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One-loop universality of holographic codes

Xi Dong and Donald Marolf
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FE-mail: xidong@ucsb.edu, marolf@ucsb.edu

ABSTRACT: Recent work showed holographic error correcting codes to have simple
universal features at O(1/G). In particular, states of fixed Ryu-Takayanagi (RT) area
in such codes are associated with flat entanglement spectra indicating maximal en-
tanglement between appropriate subspaces. We extend such results to one-loop order
(O(1) corrections) by controlling both higher-derivative corrections to the bulk effec-
tive action and dynamical quantum fluctuations below the cutoff. This result clarifies
the relation between the bulk path integral and the quantum code, and implies that i)
simple tensor network models of holography continue to match the behavior of holo-
graphic CFTs beyond leading order in G, ii) the relation between bulk and boundary
modular Hamiltonians derived by Jafferis, Lewkowycz, Maldacena, and Suh holds as
an operator equation on the code subspace and not just in code-subspace expecta-
tion values, and iii) the code subspace is invariant under an appropriate notion of
modular flow. A final corollary requires interesting cancelations to occur in the bulk
renormalization-group flow of holographic quantum codes. Intermediate technical re-
sults include showing the Lewkowycz-Maldacena computation of RT entropy to take
the form of a Hamilton-Jacobi variation of the action with respect to boundary condi-
tions, corresponding results for higher-derivative actions, and generalizations to allow
RT surfaces with finite conical angles.
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1 Introduction

There has been much recent interest in the idea that the bulk/boundary dictionary of
AdS/CFT represents a quantum error correcting (QEC) code [1-8]. According to this
paradigm, full recovery of standard bulk physics can occur only on a ‘code subspace’
Heode in the CFT Hilbert space Hcpr. Consistent with either the firewall [9-12] or
state-dependent observables [13-18] hypotheses, the orthogonal complement of Hcode
is presumed to contain states describing generic black holes inside which at least any
given code will fail to reconstruct standard bulk physics.

The arguments [4, 5] for this paradigm are strong when one considers the more
restricted subspaces Hg C Herpr whose bulk duals describe small quantum fluctuations
at lowest non-trivial order in the bulk Newton constant GG around a given classical
solution ¢. In that context, a QEC structure with code subspace H, follows from
the one-loop Faulkner-Lewkowycz-Maldacena relation [19]. In particular, given any



partition of a CFT Cauchy surface into regions R and R, one obtains a code with a
property known as complementary recovery. We will review this structure in section 2
below.

It is natural to expect that such codes can be sewn together into a single code on
Heode 1= DyHg. While the details of this operation remain to be understood, the recent
works [20, 21] discovered strong similarities between these codes at leading order in G.
The point here is that codes with complementary recovery are characterized by their
pattern of entanglement between appropriate factors of Hepr, and at leading order in
G Ref. [20, 21] showed this pattern to be the same in each H4 up to unitary transforma-
tions. Specifically, at this order states of definite area for the relevant Ryu-Takayanagi
(RT) surface [22, 23] — or more generally the Hubeny-Rangamani-Takayanagi (HRT)
surface [24] — always induce density matrices on each tensor factor that are proportional
to projection operators. In other words, referring to this leading order as O(1/G) one
may say that at O(1/G) such density matrices take a universal form with a “flat” spec-
trum of eigenvalues A\, meaning that the )\ are independent of k£ for Ay # 0. Note
that one may equivalently say that at O(1/G) every such code involves maximal entan-
glement between subspaces of the tensor factors, or alternatively that the associated
density matrices are proportional to projection operators.

Our present work refines this result by establishing a sense in which it extends to
O(1). Since we treat bulk gravity as an effective field theory with a cut-off, there are
two different O(1) effects to consider. The first comes from higher derivative corrections
to the bulk effective action at some cut-off scale. Such corrections contain effects of
ultraviolet (UV) quantum fluctuations at energies above the cut-off that have been
integrated out. As is well known, such higher derivative terms in the action cause
the geometric entropy associated with the bulk entangling (RT or HRT) surface to
differ from A/4G by related higher derivative terms [25-28]. The second O(1) effect
comes from infrared (IR) bulk quantum fluctuations at energies below the cut-off which
remain to be integrated over in the path integral.

Though the two effects are physically related, they enter the code formalism in
qualitatively different ways. Indeed, as we discuss in section 2, it is natural to conjecture
that dynamical IR quantum fluctuations merely determine which state in the code
subspace arises from a given path integral, and thus that such fluctuations may be
completely ignored when computing certain entanglement properties of the code itself.
In effect, for such purposes one would then treat the effective action defined at the
cutoff scale as a classical variational principle. Our arguments below will verify that
this conjecture is correct.

However, it will first be necessary to deal with the higher derivative corrections to
the effective action at the cutoff scale. This is done in section 3 (with help from appen-



dices A and B) by first reformulating the Lewkowycz-Maldacena procedure [29] for com-
puting Ryu-Takayanagi gravitational entanglement for two-derivative Einstein-Hilbert
gravity. Indeed, we show that their computation can be interpreted as a Hamilton-
Jacobi variation of an action with respect to boundary conditions, where in this case
the role of the boundary condition is played by a choice of conical defect angle § on
the RT surface, and that the gravitational entanglement remains A/4G even on Eu-
clidean saddles with ¢ # 0. In particular, this confirms that the Lewkowycz-Maldacena
procedure is a direct generalization of the Carlip-Teitelboim approach to black hole en-
tropy [30] to cases that break the U(1) symmetry of [30]. Further extending this result
to arbitrary higher derivative actions allows one to repeat the arguments of [21] and
show that treating the effective action as a classical variational principle would again
yield density matrices proportional to projectors for states of fixed geometric entropy
o = A/AG + (higher derivative corrections).

It then remains to properly address the dynamical IR quantum fluctuations. We
do so in section 4 by considering states |1}, of fixed geometric entropy and tracing
them over R to define density matrices pgr. Taking the tensor product with the identity
operator 15 on R yields an operator pr ® 15 on Hepr. Using the results from section
3, for |¢), € H, we show pr ® 1 to preserve an appropriately defined H,. It then
follows immediately that density matrices on R defined by the code itself must again
be proportional to projection operators. The universal flat entanglement spectrum of
the code itself is thus maintained at one-loop order, even though generic encoded states
no longer have flat entanglement. A corollary is confirmation of the above-mentioned
conjecture that dynamical IR quantum fluctuations merely determine which state in the
code subspace arises from a given path integral and that properties of the code itself
are determined by treating the cutoff-scale effective action as a classical variational
principle.

We conclude in section 5 with discussion focusing on implications for the renor-
malization group (RG) flow of holographic quantum codes and for the relation between
bulk and boundary modular Hamiltonians derived by Jafferis, Lewkowycz, Maldacena,
and Suh (JLMS) [31]. In the former context, our result implies precise cancelations
between a number of different effects. In the latter context, it shows that their relation
holds as an operator statement on each Hg4 and not just in code-subspace expectation
values (see discussion in [4] and [21]). Although the structure of QEC with complemen-
tary recovery is expected to break down beyond one-loop order, many of our arguments
nevertheless remain valid more generally and must thus constrain any structure that
remains.



2 Review of holographic quantum codes

It is useful to briefly review the role of quantum error correcting codes in holography.
Our discussion largely follows that of [21], which is in turn based on [1, 4, 5]. However,
since higher derivative corrections play a key role in the remainder of this work, we take
care to emphasize the relation to bulk effective field theory concepts and, in particular,
the evolution of the code under bulk renormalization-group flow. Such issues were also
mentioned in [19-21], but we wish to place them front and center.

As in the introduction, we focus on subspaces Hy C Hcepr whose bulk duals de-
scribe small quantum fluctuations at lowest non-trivial order in the bulk Newton con-
stant G around a given classical solution ¢. Given any partition of a CFT Cauchy
surface into regions R and R and the associated RT /HRT-surface g in the bulk space-
time, one may define the corresponding bulk entanglement wedges W (W) [32-34] as
the bulk domain of dependence of any achronal bulk surface whose boundary is RU g
(RU~g). States in H,4 then must obey a Faulkner-Lewkowycz-Maldacena (FLM) rela-
tion

S(pr) = Tr (pwLr) + Sw(pw), (2.1)
where pg is the CFT density matrix obtained by tracing over R and py is the den-
sity matrix describing bulk quantum fields in W. The operator Lp is localized on the
RT/HRT-surface v and takes the form A[yg]/(4G) + ... where ... represents appro-
priate higher derivative corrections. The entropy S(pg) is computed as usual in the
CFEFT, but Sw(pw) is the entropy of the bulk state py, defined as a linear functional
on a von Neumann algebra My, of operators in W. The operator Lg is an element of
My, and by interchanging R and R it turns out also an element of the algebra Mg on
W. As a result, Lz commutes with all operators in My, and thus lies in the center of
Myy. Note that My is the commutant of My in the algebra of bulk fields, and that
My is also the commutant of M.

A key point for our work below is that Ref. [19] derived (2.1) using the bulk path
integral, and in particular treated the bulk as an effective field theory. One should
thus understand [19] to rely on having a bulk effective action valid at locally-measured
energies below some bulk cutoff scale A. In particular, the operator Lz is determined
by applying the Lewkowycz-Maldacena procedure [29] to this effective action and so
also depends on A; see [25-28] for treatments of higher derivative corrections. We will
discuss this procedure in more detail in section 3, but for now we note that, although
dynamical fluctuations below the cutoff A contribute to the expectation value of Lr
in (2.1), the procedure determining the form of Lg is entirely classical and makes no
reference to these fluctuations. As a result, the expression for Lz is precisely given by
the classical geometric entropy defined by the effective action at the scale A.



Due to our high energy cutoff, we assume that we can treat our bulk theory in
parallel with quantum mechanics on a finite-dimensional Hilbert space — perhaps by
imposing further cutoffs as well. In that context it follows that any action of a von
Neumann algebra My, on a Hilbert space Hy4 allows one to decompose H, as

H¢ = Daces (%Wa X HWQ) , (2.2)

where the decomposition defines Hy, and Hyp_, S is an appropriate index set, and
operators in either My or its commutant My are block diagonal in «; see e.g. the
appendix of [5]. See also related comments in [35]. We may also choose the tensor
factorization within each block such that My, (Myy) contains precisely those operators
that act trivially on Hy, (Hw, ). The intersection Z = My, N My gives the center of
both My, and My; and contains block diagonal matrices that are proportional to the
identity on Hy, ® Hyp, within each block!. We may thus write

My = ®a (L(Hw,) @ Ly,)
My = @®a (Lw, ® L(H7,)) (2.3)
7 = @QE(C)]IWQWQ,

where L(H) denotes the set of linear operators on the Hilbert space H. We refer to «
as the superselection parameter below.

Since the above structure follows from (2.1), it is again valid only below some
cutoff A. While A is to some extent arbitrary, we should expect the Hilbert spaces,
the decomposition (2.2), and the algebras of operators to depend the value of A that is
chosen. This is especially true for the operator Lz, whose form depends on the effective
action as noted above and which — as with all operators in My, My; — should be thought
of as being smeared over length scales 1/A. In particular, all of these structures can
experience non-trivial renormalization-group flows under changes in A.

As a further comment on (2.3), we note that if the bulk were described by a
scalar field theory, we could choose the algebra My, so that the center Z is trivial,
containing only operators proportional to the identity on H4. The index set S would
then contain only one element so that (2.2) becomes a simple tensor product. But
the bulk is described by a theory of gravity, and the resulting diffeomorphism gauge
symmetry implies constraints that forbid quantum states (or even classical initial data)

n fact, as we discuss in section 4 below, equation (2.2) has some tension with the context just
discussed. In particular, the right-hand side contains exact eigenstates of «, but such eigenstates
cannot be described as small quantum fluctuations around a classical background ¢. We will resolve
this tension in section 4 by slightly generalizing the definition of H, so that it contains such a-
eigenstates, noting that the derivation of (2.1) holds equally well on these states.



in W and W from being chosen independently. In this context the set S is generally
non-trivial and — as in the case of Yang-Mills theories — taking My, to be the algebra
of gauge-invariant operators in W yields a non-trivial center [5, 36-39].

In contrast, we will ignore issues associated with constraints in the CFT dual and
write

Herr = Hr Q@ Hy. (2.4)

While the dual CFT is often a gauge theory and thus does have similar issues involving
constraints and a lack of factorization, any such CFT gauge symmetry is expected to
be unrelated to bulk diffeomorphism invariance. As a result, the corresponding central
operators in the CFT will not directly relate to the bulk center Z discussed here.
Following standard practice, we thus ignore this complication in the present discussion.

Returning to the bulk, we can now explain the entropy Sy (pw) in more detail.
Since « denotes the eigenvalues of center operators, the density matrix py must take
the block-diagonal form

pw = DaDaPW., (2.5)
where Tr py, =1 and ) p, = 1. The desired entropy is then simply

Swpw) == Palogpa + Y paS(pw,)- (2.6)

As shown in [5], the FLM formula (2.1) tightly constrains the relations between
the bulk factors Hy,,, Hy, and the CFT factors Hg, Hz. In particular, if all states in
a code subspace Hg C Hp ® Hyp satisfy (2.1) and its analogue for R, then Hp and Hgp
must admit decompositions of the form

Hi = ®a (Hrr @ Hpz) © Hr,,
He = @ (Hy @ Hz ) & Hy,, (2.7)
where Hpri = Hw, and Hez; = Hy, with = denoting Hilbert space isomorphisms.

Furthermore, one can choose a basis |a,ij) of H, associated with the decomposition
(2.2). In particular we may take

0,7 = UnUg (J vy @ s gt @ [Xad o) (2.8)

for some unitaries Ugr, Ugz on Hp and Hg, bases {|a, i)}, {|a,j)} of Hry, Hp, and
some set of states [xa) € Hpz ® Hﬁi’ Ref. [5] called such codes “operator algebra
quantum error-correcting codes with complementary recovery”, as (2.8) is equivalent
to the requirement that the action of any operator in My, on a state in H, can be



reproduced by acting on that state with an operator in R, and correspondingly for
My, R.

Since arbitrary unitaries on Hri, Hz, Hrz, Hg 7
the only independent structure in (2.8) comes from the coefficients in the Schmidt

> can be absorbed into Ug, Ug,

decomposition of |x,) or equivalently the spectrum of eigenvalues of the density

RZR%
matrix xgz = Trz2 [Xa)(Xa| (Which is also the spectrum of Xz = Trey IXa)(Xa|)- This
spectrum is thus the essence of any code, and it is this spectrum that was shown in
[21] to be flat at O(1/G) in states of fixed RT-area; see also [20].

Tracing (2.8) over R yields

PR = ZanR (PR @ XR2) U]];a (2.9)

where pg1 is the image of py, under the isomorphism between Hyy, and Hpi . Using
(2.6), the von Neumann entropy of (2.9) immediately takes the form (2.1) with the
identification

Lr=Y_ Shr)lw,w.. (2.10)

As described in [20, 21] the entropies of the normalized density matrices pf/(Tr p})
take a similar form, though they will satisfy (2.1) with the same identification (2.10) if
and only if each x gz satisfies X?;% X Xgz; i.e., if each such density matrix is proportional
to a projection operator.

Note that eigenstates of the superselection parameter « are also eigenstates of Lg.
In holography, it is an interesting question whether « is defined completely by the
eigenvalue of Lr or whether it contains additional information, but in either case let
us simply consider an eigenstate of a. In such a state, if we for the moment ignore
information within a distance 1/A (set by the cutoff scale A) away from the bulk
entangling surface g, the remaining information about bulk quantum fluctuations
below the cutoff A in a state |¢)) appears to be captured by the amplitudes (|« ij)
and the details of the state factors |a, i) g1 ® |a, j>§;; indeed, these ingredients suffice

to determine the correlation functions of operators in W U W. The state |y,) R
must thus be associated with bulk degrees of freedom with energies above the cutoff A.
Together with the sources at the AdS boundary, such high energy degrees of freedom
determine a natural classical background on which dynamical quantum fluctuations
propagate through the condition that the background be a stationary point of the
effective action that arises from integrating them out?. It is thus natural to conjecture

that many properties of |xa) .52 can be computed by using the cutoff-scale effective

RZR,

2Note that the existence of a preferred classical background determined by a variational principle
does not necessarily imply that quantum fluctuations around this background are small.



action as a corresponding classical variational principle. Indeed, the identification (2.10)
shows that its von Neumann entanglement entropy can be calculated using the classical
Lewkowycz-Maldacena procedure. It is thus reasonable to expect this to extend to
Renyi entropies S, (xrz2). Below, we refer to this idea as the classical effective action
conjecture for the quantum code?.

We give a definitive, though somewhat indirect, argument for this result in section
4 below. The rough sketch of the idea is to consider a state [¢), in an appropriate code
subspace H, such that [¢), is an eigenstate of L with eigenvalue . We use this state
to build a new state

[¥3)e = (pr @ 15) [¥)., (2.11)
where pg is the density matrix defined on R by tracing |1)), over R. The new state is
labelled with a subscript 3 because Trg |13) 0 (¥3] = (pr)* and thus

o (Ws]hs)o = Tr (p) - (2.12)

We use a bulk calculation to argue that |13), also lies in the same code subspace
Hg. Thus both states define the same density matrix xpz = Trpe IXa)(Xa| on Hpz
for each superselection sector o consistent with the fixed geometric entropy ¢ (and on
which |¢), has non-zero projection). The relation (2.11) then requires

(XR%)?) X XR2- (2.13)
Since eigenvalues of density matrices are real and non-negative, the relation (2.13)
allows x 2 to have only the eigenvalues 0 and 1 up to an overall normalization. Thus
the density matrix xge is proportional to a projector onto a subspace of dimension
dictated by its entropy, which is in turn dictated by the associated eigenvalue of Lp.
Using the decomposition (2.8), one can then more generally show that multiplication
by (pr ® 15) preserves the given code subspace H..

We note that this result provides evidence supporting the above-mentioned classi-
cal effective action conjecture. In particular, the bulk calculation deriving (2.13) relies
on properties of variational principles for higher-derivative actions that we will estab-
lish in section 3 below. These properties imply that with fixed geometric entropy, a
purely classical (saddle-point) calculation of Renyi entropies would again give a flat
entanglement spectrum for the |y,) meg2 State, and thus that the associated density
matrix on R? would be a projector on(ilzoaa subspace of dimension set by the associated
saddle-point von Neumann entropy (i.e., by the geometric entropy). This is thus the
prediction of the classical effective action conjecture, and we see that it agrees precisely

with the results for the spectrum of |xq) p. 2 described above.

3We emphasize that our main results (derived in section 4) do not rely on this conjecture. Rather,
the conjecture is supported by — and provides an intuitive way of understanding — our main results.



3 Higher derivative saddle-point Renyi entropies and states
of fixed geometric entropy

Before proceeding to the main argument in section 4, we must first develop certain
techniques for studying higher derivative actions and fixing the associated geometric
entropy. In particular, as mentioned above we will first need to show that a purely
classical saddle-point treatment (ignoring dynamical quantum fluctuations) would give
flat entanglement spectra. As motivation for this result, recall from [20, 21] that tracing
states of fixed RT-area over R defines density matrices pr whose Renyi entropies

1
log Tr(p}) (3.1)

Sn(PR) = -

are independent of n at O(1/G). Were these Renyi entropies exactly constant, one
could readily show all nonzero eigenvalues A, of pr to be degenerate (A independent
of k for A # 0). Because the results of [20, 21] involved only the leading order behavior
in G, it sufficed to consider saddle points of the Euclidean action. Fluctuations about
such saddles can contribute only at higher orders. In addition, the analysis of [20, 21]
was limited to leading order in the inverse string tension o as the bulk was assumed
to be described by Einstein-Hilbert gravity with minimally-coupled matter fields.

Our purpose here is to extend such arguments to incorporate general higher deriva-
tive terms, including those representing higher order corrections in either o' or G.
In particular, in this section we again consider only contributions from the classical
saddle-points themselves. Discussion of possible contributions associated with fluctua-
tions about such saddles will be deferred to section 4. We thus refer to the quantities
computed below as saddle-point Renyi entropies S524dle. As noted in section 2, if we
also fix the higher-derivative corrected geometric entropy ¢ = A/4G + ... to some

Ssaddle computes entropies of the code state

value &, it is natural to conjecture that
Xa) € Hrz ® Hﬁi associated with the corresponding superselection sector a. We will
argue that this is indeed the case in section 4 below. Recall that o is specified by the
choice of superselection sector «, though we have left open the issue of whether « is
fully specified by o.

We will consider general higher derivative corrections which may involve an ar-
bitrarily large number of derivatives in the effective action, for the following reasons.
In addition to large numbers of derivatives that can appear at high orders in ¢/, it is
important to note that moderately large numbers of derivative can appear at leading
order in o already in the one-loop corrections. Indeed, in bulk spacetime dimension
d such corrections can involve up to d derivatives. In particular, if the effective ac-

tion happens to contain only an Einstein-Hilbert term at some cut-off energy A, then



one-loop renormalization-group flow to a nearby scale A — AA will generally induce all
terms with n < d derivatives with coefficients of order GA4™" (or G log A for d = n) rel-
ative to the Einstein-Hilbert term. The contributions of such terms to computations at
the scale A are thus uniformly suppressed (up to logs) by the dimensionless parameter
GA?2. We thus consider general higher derivative terms below.

Below, we begin with a brief reminder (section 3.1) of certain features of fixed RT-
area states and their flat saddle-point Renyi entropies derived in [21]. Section 3.2 then
uses results from appendix A to rewrite this argument in an elegant form that (with
help from appendix B) allows ready generalization to the higher derivative case.

3.1 Review of fixed RT-area states

Suppose that we begin with a CFT state |¢) defined by a Euclidean path integral, and
that a Cauchy surface X for the CFT has been partitioned into regions R and R. As
in [21], for simplicity we take the state to be time-symmetric and the path integral to
be real. The AdS/CFT dictionary then defines a corresponding bulk path integral that
computes the bulk wavefunction (h|¢)) where |h) is an eigenstate of the bulk induced
metric on some bulk Cauchy surface . After gauge-fixing > to run through the HRT-
surface vz and choosing coordinates on 3 that fix the location of vz on X, the bulk
wavefunction (h|ia,) of the corresponding state [14,) of fixed RT-area Aq is defined
by simply restricting (h|1)) to metrics h on X that give g the desired area Aj.
Note that the norm of |¢4,) may be computed via

(G aolono) = / Dh | (bt

_ / Dh |(B|0)[?. (3.2)
h with area Ag on yg

This is identical to the bulk path integral for (¢|i)) except that one treats the area of
the HRT surface as fixed and not as a variable over which one integrates. In the semi-
classical limit, this means that allowed saddles g4, for (3.2) satisfy the same boundary
conditions at AdS-infinity as saddles for (i[¢), but that one of the bulk equations of
motion fails to be enforced at vg. The effect on the allowed solutions can be seen by in-
troducing a term p(A[ygr] — Ap) into the action and treating p as a Lagrange multiplier.
In Euclidean Einstein-Hilbert gravity, this allows the introduction of a conical defect
on g whose magnitude is determined by the condition A[ygr] = Ag. As a result, if g;
is an allowed bulk saddle satisfying boundary conditions B; as in figure 1 (left), then
for boundary conditions B,, given by simply sewing together n copies of B, we may
construct an allowed bulk saddle g, by applying an analogous cut-and-paste procedure
to ¢g; as in figure 1 (right).

— 10 —
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Figure 1. After cutting open the n = 1 bulk saddle g; (left), three copies may be glued
together to construct the n = 3 bulk saddle g3 (right). The black dot in the center is the
HRT surface vg.

A direct calculation of saddle-point Renyi entropies or refined Renyi entropies [29,
40] then shows that they do not depend on n. In particular, defining the refined
Renyi entropy §n(pR) as the von Neumann entropy of the normalized density matrix
pr/(Tr p), this quantity is given by A/4G for the RT surface associated with the
saddle g,. Thus S,(pr) = Ao/4G is constant. But a short calculations also shows

n—1

Buom) = 20, ("2 500m)) (3.3
Integrating this relation for constant §n then gives S, = §n = Ay/4G, showing that
the usual Renyi entropies are constant as well.

3.2 Reformulation and higher derivative corrections

We now wish to rewrite the above argument for constant Renyi entropies in a more ele-
gant form that will generalize directly to actions with higher derivative corrections. As
stated above, our goal is to discuss classical variational principles for spacetimes with
fixed geometric entropy determined by a region R of their boundary. And as noted
above, at least for the two-derivative Einstein-Hilbert action the associated saddles in-
volve conical singularities. A complication, however, is that higher-derivative geometric
entropy has not previously been studied carefully in spacetimes with non-zero conical
defect angles. We must thus not only construct an appropriate variational principle
and find associated saddles, we must also determine what it means to fix geometric
entropy in this context.

We propose that all of these questions be answered simultaneously by an appro-
priate analytic extension of the fixed-geometric-entropy action from cases where the
results are clear. We will show that such an analytic extension can be constructed
by first considering variational principles for Euclidean spacetimes with codimension-2

- 11 -



conical defects with defect angles that are fixed as a boundary condition. In the spirit
of [30], we may then perform a Hamilton-Jacobi-like variation with respect to the defect
angle boundary condition. At vanishing defect angle, this latter variation is equiva-
lent to the Lewkowycz-Maldacena computation of the entropy. However, we may also
perform this variation about backgrounds with non-zero conical defect angle and to
thus define geometric entropy in those backgrounds. A Legendre transform then gives
a variational principle appropriate to fixing this geometric entropy and simultaneously
provides the analytic extension mentioned above.

Our starting point will be to observe that the Lewkowycz-Maldacena procedure
for deriving the (two-derivative) Ryu-Takayanagi relation can be interpreted as just
such a Hamilton-Jacobi-like variation of a fixed-conical-deficit action with respect to
the conical deficit. This is established in detail in appendix A. In particular, we show
there that the Einstein-Hilbert action provides a well-defined variational principle for
an appropriate class of spacetimes with codimension-2 conical defects with fixed conical
deficit angle § so long as one ignores (a la Lewkowycz-Maldacena) the contribution to
this action from the defect itself. This variational principle imposes Einstein’s equations
away from the defect and also imposes a natural analogue of the condition that the
defect lie on an extremal surface.

It is useful to parametrize the conical angle using a ‘replica number m’ such that
the opening angle at the defect is 2rm = 27 — 9; i.e., the defect-free case is m = 1.
Even though we call it a replica number, m can take any positive real value. Note that
this is a bulk replica number. In contrast, in the Lewkowycz-Maldacena construction
an integer boundary replica number n leads to a quotient geometry in the bulk with
opening angle 27 /n at the defect. So their n is related to our m by m = 1/n. With
this understanding, and assuming only minimal couplings of matter to gravity, the
two-derivative geometric entropy Amgrr/4G is precisely the variation of the fixed-m

two-derivative action 152 with respect to m up to an overall sign:

7(2)
dln” _ _AHRT_ (3.4)
dm 4G

Here the tilde in f,Sf) is meant to emphasize that it is the action for a fixed conical angle,
to be distinguished with the fixed-geometric-entropy action that we will introduce later.
In particular, 112 does not include any contribution from the conical defect itself.
Evaluating the result (3.4) at m = 1 (i.e.,, at § = 0) gives a rewriting of the
Lewkowycz-Maldacena derivation [29] of the Ryu-Takayanagi entropy. But in the above
form the Lewkowycz-Maldacena argument now extends to saddles of the given action
with general m # 1. Passing to the Legendre transform simply adds a Lagrange
multiplier that fixes Aprr/4G to the desired value. As discussed in [21], this fixed-area
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action gives the leading semi-classical contribution to the partition function for states
with the given value of Axrr/4G.

We now wish to repeat the steps in the above argument for actions with higher
derivative corrections. The key technical point is established in appendix B, which
shows that a recipe analogous to the no-singularity-contribution Einstein-Hilbert pro-
tocol above continues to define a good variational principle with action I,, at fixed
conical deficit 0 = 27w (1 — m) for general m > 0 in the presence of perturbative higher
derivative terms.

In this context, ignoring contributions from the conical defect typically involves
cancelling divergences with counter-terms (including some divergences that now arise
from the Einstein-Hilbert term). In other words, the singularity can be associated with
contributions that are not just d-functions localized at the defect. While it is thus not
a priori clear how to divide such contributions into parts “associated with the bulk”
and parts “associated with the defect,” we choose counter-terms that make the result
analytic in the conical angle. One may thus also think of this procedure as analytic
continuation from cases where counter-terms are not required, and in particular from
the cases of integer n = 1/m where the spacetime admits a smooth n-fold cover so that
the action may be defined as

~ 1~
I,,_1:= —I(n-fold cover), (3.5)
noon

with [ being the usual higher derivative action on smooth spacetimes. At all m, repeat-
ing the Lewkowycz-Maldacena argument with this action then implies the geometric
entropy to be .
dl,,
-,

in analogy with (3.4). Again, the variational principle imposes a condition that one

g =

(3.6)

may think of as placing the conical defect on a surface that extremizes the geometric
entropy?.

4The recipe of appendix B reproduces the standard definitions of both ¢ and the action at m =1
(6 = 0). As a result, at first order in m — 1 our action I,,, may be written I,,, = I, — (m — 1)o. And
again, the result gives a natural analytic extension of results that follow from (3.5) when n = 1/m is
an integer and allows metric variations that may be interpreted as moving the surface on which o is
evaluated relative to a smooth background geometry. In this context, it is clear that varying I,,, about
m = 1 leads to a source of order (m — 1) on a surface extremizing o in the m = 1 geometry. Now, for
more general m, the stationary points of I,,, have deficit angles 6 = 2m(1 — m) on the corresponding
surface. Taking Z, quotients then shows that o is extremized on shell whenever 1/m € Z. Finally,
appendix B derives a sense in which our construction analytically extends this condition to general
real m > 0. See this appendix for details.
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The variational principle appropriate to fixing the geometric entropy ¢ may then
be constructed as the Legendre transform

I, = I, + (m —1)o. (3.7)

Recall that Legendre transform gives the unique such action up to the addition of a
function of 0. In (3.7) we have fixed this freedom by requiring consistency with the
standard problem where o is unconstrained. In that case the outcome m = 1 may be
thought of as an equation of motion. Requiring the extremum of I, with respect to
o to match this by setting m = 1 gives (3.7) up to the remaining freedom to add an
overall constant. As discussed in [21], this is equivalent to noting that the condition
m = 1 selects the dominant value of ¢ in the unconstrained problem. This observation
in turn means that I, should agree with the standard higher derivative action I; when
m = 1 and removes the possibility of adding an overall constant to (3.7).

We may now repeat the argument of [21] to show that the associated saddle-point

Ssaddle independent of n. In particular, consider a CFT

Renyi entropies are flat, with
state |¢) defined by a CFT path integral with sources. Holographic duality allows the
norm (|¢)) to be computed using a bulk gravitational path integral with boundary
conditions specified by the sources in the CFT path integral. We further wish to con-
sider the state |¢), defined by projecting |¢)) onto a (perhaps approximate) eigenstate
of the geometric entropy with eigenvalue o. In the saddle-point approximation the
norm of [¢), is given by e 21911 where the above action I, has been evaluated on a
saddle point g; satisfying the above-mentioned boundary conditions at AdS infinity.
We wish to compute saddle-point Renyi entropies of |1),. This means that we
consider the CFT path integral defined by appropriately gluing together n copies of
the path integral for [¢), and then study the corresponding bulk gravitational path
integral with a constraint inserted to fix the geometric entropy to . We define the

associated saddle-point Renyi entropies Ssaddle

by approximating such path integrals
by e~ felon] evaluated on Euclidean solutions g, satisfying this constraint.

Such saddles g, are now easy to construct. In the variational principle for fixed
o, the conical deficit 27(1 — m) is a dynamical variable chosen to obtain the specified
geometric entropy. It will thus vanish only for certain values of ¢ for a given choice of
|1)). For our choice of o and the associated g, we let ¢; = 2wm; denote the opening
angle of the associated cone (so that the space is smooth only for ¢; = 27 or my; = 1).
The saddles g, are then found by cutting open n copies of ¢g; and sewing them together
as described in figure 1 to give m,, = nm;.

This g, clearly satisfies the desired boundary conditions at AdS infinity. Further-
more, as shown in appendix B, o[g] is fully determined by the properties of g; in the

region near the defect. In particular, it may be computed by taking a limit as one
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approaches the conical defect from any fixed direction. As a result, olg,] = o[g1] and
the geometric entropy takes the desired value as well. It follows that g, is a saddle for
1, satisfying all boundary conditions. We shall assume such saddles to dominate in the
path integral, though of course this issue deserves more study in the future.

Let us now discuss the value of I, on g, following [21]. We begin with the funda-
mental saddle ¢; and compute I,[g1] = I, [g1] + (m1 — 1)o. As stated above, the first
contribution fml comes from ignoring contributions from the conical defect. In partic-
ular, it can be obtained by cutting out a region of radius € around the defect, including
appropriate counter-terms at the new inner boundary, and taking the limit ¢ — 0.
Since g, consists of n copies of gy away from the defect, this implies I, [gn] = 1L, [91].
Since m,, = nmy, the full action satisfies

Iolgn] = nlm, [g1] + (nmy = 1)o. (3.8)

Taking into account proper normalization of pgr then yields

e_Io[gn]

(log Trpf) ™" = log = =~ Uolgal = nlsla]) = =(n = 1), (3.9)

saddle
S

so that the saddle-point Renyi entropies defined by (3.1) yield = o and are

indeed independent of n. Alternatively, we could again have noted that the saddle-
point refined Renyi entropies S5244® are again fixed by the condition on ¢ and then

integrated (3.3) to find S5addle = o as well.

4 Density matrix multiplication in states of fixed geometric
entropy

We now have all the tools in hand to flesh out the argument sketched at the end of sec-
tion 2 that multiplication by a code-subspace density matrix preserves code-subspaces
with fixed geometric entropy. We begin with a careful description of the appropriate
code subspaces H4. As discussed in footnote 1, the usual description of H, as the space
of states describing small quantum fluctuations about a given classical background is
not consistent with the statement that it contains states of fixed geometric entropy o, as
any observable O that fails to commute with o will necessarily have significant fluctu-
ations. This is much like the statement in familiar non-relativistic quantum mechanics
that position eigenstates allow large fluctuations in momenta.

Since we wish to work with such fixed-o states, it is useful to instead define Hy4 as
the linear span of states constructed from fixed-o Euclidean path integrals using some
given set of classical sources and arbitrary additional sources of order 1 in counting
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powers of G; i.e., we consider small deviations from some given fixed-o state. States
defined in this way allow what we may call large fluctuations in the conical angle at
the defect, but fluctuations elsewhere are small. Furthermore, the large fluctuations
in conical angle need not obstruct semiclassical computations of ,(1[1),, and indeed
it is precisely such large fluctuations that allow the conical angle of a saddle to be
tuned to satisfy the constraint on ¢. This is in direct parallel to the situation in non-
relativistic quantum mechanics when using the semiclassical approximation to study
the propagator (2, t'|z,t) between exact position eigenstates.

In making the above definition of H,, one should note that sources generally have
non-trivial conformal dimensions so that the magnitude of any source depends on a
choice of conformal frame. Now, in considering Renyi entropies associated with the
division of a CFT Cauchy surface into regions R, R, the natural conformal frames to
use are those in which the mutual boundary OR = OR of R, R has been pushed to
infinity. We have in mind such frames below.

In this context the arguments of [19] again imply an FLM formula on this #,,
from whence Ref. [1, 4, 5] show states in Hg4 to be a code subspace® with the QEC
structure described in section 2. It will remain useful to think of ¢ as a classical
background (perhaps with a conical defect) and to take o to be the corresponding
geometric entropy.

We now choose a state |¢), € H, and consider the new state [¢3), defined by
multiplying [¢), by the density matrix that it defines on R. Specifically, we define

1V3)e = (pr @ 15) [¥)e = (77 @ 15) [¢),, (4.1)

where pg is the density matrix defined on R by tracing |¢), over R and Kg is the
associated modular Hamiltonian. The state is labelled with a subscript 3 because

Try |¥3)00 (3| = p% and thus

o (V3lts)s = Tr (p%) . (4.2)

It will be useful to also consider the bulk operator (pw ® 13) defined by the
density matrix for bulk quantum fields in the entanglement wedge W of the CFT
region R induced by the global state [¢),. One may think of py as defined by a
bulk path integral for quantum fluctuations on the dominant classical saddle g; in the
path integral computation of the norm ,(1[¢),, after cutting this path integral open

5These arguments are typically made for finite-dimensional Hilbert spaces. As stated above, we use
a conformal frame where the CFT has non-compact Cauchy surfaces. So even with a UV cutoff, the
Hilbert space has infinite dimension. We assume that the conclusion nevertheless continues to hold.
We presume this can be argued by first imposing and then removing a suitable IR regulator.

— 16 —



along the slice defined by the Zs symmetry that exchanges (and complex conjugates)
corresponding sources associated with the bra- and ket-vectors. As a result, acting with
(pw ® 1yp7) extends a bulk path integral for quantum fluctuations by splicing in a copy
of g1 in much the same manner that inserting two copies of (pr ® 13) into the path
integral for ,(¥|¢), extends it to the 3-replica path integral for (4.2). Indeed, at this
order in the bulk semiclassical approximation, the only difference between insertions of
these two operators is that the latter also changes the classical contribution e’ while
the former does not.

We can now use this observation to show that |3), lies in the same code subspace
H,. We will proceed by proving that the results of acting on |¢), with either (pw @ 13y)
or (pr ® 1) yield identical states up to an overall normalization and corrections that
can be neglected at our one-loop level. In particular, let us define

V') = (ow ® Ip) [¥)e = (7Y @ Iyyp) V), (4.3)

where py, and Ky are the bulk density matrix and bulk modular Hamiltonian defined
on the entanglement wedge of R by |¢),. We also recall the construction of n-replica
saddles g, defined as in figure 1 by cutting and sewing copies of g;. Assuming as
in section 3 that g, is the dominant saddle in the computation of Trp',, the above
observations imply

0'<w3‘w3>0' = 6710[93]Zbu1k ﬂucts[g3]7 (44)

o (03430 = eI Zune fuers[gs], (4.5)
and

o (V3|3 = e 17921 Z 1 puens[gs), (4.6)

at all orders in G.

The important observation above is then that since all three inner products involve
two insertions of pg, two insertions of py,, or one of each, in each case Zpux flucts 18
evaluated on the same 3-replica saddle g3. As a result, these contributions cancel when
computing

o (Yss)s _ o 2elm ol Ioles) _ (4.7)
U<w3’¢3>00<¢3/|¢3/>0
where the last equality follows from the linearity in n of I,[g,] = nlpn, [g1] — (nmy — 1)
in (3.8). Equation (4.7) should be understood to hold to all orders in G, though there
are non-perturbative corrections due to sub-leading saddles in (4.4)—(4.6).

As py is a bulk operator that acts within the code subspace Hy, the state |¢%)
must lie in Hs. We thus see that (pr ® 13) [¢), lies in H, up to small corrections
as claimed. Furthermore, as described at the end of section 2, this in turn requires
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(XR% )3 o Xgz (equation (2.13)) for each superselection sector a that appears in Hg.
And since density matrices have real non-negative eigenvalues, the eigenvalues of x g2
can be only 0 and 1 up to an overall normalization. We thus conclude that yp: is a
projector onto a subspace of dimension dictated by its entropy, and that multiplication
by (pr ® 15) leaves H4 invariant®.

5 Discussion

As reviewed in section 2, at O(1) in the bulk Newton constant GG, holographic quantum
codes allow complementary recovery and thus are characterized up to unitaries by the
spectrum of a class of density matrices called x gz, where a labels superselection sectors
with respect to the bulk algebra recovered by the code. Our arguments above used
properties of bulk gravitational path integrals to show, again up to higher order O(G)
corrections, that each x gz is proportional to a projection operator of rank determined
by the geometric entropy ¢ = A/4G + ... (with ... denoting higher derivative terms)
associated to the given superselection sector . Here we measure the magnitude of any
corrections by their impact on the Renyi entropies S, (pr) = —ﬁ log Tr(p}), taking n
fixed in the limit of small G.

Because the non-zero eigenvalues Ay of gz are independent of £ up to the stated
corrections, we refer to this result as one-loop flatness of the entanglement spectrum
for holographic quantum codes. Our arguments apply to gravitational systems where
the effective action is Einstein-Hilbert plus matter with arbitrary perturbative higher
derivative corrections, such as those controlled by small o/ or G. In parallel with
past assumptions [21, 29] that any breaking of replica symmetry is subdominant, our
arguments assume that saddles of the form shown in figure 1 dominate the relevant
path integrals. It would clearly be of use to explore this assumption more completely
in future work.

An important technical step (see appendices A and B) was to construct good vari-
ational principles that even in the presence of arbitrary higher derivative corrections
allow spacetimes with conical defects, and to show (see section 3) that the geometric en-
tropy is given by a Hamilton-Jacobi-like variation of the on-shell action I, with respect
to the defect angle. This in particular identifies the Lewkowycz-Maldacena procedure
[29] as the natural analogue of the Carlip-Teitelboim approach to black hole entropy
[30] generalized to cases that lack the U(1) symmetry of [30]. It also further d