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Abstract

In a recent issue of this journal, Mordukhovich, Nam, and Salinas pose and solve an interesting

non-differentiable generalization of the Heron problem in the framework of modern convex

analysis. In the generalized Heron problem, one is given k + 1 closed convex sets in ℝd equipped

with its Euclidean norm and asked to find the point in the last set such that the sum of the

distances to the first k sets is minimal. In later work, the authors generalize the Heron problem

even further, relax its convexity assumptions, study its theoretical properties, and pursue

subgradient algorithms for solving the convex case. Here, we revisit the original problem solely

from the numerical perspective. By exploiting the majorization-minimization (MM) principle of

computational statistics and rudimentary techniques from differential calculus, we are able to

construct a very fast algorithm for solving the Euclidean version of the generalized Heron

problem.

1 Introduction

In a recent article in this journal, Mordukhovich et al. [22] presented the following

generalization of the classical Heron problem. Given a collection of closed convex sets {C1,

…, Ck} in ℝd, find a point x in the closed convex set S ⊂ ℝd such that the sum of the

Euclidean distances from x to C1 through Ck is minimal. In other words,

(1)

where d(x, Ω) = inf{∥x − y∥ : y ∈ Ω}.

A rich history of special cases motivates this problem formulation. When k = 2, C1 and C2

are singletons, and S is a line, we recover the problem originally posed by the ancient

mathematician Heron of Alexandria. The special case where k = 3; C1, C2, and C3 are

singletons; and S = ℝ2 was suggested by Fermat nearly 400 years ago and solved by
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Torricelli [13]. In his Doctrine and Application of Fluxions, Simpson generalized the

distances to weighted distances. In the 19th century, Steiner made several fundamental

contributions, and his name is sometimes attached to the problem [9, 11]. At the turn of the

20th century, the German economist Weber generalized Fermat’s problem to an arbitrary

number of singleton sets Ci. Weiszfeld published the first iterative algorithm1 for solving the

Fermat-Weber problem in 1937 [28, 29]. In the modern era, the Fermat-Weber problem has

enjoyed a renaissance in various computational guises. Both the problem and associated

algorithms serve as the starting point for many advanced models in location theory [18, 30].

The connections between celebrated problems such as the Fermat-Weber problem and the

generalized Heron problem were noted earlier by Mordukhovich et al. [23]. In subsequent

papers [21, 23], they generalize the Heron problem further to arbitrary closed sets, C1, …,

Ck and S in a Banach space. Readers are referred to their papers for a clear treatment of how

one solves these abstract versions of the generalized Heron problem with state-of-the-art

tools from variational analysis.

Here we restrict our attention to the special case of Euclidean distances presented by

Mordukhovich et al. [23]. Our purpose is take a second look at this simple yet, in our

opinion, most pertinent version of the problem from the perspective of algorithm design.

Mordukhovich et al. [21, 22, 23] present an iterative subgradient algorithm for numerically

solving problem (1) and its generalizations, a robust choice when one desires to assume

nothing beyond the convexity of the objective function. Indeed, the subgradient algorithm

works if the Euclidean norm is exchanged for an arbitrary norm. However, it is natural to

wonder if there might be better alternatives for the finite-dimensional version of the problem

with Euclidean distances. Here we present one that generalizes Weiszfeld’s algorithm by

invoking the majorization-minimization (MM) principle from computational statistics.

Although the new algorithm displays the same kind of singularities that plagued Weiszfeld’s

algorithm [15], the dilemmas can be resolved by slightly perturbing problem (1), which we

refer to as the generalized Heron problem for the remainder of this article. In the limit, one

recovers the solution to the unperturbed problem. As might be expected, it pays to exploit

special structure in a problem. The new MM algorithm is vastly superior to the subgradient

algorithms in computational speed for Euclidean distances.

Solving a perturbed version of the problem by the MM principle yields extra dividends as

well. The convergence of MM algorithms on smooth problems is well understood

theoretically. This fact enables us to show that solutions to the original problem can be

characterized without appealing to the full machinery of convex analysis dealing with non-

differentiable functions and their subgradients. Although this body of mathematical

knowledge is definitely worth learning, it is remarkable how much progress can be made

with simple tools. The good news is that we demonstrate that crafting an iterative numerical

solver for problem (1) is well within the scope of classical differential calculus. Our

resolution can be understood by undergraduate mathematics majors.

1Kuhn [15] points out that Weiszfeld’s algorithm has been rediscovered several times.
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As a brief summary of things to come, we begin by recalling background material on the

MM principle and convex analysis of differentiable functions. This is followed with a

derivation of the MM algorithm for problem (1) and consideration of a few relevant

numerical examples. We end by proving convergence of the algorithm and characterizing

solution points.

2 The MM Principle

Although first articulated by the numerical analysts Ortega and Rheinboldt [24], the MM

principle currently enjoys its greatest vogue in computational statistics [1, 17]. The basic

idea is to convert a hard optimization problem (for example, non-differentiable) into a

sequence of simpler ones (for example, smooth). The MM principle requires majorizing the

objective function f(y) by a surrogate function g(y | x) anchored at the current point x.

Majorization is a combination of the tangency condition g(x | x)= f(x) and the domination

condition g(y | x) ≥ f(y) for all y ∈ ℝd. The associated MM algorithm is defined by the

iterates

(2)

Because

(3)

the MM iterates generate a descent algorithm driving the objective function downhill.

Constraint satisfaction is enforced in finding xk+1. Under appropriate regularity conditions,

an MM algorithm is guaranteed to converge to a local minimum of the original problem

[16].

3 Background on Convex Analysis

As a prelude to deriving an MM algorithm, we review some basic facts from convex

analysis in the limited context of differentiable functions. Deeper treatments can be found in

the references [3, 4, 12, 25, 26]. Throughout this article, we denote the standard dot product

between vectors a and b by 〈a, b〉. Recall that a differentiable function f(y) is convex if and

only if its domain S is convex and

(4)

for all x, y ∈ S. Provided f(x) is twice differentiable, it is convex when its second differential

d2f(x) is positive semidefinite for all x and strictly convex when d2f(x) is positive definite

for all x. These characterizations are a direct consequence of executing a second-order

Taylor expansion of f(y) and applying the supporting hyperplane inequality (4). The

supporting hyperplane inequality (4) also leads to a succinct necessary and sufficient

condition for a global minimum. A point x ∈ S is a global minimizer of f(y) on S if and only

if
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(5)

for all y ∈ S. Intuitively speaking, every direction pointing into S must lead uphill.

We conclude this section by reviewing projection operators [16]. Denote the projection of x
onto a set Ω ⊂ ℝd by PΩ(x). By definition, PΩ(x) satisfies

If Ω is a closed convex set in ℝd, then PΩ(x) exists and is unique. Furthermore, the

projection operator is non-expansive in the sense that

for all x, y ∈ ℝd. Non-expansion clearly entails continuity. Explicit formulas for the

projection operator PΩ(x) exist when Ω is a box, Euclidean ball, hyperplane, or halfspace.

Fast algorithms for computing PΩ(x) exist for the unit simplex, the ℓ1 ball, and the cone of

positive semidefinite matrices [10, 20].

The projection operator and the distance function are intimately related through the gradient

identity ∇d(x, C)2 = 2[x − PC (x)]. A standard proof of this fact can be found in reference

[12, p. 181]. If d(x, C)2 > 0, then the chain rule gives

On the interior of C, it is obvious that ∇d(x, C) = 0. In contrast, differentiability of d(x, C) at

boundary points of C is not guaranteed.

4 An MM Algorithm for the Heron Problem

Since it adds little additional overhead, we recast problem (1) in the Simpson form

(6)

involving a convex combination of the distances d(x, Ci) with positive weights γi as

suggested in [23]. We first derive an MM algorithm for solving problem (6) when S ∩ Ci =

∅ for all i. This exercise will set the stage for attacking the more general case where S

intersects one or more of the Ci. In practice, quadratic majorization is desirable because it

promotes exact solution of the minimization step of the MM algorithm. It takes two

successive majorizations to achieve quadratic majorization in our setting. The first is the

simple majorization
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flowing directly from the definition of the distance function. The second is the majorization

(7)

of the concave function  on the interval (0, ∞). The combination of these two

majorizations yields the quadratic majorization

(8)

Summing these majorizations over i leads to quadratic majorization of D(x) and ultimately

to the MM algorithm map

with weights wi = γi∥x − PCi(x)∥−1. When the Ci are singletons and S = ℝd, the map ψ(x)

implements Weiszfeld’s algorithm for solving the Fermat-Weber problem [28, 29].

The quadratic majorization of D(x) just derived can be rewritten as

where

depend on weights wi = γi∥xm − PCi(xm)∥−1 and c is a constant that does not depend on x.

Thus, the MM update boils down to projection onto S of a convex combination of the

projections of the previous iterate onto the sets Ci; in symbols we have

(9)

The majorization (8) involves dividing by 0 when xm belongs to Ci. This singularity also

bedevils Weiszfeld’s algorithm. Fortunately, perturbation of the objective function salvages

the situation. One simply replaces the function D(x) by the related function

Chi and Lange Page 5

Am Math Mon. Author manuscript; available in PMC 2014 September 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



for ε small and positive. Ben-Tal and Teboulle [2] cover further examples of this

perturbation strategy. In any case, observe that the smooth function  has

derivatives

and is therefore strictly increasing and strictly convex on the interval [0, ∞). Hence, the

function Dε(x) is also convex. Because  is a good approximation to u ≥ 0, the

solutions of the two problems should be close. In fact, we will show later that the minimum

point of Dε(x) tends to the minimum point of D(x) as ε tends to 0. In the presence of

multiple minima, this claim must be rephrased in terms of cluster points.

The majorization d(x, Cj) ≤ ∥x − PCj(xm)∥ around the current iterate xm yields the

majorization

Application of the majorization (7) implies the further majorization

where c is an irrelevant constant. The corresponding MM update xm+1 is identical to the

previous MM update (9) except for one difference. The weights wi are now defined by the

benign formula

involving no singularity.

5 Examples

We now consider four examples illustrating the performance of the MM algorithm and

framing our expectations for convergence. The subgradient algorithm [22] serves as a

benchmark for comparison throughout. This algorithm relies on the updates

Chi and Lange Page 6

Am Math Mon. Author manuscript; available in PMC 2014 September 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where

and the nonnegative constants ηm satisfy . The weights γi

equal 1 in all examples except the last.

5.1 Five Cubes and a Ball in ℝ3

Our first example is taken from the reference [22]. This three-dimensional example involves

five cubes Ci with side lengths equal to 2 and centers (0, −4, 0), (−4, 2, −3), (−3, −4, 2), (−5,

4, 4), and (−1, 8, 1). The set S is a ball with center (0, 2, 0) and radius 1. Iteration

commences at the point x1 = (0, 2, 0) ∈ S and takes subgradient steps with ηm = 1/m. Table 1

shows the MM iterates with ε = 0. Convergence to machine precision occurs within 30

iterations. In contrast, Table 2 shows that parameter values (x1, x2, x3) are still changing

after 106 subgradient iterates. For brevity we omit a second example of four squares and a

disk in ℝ2 from the same source [22]. In this example the superiority of the MM algorithm

over the subgradient algorithm is equally evident.

5.2 The Closest Point to Three Disks in ℝ2

This example from the reference [21] illustrates the advantage of minimizing a sequence of

approximating functions Dεm(x). The sets Ci are three unit balls in ℝ2 centered at (0, 2), (2,

0), and (−2, 0). The set S equals ℝ2. The minimum distance occurs at (0, 1) as can be easily

verified by checking the optimality conditions spelled out in Proposition 4.3 in [21]. Figure

1 displays the iteration paths for 50 different starting values (dots) and their corresponding

fixed point (the square). Along the mth leg of the path, we set εm to be max{10−m, 10−16}.

The solution to the current problem is taken as the initial point for the next problem. All

solution paths initially converge to a point just below (0,1) and then march collectively

upwards to (0,1). The passage of the MM iterates through the unit balls is facilitated by our

strategy of systematically reducing ε. Table 3 shows the subgradient and MM iterates

starting from the point (5,7).

5.3 Three Collinear Disks in ℝ2

Here we illustrate the behavior of the MM algorithm when there is more than one solution.

Consider two unit balls in ℝ2 centered at (2, 0), and (−2, 0), and take S to be the unit ball

centered at the origin. There is a continuum of solutions extending along the line segment

from (−1, 0) to (1, 0), as can be verified by the optimality conditions provided by Theorem

3.2 in [22]. Figure 2 shows the iteration paths for 100 different initial values (dots) and their

corresponding fixed points (squares). In this example, we take ε = 0. Although the iterates
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are not guaranteed to converge and may in principle cycle among multiple cluster points,

this behavior is not observed in practice. The iterates simply converge to different fixed

points depending on where they start. Table 4 compares the iterations for the subgradient

method and the MM algorithm starting from the point (1.5,0.25). The two algorithms

converge to different solution points, but at drastically different rates.

5.4 Kuhn’s Problem

Our last example was originally concocted by Kuhn [14] to illustrate how Weiszfeld’s

algorithm can stall when its iterates enter one of the sets Ci. Although this event rarely

occurs in practice, characterizing the initial conditions under which it happens has been a

subject of intense scrutiny [5, 6, 7, 8, 15]. The occasional failure of Weiszfeld’s algorithm

prompted Vardi and Zhang [27] to redesign it. Their version preserves the descent property

but differs substantially from ours. In any event the example shown in Figure 3 involves two

points with weights γi proportional to 5 placed at (59,0) and (20,0) and two more points with

weights proportional to 13 placed at (−20, 48) and (−20, −48). The optimal point is the

origin. Starting at (44,0), Weiszfeld’s algorithm stalls at (20,0) after one iteration. Our MM

iterates (dots) with ε decreasing from 0.1 to 0, in contrast, move across (20.0) and correctly

converge to (0,0) to within machine precision in 99 steps. Table 5 compares the progress

achieved by the MM and subgradient methods. Note that when ε is 0.1, the MM algorithm

overshoots the true answer and then comes back to (0, 0) after setting ε to be 0. The

subgradient algorithm makes solid progress early but subsequently slows down on this

almost smooth problem.

6 Convergence Theory

Before embarking on a proof of convergence, it is prudent to discuss whether a minimum

point exists and is unique. Recall that a continuous function attains its minimum on a

compact set. Thus, problem (6) possesses a minimum whenever S is bounded. If S is

unbounded, then one can substitute boundedness of one or more of the sets Ci. In this

circumstance, D(x) is coercive in the sense that lim∥x∥→∞ D(x)= ∞. As pointed out in

Proposition 3.1 of the reference [22], coerciveness is sufficient to guarantee existence.

Because D(x) ≤ Dε(x), the perturbed criterion Dε(x) is coercive whenever the original

criterion D(x) is coercive. Henceforth, we will assume that S or at least one of the Ci is

bounded.

A strictly convex function possesses at most one minimum point on a convex set. The

function |x| shows that this sufficient condition for uniqueness is hardly necessary. In the

Fermat-Weber problem, where the closed convex sets Ci = {xi} are singletons, the function

D(x) is strictly convex if and only if the points xi are non-collinear. To generalize this result,

we require the sets Ci to be non-collinear. Geometrically this says that it is impossible to

draw a straight line that passes through all of the Ci. Non-collinearity can only be achieved

when k > 2 and . We also require the Ci to be strictly convex. A set C is said to be

strictly convex if the interior of the line segment [x, y] connecting two different points x and

y of C lies in the interior of C. Put another way, the boundary of C can contain no line

segments. A singleton or a closed ball is strictly convex, but a closed box is not.
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Proposition 6.1. If the closed convex sets C1, …, Ck are strictly convex but not collinear,

then D(x) is strictly convex.

Proof. Suppose the contrary is true, and choose x ≠ y and α strictly between 0 and 1 so that

(10)

Let L be the line {sx + (1 − s)y : s ∈ ℝ} passing through the points x and y. Then there

exists at least one Cj such that L ∩ Cj = ∅. In particular, x, y, and αx + (1 − α)y all fall

outside this Cj. Equality (10) implies that

Since the projection of a point onto Cj is unique, these sandwich inequalities entail

If PCj(x) ≠ PCj(y), then the strict convexity of Cj implies the convex combination αPCj(x)

+(1 − α)PCj(y) is interior to Cj. Hence, this point cannot be the closest point to the external

point αx + (1 − α)y. Therefore, consider the possibility PCj(x) = PCj(y) = z. Equality can

occur in the inequality

only when x − z = t(y − z) for some t ≠ 1. This relation shows that

belongs to L∩Cj, contradicting our hypothesis. Thus, D(x) is strictly convex.

The next result shows that the function Dε(x) inherits strict convexity from D(x). Therefore,

when D(x) is strictly convex, Dε(x) possesses a unique minimum point.
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Proposition 6.2. If D(x) is strictly convex, then Dε(x) is also strictly convex.

Proof. Fix arbitrary x ≠ y and α strictly between 0 and 1. The strict convexity of D(x)

implies that there is at least one j such that

The strict inequality

follows because the function  is a strictly increasing and convex. Summing

over j gives the desired result.

We now clarify the relationship between the minima of the Dε(x) and D(x) functions.

Proposition 6.3. For a sequence of constants εm tending to 0, let ym be a corresponding

sequence minimizing Dεm(x). If y is the unique minimum point of D(x), then ym tends to y. If

D(x) has multiple minima, then every cluster point of the sequence ym minimizes D(x).

Proof. To prove the assertion, consider the inequalities

for any x ∈ S and εm ≤ 1. Taking limits along the appropriate subsequences proves that the

cluster points of the sequence ym minimize D(x). Convergence to a unique minimum point y
occurs provided the sequence ym is bounded. If S is bounded, then ym is bounded by

definition. On the other hand, if any Cj is bounded, then D(x) is coercive, and the inequality

D(ym) ≤ D1(x) forces ym to be bounded.

The convergence theory of MM algorithms hinges on the properties of the algorithm map

ψ(x) ≡ arg miny g(y | x). For easy reference, we state a simple version of Meyer’s monotone

convergence theorem [19] instrumental in proving convergence in our setting.

Proposition 6.4. Let f(x) be a continuous function on a domain S and ψ(x) be a continuous

algorithm map from S into S satisfying f(ψ(x)) < f(x) for all x ∈ S with ψ(x) ≠ x. Suppose for

some initial point x0 that the set ℒf (x0) ≡ {x ∈ S : f(x) ≤ f(x0)} is compact. Then (a) all

cluster points are fixed points of ψ(x), and (b) limm→∞∥xm+1 − xm∥ = 0.

Note that Proposition 6.4 also ensures the existence of at least one cluster point for the

sequence of iterates xm+1 = ψ(xm). Additionally, the convergence of the MM iterates (9) to a

stationary point of f(x) follows immediately provided the fixed points of ψ(x) are stationary

points of f(x) and ψ(x) possesses only finitely many fixed points.
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Let us verify the conditions of Proposition 6.4 for minimizing Dε(x). The function Dε(x) is

continuous on its domain S, and the set ℒDε(x0) is compact for any initial point x0 since

either S is compact or Dε(x) is coercive. The continuity of the algorithm map follows

immediately from the continuity of the projection mapping. Finally, we need to prove that

Dε(ψ(x)) < Dε(x) whenever x ≠ ψ(x). First observe that ψ(x) = x if and only if the MM

surrogate function satisfies gε(x | x) = miny gε(y | x). Since gε(y | x) has a unique minimizer,

we have the strict inequality gε(ψ(x) | x) < gε(x | x) whenever x is not a fixed point of ψ. This

forces a decrease in the objective function Dε(x) and makes the MM algorithm strictly

monotone outside the set of stationary points.

We now argue that the fixed points of the algorithm map ψ(x) are stationary points of Dε(x).

We will show, in fact, that the two sets of points coincide. To accomplish this, we need to

determine the gradients of Dε(x) and gε(x | y). Recall that fε(u) is strictly increasing and

strictly convex. As a consequence the functions fε(∥x∥) and fε[d(x, Cj)] are convex. Even

more remarkable is the fact that both functions are continuously differentiable. When x ≠ 0,

the function ∥x∥ is differentiable. Likewise, when x ∉ Cj, the function d(x, Cj) is

differentiable. Therefore, the chain rule implies

(11)

(12)

respectively.

By continuity one expects the gradients to be defined for x = 0 and x ∈ Cj by the

corresponding limit of 0. In the former case the expansion

shows that ∇fε(∥0∥) = 0. In the latter case the expansion

and the bound d(y, Cj) = |d(y, Cj) − d(x, Cj)| ≤ ∥y − x∥ for x ∈ Cj likewise show that

∇fε[d(x, Cj)] = 0. Consequently, equations (11) and (12) hold for all x ∈ ℝd. It follows that

both Dε(x) and gε(x | y) are differentiable on ℝd, with gradients
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and

(13)

respectively. Note that y ∈ S minimizes Dε(x) over S if and only if

for all x ∈ S. This inequality, however, is equivalent to the inequality 〈∇ gε (y | y), x − y〉 ≥

0, for all x ∈ S, which in turn holds if and only if y is a fixed point of ψ(x). If D(x) is strictly

convex, then Dε(x) has a unique minimum point, and ψ(x) has exactly one fixed point.

Thus, Proposition 6.3 and Proposition 6.4 together tell us that y is a solution to (6) if there is

a sequence of εm tending to zero and a sequence of points ym tending to y that satisfy

(14)

for all x ∈ S. The above sufficient condition becomes necessary as well if D(x) is strictly

convex. As a sanity check, when the sets S ∩ Cj are all empty and the weights γj are

identical, we recover the characterization of the optimal points given in Theorem 3.2 of

reference [22], albeit under the more restrictive assumption of strict convexity.

7 Conclusion

There is admittedly an art to applying the MM principle. The majorization presented here is

specific to Euclidean distances, and changing the underlying norm would require radical

revision. Nonetheless, when the MM principle applies, the corresponding MM algorithm can

be effective, simple to code, and intuitively appealing. Here the principle lit the way to an

efficient numerical algorithm for solving the Euclidean version of the generalized Heron

problem using only elementary principles of smooth convex analysis. We also suggested a

simple yet accurate approximation of the problem that removes the singularities of the MM

algorithm and Weiszfeld’s earlier algorithm. Similar advantages accrue across a broad

spectrum of optimization problems. The ability of MM algorithms to handle high-

dimensional problems in imaging, genomics, statistics, and a host of other fields testifies to

the potency of a simple idea consistently invoked. Mathematical scientists are well advised

to be on the lookout for new applications.
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Figure 1.
Finding the closest point to three disks in ℝ2.
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Figure 2.
An example with a continuum of solutions.
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Figure 3.
A problem where Weiszfeld’s algorithm fails to converge.
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Table 1

Cubes and ball example in ℝ3: the MM Algorithm.

Iteration x1 x2 x3

1 0.00000000000000 2.00000000000000 0.00000000000000

2 −0.93546738305698 1.66164748416805 0.10207032020482

3 −0.92881282698649 1.63915389878166 0.08424264751830

4 −0.92645373003448 1.63220797263449 0.08007815377225

5 −0.92567602259658 1.63004821970935 0.07911751670489

6 −0.92542515217106 1.62937435413374 0.07889815178685

7 −0.92534495711879 1.62916364685109 0.07884864943702

8 −0.92531944712805 1.62909766226627 0.07883765997470

9 −0.92531135783449 1.62907697582185 0.07883527888603

10 −0.92530879826106 1.62907048520349 0.07883478238381

20 −0.92530761702316 1.62906751412014 0.07883466748783

30 −0.92530761701184 1.62906751409212 0.07883466748878

50 −0.92530761701184 1.62906751409212 0.07883466748878
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Table 2

Cubes and ball example in ℝ3: the Subgradient Algorithm.

Iteration x1 x2 x3

1 0.00000000000000 2.00000000000000 0.00000000000000

10 −0.92583298353433 1.63051788239768 0.07947484741743

100 −0.92531325048300 1.62908232435160 0.07883822912883

1000 −0.92530767419684 1.62906766065418 0.07883468589312

10000 −0.92530761758555 1.62906751554109 0.07883466757273

100000 −0.92530761701755 1.62906751410641 0.07883466748904

1000000 −0.92530761701233 1.62906751409334 0.07883466748881

1500000 −0.92530761701231 1.62906751409328 0.07883466748881

2000000 −0.92530761701229 1.62906751409324 0.07883466748881
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