intensity of LT-BiTeI. The same comparison between RT and LT-Bi2TeI is
seen in 6.1(f). The peak at 2.8 nm−1 for RT-Bi2TeI has 2 times the intensity of LT-Bi2TeI
and the peak at 4.2 nm−1 for RT-Bi2TeI has 100 times the intensity of LT-Bi2TeI. In both
BiTeI and Bi2TeI, the crystallites that nucleate out of the amorphous matrix order on the
length scale corresponding to k = 4.35 nm−1. The magnitudes increase in the variance peak
intensity between LT and RT grown films means the structural disorder is much larger in
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Figure 6.6: Electron interactions in RT BixTeI thin films. (a) σxx vs T for different applied
fields in warm Bi2TeI films. The low temperature conductivity dip below 5K increases with
increasing applied field and scales as

√
T , indicating electron interactions. (b) σxx vs T for

different applied fields in warm Bi3TeI films. The low temperature B = 0 T conductivity
increase as T → 0 is destroyed with increasing applied field because the WAL effect is
suppressed.

the LT grown films. This observation is in line with the order of magnitude increase in the
conductivity between the LT and RT films seen in 6.3(a,b) showing that increased structural
disorder dramatically increases carrier localization.

The MR in RT-BiTeI is positive and linear in the VRH regime, meaning it cannot be
explained by a Drude model. In a system with ES VRH and a Coulomb gap the MR scales
as B2 at low fields and becomes exponentially large at large fields and low temperatures [8].
This is a result of the wave function shrinkage effect which leads to a positive MR due to a
decrease in localization length with applied field which reduces the probability of a hop [174,
175, 176]. The RT-BiTeI data can be explained by this model, Fig. 6.4(a). In addition, it
has been seen that backscattering in the presence of strong spin-orbit scattering in the VRH
regime can cause positive MR rather than negative MR from forward scattering mechanisms
[177, 178]. Given that RT-BiTeI is close to the to MIT and it has been shown that in
RT-Bi2,3TeI backscattering in the presence of strong spin-orbit coupling leads to a positive
MR (Fig. 6.4(b,c)), it is reasonable to assume this can lead to positive MR in RT-BiTeI.
Future experiments studying the anisotropy of the MR could shed light on which effects are
dominant. Linear magnetoresistance has been ascribed to linear features of the electronic
structure like Dirac cones or Weyl points, but it has also been shown to be the product of
disordered current paths and fluctuations in mobility [179, 180, 181, 182].

The presence of nanocrystals has been shown to detrimentally affect the topological
properties of some materials [100, 117]. This is due to the large amount of atomic disorder
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at the grain boundary. The local atomic environment is critical in determining the DOS
and topological band inversions [183] and grain boundaries alter the local environment. This
can explain why RT-BiTeI and LT-Bi2TeI are highly insulating with no observed transport
evidence of topological surface states, such as the saturation of the conductivity at low
temperature. LT x = 1− 1.3 films are fully amorphous with no grain boundaries, yet their
σ(T ) → 0 indicating they are trivial insulators. Further spectroscopic measurements are
required to determine if there are any topological aspects to the bandstructure in BixTeI
films.

6.3 Conclusions

In conclusion, we have found that the strong SOC material BixTeI undergoes a disorder-
driven metal-insulator transition with varying x that is dependent on the structure of the
films. The metal-insulator transition is accompanied by weak antilocalization on the metal-
lic side and hopping transport on the insulating side. As structural disorder is increased,
increased electron interactions in room temperature grown films are evidenced by Efros-
Shklovskii hopping and a reduction in the low temperature conductivity on the metallic
side. Power-law fits suggest the dephasing mechanisms are consistent with the observed
conductivity as a function of temperature and field. Given the many exotic phases of BixTeI
and the observation of interactions with increased disorder, this system lends itself to the
study of the convergence of many-body physics and topological phases. Our work highlights
how an amorphous solid state system can be tuned into a functional quantum material with
disorder. To the best of our knowledge this is the first study to grow BixTeI thin films. We
expect our work to motivate an effort to understand disorder in quantum materials, enabling
materials discovery that can provide a path towards scalable quantum devices.
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Chapter 7

Structural Spillage

This chapter is based on a manuscript in final preparation with explicit permission from all
co-authors. The author list is Daniel Muñoz-Segovia, Paul Corbae, Daniel Varjas, Frances
Hellman, Sinead Griffin, and Adolfo G. Grushin.

Predicting which solids are in a topological phase is a central problem of condensed matter
physics. For crystalline solids, numerical methods based on first-principles calculations [184]
take advantage of symmetries [185, 186, 187, 118] to efficiently screen topological materials.
Whether a crystal is topological or not can be answered in most cases by simply consulting
online databases [184]. However, there is no computationally efficient method to determine
which amorphous materials are topological. Solving this challenge would open up a material
class at least as large as crystals [188, 117] in which to explore topological phenomena [189,
45, 106, 117, 105, 29, 191, 189, 135, 190, 191] and novel phenomenology unique to amorphous
matter [192, 193, 194, 195, 190, 196, 197, 198, 135].

To overcome this methodological problem, we introduce the structural spillage. It is
based on the idea that a reference system whose topological state is known can be used
to determine the topological state of a second, unknown system. For crystals, Liu and
Vanderbilt [199] proposed to compare the overlap between wavefunctions with and with-
out spin-orbit coupling, which they called the spin-orbit spillage, to signal topological band
inversions efficiently. Here, we build on this idea by defining the structural spillage, which
measures the overlap between wavefunctions with different atomic configurations. The struc-
tural spillage allows then to compare the wavefunctions of crystals, whose topological state
can be efficiently calculated using standard tools [184], with those of amorphous solids, whose
topological state is unknown and challenging to determine.

To exemplify the potential of the structural spillage, we benchmark its ability to detect
topological phase transitions upon amorphization, using both the tight-binding approxima-
tion and density functional theory (DFT). Specifically, the structural spillage confirms that
amorphous bismuthene is topological [200, 201], and predicts that amorphous bilayer bismuth
is a novel topological material. Our results indicate that the structural spillage is suitable to
establish a high-throughput catalogue of potential amorphous topological materials, using
currently available DFT codes based on plane waves [41, 42, 202]
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Figure 7.1: (a) The spillage γ is high or low depending on whether a test wavefunction |ψ⟩
is in the same or different topological state compared to a known reference wavefunction
|ψ̃⟩. (b) The spin-orbit spillage [199] compares wavefunctions with and without spin-orbit
coupling. The structural spillage takes advantage of the knowledge of the topological state
of a crystalline solid to find the topological state of an amorphous solid.

7.1 Structural spillage

The total spillage γ measures the mismatch between two projectors P and P̃ into occupied
states [199]:

γ =
1

2
Tr

[(
P − P̃

)2]
= Tr

[
P (1− P̃ )

]
, (7.1)

where the trace acts on the entire Hilbert space, and the last equality holds under the
assumption that both systems have the same total number of occupied states Nocc = Tr[P ] =
Tr[P̃ ]. By definition, γ ≥ 0. From the first equality, γ can be viewed as the variance between
two distributions with the same average. When P = P̃ the spillage vanishes. In contrast, it
equals the total number of occupied states Nocc when the overlap between the two projectors
is zero. Therefore, γ acts as an indicator of band inversions caused by the parameters that
differ in P and P̃ [199].

To predict topological crystals, Liu and Vanderbilt [199] chose P and P̃ to be projectors
onto the subspace of occupied states of crystalline insulators with and without spin-orbit
coupling, respectively. Lattice periodicity allows then to resolve the projectors in Bloch
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momentum k as P (k) =
∑

n∈occ |ψnk⟩⟨ψnk|, which we can use to define a k-resolved spin-

orbit Bloch spillage, γB(k) = nocc −Tr[P (k)P̃ (k)], where nocc = Nocc/Ncells is the number of
occupied bands. The total spillage is recovered by summing over all momenta in the Brillouin
zone (BZ), γ =

∑
k γB(k). The spin-orbit Bloch spillage γB(k) measures the amount of band

inversion caused by spin-orbit coupling at each k; it is large at points in the BZ where the
band inversion is sizable. Ref. [199] showed that at certain points in the BZ the spin-orbit
Bloch spillage has to be larger than some given value if the spin-orbit coupling induces a
topologically non-trivial phase. For instance, this lower bound is two for a time-reversal
symmetric topological insulator. Their proof relies on the so-called Wannier obstruction,
which prevents a topologically non-trivial system from being described by symmetric and
exponentially localized Wannier functions.

Due to the above properties, γB(k) can be used to signal topological band inversions in
crystals. It is currently implemented in the Materials Project database [203], as it is easy to
compute using DFT [199]. Indeed, it has recently been applied to high-throughput searches
for topological crystals [204, 205]. However, a large spillage is a necessary but not a sufficient
condition for topology: in certain cases, e.g., when many bands close to the Fermi level are
slightly mixed by spin-orbit coupling, the spillage may be fooled by trivial insulators [199].
Consequently, modern searches for topological crystals favor symmetry based methods. In
most practical cases the spillage is expected to be an accurate indicator of a topological
state [199].

Unlike for crystals, there is no efficient and model-independent method to predict which
amorphous solids are topological. While symmetry indicators can efficiently diagnose topo-
logical states of simple model tight-binding Hamiltonians of amorphous matter with average
and local symmetries [191], it is unclear how they would diagnose realistic materials. With-
out symmetry-based methods and the lack of periodicity, the main alternative is to compute
real-space invariants [206, 207, 208, 209], which are often computationally costly and not
well integrated within ab-initio codes.

In this work, we propose a spillage that compares an amorphous system with its crys-
talline counterpart. In this way, we take advantage of the fact that the topological phase of
crystals can be efficiently determined using standard tools [184]. To this end, let us write
the total spillage γ in the plane wave basis |pα⟩, where p is the plane-wave momentum
(not necessarily restricted to the first BZ) and α denotes the spin degree of freedom. The
plane-wave basis is convenient because it is well-defined for both crystalline and amorphous
systems, and it is used in several ab-initio codes [41, 42, 202]. In order to compute the
spillage, we need the projector onto occupied states of the amorphous and reference systems,
P =

∑
N∈occ |ψN⟩⟨ψN |, where |ψN⟩ are the eigenstates. By projecting them onto plane waves,

we have access to the projector matrix elements Pαβ
p,p′ = ⟨pα|P |p′β⟩, which are well-defined

for crystalline and amorphous systems. By noting that any plane-wave momentum p can be
uniquely decomposed as p = k +G, the sum of a crystal momentum k in the first BZ plus
a reciprocal lattice vector G, both of the reference crystal, we can define the quasi-Bloch
spillage as
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γqB(k) =
1

2

∑
k′

∑
GG′

∑
αβ

[
Pαβ
k+G,k′+G′P

βα
k′+G′,k+G − Pαβ

k+G,k′+G′P̃
βα
k′+G′,k+G

]
+
[
P ↔ P̃

]
=

(7.2a)

=
1

2

{[∑
Gα

Pαα
k+G,k+G

]
+ ñocc(k)−

∑
Gα

∑
G′β

[
Pαβ
k+G,k+G′P̃

βα
k+G′,k+G + P̃αβ

k+G,k+G′P
βα
k+G′,k+G

]}
(7.2b)

In Eq. (7.2b) we have used the fact that the reference projector P̃ corresponds to a crystal,
which allows us to set k′ = k in terms involving at least one P̃ , since there is no scattering
between different crystal momenta due to the discrete translational symmetry. Note that
γqB(k) fulfills the same sum rule as the Bloch spillage, γ =

∑
k γqB(k). Therefore, applied to

two insulating crystals, γqB(k) recovers the Bloch spillage. Moreover, it can also be applied
to semimetallic systems with the advantage of it being bounded by zero, in contrast to recent
extensions to semimetallic materials [204, 205].

The main result of this paper is to show that the structural quasi-Bloch spillage, de-
fined by Eq. (7.2), can be used as an efficient topological indicator in amorphous systems.
Crucially, it can be efficiently computed with plane-wave-based DFT methods, since the
projector matrix elements are an output of the calculation. Consequently, this method is
suitable for high-throughput screening of amorphous topological materials.

7.2 Structural spillage in DFT: free-standing Bi

bilayer

To show that Eq. (7.2) is well suited for high-throughput screening of amorphous topological
materials, we calculate the structural spillage from the output wavefunctions using first-
principles codes. To this end we use the free-standing Bismuth (111) bilayer as an example.
This 2D Bi allotrope, whose crystalline phase consists of a buckled honeycomb lattice with
lattice constant a = 4.33Å, is also predicted to be a strong topological insulator crystal with
Z2 = 1 [210, 211, 212, 213]. However, no prediction exists for its amorphous counterpart.

In order to accurately represent amorphous structures, we create 5 × 5 × 1 supercells
of the Bi bilayer, whose electronic structure is computed for a single supercell momentum,
the center of the supercell BZ. Starting from a crystalline supercell, the disordered structure
is then created by adding random disorder in the x, y, and z directions, sampled from a
Gaussian distribution. The structures and their corresponding radial distribution functions
are shown in Fig. 7.2.

To predict the topological phase of an amorphous Bi bilayer with spin-orbit coupling we
compute Eq. (7.2) with plane-wave-based DFT to compare it with its crystalline counterpart
without and with spin-orbit coupling. When the crystal has no spin-orbit coupling (Fig. 7.3,
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Figure 7.2: Bismuth bilayer DFT supercells. (a) and (b) show in-plane and out of plane
views of the super-cell lattice, respectively. The three colors indicate different degrees of
disorder: crystal (blue), low disorder (green) and high-disorder (orange). (c) Statistics on
the bond lengths in the disordered Bismuth bilayer and their deviations from the perfect
crystal (vertical dashed lines). The disorder is sampled from a Gaussian distribution.

first row), γqB(k) is peaked at k = 0, with γqB(k = 0) > 2. Increasing disorder smooths
γqB(k), yet it remains peaked at Γ with a value greater than 2. In contrast, when both
the disordered Bi bilayer and the pristine crystal have spin-orbit coupling (Fig. 7.3, second
row) the spillage is always small. Both rows together show that amorphous Bismuth bilayer
with spin-orbit coupling is in the same state as the crystal with spin-orbit coupling, a strong
topological insulator crystal with Z2 = 1.

The last column of Fig. 7.3, compares our DFT results with those obtained using a
tight-binding model for the amorphous Bi (111) bilayer. For comparable disorder strengths,
γTB
qB (k) is broader and its maximum value is smaller than γqB(k). It is thus apparent that,

due to the approximations in the tight-binding calculation of the spillage, the spillage method
is more suitable for DFT, an advantageous feature compared to other topological indicators
available for amorphous systems.
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Figure 7.3: Structural quasi-Bloch spillage γqB(k) for the Bismuth bilayer. First row: com-
parison between an amorphous system with spin-orbit coupling (a-SOC) and a crystalline
system without spin-orbit coupling (x-noSOC). Comparing an amorphous system without
spin-orbit coupling with a crystalline sample with spin-orbit coupling leads to similar results.
Second row: comparison between the amorphous and crystalline systems with spin-orbit cou-
pling (a-SOC and x-SOC, respectively). γqB(k) is high at k = 0 for the first row while small
for the second row, indicating that amorphous bismuth bilayer is a topological insulator.
The last column shows a comparison with the tight-binding quasi-Bloch spillage γTB

qB (k) .

7.3 Discussion

We have introduced the structural spillage as an efficient method to signal amorphous topo-
logical phases, compatible with tight-binding and ab-initio simulations. We have used it to
predict amorphous bismuthene as a novel topological insulator.

As for crystals, we expect the spillage to signal a large fraction of promising materials,
but not to be infallible: if multiple band inversions are physically expected upon amorphiza-
tion, the spillage might also be artificially large. However, unlike for crystals, the spillage
seems to be the only model-independent method that is systematic and compatible with
existing ab-initio packages. Additionally, we observe that, for different disorder realizations,
its fluctuations are smaller compared to scattering methods like calculating the conductance.
It can also be applied to systems without a spectral gap, where the effective Hamiltonian
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approach [214] can fail [191]. Lastly, while Eq. (7.2) is general, the definition of the spillage
is relatively versatile and can accommodate less standard cases. For example, when no crys-
talline counterpart exists, one may define a plane-wave-resolved spillage by using Eq. (7.2a)
without the sum over G, a modification worth studying in the future. Lastly, the spillage can
also be applied to indicate topology in other non-crystalline solids, including quasicrystals.

In conclusion, the structural spillage suggests a clear road-map to establish a high-
throughput candidate-material catalogue by screening existing amorphous databases, or by
scrutinizing realistic structures obtained using existing ab-initio molecular dynamics pack-
ages [215]. This methodology may enable for the first time the systematic prediction and
discovery of a potentially large number of amorphous materials that are currently inaccessi-
ble, suitable to develop affordable and scalable topological devices.
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Chapter 8

Conclusions and outlook

The most important conclusion from this work is that interesting physics and the search for
quantum materials should not be restricted to crystalline materials with long-range order.
This work has shown that the local ordering in amorphous materials enables these materials
to host a myriad of interesting phenomena that is traditionally observed in systems with a
periodic arrangement of atoms. The observation of quantum phenomena like spin-momentum
locked surface states in amorphous materials should motivate the fields of materials science
and condensed matter physics to look to amorphous materials for quantum and topological
states that most scientists think require crystalline periodicity and symmetries [117].

Regarding topology in amorphous solid state materials, studying amorphous Bi2Se3 has
highlighted that the local environment in the amorphous system influences the topological
properties of the electronic structure and surface states. When going from a topological
crystal to an amorphous system, if the local environment can be preserved then the sys-
tem is likely to retain its topological bulk with the resultant physical properties useful for
quantum information and low power electronics. It was shown that by simply modifying the
local environment in BiTeI, we could induce a topological phase transition from trivial to
nontrivial [161]. Therefore we conclude that the local environment leads to an understand-
ing of the coarse density of states. Using this DOS, especially in the context of topological
insulators, we can classify whether the energy gap is a topological or trivial one. Therefore,
when studying amorphous topological materials we need to take a local perspective. One
of the interesting findings of this work is that nanocrystalline systems seem to be devoid of
topological properties, a result of the disorder at the grain boundaries. Further studies into
the atomic and electronic structure at the grain boundary using set of measurement tech-
niques different than the ones presented in this thesis would shed light on whats happening
at the grain boundary regarding topology.

Regarding amorphous materials, especially with our ARPES measurements, is it shown
that there is electron coherence and momentum space structure arising from the local struc-
tural order. Considering that dispersive features exist in amorphous momentum space, we
can reevaluate the use of amorphous materials for novel phases. Additionally we showed
that electrons in a quantum material with an interesting momentum space dispersion can
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be localized by structural disorder and electron interactions. We hope this work motivates
understanding more than just topology in amorphous systems.

Looking forward there is a need to develop efficient ways to predict and measure amor-
phous topological phases. The absence of translational symmetry and the Bloch wavevector
is pushing the limits of the field theoretically. New methods have been developed but the field
needs to go further to characterize amorphous topological matter as well as develop a classifi-
cation scheme of amorphous matter. The normal insulator to topological insulator transition
via amorphization would be an exciting experimental realization, and the motivation of the
experimental work on BixTeI films. Unfortunately the films grew mostly nanocrystalline, but
the growth temperature is a powerful tool to modify the structure. The structural spillage
is a theoretical tool that can be used to predict topological properties of realistic amorphous
materials which will then guide experiments. This will supplement our understanding of
topological matter based on model Hamiltonians. This method will enable the broad search
for new materials that can be topological as well help develop theoretical indicators compa-
rable to those that we know in crystals based on the results. One of the unresolved and open
materials science questions is what materials can be made amorphous by PVD. Therefore,
we believe there are exciting experimental prospects to this field. The structural spillage can
be combined with high throughput methods to identify which materials can host topological
phases in the amorphous phase, hopefully discovering many materials. Once new amorphous
topological phases have been identified, developing a suitable workflow of experimental tech-
niques can aid in the experimental discovery. Transport is a good measurement technique
for amorphous materials, however directly diagnosing topological phases in transport is not
easy. Performing a nanoribbon experiment where the magnetic flux threaded through the
amorphous nanoribbon competes with the π Berry phase would be an interesting experi-
ment. Gating experiments would also be interesting to measure the conductivity when the
Fermi-level is in the mid-gap states. ARPES has been the go-to measurement for topological
states due to bulk-boundary correspondence and its direct measurement of E(k). It worked
very well for measuring amorphous Bi2Se3 when we took into account all considerations of
a system which lacks long range order. Other measurement such as STM which can directly
measure the electronic structure and real space structure would be invaluable for amorphous
materials. Nano-ARPES is moving in this direction as well. With these measurements we
could correlate the electronic structure to the local environment which produces the topo-
logical phase. In our ARPES measurements we had to be very careful to not crystallize the
film when performing the decap process, therefore moving to systems where the films could
be grown in-situ and transferred would make a more efficient measurement process. The
possibilities are endless with amorphous materials!
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[161] Paul Corbae, Frances Hellman, and Sinéad M. Griffin. “Structural disorder-driven
topological phase transition in noncentrosymmetric BiTeI”. In: Phys. Rev. B 103
(21 June 2021), p. 214203. doi: 10.1103/PhysRevB.103.214203. url: https:
//link.aps.org/doi/10.1103/PhysRevB.103.214203.

[162] Frank Schindler et al. “Higher-order topological insulators”. In: Science Advances 4.6
(2018), eaat0346. doi: 10.1126/sciadv.aat0346. eprint: https://www.science.
org/doi/pdf/10.1126/sciadv.aat0346. url: https://www.science.org/doi/
abs/10.1126/sciadv.aat0346.

[163] Nurit Avraham et al. “Visualizing coexisting surface states in the weak and crystalline
topological insulator Bi2TeI”. In: Nature Materials 19.6 (June 2020), pp. 610–616.
issn: 1476-4660. doi: 10.1038/s41563-020-0651-6. url: https://doi.org/10.
1038/s41563-020-0651-6.

[164] Alexander Zeugner et al. “Modular Design with 2D Topological-Insulator Building
Blocks: Optimized Synthesis and Crystal Growth and Crystal and Electronic Struc-
tures of BixTeI (x = 2, 3)”. In: Chemistry of Materials 29.3 (Feb. 2017), pp. 1321–
1337. issn: 0897-4756. doi: 10.1021/acs.chemmater.6b05038. url: https://doi.
org/10.1021/acs.chemmater.6b05038.

[165] T. A. Elmslie et al. Pressure-induced superconductivity in the weak topological insu-
lator Bi2TeI and the topological metal Bi3TeI. 2022. doi: 10.48550/ARXIV.2209.
02688. url: https://arxiv.org/abs/2209.02688.

[166] A C Y Liu et al. “Probing local order in glasses from limited-volume electron and x-
ray diffraction”. In: Journal of Statistical Mechanics: Theory and Experiment 2016.5
(May 2016), p. 054046. doi: 10.1088/1742-5468/2016/05/054046. url: https:
//doi.org/10.1088/1742-5468/2016/05/054046.

[167] Amelia C. Y. Liu et al. “Interpretation of angular symmetries in electron nanodiffrac-
tion patterns from thin amorphous specimens”. In: Acta Crystallographica Section
A 71.5 (Sept. 2015), pp. 473–482. doi: 10.1107/S2053273315011845. url: https:
//doi.org/10.1107/S2053273315011845.



BIBLIOGRAPHY 128

[168] M. K. Tran et al. “Infrared- and Raman-Spectroscopy Measurements of a Transition
in the Crystal Structure and a Closing of the Energy Gap of BiTeI under Pressure”.
In: Phys. Rev. Lett. 112 (4 Jan. 2014), p. 047402. doi: 10.1103/PhysRevLett.112.
047402. url: https://link.aps.org/doi/10.1103/PhysRevLett.112.047402.

[169] B.L. ALTSHULER and A.G. ARONOV. “CHAPTER 1 - Electron–Electron Interac-
tion In Disordered Conductors”. In: Electron–Electron Interactions in Disordered Sys-
tems. Ed. by A.L. EFROS and M. POLLAK. Vol. 10. Modern Problems in Condensed
Matter Sciences. Elsevier, 1985, pp. 1–153. doi: https://doi.org/10.1016/B978-
0- 444- 86916- 6.50007- 7. url: https://www.sciencedirect.com/science/
article/pii/B9780444869166500077.

[170] A MacKinnon. “Critical exponents for the metal-insulator transition”. In: Journal of
Physics: Condensed Matter 6.13 (Mar. 1994), p. 2511. doi: 10.1088/0953-8984/6/
13/012. url: https://dx.doi.org/10.1088/0953-8984/6/13/012.

[171] H. Nakamura et al. “Robust weak antilocalization due to spin-orbital entanglement
in Dirac material Sr3SnO”. In: Nature Communications 11.1 (Mar. 2020), p. 1161.
issn: 2041-1723. doi: 10.1038/s41467-020-14900-1. url: https://doi.org/10.
1038/s41467-020-14900-1.

[172] B. L. Altshuler et al. “Magnetoresistance and Hall effect in a disordered two-dimensional
electron gas”. In: Phys. Rev. B 22 (11 Dec. 1980), pp. 5142–5153. doi: 10.1103/
PhysRevB.22.5142. url: https://link.aps.org/doi/10.1103/PhysRevB.22.
5142.

[173] J J Lin and J P Bird. “Recent experimental studies of electron dephasing in metal
and semiconductor mesoscopic structures”. In: Journal of Physics: Condensed Matter
14.18 (Apr. 2002), R501. doi: 10 . 1088 / 0953 - 8984 / 14 / 18 / 201. url: https :
//dx.doi.org/10.1088/0953-8984/14/18/201.

[174] N M Pounder and M A Howson. “Negative magnetoresistance in NbSi amorphous
alloys”. In: Journal of Physics: Condensed Matter 3.13 (Apr. 1991), p. 2069. doi:
10.1088/0953- 8984/3/13/009. url: https://dx.doi.org/10.1088/0953-
8984/3/13/009.

[175] Wu Jiang et al. “Variable-range hopping and positive magnetoresistance in insulating
Y1−xPrxBa2Cu3O7 crystals”. In: Phys. Rev. B 49 (1 Jan. 1994), pp. 690–693. doi: 10.
1103/PhysRevB.49.690. url: https://link.aps.org/doi/10.1103/PhysRevB.
49.690.

[176] W. Schoepe. “Variable-range hopping conduction in doped germanium at very low
temperatures and high magnetic fields”. In: Zeitschrift für Physik B Condensed Matter
71.4 (Dec. 1988), pp. 455–463. issn: 1431-584X. doi: 10.1007/BF01313932. url:
https://doi.org/10.1007/BF01313932.



BIBLIOGRAPHY 129

[177] Z Ovadyahu. “Quantum coherent effects in Anderson insulators”. In: Waves in Ran-
dom Media 9.2 (1999), pp. 241–253. doi: 10.1088/0959-7174/9/2/309. eprint:
https://doi.org/10.1088/0959-7174/9/2/309. url: https://doi.org/10.
1088/0959-7174/9/2/309.

[178] Y. Shapir and Z. Ovadyahu. “Effects of spin-orbit scattering on hopping magneto-
conductivity”. In: Phys. Rev. B 40 (18 Dec. 1989), pp. 12441–12445. doi: 10.1103/
PhysRevB.40.12441. url: https://link.aps.org/doi/10.1103/PhysRevB.40.
12441.

[179] Xiaolin Wang et al. “Room Temperature Giant and Linear Magnetoresistance in
Topological Insulator Bi2Te3 Nanosheets”. In: Phys. Rev. Lett. 108 (26 June 2012),
p. 266806. doi: 10.1103/PhysRevLett.108.266806. url: https://link.aps.org/
doi/10.1103/PhysRevLett.108.266806.

[180] T. Khouri et al. “Linear Magnetoresistance in a Quasifree Two-Dimensional Electron
Gas in an Ultrahigh Mobility GaAs Quantum Well”. In: Phys. Rev. Lett. 117 (25 Dec.
2016), p. 256601. doi: 10.1103/PhysRevLett.117.256601. url: https://link.
aps.org/doi/10.1103/PhysRevLett.117.256601.
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