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Abstract

Soft Leptons, Hard Problems: Searches for the Electroweak Production of

Supersymmetric Particles in Compressed Mass Spectra with the ATLAS

Detector

by

Jeffrey D. Shahinian

Supersymmetry is an attractive extension of the Standard Model of particle physics

that posits an additional spacetime symmetry relating fermions and bosons. Phe-

nomenologically, supersymmetry predicts the existence of bosonic superpartners

for each of the Standard Model fermions and vice versa. In doing so, many out-

standing issues in particle physics can be solved, including the nature of dark

matter, the hierarchy problem, and gauge coupling unification.

This dissertation presents searches for the direct electroweak production of

supersymmetric states within compressed mass spectra, which generically lead to

soft particles in the final state. These searches use 139 fb−1 of
√
s = 13 TeV

proton–proton collision data collected by the ATLAS experiment at the Large

Hadron Collider between 2015 and 2018. Selected events contain two oppositely-

charged, same-flavor leptons with low transverse momenta, missing transverse

energy, and additional hadronic activity from initial-state radiation.

No statistically significant deviations from the Standard Model predictions are

observed in the data. The results are used to set limits on the masses of the super-

symmetric states in the context of R-parity-conserving simplified models in which

the lightest supersymmetric particle is a neutralino arising from nearly mass-

degenerate decays of the lightest chargino, the second-to-lightest neutralino, or a

slepton. These limits significantly extend existing constraints on well-motivated

dark matter scenarios.
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Part I

Introduction

Abandon all plans, ye who enter here.
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Chapter 1

Introduction

Reductionism is the name of the game in particle physics, an area of study that

has a rich tradition of shaping our understanding of nature at both the smallest

and largest distance scales. By enumerating the fundamental particles and the

laws that govern their interactions, the Standard Model (SM) of particle physics

has provided both incredible predictive and descriptive power, from the existence

of the Higgs boson to the shining of the stars. It has even withstood the test of

the TeV scale, which is being probed by the ATLAS and CMS experiments using

proton-proton collisions delivered by CERN’s Large Hadron Collider (LHC).

Yet the story remains incomplete, as many observed phenomena of nature

remain unaccounted for by the SM. Some of these open problems are easy to

formulate. For example, what is the nature of the dark matter, which consti-

tutes approximately 25% of the total energy density of the universe based on

astrophysical observations? What mechanism in the early universe produced the

matter-antimatter asymmetry in the observable universe? Other questions are

more slippery and perhaps even aesthetic in nature. What role, if any, does fine-

tuning play in the observed Higgs boson mass at the weak scale? If dark energy

is simply the cosmological constant, why does it have such a small value and why
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is it in the range that can support large scale structure?

Supersymmetry (SUSY) is a well-studied and well-motivated extension of the

SM that could provide solutions to some of these problems by positing an ad-

ditional spacetime symmetry relating bosons to fermions. This symmetry serves

to double the particle content of the SM by introducing fermionic superpartners

for each of the SM bosons, and vice versa. If these states have masses near the

weak scale, then not only can they potentially be produced and discovered at the

LHC, but they can also provide a dark matter candidate particle and account for

the observed Higgs boson mass in a natural way. This has led to a huge effort

on the part of the ATLAS and CMS experiments to search for a multitude of

signatures that SUSY could produce. Yet so far, no direct evidence exists in favor

of SUSY. Since the LHC collides colored particles, the strongest constraints on

SUSY are on strongly-coupled SUSY particles such as the superpartners of the

top quark and gluon fields, which are expected to have relatively large production

cross-sections for a given (LHC-accessible) mass. Comparatively, searches for the

superpartners of the electroweak gauge and Higgs bosons, for example, are signif-

icantly weaker. With the current and future LHC datasets, though, the ATLAS

and CMS experiments are able to probe the electroweak sector of SUSY more

extensively.

This dissertation presents searches for the direct electroweak production of

SUSY states within “compressed” mass spectra using 139 fb−1 of
√
s = 13 TeV

proton–proton collision data collected by the ATLAS experiment at the LHC be-

tween 2015 and 2018. In these compressed scenarios, the masses of the targeted

SUSY particles have very similar invariant masses. Such models can easily be

accounted for in SUSY while simultaneously solving the issues related to dark

matter, the weak-scale Higgs mass, and gauge coupling unification at high energy.
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They also present significant experimental challenges, as the nearly-degenerate de-

cays of the SUSY particles lead to final states containing low-energy particles that

are difficult to faithfully reconstruct in the detector. The searches presented here

target events containing two low-momentum leptons of the same flavor (electrons

or muons) and opposite electric charge, missing energy in plane transverse to the

LHC beam line, and additional hadronic activity from initial-state radiation. The

results of the searches are subsequently interpreted in the context of R-parity-

conserving SUSY models in which the lightest SUSY particle is a neutralino that

is produced from the nearly-mass degenerate decays of the lightest chargino, the

second-to-lightest neutralino, or the superpartners of the SM electron and muon.

The overall structure of this dissertation is as follows. The simplified SUSY

models used for designing the searches and interpreting the results are presented

in Part II. An overview of the LHC and the ATLAS detector is given in Part III.

The search design, including optimization and background modeling, is given in

Part IV. Finally, the results of the statistical analysis are presented in Part V.
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Part II

Theoretical Motivation

For sale: Supersymmetry, possibly worn.
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Chapter 2

The Standard Model of Particle

Physics

The SM is an internally-consistent and extremely predictive theory of funda-

mental particles and interactions. In particular, it describes the dynamics of all

of the known forces and particles, with the exception of gravity. Its development

in the second half of the 20th century was driven by both theoretical and exper-

imental discoveries and remains the state of the art in describing nature at the

smallest distance scales and highest energies that can currently be probed in the

laboratory. It is a triumph of the human intellect and a testament to the creativ-

ity and ingenuity of countless physicists around the world. But it is also known

to be an inadequate description of nature on the whole.

This chapter is not meant to provide a complete pedagogical overview of this

rich and stubbornly robust theory of fundamental particles and interactions. In-

stead, Section 2.1 provides a brief description of the important concepts that

motivate the construction of the SM Lagrangian density. Section 2.2, meanwhile,

describes the particle content of the SM. Finally, a brief survey of the shortcom-

ings of the SM is given in Section 2.3, with emphasis placed on the issues that are
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relevant to the searches for new physics presented in this dissertation.

2.1 Theoretical Underpinnings

In broad terms, the SM is a theoretical framework that describes the strong,

weak, and electromagnetic forces between the elementary particles that comprise

the known universe. It is based on Quantum Field Theory, which describes parti-

cles as local excitations in their corresponding relativistic quantized fields. In the

SM, these fields are described by a renormalizable Lagrangian density, L, that is
invariant under local, continuous transformations of the symmetry group

SU(3)C ⊗ SU(2)L ⊗ U(1)Y (2.1)

where the subscripts C, L, and Y indicate the color, weak isospin, and hyper-

charge quantum numbers, respectively. SU(3)C is the gauge group that governs

the strong interaction that is responsible for nuclear stability, while the group

SU(2)L ⊗ U(1)Y constitutes the weak and electromagnetic forces, which are re-

sponsible for nuclear decay and electromagnetism, respectively.

Enforcing the above symmetries leads to terms in L that include additional

spin-1 gauge fields that mediate the strong, weak, and electromagnetic interac-

tions. There are eight generators of SU(3)C , which correspond to the massless

gluons that mediate the strong force (and are themselves charged under the group).

The SU(2)L group has three generators, which correspond to the massiveW± and

Z bosons that mediate the weak force. Finally, the U(1)Y group that produces the

electromagnetic interaction has just one generator, corresponding to the massless

photon.

The simplest Lagrangian density that satisfies the above criteria has a short-
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coming in that it only describes massless fields, which obviously does not cor-

respond to nature. In order to provide masses to the fermions and the massive

gauge bosons in a gauge-invariant way, a scalar field is added to the theory that

spontaneously breaks the SU(2)L ⊗U(1)Y gauge symmetry at low energies. This

is known as the Higgs mechanism, which was not experimentally verified until

the discovery of the Higgs boson by the ATLAS and CMS collaborations in 2012

[1, 2].

2.2 Particle Content

The SM describes the interactions of quantum fields that can be categorized

according to their spin, where fermions constitute the matter that makes up the

universe and the gauge bosons mediate interactions between them. The Higgs

boson is the only scalar field in the theory and provides a mechanism for generating

particle masses in a gauge-invariant way through spontaneous symmetry breaking.

A schematic of the particle content of the SM is shown in Figure 2.1, which groups

the particles according to the text below.

Fermions are fields that carry spin-1/2 and collectively comprise the known

matter content of the universe, whereas bosons have integer spin values and medi-

ate the forces governed by the SM. The fermions can further be divided into quarks

and leptons, where both groups are charged under SU(2)L ⊗ U(1)Y but only the

quarks are charged under SU(3)C and therefore have an associated color. Both

the quarks and leptons are organized into three generations of isospin doublets,

with each generation corresponding to larger masses. The reason for the existence

of three such generations is an open question in theoretical particle physics. The

quarks carry fractional electric charge, where the up-type quark within a given

generation has a charge of +2
3e and the down-type quark carries charge of −1

3e.
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Leptons, on the other hand, carry integer values of the electric charge. Within a

lepton generation, the up-type lepton has electric charge +1e, while the down-type

lepton, called a neutrino, is uncharged and therefore only participates in the weak

interaction. All of these fermions have corresponding anti-particles that carry the

opposite charge.

The gauge bosons carry spin-1 and are introduced after demanding L to be

invariant under the respective SM gauge group, as described above. In total, eight

massless gluons mediate the strong force, each of which carries both color and

anti-color charge. An important consequence of the gluons being charged is that

they can interact with themselves, effectively leading to an anti-screening scenario

in which the strong force increases in strength at long distances but weakens

at short distances. Phenomenologically, this means that quarks can never be

observed in isolation. Instead, as the distance between quarks grows, there reaches

a point when it becomes energetically favorable to create a quark-antiquark pair

from the vacuum, and this process repeats itself until the quarks and gluons

are eventually confined into colorless states called hadrons. The time scale over

which this “hadronization” process occurs is roughly determined by the QCD

scale parameter Λ−1
QCD ≈ 250 MeV−1. From the point of view of current particle

physics experiments, this time scale can be thought of as being instantaneous. The

only exception to this is the top-quark, which decays via the weak force before

undergoing hadronization due its large mass.

The electroweak sector consists of a massless photon that mediates the elec-

tromagnetic interaction and three massive gauge bosons,W± and Z, that mediate

the weak force. The W± bosons represent charged currents that change lepton

and quark flavors, while the neutral Z boson conserves flavor. Finally, a massive

scalar Higgs boson, discovered in 2012 by the ATLAS and CMS collaborations,
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provides gauge-invariant mass terms in the Lagrangian density for the massive

fermions and gauge bosons.

2.3 Shortcomings

It remains difficult to overstate the incredible success of the SM as a predictive

framework over a wide range of energy scales. For example, Figure 2.2 shows the

excellent agreement between the measured and predicted production cross-sections

for a wide variety of SM processes. But the program of particle physics is far from

over, as many unresolved experimental observations and theoretical difficulties

suggest the need for physical theories that extend beyond the Standard Model

(BSM). Of particular relevance for the searches presented here is the existence

of dark matter, the stability of the Higgs boson mass at the weak scale, and the

anomalous magnetic moment of the muon, as described below. Other tensions that

are beyond the scope of this dissertation include (but are certainly not limited to)

the observed matter-antimatter asymmetry in the universe, the lack of a quantum

description of the gravitational force, the generation of non-zero neutrino masses,

and the apparent suppression of CP violation in the strong interaction. Those

relevant to the searches presented in this dissertation are briefly discussed below.

Dark matter A host of astrophysical observations indicate the existence of

a new form of matter that potentially only interacts gravitationally with SM

particles. The lack of any electromagnetic interaction motivates the term “dark

matter” (DM) to describe this unexplained particle sector. Evidence for DM

has been observed based on its gravitational interaction with ordinary matter,

manifested in different ways and across vastly different distance scales. Galactic

rotation curves, for example, have been observed to not follow the v ∼ 1/
√
r
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Figure 1: Summary of several Standard Model total production cross section measurements, corrected for leptonic
branching fractions, compared to the corresponding theoretical expectations.
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3

Figure 2.2: A summary of the predicted and ATLAS-measured production cross-
sections for a variety of SM processes [4].

prediction from simple Newtonian gravity, where v is the velocity of some massive

object in the galaxy (e.g. a star) and r is the radial distance from the center of

the galaxy [5]. Galaxy cluster motion [6] and gravitational lensing observations [7]

also support the notion of particle DM, in addition to recent surveys of the cosmic

microwave background, which indicate that DM contributes approximately 25%

of the total energy density of the universe, compared to the ∼ 5% contribution

from matter explained by the SM [8, 9]. With the above evidence considered, a

preferred paradigm has emerged in which the DM candidate is a weakly-interacting

massive particle (WIMP) that is cold (i.e. does not travel at relativistic velocities),

neutral, stable on cosmological time scales, and has a mass and interaction rate

that satisfies the observed relic density. Elucidating the nature of the DM remains

one of the most highly-active research programs in particle physics.

Higgs boson mass and fine-tuning Within the SM, the mass of the Higgs

boson at tree level, mH,tree is a free parameter. Crucially, though, it is expected to
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Figure 2.3: A one-loop diagram involving the Higgs propagator and top-quarks,
which gives the largest contribution to the Higgs mass radiative correction in the
SM.

receive radiative contributions from loop diagrams, where the size of the correction

partially depends on the coupling between Higgs and the particle running in the

loop. Schematically, the Higgs boson mass can be parameterized according to

m2
H = m2

H,tree + ∆m2
H , (2.2)

where mH,tree is a free parameter in the theory that sets the tree level Higgs mass

and ∆m2
H represents the contributions from radiative corrections. The largest

coupling in the SM is the Yukawa coupling between the Higgs and the top-quark,

yt, so loops involving top-quarks, an example of which is shown in Figure 2.3, pro-

vide the leading contributions to the radiative corrections. Unlike the fermions

and gauge bosons, though, no symmetry exists to regulate these radiative cor-

rections and protect the the Higgs mass from running up to some large energy

scale.

Taking the top-quark contribution as an example, the radiative correction to
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the Higgs mass is given by

∆m2
H = − |yt|

2

16π2

[
2Λ2

UV +O
(
m2
t ln

(
ΛUV

mt

))]
, (2.3)

where mt is the mass of the top-quark and ΛUV is the loop-regulating cutoff scale

and indicates the energy scale at which the SM is expected to become invalid [10,

11]. The importance takeaway from Equation 2.3 is that the radiative correction

to the Higgs mass diverges quadratically with ΛUV. If the cutoff is at the Plank

scale such that ΛUV = 2.4 × 1018 GeV, then it becomes difficult to reconcile

the observed weak-scale Higgs mass with these corrections. In order for this to

happen without extending the particle content of the SM, extremely fine-tuned

cancellations would need to occur over many orders of magnitude in order to give

the observed Higgs mass of approximately 125 GeV. Fine-tuning to such a degree

is generally not deemed to be an attractive solution, and this argument is often

used to invoke the need for new physics that provides a dynamical solution. If one

instead demands that the radiative corrections represent a small contribution to

the observed Higgs mass (i.e. ∆m2
H < m2

H), then
|yt|2
8π2 Λ2

UV < m2
H . Plugging in yt ≈

1 and mH = 125 GeV, one finds that ΛUV . 1 TeV. This is an exciting prospect

for experimental particle physicists, as this argument suggest that new particles

should show up near the TeV scale, which is currently within experimental reach.

Anomalous magnetic moment of the muon The magnetic moment, ~µ, of

a point-like spin-1/2 particle is proportional to its spin, ~S, according to

~µ = g
q

2m
~S, (2.4)
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where q is the particle’s electric charge, m is its mass, and g is a dimensionless

proportionality constant called the gyromagnetic ratio. Tree level calculations

in this context predict g = 2, while loop diagrams can provide small radiative

corrections that contribute to the anomalous magnetic moment:

a = g − 2
2 . (2.5)

In the SM, radiative corrections to the muon anomalous magnetic moment, aµ,

arise from QED loops involving leptons and photons, electroweak loops involving

the massive gauge and Higgs bosons, and QCD loops involving hadrons. On the

other hand, BSM theories such as Supersymmetry introduce new particles that

couple to the muon and therefore lead to significant modifications to aµ. For some

lepton `, the BSM contributions to a` generally scale with m2
` , which is why aµ

is expected to be more sensitive to new physics than the anomalous magnetic

moment of the electron, despite current measurements on the latter being more

precise by several orders of magnitude. Since aµ can be determined by experiment

and calculated within the SM with excellent precision, it presents a significant test

of the theory. Currently, the most precise measurement of anomalous magnetic

moment of the muon, aexp
µ , has been performed by E821 experiment [12] and differs

from the SM prediction, aSM
µ , by

∆aµ = aexp
µ − aSM

µ = 268(63)(43)× 10−11, (2.6)

where the numbers in parentheses represent the experimental and theoretical un-

certainties, respectively. Overall, this difference amounts to a 3.5σ discrepancy

that remains one of the most significant indications of BSM physics. Interestingly,

the Muon g − 2 experiment [13, 14], stationed at Fermilab, should soon present
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an even more precise measurement of aexp
µ that may help elucidate the current

tension.
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Chapter 3

Supersymmetry

Supersymmetry (SUSY) [15, 16, 17, 18, 19, 20] is a well-motivated extension

of the SM that posits an additional spacetime symmetry that relates fermions and

bosons through an operator Q that transforms one into the other:

Q| Fermion 〉 = | Boson 〉, Q| Boson 〉 = | Fermion 〉. (3.1)

In this way, SUSY predicts the existence of a “superpartner” particle for each SM

particle that differs by a half-integer unit of spin. The SM fermions, therefore,

are expected to have corresponding spin-0 superpartners, collectively referred to

as “sfermions.” This naming convention is extended to all superpartners of the

individual SM fermions (e.g. slepton, squark, smuon, etc.). Similarly, the SM

bosons acquire superpartners with spin-1/2 in the SUSY framework and their

names are appended with “ino” to distinguish them from their SM equivalents.

The superpartners of the gauge and Higgs bosons are therefore called “gauginos”

and “higgsinos,” respectively. Over the years, SUSY has been found to potentially

provide elegant solutions to the SM shortcomings described in the previous chap-

ter, and has therefore drawn much attention from theorists and experimentalists
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alike.

If SUSY were a perfect symmetry of nature, then every superpartner would be

mass-degenerate with its SM counterpart. This notion is particularly attractive

since it provides an elegant explanation for why the Higgs mass is at the weak

scale. To match the example used in the previous section, one can consider the

scalar superpartner of the top-quark, t̃, which will couple to the Higgs via a term

in the Lagrangian density of the form −yt̃|H|2|t̃|2. In this case, the radiative

correction to the Higgs mass due to its coupling to t̃, will be

∆m2
H = + yt̃

16π2

[
2Λ2

UV +O
(
m2
t̃ ln

(
ΛUV

mt̃

))]
, (3.2)

which takes the exact same form as Equation 2.3, but comes with the opposite

sign. Note that this argument holds for all pairs of SM fermions f and scalar SUSY

partners f̃ , not just t and t̃. Thus if yf̃ = |yf |2, such that the superpartners are

mass-degenerate, then the radiative corrections to the Higgs mass exactly cancel

at all orders of perturbation theory. This idea is depicted in Figure 3.1, for the

example of the Higgs coupling to t and t̃, which would otherwise give the largest

contributions to the quadratic divergence if their contributions weren’t cancelled

by equal and opposite terms in the expansion.

But it is easy to experimentally rule out the existence of a 511 keV selectron,

for example, so this symmetry must be broken in such a way that the super-

partners acquire larger masses. It is assumed here that SUSY is spontaneously

broken in a way that leaves the Lagrangian density invariant under SUSY trans-

formations but the vacuum state breaks the symmetry as low energies. This is

completely analogous to the spontaneous breaking of the electroweak symmetry

in the SM in which the Higgs mechanism leaves L invariant under local gauge

transformation of the type SU(2)L ⊗ U(1)Y , while the particular vacuum state
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Figure 3.1: A sketch of SUSY’s solution to the hierarchy problem, shown for
the case of the top-quark and its scalar superpartner. In this framework, the
quadratic divergence of the radiative corrections to the Higgs mass is eliminated
by introducing particles that only differ by their spin and produce terms in the
expansion that have the same magnitude but carry the opposite sign.

breaks the symmetry. While there are many ideas about how SUSY could be

broken at high energies, a survey of the possible mechanisms is beyond the scope

of this dissertation. Nonetheless, it is assumed here that SUSY is broken softly,

such that the superpartners are not too much heavier than their SM counterparts.

This choice is made in order to retain the ability to solve the Higgs mass problem

in a minimally finely-tuned way. When SUSY is broken, the contributions to the

Higgs mass from SM fermions are not exactly canceled by the terms due to their

scalar superpartners. At leading order, the correction to the squared Higgs goes

like

∆m2
H = Λ2

UV
8π

(
y
S̃
− |yf |2

)
+ . . . , (3.3)

where S̃ is the SUSY scalar and f is its fermionic SM superpartner. Thus, if the

masses are sufficiently different, then the quadratic divergence returns. Similar to

the discussion in Section 2.3, if the size of acceptable corrections to the Higgs mass

are to be no more than at the level of the weak scale, then the soft SUSY breaking

should produce mass-differences between the superpartners that are . 1 TeV.
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Figure 6.8: Two-loop renormal-
ization group evolution of the
inverse gauge couplings α−1

a (Q)
in the Standard Model (dashed
lines) and the MSSM (solid
lines). In the MSSM case, the
sparticle masses are treated as
a common threshold varied be-
tween 750 GeV and 2.5 TeV,
and α3(mZ) is varied between
0.117 and 0.120.
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6.5 Renormalization Group equations for the MSSM

In order to translate a set of predictions at an input scale into physically meaningful quantities that

describe physics near the electroweak scale, it is necessary to evolve the gauge couplings, superpotential

parameters, and soft terms using their renormalization group (RG) equations. This ensures that the

loop expansions for calculations of observables will not suffer from very large logarithms.

As a technical aside, some care is required in choosing regularization and renormalization procedures

in supersymmetry. The most popular regularization method for computations of radiative corrections

within the Standard Model is dimensional regularization (DREG), in which the number of spacetime

dimensions is continued to d = 4 − 2ϵ. Unfortunately, DREG introduces a spurious violation of su-

persymmetry, because it has a mismatch between the numbers of gauge boson degrees of freedom and

the gaugino degrees of freedom off-shell. This mismatch is only 2ϵ, but can be multiplied by factors

up to 1/ϵn in an n-loop calculation. In DREG, supersymmetric relations between dimensionless cou-

pling constants (“supersymmetric Ward identities”) are therefore not explicitly respected by radiative

corrections involving the finite parts of one-loop graphs and by the divergent parts of two-loop graphs.

Instead, one may use the slightly different scheme known as regularization by dimensional reduction,

or DRED, which does respect supersymmetry [113]. In the DRED method, all momentum integrals

are still performed in d = 4 − 2ϵ dimensions, but the vector index µ on the gauge boson fields Aa
µ

now runs over all 4 dimensions to maintain the match with the gaugino degrees of freedom. Running

couplings are then renormalized using DRED with modified minimal subtraction (DR) rather than

the usual DREG with modified minimal subtraction (MS). In particular, the boundary conditions at

the input scale should presumably be applied in a supersymmetry-preserving scheme like DR. One

loop β-functions are always the same in these two schemes, but it is important to realize that the MS

scheme does violate supersymmetry, so that DR is preferred† from that point of view. (The NSVZ

scheme [118] also respects supersymmetry and has some very useful properties, but with a less obvious

connection to calculations of physical observables. It is also possible, but not always very practical, to

†Even the DRED scheme may not provide a supersymmetric regulator, because of either ambiguities or inconsistencies
(depending on the precise method) appearing at five-loop order at the latest [114]. Fortunately, this does not seem to
cause practical difficulties [115, 116]. See also ref. [117] for an interesting proposal that avoids doing violence to the
number of spacetime dimensions.
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Figure 3.2: The running of the inverse gauge couplings in the SM (dashed lines)
and the MSSM (solid lines). The red and blue lines indicate the effect of varying
the MSSM particle masses in the range of 750 GeV to 2.5 TeV, as well as varying
α3(mZ) between 0.117 and 0.120 [11].

3.1 Minimal Supersymmetric Standard Model

Given the complexity introduced by a full theory of SUSY, it is advantageous to

instead consider a version that introduces the minimum number of new particles

and interactions while remaining internally and phenomenologically consistent.

This is the goal of the Minimal Supersymmetric Standard Model (MSSM), which

is assumed in the searches for SUSY presented in this dissertation.

Within the MSSM, it has been shown that the introduction of the new SUSY

states can approximately unify the separate gauge couplings of SU(3)C , SU(2)L,

and U(1)Y at an energy of ∼ 1016 GeV [21]. The running of the couplings are

shown in Figure 3.2 for the SM with and without a weak-scale MSSM extension.

The unification of the couplings within the MSSM is seen as a hint that SUSY

could be a good signpost on the way to a Grand Unified Theory of particle physics.

In general, there are perfectly renormalizable and gauge-invariant terms that

can be added to the SUSY Lagrangian density that lead to baryon and lepton

number violation. Yet such processes are heavily constrained by experiments.
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For example, baryon number violation implies proton decay, which is currently

constrained by lower limits on the proton lifetime corresponding to 1.6×1034 years

[22]. Since the MSSM aims to be phenomenologically consistent with observation,

these terms are removed from the theory by introducing a symmetry called “R-

parity”, which is constructed to conserve the quantity

PR = (−1)3(B−L)+2s, (3.4)

where B is baryon number, L is lepton number, and s is spin. This symmetry

should be understood as being multiplicative, such that the the overall R-parity of

a system of particles is given by multiplying the individual particles’ values of PR

together. Under this construction, the SM particles have PR = +1, while SUSY

particles have PR = −1. This proposed symmetry guarantees that SM and SUSY

states do not mix and has important consequences for SUSY phenomenology. In

particular, R-parity implies that the lightest Supersymmetric particle (LSP) must

be stable since there are no lighter SUSY particles to decay into and decays into

SM particles would break the symmetry. Importantly, if the LSP is electrically

neutral, then it is a prime candidate for dark matter. Additionally, R-parity

conservation implies that SUSY states are produced in pairs at colliders (since

the initial state only involves SM particles) and that a non-LSP SUSY state must

ultimately decay into an odd number of LSPs.

Within the MSSM, two Higgs doublets are needed in order to maintain the can-

cellation of gauge anomalies as well as to provide masses for the up-type quarks,

down-type quarks, and charged leptons [11]. These doublets are denoted by Hu

and Hd, which carry weak hypercharge quantum numbers of +1
2 and −1

2 , respec-

tively. Each of these doublets consists of one electrically charged and one electri-

cally neutral complex scalar field. For Hu, these fields are arranged as (H+
u , H

0
u),
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while the Hd doublet is given by (H0
d , H

−
d ). In this way, Hu gives masses to the

up-type quarks and Hd gives masses to the down-type quarks and charged lep-

tons. The spin-1/2 superpartners of these doublets are the Higgsinos, denoted

by H̃u = (H̃+
u , H̃

0
u) and H̃d = (H̃0

d , H̃
−
d ). The phenomenology of the MSSM is

partially dependent on the ratio of the acquired vacuum expectation values of

H0
u and H0

d , which are denoted vu and vd, respectively. The ratio vu
vd

is typically

parameterized in terms of an angle β according to tan β ≡ vu
vd
.

While the MSSM is the simplest SUSY extension to the SM, it still boasts a

rich phenomenology that is largely outside the scope of this dissertation. Instead,

the following will discuss the electroweak sector of the MSSM that is relevant for

the searches presented here.

Electroweakinos Due to electroweak symmetry breaking, the higgsinos and

electroweak gauginos mix to form what are collectively referred to as “electroweaki-

nos.” In particular, a collection of four neutral mass eigenstates called “neutrali-

nos” are formed by the mixing of the neutral higgsinos, H̃0
u and H̃0

d , and the

neutral electroweak gauginos, B̃ and W̃ 0. The neutralinos are denoted by χ̃0
1,

χ̃0
2, χ̃0

3, and χ̃0
4, where the increasing subscript indicates increasing mass. In the

models considered in this dissertation the lightest neutralino χ̃0
1 is also the LSP.

Since the MSSM assumes R-parity conservation and χ̃0
1 is electrically neutral, it

represents an excellent dark matter candidate that is sufficiently massive to ac-

count for the observed relic density, has an indefinite lifetime, and interacts only

weakly with matter. The charged mass eigenstates, called “charginos,” are simi-

larly formed by the mixing of the charged Higgsinos, H̃+
u and H̃−d , and the winos,

W̃+ and W̃−. These chargino states are denoted by χ̃±1 and χ̃±2 , using the same

convention for indicating the relative masses.

The term in the Lagrangian density of the MSSM that gives the neutralino
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masses contains the neutralino mixing matrix Mχ̃0 , which can be parameterized

as

Mχ̃0 =



M1 0 −cβsWmZ sβsWmZ

0 M2 cβcWmZ −sβcWmZ

−cβsWmZ cβcWmZ 0 −µ
sβsWmZ −sβcWmZ −µ 0


, (3.5)

where cβ = cos β, sβ = sin β, cW = cos θW , and sW = sin θW . The latter angle,

θW , is the well-known weak mixing angle of the SM that describes the mixing of

the SM W 0 and B fields to form the Z and γ. The analogous chargino mixing

matrix Mχ̃± can be written as block form as

Mχ̃± =

 0 XT

X 0

 , where X =

 M2
√

2sβmW

√
2cβmW µ

 . (3.6)

It turns out not be a particularly fruitful exercise to write out the eigenvalues

of these matrices in their general form. Instead, taking various limits involving

the mass parameters µ, M1, and M2 provides simple expressions that are simul-

taneously relevant to well-motivated models of SUSY involving compressed mass

spectra, as discussed in Section 4.1.

Sfermions In the MSSM, the sfermions are superpartners of the left-handed

and right-handed SM fermions. Even though these SUSY states are scalars and

therefore cannot be assigned a helicity, the superpartners of the left-handed (right-

handed) fermions will be referred to as the left-handed (right-handed) sfermions,

and can be generically denoted with f̃L (f̃R). Generally speaking, scalars in the

MSSM can mix with each other if they have the same quantum numbers for electric

charge, R-parity, and color. This leads to quite a messy situation in which mass

eigenstates of the squark and sleptons must be obtained by diagonalizing three
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6 × 6 mass matrices: one for the up-type squarks (ũL, c̃L, t̃L, ũR, c̃R, t̃R), one for

the down-type squarks (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R) and one for the charged sleptons

(ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R). A 3 × 3 mass matrix for the sneutrinos (ν̃e, ν̃µ, ν̃τ ) would

need to be diagonalized as well.

Fortunately, constraints on flavor-changing neutral currents in the SM suggest

that soft SUSY breaking is universal and flavor-agnostic in such a way that most

of these mixing angles become very small and depend on the size of the Yukawa

coupling [11]. In the case of the first two sfermion generations, the Yukawa cou-

plings are small and the L − R mixing is expected to be negligible, resulting in

nearly mass-degenerate states organized according to

(ẽR, µ̃R) , (ν̃e, ν̃µ) , (ẽL, µ̃L) , (ũR, c̃R) ,
(
d̃R, s̃R

)
, (ũL, c̃L) and

(
d̃L, s̃L

)
.

On the other hand, the mixing in the third sfermion generation can be large, such

that the mass eigenstates (f̃1, f̃2) are a mixture of the gauge eigenstates (f̃L, f̃R),

related by a unitary mixing matrix that partially depends on tan β. In the searches

presented in this dissertation, only the smuons and selectrons are sought, and so

this non-trivial L−R mixing can be neglected.
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Chapter 4

Simplified Models and

Phenomenology

The searches presented in this dissertation target the direct production of elec-

troweakino and slepton pairs within compressed mass spectra (∼ 1 GeV−60 GeV).

Such models are relatively under-constrained by the LHC experiments due to the

difficulty of reconstructing soft (low-momentum) objects in the detector but pro-

vide solutions to some of the most important outstanding problems in particle

physics. Motivated by naturalness, the searches in this dissertation include a sce-

nario in which the χ̃0
2, χ̃0

1, and χ̃±1 states are pure higgsinos. Additionally, models

in which the higgsino component is decoupled are considered, where the χ̃0
1 is

a pure bino state, while the χ̃0
2 and χ̃±1 states are wino-like. These models are

motivated by dark matter considerations, along with the slepton model in which

the directly-produced sleptons decay to wino-like χ̃0
1 states. In all of the SUSY

models considered here, R-parity is assumed so that the χ̃0
1 state is stable and

represents the dark matter candidate. Details about the simplified SUSY models

are given in Section 4.1, while Section 4.2 gives an overview of the phenomenology

of compressed electroweak SUSY.
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4.1 Simplified Models: Compressed Mass Spec-

tra

Three different simplified electroweakino models are considered. In the first

model, called the “higgsino” model, the compressed mass spectra is motivated by

naturalness arguments [23, 24], which suggest that |µ| should be near the weak

scale, while the wino and bino mass parameters are much larger: |µ| � M1,M2.

In this case, the lightest triplet of electroweakinos (χ̃0
2, χ̃0

1, χ̃±1 ) is dominated by

the higgsino component. Using the electroweakino mixing matrices from Equa-

tion 3.5 and Equation 3.6, the mass-splittings between these higgsino states can

be approximated by assuming either the wino or bino states are decoupled. In

the case that |µ| < M2 �M1, the mass-splittings are approximately

∣∣∣mχ̃±
1

∣∣∣− ∣∣∣mχ̃0
1

∣∣∣ ≈ m2
W (1∓ s2β)

2 (M2 + |µ|) , (4.1)

∣∣∣mχ̃0
2

∣∣∣− ∣∣∣mχ̃±
1

∣∣∣ ≈ m2
W (1± s2β)

2 (M2 − |µ|)
, (4.2)

∣∣∣mχ̃0
2

∣∣∣− ∣∣∣mχ̃0
1

∣∣∣ ≈ m2
W (±|µ|s2β +M2)

(M2
2 − |µ|2) , (4.3)

where the ± sign corresponds to the sign of µ, and the same notation for the

trigonometric functions is used (e.g s2β = sin 2β). If |µ| < M1 � M2, then these

higgsino mass-splittings can be approximated by

∣∣∣mχ̃±
1

∣∣∣− ∣∣∣mχ̃0
1

∣∣∣ ≈ m2
W t

2
θW (1± s2β)

2 (M1 − |µ|)
, (4.4)

∣∣∣mχ̃0
2

∣∣∣− ∣∣∣mχ̃±
1

∣∣∣ ≈ m2
W t

2
θW (1∓ s2β)

2 (M1 + |µ|) , (4.5)
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∣∣∣mχ̃0
2

∣∣∣− ∣∣∣mχ̃0
1

∣∣∣ ≈ m2
W t

2
θW (±|µ|s2β +M1)
(M2

1 − |µ|2) . (4.6)

In this model, the mass-splittings are driven by the decoupling of the winos and

binos. In the case that they are completely decoupled, then the higgsino states

are essentially mass degenerate, as splittings of only O(100 MeV) are generated

by radiative corrections. When the wino and bino masses are set to large but

finite values, the lightest electroweakino triplet can be dominated by the higgsino

component with mass-splittings on the order of one to tens of GeV, as targeted in

this search.

The remaining models are motivated by dark matter models in which the LSP

is a pure bino state and the next-to-lightest SUSY state is one to tens of GeV

heavier. Such models have been shown to satisfy the dark matter relic density

constraints through coannihilation processes in the early universe [25, 26]. While

these models do not provide a mechanism for explaining the compressed mass-

splittings like the higgsino model, the dark matter angle makes them an attractive

signature to search for. In the electroweakino case, the higgsino mass parameter

|µ| is decoupled such that |M1| < |M2| � |µ|. The χ̃0
1, therefore, is a pure

bino state, while the slightly heavier χ̃0
2 and χ̃±1 states are wino-like. In the

remainder of this dissertation, the models that satisfy this mass and composition

spectra are called the “wino/bino” model, of which two are considered. The only

difference between the two wino/bino models is the relative signs of the χ̃0
2 and

χ̃0
1 mass eigenvalues, the product of which, m(χ̃0

2)×m(χ̃0
1), can be either positive

or negative [27, 28]. As shown in Section 8.2.1, this only impacts the shape of the

dilepton invariant mass distribution that is used as the final discriminant in the

search for electroweakinos.

Finally, these searches consider the direct production of selectrons and smuons

that are nearly degenerate with the χ̃0
1 LSP. In this case, ∆m( ˜̀, χ̃0

1) ∼ 1− 60 GeV
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Figure 4.1: Dominant leading-order Feynman diagrams for the direct pair-
production production of electroweakinos and sleptons at a proton-proton collider.

is considered. In the rest of this dissertation, “sleptons” will refer to selectrons and

smuons, as stau sleptons are not considered. In addition to being able to satisfy

the dark matter relic density constraints, the addition of smuons into the theory

with masses at the weak scale has also been shown to offer a promising explanation

of the muon’s anomalous magnetic moment [29], described in Section 2.3.

Production The production of the electroweakino and slepton states is assumed

to proceed via s-channel diagrams in which a quark-antiquark pair annihilates to

form a gauge boson mediator, which in turn decays to the SUSY states. While

it is possible that these particles could be produced in the decays of heavier,

colored SUSY states that have much larger production cross-sections, considering

such production modes would introduce many additional free parameters into the

model (e.g. squark masses and branching ratios). This would greatly complicate

the interpretation of the results and it is unclear what a good choice of these

parameters would be. Instead, only direct production is considered in order to

remain independent of the broader SUSY spectrum, at the cost of lower cross-

sections. The dominant tree-level processes considered in these searches are shown

in Figure 4.1, while t-channel diagrams involving squark-exchange are ignored

since they are expected to have only a small contribution and would also require

the precise specification of the squark masses. Details of the production cross-

section calculations are given in Section 8.2.
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Decays While the SUSY states are assumed to have compressed mass spectra,

the range of mass-splitting targeted by these searches still lead to prompt decays in

the experiment. Nonetheless, these mass-splittings are smaller than the W and Z

boson masses, such that the electroweakino decays must proceed via off-shell gauge

bosons according to χ̃0
2 → Z∗χ̃0

1 and χ̃±1 → W±∗χ̃0
1. In the simplified models, these

branching ratios are assumed to be 100%. The sensitivity to electroweakinos in

these searches is driven by Z∗ → `` decays, where these branching ratios depend

on the invariant mass of the off-shell Z∗. In the slepton simplified model, the

decays are assumed to proceed via ˜̀→ `χ̃0
1 with a 100% branching ratio. The

final state particles from these decays are soft due to the small mass-splittings,

making reconstruction and triggering difficult.

4.2 Phenomenology

SUSY within compressed mass spectra is difficult to probe due to the soft

objects in the final state, especially at a TeV-scale hadron collider, where these

objects can be buried by soft backgrounds. Additionally, if the mass splitting

is small enough, the objects may be too soft to pass reconstruction thresholds

set by the experiments. In extremely compressed scenarios, the SUSY particles

can be long-lived (i.e. cτ is large enough such that the SUSY particles can fly an

appreciable distance into the detector before decaying). These long-lived scenarios

are not considered in these searches, however.

Instead, the simplified SUSY models discussed above exhibit prompt decays

and lead to events that contain soft leptons. In the case of electroweakino pair-

production, the dominant contribution stems from the χ̃0
2 → Z∗(→ ``)χ̃0

1 decay

chain. In the simplified slepton models, the leptons arise directly from the decay

of the slepton via ˜̀ → `χ̃0
1. In both cases, there are two soft leptons that are
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of the same flavor but have opposite electric charges. The kinematics of these

leptons is crucial for disentangling signal events from background processes. In

the electroweakinos case, the leptons arise from one leg of the decay chain (for

the production of χ̃0
2χ̃
±
1 , at least) so that their invariant mass will reconstruct the

mass-splitting between the χ̃0
2 and χ̃0

1 states. Slepton events are trickier since the

final-state leptons originate from different decay legs in the event. Since the other

particle in the slepton decays is a χ̃0
1, which is invisible from the point of view of

the detector, one cannot calculate an invariant mass that will reconstruct either

m( ˜̀) or ∆m( ˜̀, χ̃0
1). Fortunately, a variable called mT2 can be constructed that

provides sensitivity to ∆m( ˜̀, χ̃0
1), though one needs to guess what the LSP mass

is. This variable will be described in detail in Section 10.1. An important feature

that is exploited in these searches is the correlation between the mass-splitting of

a given signal hypothesis and the transverse momenta of the final-state leptons.

When the mass-splitting increases, more energy is available to boost leptons in

the decays, leading to harder leptons, on average. As described in Chapter 10,

this correlation proves useful for discriminating signal events from backgrounds

due to mis-identified leptons.

In addition to the soft leptons, which are below the available trigger thresholds

in the signal scenarios considered here, the only other important handle on signal

events is the energy in the transverse plane that is carried away by the LSPs.

While it is possible to trigger on events in which this missing transverse energy

is large, it is not possible for tree-level signal events since the SUSY particles are

produced back-to-back in the transverse plane. The missing transverse energy

carried away by one of the decay legs, therefore, cancels out the contribution from

the other. Overall, then, very little missing transverse energy is reconstructed in

events corresponding to the leading-order processes depicted in Figure 4.1.
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Figure 4.2: Feynman diagrams representing the direct electroweak production of
electroweakinos (left) and sleptons (right). As described in the text, an additional
hard jet is required to boost the SUSY system.

Taken together, it may seem hopeless to expect a TeV-scale hadron collider to

have sensitivity to these scenarios. Fortunately, a workaround exists by instead

focusing on next-to-leading order processes in which one of the incoming quarks

radiates a gluon, though this of course comes at the cost of lower production

cross-sections. Such diagrams for electroweakino and slepton signal processes are

shown in Figure 4.2 and represent the targeted processes in these searches. The

key insight is that the radiated hadronic activity, which is manifested as a jet in the

detector due to the color confinement of QCD, will provide a boost to the SUSY

system in the transverse plane. This boost will serve to align the the χ̃0
1 states,

increasing the reconstructed missing transverse energy in the event. Thus, if the

boost is hard enough, missing transverse energy triggers can be used to collect the

events. This is the strategy used by the searches presented in this dissertation.

But even with the events collected, the hard work of disentangling signal events

from various background processes still remains.
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Part III

LHC and the ATLAS Detector

Tools of the trade
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Chapter 5

The Large Hadron Collider

The Large Hadron Collider (LHC), stationed approximately 100 m under-

ground at the European Organization for Nuclear Research (CERN) outside Geneva,

Switzerland, is currently the world’s largest and most powerful particle accelera-

tor [30]. The LHC is a circular accelerator with a circumference of 27 km and is

designed to collide two counter-propagating proton beams at four different interac-

tion points corresponding to four different experiments: ALICE [31], ATLAS [32],

CMS [33], and LHCb [34]. The LHCb experiment was primarily designed to study

CP violation in b-hadron interactions. For part of the year, the LHC also pro-

duces lead ion collisions, which the ALICE experiment uses to study QCD effects

in high energy density environments, such the quark-gluon plasma. ATLAS and

CMS are two general purpose particle physics detectors that each have a broad

physics program including searches for BSM physics at the high-energy frontier.

In this way, ATLAS and CMS are able to provide independent cross-checks of the

other experiment’s physics results.

Before the protons enter the LHC, they are first accelerated through a series

of smaller injection accelerators that each increase the proton energy by an order

of magnitude. A diagram of the entire LHC accelerator complex is shown in
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Figure 5.1: Diagram of the CERN accelerator complex with the LHC shown in
dark blue [35]. The four main LHC experiments, including ATLAS, are shown as
yellow circles.

Figure 5.1. The protons, which are produced by ionizing hydrogen atoms, are

first accelerated up to 50MeV through a linear accelerator called Linac2, though

this accelerator will be replaced by another linear accelerator called Linac4 around

2020. Linac4 will actually accelerate H− ions up to 160MeV before stripping them

of their electrons and handing the protons off to the next step in the accelerator

chain. After passing through Linac2, the protons are injected into the remaining

circular accelerators. The first of these is the Proton Synchrotron Booster (PSB),

which further accelerates them up 1.4GeV. From there, the protons are injected

into the Proton Synchrotron (PS) and then the Super Proton Synchrotron (SPS),

which accelerate the protons up to 25GeV and 450GeV, respectively.

Finally, the protons enter the LHC at this 450GeV injection energy, whereupon

they are accelerated up to 6.5TeV using 16 radio frequency cavities that are housed
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in four cylindrical refrigerators (two per beam) called called cryomodules. Under

normal conditions, the proton beams can circulate in the LHC for ten hours or

more before being dumped. While the LHC was designed to accelerate each

proton beam to energies as high as 7 TeV, the current center-of-mass energy for

the pp collisions is
√
s = 13 TeV. Superconducting magnets are used to control the

beam trajectories [30]. A total of 1232 superconducting dipole magnets, each 15 m

in length and producing an 8.33 T field, are used to steer the protons around the

ring. The beams of protons are also focused by an additional 392 superconducting

quadrupole magnets. In order to reach the superconducting state of the NbTi

material, liquid helium is used to cool the magnets down to 1.9 K.

Beyond the beam energy, another crucial figure of merit for a hadron collider

is the number of inelastic collisions it can produce per unit of time. The physics

processes of interest at the LHC, such as Higgs boson and electroweak SUSY

production, typically have production cross-sections that are many orders of mag-

nitude below the total pp inelastic cross-section. These processes are therefore

incredibly rare, and so the LHC aims to maximize the number of inelastic colli-

sions that it (and the LHC experiments) can safely handle. For this reason, the

protons in the LHC are organized into bunches, which are brought into collision

with one another. The LHC can hold a maximum of 2808 bunches, each consist-

ing of approximately 1011 protons during stable operation [30]. These bunches

are circulated at a rate of 40 MHz, corresponding to a 25 ns temporal spacing (or

approximately 7.5 m) between each bunch.

Two important quantities characterize the LHC’s ability to produce a high

number of inelastic pp collisions: instantaneous and integrated luminosity. The

first of these is the instantaneous luminosity, L, which measures the number of

potential pp interactions produced per second. L is only a function of the beam
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parameters, which can be tuned to deliver the desired interaction rates. Assuming

that the beams have Gaussian profiles and an equal number of particles in their

bunches, the instantaneous luminosity is given by

L = N2
b nbfrevγ

4πεnβ∗
F, (5.1)

where Nb is the number of particles per bunch, nb is the number of bunches per

beam, frev is the beam’s revolution frequency, γ is the relativistic Lorentz factor,

εn is the normalized transverse beam emittance, β∗ is the beta function evaluated

at the interaction point that characterizes the transverse size of the beam, and F

is a geometric factor that can reduce the luminosity by accounting for any crossing

angle between the beams. At the LHC, a crossing angle on the order of a few

hundred microradians is used to avoid unwanted pp interactions on either side of

the interaction point, while avoiding a dramatic reduction in the instantaneous

luminosity. The instantaneous luminosity is typically quoted in units of cm−2s−1,

and the peak instantaneous luminosity achieved by the by LHC as a function of

time in 2018 is shown in Figure 5.2. To date, the LHC has reached instantaneous

luminosities as high as 2.1× 1034 cm−2s−1.

The second figure of merit related to the statistical power of particle collider’s

dataset is the integrated luminosity, L, which is simply the time integral of the

instantaneous luminosity:

L =
∫
Ldt. (5.2)

The integrated luminosity, is therefore a measure of the total number of pp

collisions delivered by over some period of time and is measured in units of inverse

area (e.g. cm−2 or fb−1). With this definition, the expected total number of events
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Figure 5.2: The peak instantaneous luminosity delivered to ATLAS as a function
of time in 2018 for

√
s = 13 TeV pp collisions with stable beam conditions [36].

produced, Nevent, for some process with a cross-section σ is just

Nevent = σL. (5.3)

The dataset considered in this work was recorded by the ATLAS detector

between 2015 and 2018 and corresponds to an integrated luminosity of 139 fb−1.

This dataset could correspond to as many as 75, 000 slepton events, assuming

a slepton mass of 110 GeV. Crucially, though, this figure does not account for

significant reductions due to inefficiencies from the trigger, object reconstruction

and identification, as well as event selection and the detector acceptance. After

accounting for these effects, that number can easily drop down to tens of events

on top of the SM background.

Clearly, then, obtaining large instantaneous luminosities remains crucial for

searches for rare processes. By colliding bunches of protons, the LHC does ex-
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Figure 5.3: ATLAS event displays showing two Z → µ+µ− candidate events
recorded in 2017. The event on left has a total of 25 reconstructed vertices, while
the event on the right has 66. Each reconstructed vertex is indicated by a colored
square. The red of yellow lines are associated to the same vertex and indicate
the two muons from the potential decay of a Z boson. All other tracks with
pT > 500MeV are shown in light blue [37].

actly this, as many pp interactions take place on average for every bunch-crossing,

a phenomenon known as pileup. Often, pileup is given the symbol µ, while its

time average is denoted 〈µ〉. For data taken between 2015 and 2018, the aver-

age number of pp interactions per bunch-crossing was 33.7, while the maximum

number reached over 60. While increasing the instantaneous luminosity, multi-

ple interactions per bunch-crossing present a challenge for experiments, as the

reconstruction algorithms need to distinguish signatures left in the detector due

to one particular interaction from all of the others. Examples of this challenge

are presented in Figure 5.3, which shows Z → µµ candidate events with different

numbers of pp interactions. Additionally, since the bunch-spacing at the LHC is

only 25 ns, interactions occurring in adjacent bunch-crossings can leave signatures

in the event of interest if the electronics integration is longer than this. A detailed

description of the ATLAS detector is given in the following chapter.
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Chapter 6

The ATLAS Detector

The ATLAS (A Toroidal LHC ApparatuS) detector [32] is a multi-purpose

particle detector the surrounds one of the interaction points (IP) at the LHC with

nearly 4π solid angle coverage. ATLAS was designed to measure the particles

emerging from the proton-proton collisions with excellent precision in order to

support a wide-ranging and robust particle physics program, including searches

for physics beyond the SM.

The detector has cylindrical symmetry and is 46 m long, 25 m in diameter,

and weighs approximately 7000 tons. Many specialized sub-detectors exist within

ATLAS in order to detect the wide variety of particles that are produces in the

collisions delivered by the LHC. They are arranged in a concentric manner with

the innermost system, called the Inner Detector, immersed in a 2 T magnetic

field and dedicated to measuring the curved trajectories of charged particles as

the emerge from the IP. The Inner Detector is surrounded by a calorimeter sys-

tem that consists of an Electromagnetic Calorimeter and a Hadronic Calorimeter

that measure the energies and directions of electrons/photons and hadrons, re-

spectively. Finally, the Muon Spectrometer is designed to identify and measure

the trajectories of muons, which are able to penetrate the all of the previous
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Figure 6.1: A general overview of the ATLAS detector with a cutaway that
allows for various sub-detectors to be highlighted [32].

sub-detectors. The Muon Spectrometer is immersed in a toroidal magnetic field

in order so that the curved trajectories can be used to make momentum and

charge measurements. A rendering of the ATLAS detector, including all of its

sub-detectors, is shown in Figure 6.1. In order to select collision events for later

analysis, a two-level trigger system is implemented that makes fast decisions about

whether or not the event is of interest to ATLAS physics program.

ATLAS uses a right-handed coordinate system centered at the nominal proton-

proton IP. The x-axis points towards the center of the LHC ring and the y-axis

point vertically upward. Together, these axes define the transverse plane. Using

the right-handed convention, the z-axis points along the beam line. Owing to the

geometry of the detector, cylindrical coordinates are used. Thus, the (r, φ) coor-

dinates are used in the transverse plane, making φ the azimuthal angle around

the z-axis and r =
√
x2 + y2. The polar angle from the z-axis is given by θ. Un-

fortunately, θ is not a Lorentz-invariant quantity under boosts in the ẑ direction.
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One could instead use the Lorentz-invariant quantity called rapidity, y, defined as

y ≡ 1
2 ln

(
E + pz

E − pz

)
, (6.1)

where E is the particle’s energy and pz is the momentum in the ẑ direction. But

in a coordinate system, it is preferred to use purely geometric quantities and so

ATLAS ultimately uses a related quantity called pseudorapidity, denoted by η,

which is just the high-energy limit of rapidity. The pseudorapidity is therefore

defined as

η ≡ − ln
[
tan

(
θ

2

)]
. (6.2)

With this definition, pseudorapidity provides a quantity that is related to θ that is

almost perfectly Lorentz-invariant under boosts along the ẑ direction and purely

geometric. Particles traveling along the y-axis correspond to η = 0, while particles

traveling parallel to the beam line in the positive (negative) ẑ direction correspond

to η = +∞ (η = −∞). Additionally, the pseudorapidity equivalents of θ = 30°

and θ = 60° are η = 1.32 and η = 0.55, respectively.

6.1 Inner Detector

The Inner Detector (ID) system is composed of three sub-detectors that are

used to measure the momentum of charged particles and reconstruct vertices corre-

sponding to proton-proton interactions and decays of particles with non-negligible

lifetimes such as b-hadrons. The ID is immersed in a 2 T solenoidal magnetic field

that bends the trajectories of charged particles. After the trajectories have been

reconstructed, the charged particles’ momenta and electric charge can be mea-

sured based on this curvature and a precise mapping of the magnetic field. The

transverse momentum resolution of tracks reconstructed by the ID was designed
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to follow σpT/pT = 0.05%pT⊕1%, where pT is measured in GeV and the ⊕ symbol

indicates addition in quadrature [32].

The ID has cylindrical symmetry and provides coverage for |η| < 2.5. The

two innermost sub-detectors – the Pixel Detector, followed by the Semiconduc-

tor Tracker (SCT) – both use silicon sensors to record the locations of charged

particles as emerge from collisions. Charged particles passing through the silicon

produce ionization currents that are collected and ultimately translated into “hits”

that are used by track reconstruction algorithms. The outermost sub-detector is a

gaseous detector called the Transition Radiation Tracker (TRT). A diagram of the

barrel region of the ID is presented in Figure 6.2 and a more detailed schematic

of the entire ID layout is shown in Figure 6.3. Precision tracking and vertexing

requires excellent spatial resolution for the detectors that are closest to the in-

teraction point. The Pixel Detector, therefore, has the best spatial resolution of

these sub-detectors, with the SCT having the second best resolution and the TRT

third. This is due to a tradeoff between performance and the cost/complexity of

instrumenting expensive silicon pixel technology at larger radii.

6.1.1 Pixel Detector

The Pixel Detector [40] consists of approximately 92 million independent read-

out channels split between four cylindrical layers of silicon pixel sensors in the

barrel and three disk-shaped layers in each of the end-caps to provide coverage

out to |η| < 2.5. The innermost barrel layer, called the Insertable B-Layer (IBL)

[41], is at a radius of 33.5 mm with respect to the beam line, while the outermost

layer is at a distance of 122.5 mm. In the φ × z directions, the IBL pixels have

dimensions of 50 µm×250 µm, while the remaining sensors have larger pixels that

are 50 µm×400 µm. The smaller pixel size in the IBL leads to a spatial resolution
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Figure 6.2: A schematic of the barrel region of the Inner Detector [38].

Figure 6.3: A quadrant of the ID layout shown in the r−z plane. The top panel
shows the entire quadrant of the ID, while the bottom panel shows just the Pixel
Detector [39].
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of 9 µm in the r−φ direction and 65 µm in the z direction. The larger pixels have

resolutions of 10 µm and 115 µm in the r − φ and z directions, respectively. The

excellent resolution of the Pixel Detector allows for vertex reconstruction that is

used to identify proton-proton interactions. Additionally, the secondary vertices

that result from the decay of particles with non-negligible lifetimes (such as b-

hadrons) can be reconstructed. Identifying these secondary vertices is thereore

crucial for identifying jets containing b-hadrons.

6.1.2 Semiconductor Tracker

The SCT [42] is a silicon micro-strip detector that surrounds the Pixel Detec-

tor and has a similar geometry. The strips are 12.6 cm long with an inter-strip

pitch 80 µm. The barrel region consists of four cylindrical layers, ranging from

r = 299 mm to r = 514 mm, while the end-caps each contain nine disks that ex-

tend the coverage out to |η| < 2.5. The strips in the barrel are arranged in the

axial direction in the barrel, while those in the end-caps are arranged radially.

In total, the SCT has 4088 double-sided modules with approximately 6 million

independent readout channels [32]. A stereo angle of 40 mrad is maintained be-

tween the strip layers on each module in order to provide a two-dimensional space

point measurement with an intrinsic resolution of 17 µm in the r−φ direction and

580 µm in the z direction in the barrel.

6.1.3 Transition Radiation Tracker

The TRT is the outermost layer of the ID that provides both tracking and par-

ticle identification information for particles with |η| < 2.0. It consists of 300,000

drift tubes, each with a 4 mm diameter. In the barrel, the tubes run along the z

direction at radial distances between 563 mm and 1066 mm, while the tubes in the
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end-caps are oriented radially. Each drift tube is filled with a mixture of Xenon

(70%), CO2 (27%), and O2 (3%) gases and contain a thin gold-plated tungsten

anode wire at the center. An approximately 15 kV potential is applied between

the anode wire and the drift tube’s shell, which promotes an avalanche of electrons

(collected at the anode) after charged particles pass through the tube and ionize

the gas.

Each barrel drift tube spans the entire length of the barrel, while the anode

wire is segmented into two equal-length pieces at η ≈ 0 that provide separate

readout on either side of the detector. Therefore, the drift tubes in the barrel

are only able to provide spatial measurements in the r − φ plane with a spatial

resolution of approximately 120 µm. This resolution is based on the drift time for

the electron avalanche to arrive at the anode wire, which depends on the distance

between the wire and charged particle trajectory. Despite the larger resolution

per hit, a charged particle will produce approximately 36 hits in the TRT [32],

which can be combined to give a resolution that is comparable to the silicon-based

tracking detectors [43].

In addition to tracking, the TRT provides additional discrimination power be-

tween electrons and charged hadrons. Polyethylene fibers are interleaved between

each of the drift tubes in the barrel, while polypropylene foils are used in the end-

caps. This geometry ensures that charged particles will pass through materials of

different dielectric constants many times as they traverse the TRT and therefore

emit photons, a phenomenon known as transition radiation. The probability that

a particle with energy E and mass m will produce transition radiation is propor-

tional to the Lorentz factor γ = E/m. For a fixed energy, then, electrons will have

a much higher probability of emitting transition radiation than charged pions, for

example, due to their lower mass. These photons are typically in the range of
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6 − 15 keV. Xenon is a highly efficient absorber of photons in this energy range

(which is why it is chosen for the drift tubes), and so the transition radiation

leads to large signals in the detector. In order to take advantage of this, the TRT

has two readout thresholds, one at 300 eV used for tracking and another at 6 keV

is used to detect transition radiation. The number of high-threshold hits along a

particle track can therefore be used to discriminate between electrons and charged

hadrons, as electrons are expected to produce a higher number.

6.2 Calorimeters

The calorimetry system within ATLAS consists of an electromagnetic calorime-

ter and a hadronic calorimeter, which measure the energy of particles that in-

teract via the electromagnetic and strong forces, respectively. The electromag-

netic calorimeter is called the Liquid Argon (LAr) Calorimeter and the hadronic

calorimeter consists of the Tile Calorimeter, End-cap Calorimeter (HEC), and

LAr Forward Calorimeter (FCal). Each system provides coverage for |η| < 4.9. A

diagram of the ATLAS calorimeter system is presented in Figure 6.4.

Both of the calorimeters rely on the “sampling” methodology in which a passive

absorber material induces particle showers, the energies of which are subsequently

measured by an active material. These absorber and active materials are inter-

leaved with one another in order to sample the particle showers at several points

during their development. A large fraction of the energy that is absorbed by

the dense, passive material is not ultimately transferred into a form that can be

measured directly, necessitating dedicated calibrations based on the calorimeter

response.

Sampling calorimeters have energy resolutions resolutions, σE, that are typi-
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Figure 6.4: A cutaway diagram of the ATLAS calorimeter system [32].

cally parameterized as a function of the energy, E, according to

σE
E

= a√
E
⊕ b

E
⊕ c (6.3)

where a, b, and c are constants that characterize the various components of the

overall resolution. Again, the ⊕ symbol is used to indicate addition in quadra-

ture. The first term accounts for stochastic fluctuations that are intrinsic to the

showering, including, for example, the number of photoelectrons produced in the

underlying quantum mechanical processes. The second term accounts for noise in

the electronics and the effects of additional pileup activity. Finally, the constant

term accounts for effects that do not depend on the incident particle energy such

as dead material in the calorimeter and nonuniform geometry. At very high ener-

gies, this constant term dominates the resolution, which puts strong requirements

on the design and construction of the calorimeters.

Another important aspect of calorimeters is the ability to contain as much of

the shower as possible in order to fully measure the energy of the incident particle.
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For electromagnetic calorimetry, it is useful to define a “radiation length”, denoted

X0, which represents the average distance over which an electron (photon) will

lose all but 1/e of its energy due to bremsstrahlung (pair-production) and is a

function of the calorimeter material. For hadronic calorimetry, the metric used

is the nuclear interaction length, λ, which is the average distance a hadron will

travel before undergoing a nuclear interaction with the absorber material. For

pions traversing steel, the nuclear interaction length corresponds to approximately

17 cm, which drives the designed depth of the Tile Calorimeter.

6.2.1 Electromagnetic Calorimeter

The LAr Calorimeter [44] resides just outside of the TRT and is used to mea-

sure the energies and directions of electromagnetically-interacting particles in-

cluding electrons and photons. It consists of lead absorbers and liquid Argon

for the active material, which are layered together in an accordion-like geometry,

as shown in Figure 6.5. Electromagnetic showers are induced when the incident

particle interacts with the lead absorber and loses energy through bremsstrahlung

and pair-production processes. The charged particles in the showers subsequently

ionize the Argon and these ionization electrons are collected at electrodes via an

applied electric field. The energy resolution of the calorimeter is characterized by
σE
E

= 10%√
E
⊕ 0.3%

E
⊕ 0.4%, where E should be given in units of GeV.

A barrel portion of the calorimeter covers the |η| < 1.475 region, while two end-

caps provide additional coverage in the forward regions from 1.375 < |η| < 3.2.

The calorimeter is segmented into three layers at different depth and with increas-

ing cell sizes (defined by ∆φ×∆η). The first layer has the finest resolution with

a cell size corresponding to ∆η×∆φ = 0.025/8× 0.1 in order to provide excellent

discrimination between prompt photons and those coming from π0 → γγ decays.

48



Figure 6.5: A schematic of the LAr geometry showing the accordion geometry
and the various layers [32].

The second layer is the thickest and contains the majority of the electromagnetic

showers. Finally, the third and outermost layer has the coarsest cell size and is in

place to measure any shower components that are not contained in the previous

layers. In the central region (|η| < 1.8), an additional pre-sampling layer contain-

ing LAr provides corrections for energy losses occurring prior to the arrival at the

calorimeter. In total, the barrel calorimeters have a thickness corresponding to

at least 22X0, while the end-cap calorimeters have a thickness of at least 24X0 in

order to contain the electromagnetic showers [32].

6.2.2 Hadronic Calorimeter

The hadronic calorimeter system sits just outside of the electromagnetic calorime-

ter. The Tile Calorimeter [45] provides coverage for |η| < 1.7, while the HEC and

FCal are instrumented for the regions covering 1.5 < |η| < 3.2 and 3.1 < |η| < 4.9,
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respectively. Together, these calorimeters are used to measure the energy of

hadrons.

The Tile Calorimeter consists of layers of radially-oriented steel absorbers and

plastic scintillating tiles that act as the active material. The particle showers in-

duced by interactions with the absorbers pass through the scintillators, which emit

photons that are collected by wavelength-shifting fibers. These fibers direct the

photons to photomultiplier tubes that are used to convert the photon energy into

electronic signals for the readout system. In total, the Tile Calorimeter consists

of 256 wedge-shaped modules, a schematic of which is presented in Figure 6.6.

Each module has a radial depth corresponding to approximately 7.4λ split be-

tween three sampling layers that are 1.5λ, 4.1λ, and 1.8λ in depth [32]. The first

two layers consist of cells of size η × φ = 0.1× 0.1, while the outermost layer has

coarser cell sizes of 0.2× 0.1.

The HEC and FCal both use LAr as the active material and provide additional

calorimetry in the forward region. The FCal is to measure both electromagnetic

and hadronic showers. The electromagnetic component is measured in the first

layer using a copper absorber, while the remaining two layers measure hadronic

showers induced by a dense tungsten absorber in order to provide shower contain-

ment. The Tile Calorimeter has an energy resolution that is characterized as a

function of the energy (in units of GeV) by σE
E

= 50%√
E
⊕ 1.8%

E
⊕ 3%. The resolution

for the FCal is σE
E

= 100%√
E
⊕ 10% [32]. Despite the worse energy resolution in the

FCal, it plays an important role in the determination of the missing transverse

energy.
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Figure 6.6: A diagram of a Tile Calorimeter module showing the steel absorbers
and plastic scintillating tiles. The photons emitted by the scintillators are collected
by embedded fibers and delivered to photomultiplier tubes [32].

6.3 Muon Spectrometer

The Muon Spectrometer (MS) [46] is the outermost layer of the ATLAS de-

tector and is designed to measure the trajectories of muons, which are able to

penetrate the entire detector. Bending of the muon tracks in the r − η plane

is provided by a system of superconducting magnets that produce toroidal mag-

netic fields. A barrel toroid magnet system provides a 1 T field that dominates

for |η| < 1.4, while end-cap toroid magnets are used to bend muon trajectories

in the 1.6 < |η| < 2.7 region with 0.5 T fields. A combination of barrel and

end-cap magnetic fields are used for the bending in the transition region between

1.4 < |η| < 1.6.

The MS was designed to have excellent transverse momentum resolution, even

at high-pT where the muon tracks become straighter, making the momentum
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Figure 6.7: A cut-away view of the Muon Spectrometer with the various chamber
types highlighted [32].

determination more difficult. The specific design goal is to have a 10% resolution

on the muon transverse momentum for muons with pT = 1 TeV [32]. For lower-pT

muons, the increased track curvature allows for more precise determinations of

the transverse momentum (∼ 3%) [47].

Four different varieties of gaseous detectors are used to provide both excellent

spatial and timing resolution for tracking and triggering purposes. The preci-

sion tracking is performed by Monitored Drift Tubes (MDTs) and Cathode Strip

Chambers (CSCs). Triggering capability is provided by Resistive Plate Cham-

bers (RPCs) and Thin Gap Chambers (TGCs), which have timing resolutions of

1.5 ns and 4 ns, respectively. The layout of the MS, including the locations of each

detector technology, is shown in Figure 6.7.

Together, the MDTs and CSCs provide precision tracking in the region with

|η| < 2.7. The MDTs are pressurized drift tube detectors filled with an Ar and

CO2 gas mixture that provide coverage for |η| < 2.7. Cylindrical symmetry is

used in the barrel, while the MDTs are arranged into disks in the end-caps. The
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azimuthally-oriented tubes are made of Al and have a diameter of approximately

30 mm. Upon ionization, electrons are collected on a central anode wire made of

tungsten and rhenium that is held at a ∼ 3 kV potential. Long drift times (up to

700 ns) preclude the MDTs from providing triggering information, but excellent

intrinsic resolution (∼ 35 µm) is achieved in the muon bending plane η [32]. Due

to the length and orientation of the drift tubes, no measurement of φ can be made

by the MDTs. Instead, the φ measurement is provided by the RPCs and TGCs

by matching hits in each of the systems.

Due to occupancy limitations of the MDTs, the CSCs are used for tracking

purposes in the first layer of the end-cap chambers and cover 2.0 < |η| < 2.7.

The CSCs are multi-wire proportional chambers consisting of radially-oriented

anode wires running between cathode plates. The ionization medium is also a gas

mixture of Ar and CO2 and the induced charge is readout using two perpendicular

sets of cathode strips that provide high-resolution measurements in both η and

φ. The spatial resolution in the muon bending plane is approximately 60 µm and

approximately 5 mm in the non-bending plane [32].

Triggering capability is provided by the RPCs and TGCs, which cover |η| <
1.05 and 1.05 < |η| < 2.4, respectively. The RPCs are arranged in three concentric

layers in the barrel region of the detector. Unlike all of the other technologies used

in the MS, the RPCs do not use a wire for charge collection. Instead, a 2 mm

gap between highly resistive plastic laminate plates is filled a mixture of C2H2F4,

Iso-C4H10, and SF6 [32]. The readout is performed using capacitive coupling to

two orthogonal sets of metallic strips located on the outside of the plates, which

provide both η and φ measurements.

Muon triggering in the forward region and additional φ measurements are

provided by the TGCs, which are multi-wire proportional chambers filled with

53



a highly-quenching mixture of CO2 and n-C5H12. The TGCs are arranged in

disks that run perpendicular to the beam line. The anode wires are separated by

1.8 mm and the anode-to-cathode distance is just 1.4 mm, which provides the short

response time in conjunction with a large electric field. Azimuthal measurements

are provided by radially arranged copper strips on the outside of the plates, while

the wire groups measure the η coordinate.

6.4 Trigger System

The raw data corresponding to a single collision event recorded by the ATLAS

detector is approximately 1.6 MB in size. Since the LHC provides proton-proton

collisions at a rate of 40 MHz, the total data rate is therefore upwards of 60 TB/s.

Bandwidth and storage limitations, though, prevent ATLAS from recording every

collision event to disk. Importantly, the ATLAS physics program focuses on rare

processes with cross-sections far below the total proton-proton cross-section. The

vast majority of the proton-proton collision events can therefore be discarded as

long as events of potential interest are selectively saved to disk for later analysis.

This is the job of the ATLAS trigger system, which is tasked with discriminating

between interesting and uninteresting events in real time in order to reduce the

overall data rate.

The trigger system [48] consists of two levels. The first level is a hardware-

based trigger called Level-1 (L1), which uses coarse detector information to reduce

the event rate from 40 MHz to a maximum of 100 kHz, all within a 2.5 µs window.

In particular, the L1 trigger uses calorimeter information and hits in the muon

trigger chambers (RPCs and TGCs) to select events containing high-pT leptons,

photons, jets, and/or Emiss
T . This coarse information is used to seed regions of in-

terest within the detector to the second trigger level called the High-Level Trigger
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(HLT). The HLT is a software-based trigger that runs sophisticated reconstruction

algorithms using the full detector readout within the regions of interest. These

HLT triggers are required to have processing times with approximately 200 ms

and are designed to ultimately reduce the event rate to approximately 1 kHz.

ATLAS uses a so-called “trigger menu,” [49, 50, 51, 52] which consists of

chains of different triggers that are designed to select specific physics objects (or

combination of objects) that pass various pT and quality cuts. An example of the

HLT rate is shown as a function of time in Figure 6.8 for triggers targeting various

physics objects. The majority of these triggers select every event that passes their

particular criteria. These include the Emiss
T -triggers that are used to collect the

data used in this search and described in Section 8.1. About 15% of the total

HLT rate, though, is dedicated to triggers that only select a fraction of the events

that pass their criteria. These triggers would otherwise have rates that would

saturate the HLT and so a “prescale,” N , is applied such that only 1/N of the

total number of events fulfilling the trigger requirements are actually saved to disk.

More specifically, these prescales allow for triggers with low pT thresholds (e.g.

a 5 GeV single-electron trigger) to collect events without taking up too much of

the trigger bandwidth. Typically, these “prescaled” triggers are used for detector

performance studies but they are also used to derive the data-driven background

estimate for this search, as described in Section 11.2.2.
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Figure 6.8: Trigger rates at the HLT as a function of time during a fill taken in
September 2018 that had a peak instantaneous luminosity of luminosity of L =
2.0× 1034 cm−2s−1. The peak average number of interactions per bunch-crossing
was 〈µ〉 = 56. Each histogram in the stack corresponds to triggers targeting
specific physics objects, as listed in the legend. The “Combined” trigger group
consists of triggers that require multiple physics objects of different types. Since
a single event can fire multiple triggers, the trigger rate after accounting for this
overlap is denoted by the “Main physics” dashed line. The falling trigger rates are
a reflection of the instantaneous luminosity delivered by the LHC, which decreases
with time over the course of a fill [53].
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Part IV

Designing the Search

or: How I Learned to Stop Worrying and Love Soft

Leptons
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Chapter 7

Search Strategy

The searches presented in this dissertation target models of electroweak SUSY

in which the lightest neutralino is produced from nearly mass-degenerate decays

of the lightest chargino, the second-to-lightest neutralino, or a slepton. The mass

splittings considered are on the order of one to tens of GeV, which leads to soft,

same-flavor leptons with low transverse momenta in the final state. Additionally,

at tree level, the SUSY states are produces back-to-back such that the overall

missing energy in the transverse plane, Emiss
T , is small. This poses a significant

challenge from a triggering standpoint, as the available lepton and Emiss
T triggers

have thresholds that are much higher than the expected lepton pT and Emiss
T in

signal events, especially in the most compressed scenarios. Without the ability

to trigger on signal-like events with reasonable efficiency, there is no way to have

sensitivity to these models.

In order to avoid this constraint, these searches target events in which addi-

tional hadronic activity from initial state radiation (ISR) boosts the SUSY system

in the transverse plane and in doing so, approximately aligns the invisible SUSY

particles such that the overall Emiss
T in the event is significantly increased. Feyn-

man diagrams for these boosted processes are shown in Figure 7.1 and schematics
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Figure 7.1: Diagrams representing the two-lepton final state following the pro-
duction of electroweakinos χ̃0

2χ̃
±
1 (left) and slepton pairs (right) with initial-state

radiation (j), The higgsino simplified model also considers χ̃0
2χ̃

0
1 and χ̃+

1 χ̃
−
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duction.

of the signal event topologies with and without the ISR boost are presented in

Figure 7.2. While this requirement reduces the overall signal cross-sections, the

boost allows for efficient Emiss
T -based triggering. It also serves to increase the over-

all reconstruction and identification efficiencies for the signal leptons by increasing

their energy in the lab frame, though they still remain relatively soft.

With these boosted topologies in mind, the searches select events contain-

ing two soft leptons of the same flavor and opposite electric charge, significant

Emiss
T , and additional hadronic activity from ISR. Here, and in the remainder of

this dissertation, “leptons” refers exclusively to the the charged light-flavor leptons

(electrons and muons) unless explicitly stated otherwise. Similarly, “sleptons” will

be used to refer to the superpartners of the SM electrons and muons. Separate

regions in the data, called signal regions (SRs), are derived for the searches target-

ing electroweakinos and sleptons. They are designed to be enriched in potential

signal events with respect to the total background expectation. A schematic of

the SRs exploited by these searches is shown in Figure 7.3, and they are described

in detail in Chapter 10. For signals with very small mass-splittings, the leptons

can be soft enough that they are not reconstructed within ATLAS. To make up
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Figure 7.2: Cartoons taken from [54] illustrating the signal event topologies
before (left) and after (right) requiring hadronic activity from ISR. The direction
of the dark red arrow indicates the reconstructed missing transverse momentum
vector and its relative length indicates the magnitude of the this vector (i.e. the
reconstructed Emiss

T ).

for this, the electroweakino searches include a SR called SR–E–1`1T that selects

events containing one lepton and an isolated track, which is used as a proxy for an

unreconstructed lepton from a SUSY decay. A detailed description of this channel

is outside the scope of this dissertation, though.

In each of these searches, the final discriminating variable exhibits a kinematic

cutoff in signal events that corresponds to the mass-splitting. Therefore, the SRs

are binned in these variables (with each bin representing an “exclusive SR”) in

order to exploit the shape differences between signal and background events. In

the search for electroweakinos, the discriminating variable is the invariant mass

of the dilepton system, m``, from the off-shell Z∗ → `` decay. For sleptons,

the final-state leptons originate from different legs of the decay chain and so

the invariant mass does not provide a good handle on the masses of the SUSY

states. Instead, the “stransverse mass” variable, mT2, is used, which assumes

a value for the χ̃0
1 mass and attempts to place an upper bound on the slepton

mass. This variable is defined explicitly in Section 10.1. In order to perform a

model-independent search for new physics, a series of single-bin “inclusive SRs”
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Figure 7.3: A schematic of the analysis strategy. Signal regions targeting elec-
troweakino production are shown in blue, while those targeting slepton production
are shown in green. Signal regions targeting the same SUSY states are kept or-
thogonal to each other so that they may be statistically combined for optimal
sensitivity. The electroweakino signal regions are based on m`` and select events
containing either two leptons or one lepton and one isolated track that serves as a
proxy for the second lepton. The slepton signal regions only select events with two
leptons and are based on mT2. The definition of these signal regions are presented
in Chapter 10.

are defined in Section 10.5, which remove any assumptions about the shapes of

signal kinematic distributions by merging separately merging the exclusive m``

and mT2 bins.

The backgrounds in these searches can be divided into two categories: irre-

ducible and reducible backgrounds. Irreducible backgrounds are due to SM pro-

cesses that produce the same final state as the targeted signal processes. The

major sources of irreducible background in these searches are due to tt̄/tW ,

Z(∗)/γ∗(→ ττ) + jets, and WW/WZ production. The kinematic distributions

of these backgrounds are taken directly from simulated events that utilize Monte

Carlo (MC) techniques, but their normalizations in the SRs are constrained using

dedicated control regions (CRs). These CRs are designed to be orthogonal to the

SRs, enriched in a given background process, and have minimal signal contamina-

tion. Fitting the event yields in MC to the data in the CRs provides normalization
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factors that are used to scale the data in the SRs. Reducible backgrounds are due

to events from SM processes in which at least one of the final-state particles is

misidentified or incorrectly attributed to a prompt decay. In the context of the

searches here, the primary source of the reducible background stems fromW+jets

events in which a jet is misidentified as a lepton, though other sources, including

semi-leptonic b-hadron decays, are also considered. This fake/non-prompt lepton

background tends to dominate at low-pT. Since simulation is not expected to

model these processes well, the background is estimated using a data-driven tech-

nique. The background estimation is validated in a series of validation regions

(VRs) that are orthogonal to the SRs before they are unblinded and assessed for

any evidence of new physics.

The details of the analysis design are given in the following chapters. Chapter 8

gives an overview of the dataset used by these searches, as well as details about

the simulation of both signal and background event samples. Chapter 9 details the

reconstruction and selection criteria of the various physics objects relevant to the

searches. Chapter 10 motivates the event selections that define the electroweakino

and slepton signal regions. The details of the background estimation strategy are

presented in Chapter 11. Finally, the various sources of both experimental and

theoretical systematic uncertainties are discussed in Chapter 12.
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Chapter 8

Collision Data and Simulated

Event Samples

The searches here rely on a combination of proton-proton (pp) collision data

recorded by the ATLAS detector and simulated event samples for various back-

ground and signal processes. A detailed description of the dataset is provided in

Section 8.1. Simulated data is generated using Monte Carlo (MC) methods and

reconstructed with the same ATLAS algorithms used for genuine data. The sim-

ulated signal and background samples are detailed in Section 8.2 and Section 8.3,

respectively.

8.1 Data Sample

The dataset used in these searches is composed of
√
s = 13 TeV pp collisions

recorded by the ATLAS detector from 2015 through 2018. This corresponds to

a total integrated luminosity of 139 fb−1 with an uncertainty of 1.7% [55], as

determined primarily by the LUCID-2 detector [56] using van der Meer scans.

The total integrated luminosity as a function of time is shown in Figure 8.1.
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Figure 8.1: The total integrated luminosity as a function of time between 2015
and 2018 that was delivered to ATLAS by the LHC (green), recorded by ATLAS
(yellow), and declared to be of sufficient quality for physics analysis (blue) [36].

Over this period, 94% of the luminosity delivered by the LHC was recorded by

ATLAS. Of the recorded data, 95% was determined to be of sufficient quality for

use in physics analysis. Data is only used when taken during the stable operation

of all ATLAS sub-detectors and must satisfy quality criteria that help mitigate

non-collision backgrounds. The distribution of the instantaneous mean number

of interactions per bunch-crossing corresponding to this dataset is also shown in

Figure 8.2. During this period, the average number of interactions per bunch-

crossing 〈µ〉 was 33.7.
The data used in this search were selected using unprescaled, inclusive Emiss

T -

based triggers with the lowest threshold available for a given period of data-taking.

Unlike searches targeting similar signal processes but with larger mass-splittings,

this search cannot use lepton-based triggers since the typical lepton pT within

these compressed scenarios are below the available trigger thresholds. The specific

triggers used in each year of data-taking are shown in Table 8.1. The reason for
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Figure 8.2: The distribution of the mean number of interactions per bunch-
crossing during stable beams for each year between 2015 and 2018 [36].

the changing Emiss
T thresholds is that the trigger rates can depend heavily on the

changing pileup conditions. Increasing pileup tends to increase the Emiss
T trigger

rates and so the thresholds are increased in order to maintain the desired rates,

which are limited by the ATLAS data acquisition system.

The triggers used in this search employ one of two different algorithms for

calculating Emiss
T at the HLT-level. The mht algorithm calculates Emiss

T as the the

negative transverse momentum vector sum of all jets with a minimum threshold of

7 GeV before calibration. These jets are reconstructed from calorimeter topolog-

ical clusters using the anti-kt jet clustering algorithm with a radius parameter of

R = 0.4, as implemented in the FastJet package [57]. Starting in 2017, the pufit

algorithm was implemented in order to combat the effects of increased pileup and

retain low Emiss
T trigger thresholds. This algorithm calculates Emiss

T as the negative

transverse momentum vector sum of all calorimeter topological clusters (grouped

into η − φ patches that resemble R = 0.4 anti-kt jets) corrected for pileup [58].

In 2017 and 2018, pufit was used in conjunction with the cell algorithm, which
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Table 8.1: The lowest unprescaled Emiss
T trigger chains in

√
s = 13 TeV pp

running for each year from 2015 to 2018. The L1 and HLT thresholds on Emiss
T

are given, as well as the specific algorithms used for the Emiss
T calculation at the

HLT.

Year Trigger Name L1 Threshold [GeV] HLT Algorithm HLT Threshold [GeV]
2015 HLT_xe70_mht_L1XE50 50 mht 70

2016
HLT_xe90_mht_L1XE50 50 mht 90
HLT_xe100_mht_L1XE50 50 mht 100
HLT_xe110_mht_L1XE50 50 mht 110

2017 HLT_xe110_pufit_L1XE50 50 pufit, cell 110, 50
HLT_xe110_pufit_L1XE55 55 pufit, cell 110, 50

2018 HLT_xe110_pufit_xe65_L1XE50 50 pufit, cell 110, 65
HLT_xe110_pufit_xe70_L1XE50 50 pufit, cell 110, 70

calculates Emiss
T as the negative transverse momentum vector sum of all calorime-

ter cells passing a two-sided noise cut. In general, the triggers have an offline

efficiency of at least 95% for events with Emiss
T > 200 GeV.

8.2 Simulated Signal Samples

In order to interpret the results of the search in the context of simplified SUSY

models, signal events are simulated for electroweakino and slepton production.

These samples are used to estimate signal yields and kinematic distributions,

which are used for optimizing the signal regions (SRs) and eventually setting

model-dependent limits. The configurations used for the simulation of signal

events, described in more detail below, are summarized in Table 8.2. The effect of

pileup interactions occurring in the same and/or neighboring bunch-crossings is

added by by overlaying simulated soft QCD events onto the signal events. These

QCD events are generated using Pythia 8.186 with the A3 tune [59] and the

MSTW2008LO parton distribution function (PDF) set [60]. Once overlaid, the

simulated events are reweighted to match the distribution of the mean number of

interactions per bunch-crossing that is observed in data and shown in Figure 8.2.
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Table 8.2: Configurations for the simulation of signal processes. The PDF set
refers to that used for the matrix element. The cross-sections are calculated using
Resummino 2.0.1.

Process Matrix element Parton shower PDF set Cross-section
Slepton pair production MG5_aMC@NLO 2.6.1 Pythia 8.230 NNPDF 2.3 LO NLO+NLL
Electroweakino pair production MG5_aMC@NLO 2.6.1 Pythia 8.212 NNPDF 2.3 LO NLO+NLL

EvtGen 1.6.0 and 1.2.0 are used to model the decays of bottom and charm quarks

for all signal events. Unlike the simulated background samples, all signal events

are processed using a fast simulation called AtlFast2 [61], which parameterizes

the calorimeter responses to particles passing through them.

In total, three different electroweakino signal models are considered and each

receive separate model-dependent interpretations. The higgsino model assumes

that the lightest SUSY particles consists of a triplet of higgsino-like states. In

the wino/bino models, the higgsinos are decoupled. In this case, χ̃0
1 is assumed

to be bino-like, while the χ̃0
1 and χ̃±1 states are wino-like and degenerate in mass.

The only difference between the two wino/bino models is the assumption on the

relative sign of the χ̃0
1 and χ̃0

2 mass parameters, which affects the m`` lineshape

as discussed below. Finally, in the slepton model, the sleptons decay directly to

a bino-like χ̃0
1 via ˜̀→ `χ̃0

1. Figure 8.3 shows a schematic of the mass spectra and

electroweakino compositions in each of the models considered.

8.2.1 Electroweakino Models

Much of the signal sample generation is common between the simplified elec-

troweakino signals. The commonalities are discussed first before proceeding to the

differences. All electroweakino signal processes were generated with MG5_aMC@NLO

2.6.1 using the NNPDF2.3LO parton distribution function set with the A14 tune

and interfaced with Pythia 8.212 for the parton shower. Mass splittings in the
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Figure 8.3: Cartoon of the assumed mass spectra in the simplified SUSY models
considered by this search. The line color for each SUSY state indicates whether it
is purely higgsino, purely wino, purely bino, or a slepton. In the higgsino model,
the chargino mass is set to m(χ̃±1 ) = 1

2 [m(χ̃0
1) +m(χ̃0

2)]. In the wino/bino model,
the χ̃±1 and χ̃0

2 wino states are assumed to be mass-degenerate.

range of 1 GeV to 60 GeV are considered. The jet-parton matching was performed

according to the CKKW-L prescription [62] with the merging scale set to 15 GeV.

In each case, production cross-sections for each process, shown in Figure 8.4,

are calculated using Resummino 2.0.1 at NLO+NLL precision. In general, wino

production has a larger cross-section compared to higgsino production. Note

that the χ̃0
1χ̃
±
1 processes are not generated since these searches target final states

involving two leptons. The cross-section uncertainties are determined according

to Ref. [63] by taking the envelope of the resulting cross-sections after varying the

PDF sets, as well as the factorization and renormalization scales. In all models,

the branching ratios for the χ̃0
2 → Z∗χ̃0

1 and χ̃±1 → W ∗χ̃0
1 processes are set to

100% and the decays are handled by MadSpin [64] to accurately model the decay

kinematics due to spin correlations.

Due to the compressed mass spectra that are targeted by the search, the decays

to stable SM particles proceed via off-shell vector bosons, and so special care is

needed to determine the ratios for the Z∗ → `` and W±∗ → `ν decays. These

branching ratios, which depend on the invariant mass of the off-shell vector boson

(and therefore the mass splitting), are calculated with SUSY-HIT 1.5a [68]. The

finite b-quark and τ -lepton masses are accounted for in these calculations so that
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Figure 8.4: Cross-sections for electroweakino and slepton pair-production for
pp collisions at

√
s = 13 TeV, taken from the public LHC SUSY Cross-sections

Working Group and Refs. [65, 66, 67]. The cross-sections for higgsino-like (wino-
like) electroweakinos are denoted by H̃ (W̃ ). The cross-sections for left-handed
and right-handed sleptons are distinguished using L and R subscripts, respectively.

decays involving these particles are turned off when the invariant mass of the

off-shell vector boson is below threshold. For example, at ∆m (χ̃0
2, χ̃

0
1) = 40 GeV,

the invariant masses of the vector bosons are well above threshold for b-quark and

τ -lepton production and the Z∗ → `` branching ratio is 3.5% for both electrons

and muons. If instead, ∆m (χ̃0
2, χ̃

0
1) = 1 GeV, decays involving b/c-quarks and τ -

leptons are forbidden by kinematics, and so the Z∗ → `` branching ratios increase

to 5.3% and 5.0% for electrons and muons, respectively. The same features occur

for the W ∗ → `ν decays, where the branching ratios to electrons and muons

grow from 11% when ∆m (χ̃0
2, χ̃

0
1) = 40 GeV to 20% and 17%, respectively, when

∆m (χ̃0
2, χ̃

0
1) = 1 GeV.

Higgsino model For the higgsino simplified model, events are generated based

on the production of χ̃+
1 χ̃
−
1 , χ̃0

2χ̃
±
1 , and χ̃0

2χ̃
0
1. It assumed in this model that
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|µ| � |M1|, |M2| such that the wino and bino states are decoupled and the light-

est electroweakino triplet is higgsino-dominated, as motivated by naturalness ar-

guments. In all cases, the chargino mass is set to m(χ̃±1 ) = 1
2 [m(χ̃0

1) + m(χ̃0
2)].

Since this search exploits the kinematic endpoint in the dilepton invariant mass

distribution from leptonic Z∗ decays, the sensitivity to higgsinos is dominated by

the processes involving χ̃0
2 production.

Wino/bino models For the wino/bino simplified model, only χ̃0
2χ̃
±
1 production

is generated, as χ̃0
2χ̃

0
1 production is suppressed and there is negligible acceptance

for χ̃+
1 χ̃
−
1 production in this search. The higgsino states in this model are de-

coupled by assuming that |M1| < |M2| � |µ|, such that χ̃0
2 and χ̃±1 are mass-

degenerate, pure wino states, while χ̃0
1 is a bino-like LSP. Unlike the higgsino

model, which only allows negative values, the product of the signed neutralino

mass eigenvalues m (χ̃0
2) × m (χ̃0

1) can be positive or negative in the wino/bino

model. As shown below, this leads to two distinct m`` lineshapes and motivates

two different interpretations of the results: one in whichm (χ̃0
2)×m (χ̃0

1) is positive,

and one in which it is negative.

As discussed in Section 7, the discriminating variable in the search for elec-

troweakinos is m``, which has a kinematic cutoff in signal events that corresponds

to the mass-splitting. This exact shape of this distribution, though, is sensi-

tive to the relative signs of the χ̃0
1 and χ̃0

2 mass parameters, as shown in [69].

When generating the wino/bino signals, the product of these signed values is cho-

sen to be positive, and the analogous signal sample with m(χ̃0
1) × m(χ̃0

2) < 0 is

obtained by reweighting the generated m`` distribution according to an analyti-

cal description of the expected lineshape derived in [69]. The m`` distributions

for each of the simplified electroweakino models are shown in for the generated

samples in Figure 8.5, where it can be seen that the reweighted wino/bino dis-
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Figure 8.5: The normalized dilepton invariant mass distributions for each of
the higgsino and wino/bino simplified models, assuming m(χ̃0

2) = 100 GeV and
m(χ̃0

1) = 60 GeV. In the wino/bino simplified model, the shape of the distribution
depends on the product of the signed mass eigenvalues (m (χ̃0

2)×m (χ̃0
1)), which

can be positive or negative. In the higgsino model, this product can only take
negative values. In each case, the distributions are characterized by a kinematic
endpoint that corresponds to the mass-splitting between the χ̃0

2 and χ̃0
1. The

results from Monte Carlo simulation are shown as histograms, to be compared
with the dashed lines that represent expected lineshapes, which were determined
analytically in Ref. [69].

tribution shows good agreement with the expected lineshape. The lineshapes are

essentially the same between the higgsino model and the wino/bino model with

m(χ̃0
1)×m(χ̃0

2) < 0, so that any differences in the results between these models is

due their respective cross-sections. The final point worth noting is that the line-

shape for the wino/bino model with m(χ̃0
1)×m(χ̃0

2) > 0 is much more asymmetric

than the others so that the results will be more sensitive to fluctuations in a single

(or a few adjacent) m`` bins.
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8.2.2 Slepton Model

The slepton simplified model assumes that sleptons of a given flavor and chiral-

ity are produced in pairs. Only selectrons (ẽL,R) and smuons (µ̃L,R) are considered

in this search and are hereafter collectively referred to as “sleptons” ( ˜̀L,R). Of

course, sleptons are scalar particles and so their “chirality” actually refers to the

chirality of their SM counterparts that carry spin. In this notation, the L and

R subscripts denote the left- and right-handed chiral states of the correspond-

ing SM lepton partners, respectively. The slepton samples were generated with

MG5_aMC@NLO 2.6.1 and interfaced with Pythia 8.230 for the parton shower.

As with the electroweakino signals, the NNPDF2.3LO PDF set was used with the

A14 tune and the jet-parton matching was performed according to the CKKW-L

prescription with the merging scale set to one quarter of the slepton mass. When

generating these events, all slepton flavors and chiral states are assumed to be

degenerate in mass. Additionally, the sleptons are assumed to decay to their SM

partner lepton and a purely bino-like neutralino, χ̃0
1, with a 100% branching ratio.

The cross-sections, shown in Figure 8.4, are calculated at NLO+NLL preci-

sion using Resummino 2.0.1. As with electroweakino signals, the cross-section

uncertainties are determined according to Ref. [63] by taking the envelope of the

resulting cross-sections after varying the PDF sets, as well as the factorization

and renormalization scales. The discriminating variable for the slepton search is

the stransverse mass, which is constructed by assuming a χ̃0
1 mass of 100 GeV.

This variable, denoted by m100
T2 , is shown for some generated slepton samples with

different masses in Figure 8.6, where the kinematic endpoint agrees well with the

signal mass-splitting. Samples are generated with slepton masses, m( ˜̀L,R), be-

tween 50 GeV and 300 GeV and mass splittings, ∆m( ˜̀L,R, χ̃0
1), between 300 MeV

and 40 GeV.
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8.3 Simulated Background Samples

Aside from processes involving fake/non-prompt leptons, described in Sec-

tion 11.2, the SM background processes are estimated using MC simulation. The

generator configurations used for the relevant SM background processes are sum-

marized in Table 8.3, including information about the cross-section used for nor-

malization. All of these background events are processed using the ATLAS sim-

ulation framework [70] in Geant4 [71]. Unlike the signal samples, the SM back-

ground samples employ the full simulation of the ATLAS detector as implemented

in Geant4.

Sherpa 2.2.1 and 2.2.2 are used to generate and shower the V+jets (V =

W,Z, γ∗), V V (V = W,Z), and triboson processes using the NNPDF 3.0 NNLO

PDF set. The matrix element calculations use up to four partons at leading-order

and are merged with the Sherpa parton shower according to the ME+PS@NLO
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Table 8.3: Configurations for the simulation of SM background processes. The
PDF set refers to that used for the matrix element.

Process Matrix element Parton shower PDF set Cross-section
V+jets Sherpa 2.2.1 NNPDF 3.0 NNLO [72] NNLO [73]
V V Sherpa 2.2.1/2.2.2 NNPDF 3.0 NNLO Generator NLO
Triboson Sherpa 2.2.1 NNPDF 3.0 NNLO Generator LO, NLO
h (ggF) Powheg-Box Pythia 8.212 NLO CTEQ6L1 [74] N3LO [75]
h (VBF) Powheg-Box Pythia 8.186 NLO CTEQ6L1 [74] NNLO + NLO [75]
h+W/Z Pythia 8.186 NNPDF 2.3 LO [76] NNLO + NLO [75]
h+ tt̄ MG5_aMC@NLO 2.2.3 Pythia 8.210 NNPDF 2.3 LO NLO [75]
tt̄ Powheg-Box Pythia 8.230 NNPDF 2.3 LO NNLO+NNLL [77, 78, 79, 80, 81]
t (s-channel) Powheg-Box Pythia 8.230 NNPDF 2.3 LO NNLO+NNLL [82]
t (t-channel) Powheg-Box Pythia 8.230 NNPDF 2.3 LO NNLO+NNLL [83, 84]
t+W Powheg-Box Pythia 8.230 NNPDF 2.3 LO NNLO+NNLL [85]
t+ Z MG5_aMC@NLO 2.3.3 Pythia 8.212 NNPDF 2.3 LO NLO [86]
tt̄WW MG5_aMC@NLO 2.2.2 Pythia 8.186 NNPDF 2.3 LO NLO [86]
tt̄+ Z/W/γ∗ MG5_aMC@NLO 2.3.3 Pythia 8.210/8.212 NNPDF 2.3 LO NLO [75]
t+WZ MG5_aMC@NLO 2.3.3 Pythia 8.212 NNPDF 2.3 LO NLO [86]
t+ tt̄ MG5_aMC@NLO 2.2.2 Pythia 8.186 NNPDF 2.3 LO LO [86]
ttt̄t̄ MG5_aMC@NLO 2.2.2 Pythia 8.186 NNPDF 2.3 LO NLO [86]

prescription [87]. Both of these background samples include coverage down to

dilepton invariant masses of 0.5 GeV for Z(∗)/γ∗ → ee/µµ and 3.8 GeV for Z(∗)/γ∗ →
ττ . While Sherpa is used for the Z(→ µµ)+jets background modeling, this pro-

cess is also generated using MG5_aMC@NLO with the same configuration as the

signal samples in order to assess the initial- and final-state radiation modeling in

signal events, as described in Section 12.3.2.

Though small, single-Higgs boson production also presents a background for

this search. The following production modes are considered for this process: gluon-

gluon fusion (ggF), vector boson fusion (VBF), associated production with a mas-

sive vector boson (h + W/Z), and associated production with a top quark pair

(h + tt̄). The ggF and VBF processes are generated using Powheg-Box and

the NLO CTEQ6L1 PDF set. The generated ggF and VBF events are interfaced

with Pythia 8.212 and 8.186, respectively, for parton showering. For h + W/Z,

Pythia 8.186 is used for both the matrix element and parton showering, while

h+ tt̄ events are generated using MG5_aMC@NLO 2.2.3 interfaced with Pythia

8.210. Both the h + W/Z and h + tt̄ event generation use the NNPDF 2.3 LO
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PDF set for the matrix element.

Powheg-Box interfaced with Pythia 8.230 is used to model the tt̄ [88, 89,

90, 91], single-top (t- and s-channels) [84], and t + W [92] processes. Rarer top

quark processes include t+Z, tt̄WW , tt̄+Z/W/γ∗, t+WZ, t+ tt̄, and ttt̄t̄. The

matrix elements for these backgrounds are all generated with MG5_aMC@NLO

and showered with Pythia 8 (see Table 8.3 for the specific versions). All of the

top quark processes use the NNPDF 2.3 LO PDF set for the matrix element.

Out of the box, the simulated events do not account for the effect of additional

pp interactions than can occur in the same and/or neighboring bunch-crossings as

the hard-scatter process. In order to simulate these effects, additional events from

soft QCD processes are generated using Pythia 8.186 with the A3 tune [59] and

the MSTW2008LO PDF set [60]. These QCD events are then overlaid onto the

simulated hard-scatter events for both signal and background processes. Finally,

these MC events, which are typically generated before the pileup conditions in

data are known, are reweighted in order to match the observed distribution of the

average number of interactions per bunch-crossing, as shown in Figure 8.2. The

modeling of bottom and charm quark decays is performed by EvtGen 1.6.0 and

1.2.0 for background and signal events, except those generated by Sherpa, which

employs its own internal modeling of heavy-flavor decays.
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Chapter 9

Physics Objects

The ATLAS detector elements described in Chapter 6 provide information

about energy deposits in specific parts of the detector. In order to perform physics

analysis, these signatures need to be processed by dedicated reconstruction algo-

rithms that are optimized to efficiently identify various particle types in addition

to determining their energies and momenta with excellent resolution. Figure 9.1

gives an overview of the characteristic signatures that are left in the ATLAS de-

tector by different particles and exploited by these reconstruction algorithms.

Once the particles are reconstructed and identified, additional quality crite-

ria can be placed on them in such a way that maintains a high level of signal

efficiency and low misidentification rates. In the searches presented here, the

electrons, muons and jets are first selected according to relatively loose “base-

line” requirements. All signal, control, and validation regions additionally require

these objects to pass tighter “signal” criteria. The exceptions to this are with the

the regions used to derive and validate the data-driven fake/non-prompt lepton

background, described in Section 11.2, which makes use of leptons that pass the

baseline selection but fail to satisfy the signal lepton requirements. A summary

of the signal and baseline object requirements is given in Table 9.1. These selec-
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Figure 9.1: A cartoon showing a transverse slice of the ATLAS detector show-
ing how various particles traverse the the detector and what type of signatures
they produce. The curved trajectories of electrically charged particles are recon-
structed using hits in the Inner Detector, while neutral particles are not (indi-
cated by dashed white lines). Electrons and photons produce particle showers in
the Electromagnetic Calorimeter, while hadrons produce showers in the Hadronic
Calorimeter. Muons penetrate the detector, and their curved trajectories are re-
constructed using hits in both the Inner Detector and the Muon Spectrometer.
Finally, electrically neutral neutrinos penetrate the detector without interacting
with it at all [93].
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Table 9.1: Summary of the signal and baseline object definitions.

Property Signal Baseline

Electrons
Kinematic pT > 4.5 GeV, |η| < 2.47 pT > 4.5 GeV, |η| < 2.47
Identification Medium VeryLoose
Isolation Gradient –
Impact parameter |d0/σ(d0)| < 5, |z0 sin θ| < 0.5 mm |z0 sin θ| < 0.5 mm

Muons
Kinematic pT > 3 GeV, |η| < 2.5 pT > 3 GeV, |η| < 2.5
Identification LowPt LowPt
Isolation FCTightTrackOnly –
Impact parameter |d0/σ(d0)| < 3, |z0 sin θ| < 0.5 mm |z0 sin θ| < 0.5 mm

Jets (Anti-kt, R = 0.4)
Kinematic pT > 30 GeV, |η| < 2.8 pT > 20 GeV, |η| < 4.5
Pileup mitigation JVT Medium for pT < 120 GeV, |η| < 2.5 –

b-Jets (Anti-kt, R = 0.4)
Kinematic pT > 20 GeV, |η| < 2.5 pT > 20 GeV, |η| < 4.5
Pileup mitigation JVT Medium for pT < 120 GeV, |η| < 2.5 –
b-tagging MV2c10 (85% efficiency) –

tions, as well as the reconstruction methods, are described in more detail in the

following sections.

9.1 Tracks and Vertices

Tracks that correspond to the trajectories of charged particles in the ID are

constructed by first clustering hits in the Pixel Detector and SCT to ultimately

form three-dimensional space-points. These space-points indicate the locations

where the particles interact with the silicon sensors in the ID and the track seeds

consist of three space-points. A combinatorial Kalman filter [94] is employed to

build track candidates from the track seeds by adding additional space-points from

other layers in the ID that are consistent with the seed trajectory. This process
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can lead to multiple track candidates per seed and this ambiguity is solved by

assigning track scores to the candidates that reflect the track quality. The track

scores incorporate information including the χ2 of the track fit, the pT of the

track, and the number of “holes” along the track trajectory, which are defined

as intersections between the track trajectory and active ID material where no

matching cluster is found. After the ambiguity solving, the surviving tracks are

extrapolated to the TRT to look for consistent tracks that can be incorporated

into the final high-resolution fit that uses all three ID subsystems. Though the

individual hit resolution is lower in the TRT than in the silicon sensors, the long

lever arm can improve the track momentum resolution when such extrapolations

are possible.

In ATLAS, tracks are defined using the five parameters that form the perigee

basis, where each parameter is evaluated at the point of closest approach to the

z-axis. These parameters are chosen to be the azimuthal angle φ0, the polar angle

θ0, the charge-to-momentum ratio q/p, the longitudinal impact parameter z0, and

the transverse impact parameter d0. Since the reconstruction of racks relies on hits

in the ID, all reconstructed tracks are limited to the region defined by |η| < 2.5.

The lower bound on the transverse momentum of reconstructed tracks is 500 MeV.

Vertices are formed via an iterative fit procedure using tracks that satisfy

a quality criteria based on the number of hits in the Pixel Detector and SCT

[95, 96]. The minimum number of tracks needed to form a vertex is two. Of

particular importance is the construction of the Primary Vertex (PV), which is

taken to be the location in space of the hard-scatter process in the event. In the

fitting procedure, the seed location of the PV in the transverse direction is taken

to be the center of the nominal beam spot, and the longitudinal coordinate is the

mode of the z-coordinates of all tracks at their points of closest approach to the
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center of the beam spot. Tracks are then fit along with the PV seed in an iterative

process that down-weights tracks that are less compatible with PV (based on the

χ2) at each step. This process is repeated until tracks with small enough weights

are deemed incompatible with the PV and removed. In order to reconstruct other

candidate vertices, this process is then repeated using these removed tracks until

no more vertices can be reconstructed. The PV in the event is chosen to be the

one with the highest ∑ p2
T of associated tracks.

9.2 Charged Light-Flavor Leptons

The searches presented here do not consider τ -leptons; instead they only focus

on the charged light-flavor leptons: electrons and muons. The following sec-

tions outline the electron and muon reconstruction techniques and kinematic re-

quirements applied in these searches, including a summary of dedicated isola-

tion corrections used to boost signal efficiency and improve the fake/non-prompt

background modeling in events with highly-collimated leptons. The combined re-

construction, identification, isolation, and vertex association efficiencies for signal

leptons (within the detector acceptance) from various slepton and higgsino signal

samples are shown in Figure 9.2. This efficiency for electrons ranges from ∼ 20%

at pT = 4.5 GeV to over 75% for pT > 30 GeV. For muons, the efficiencies vary

from ∼ 50% at pT = 3 GeV to ∼ 90% for pT > 30 GeV. Brief accounts of the

electron and muon reconstruction procedures are given below, as well as details

about their requirements for consideration in these searches.
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Figure 9.2: Signal lepton efficiencies for electrons and muons in a mix of slep-
ton and higgsino samples. Combined reconstruction, identification, isolation and
vertex association efficiencies are shown for leptons within the detector accep-
tance, and with lepton pT within a factor of 3 of ∆m( ˜̀, χ̃0

1) for sleptons or of
∆m(χ̃0

2, χ̃
0
1)/2 for higgsinos. The average number of interactions per crossing in

the MC samples is 〈µ〉 = 33.7. Uncertainty bands represent the range of efficien-
cies observed across all signal samples used for the given pT bin.
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9.2.1 Electrons

Electrons traversing the detector leave a distinct signature that consists of

tracks in the ID followed by a shower in EM calorimeter. The goal of electron

reconstruction is to reconstruct these signatures separately and then match the

tracks to the energy depositions to form electron candidates. A detailed account

of the reconstruction is given in [97]. Multiple tracks can be assigned to electron

candidates due to the bremsstrahlung process in which the radiated photon con-

verts to an electron-positron pair that leave additional tracks near the original

electron. The first step in the reconstruction is to identify candidate clusters of

energy deposits in the EM calorimeter layers. The algorithm divides the layers

of the EM calorimeter into projective “towers” of size ∆η ×∆φ = 0.025× 0.025,

which matches the granularity of the second layer. The energy in each tower is the

sum of the energies in each layer of the calorimeter. From there, a sliding window

algorithm is employed to identify groups of towers in windows of size 3 × 5 (in

η × φ) that have total transverse energies of at least 2.5 GeV. Tracks in the ID

are extrapolated to the first layer of the EM calorimeter and matched to these

seed-clusters based on their consistency in η and φ while accounting for energy

losses such as bremsstrahlung.

The efficiencies for seed-clustering, track reconstruction, and track-cluster match-

ing are shown in Figure 9.3 for simulated electrons as a function of their generator-

level ET. The loss of efficiency at low ET is mostly due to the ∑ET > 2.5 GeV

requirement on the electron clusters. The reconstruction efficiency is measured

in data using Z → ee events, and differences in the efficiencies between data and

simulation are used to derive scale factors that are applied to the simulated sam-

ples to match the data. The electron energies are calibrated using a combination

of Z → ee and J/ψ → ee events in data and simulation [98].
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Figure 9.3: The electron reconstruction efficiency in simulation at several steps
in the overall reconstruction procedure as a function of the true electron ET. The
vertical dashed line indicates the current 4.5 GeV threshold for electron use in
ATLAS physics analysis [97].

In order to improve the purity of the reconstructed electrons, which have back-

grounds including misidentified jets (described Section 9.3) and photon conver-

sions, the electrons used for physics analysis in ATLAS must satisfy some quality

criteria. These identification criteria are based on multi-dimensional electron and

background likelihoods that are built from a variety of sensitive observables that

include tracking and EM shower shape information, as well as consistency be-

tween the ID and calorimeter measurements [97]. Different cuts on the likelihood

function, called “working points,” produce different electron efficiencies and back-

ground rejection factors.

Baseline and signal electrons are required to have pT > 4.5 GeV, |η| < 2.47, and

z0 sin θ < 0.5 mm. Baseline electrons must satisfy the VeryLoose identification

working point [99], while signal electrons must satisfy the tighter Medium working

point [99], which has an efficiency of ∼ 79% at pT = 4.5 GeV that increases to

∼ 93% for pT & 80 GeV. Finally, signal electrons must satisfy the Gradient
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isolation working point [99], described in more detail below, and have
∣∣∣ d0
σ(d0)

∣∣∣ < 5,

where σ(d0) is the uncertainty on the transverse impact parameter d0.

9.2.2 Muons

Muons are reconstructed by combining separate tracking information in the ID

and the MS. As a first step, hit patterns in the bending plane of the MS layers are

used to establish track segments that are the result of straight-line fits. MS track

candidates are then formed by fitting the track segments from different layers

together, where segments in the middle layers are used as seeds and segments in

the other layers are selected based on hit multiplicity and fit quality criteria using

the χ2 method. Once the track candidates are formed, a global χ2 fit is performed

using the associated MS hits, where hits can be removed from the fit if they have

a large impact on the χ2. Track candidates are accepted if the χ2 satisfies a cut on

the fit quality. Once the tracks are defined, a combined fit is performed using these

MS track hits and hits from ID tracks, which are reconstructed independently.

Again, hits can be removed from the fit if the removal improves the overall χ2 of the

global fit. This reconstruction method defines “combined” (CB) muons, though

other flavors of muons exist within ATLAS reconstruction [100]. In most cases,

the CB muons are reconstructed using an “outside-in” method in which MS tracks

are reconstructed first and extrapolated inward to the ID for track-matching. An

“inside-out” method in which the ID tracks are extrapolated outward to the MS

for track-matching can be used as a complementary approach.

In these searches, both baseline and signal muons are required to have pT >

3 GeV, |η| < 2.5, and z0 sin θ < 0.5 mm. Additionally, they are required to satisfy

the LowPt identification working point, which provides calibrations for muons with

3 GeV < pT < 4 GeV for the first time in ATLAS [101]. A tighter selection is placed
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on signal muons by additionally requiring them to pass the FCTightTrackOnly

isolation working point [100] and have a small transverse impact parameter sig-

nificance,
∣∣∣ d0
σ(d0)

∣∣∣ < 3.

The LowPt working point was designed to provide improved efficiencies for

real muons as well as lower misidentification rates for muon candidates with pT <

10 GeV. This working point uses only CB tracks, though the hit requirements in

the MS are loosened in order to retain efficiency for low-pT muons. Since these

muons can deposit a significant fraction of their energy in the calorimeters, LowPt

only requires hits in at least one MS station in the central region defined by

|η| < 1.3. For 1.3 < |η| < 1.55, hits in at least two MS stations are required. In

the forward region, |η| > 1.55, the hit requirements from the Medium [100] muon

identification working point are used.

LowPt provides discrimination between real and misidentified muons from

hadron decays by exploiting variables that are sensitive to imbalances in the track

momentum as measured in the ID and the MS and compared to the energy lost

in the calorimeters, as well as significant changes in the track trajectory, which

are indicative of a charged hadron decaying to a muon. Compared to the Medium

working point, LowPt maintains a similar fake muon rate in the |η| < 1.2 region

for 3 GeV < pT < 6 GeV while improving the efficiency by approximately 20%, as

shown in Figure 9.4. The efficiencies are measured in data using a tag-and-probe

method in J/ψ → µµ events, and differences in the efficiencies between data and

MC are used to derive efficiency scale factors that are applied to the background

and signal samples in these searches.
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Figure 2: (a) Expected e�ciency as a function of ⌘ fulfilling the LowPt (filled markers) and Medium (empty
markers) requirements in simulated tt̄ events. (b) Muon reconstruction e�ciencies for the LowPt WP measured using
J/ ! µ+µ� events as a function of the muon ⌘ and for di�erent pT ranges, up to 10 GeV.

5 Conclusion

A new set of identification criteria, the LowPt WP, has been developed. It allows for a muon selection
e�ciency of about 90% for pT below 5 GeV with an expected hadron misidentification probability below
0.5%. The e�ciency measurement has been extended down to 3 GeV with good agreement between data
and simulation.
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Figure 9.4: The expected efficiencies of the LowPt (filled markers) and Medium
(empty markers) muon identification working points in simulated tt̄ events as a
function of η [101].

9.2.3 Isolation Corrections

One way to help distinguish between promptly-produced leptons (e.g. from

W → `ν) and those from non-prompt processes (e.g. semi-leptonic decays of

b-hadrons) is to determine how isolated they are inside the detector. Prompt

leptons tend to be produced in isolation, while non-prompt and fake leptons

are often close to other reconstructed objects. Isolation variables for leptons are

constructed by summing the pT or ET of unassociated tracks and topologically-

connected calorimeter clusters (topoclusters), respectively, within a cone of some

size around the lepton. A selection criteria is applied to the objects entering the

calculation to mitigate biases from pileup contributions. Various working points

targeting different lepton efficiencies are constructed by placing cuts on these iso-

lation variables.

For signal muons, the chosen isolation working point is FCTightTrackOnly,

which performs the sum over track pT within a cone that has a maximum size of
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∆R = 0.3 and shrinks with increasing muon pT according to ∆R = min(10 GeV
pT

, 0.3).

The sum, called pvarcone30
T , is only performed using tracks that are consistent with

the PV and have pT > 1 GeV. The final isolation cut is based on the scalar sum

of the transverse momentum contained within this cone in relation to the muon

pT, such that signal muons must satisfy pvarcone30
T
pT

< 0.06.

Signal electrons, meanwhile, must satisfy the Gradient isolation working point,

which uses a combination of tracking and calorimeter topocluster information. For

the cone defined by the sum over track pT, the variable used is pvarcone20
T , which is

defined in the same way as pvarcone30
T except it has a maximum size of ∆R = 0.2.

The cone that sums over the ET of topoclusters is called Econe20
T , which has a fixed

radius of ∆R = 0.2. In order not to count the energy deposits from the electrons

themselves, all topoclusters within a rectangle of size ∆η × ∆φ = 0.125 × 0.175

around the center of the electrons are removed from the sum. Additional correc-

tions to the Econe20
T variable are applied to account for potential leakage of the

electron energy outside of this rectangle, as well as pileup effects. A schematic of

this procedure is shown in Figure 9.5. Ultimately, the cuts on these pvarcone30
T and

Econe20
T are designed to provide electron isolation efficiencies of 90% at pT = 25 GeV

and 99% at pT = 60 GeV, uniform in η [99]. At pT = 4.5 GeV, this efficiency is

approximately 84%.

The above description outlines the general way in which lepton isolation vari-

ables are calculated by ATLAS. Nonetheless, the specific topologies targeted by

these searches necessitates two corrections to the isolation calculation procedures.

In these boosted topologies, the soft leptons from signal events are highly colli-

mated. This is especially true for electroweakino production, where the leptons

are produced from a boosted Z∗ → `` decay. In such cases, the leptons often

fall within each other’s isolation cones, which leads to a loss in efficiency for the
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Figure 10: Schema of the calorimeter isolation method: the grid represents the second-layer calorimeter cells in the
⌘ and � directions. The candidate electron is located in the centre of the purple circle representing the isolation cone.
All topological clusters, represented in red, for which the barycentres fall within the isolation cone are included
in the computation of the isolation variable. The 5 ⇥ 7 cells (which cover an area of �⌘ ⇥ �� = 0.125 ⇥ 0.175)
represented by the yellow rectangle correspond to the subtracted cells in the core subtraction method.

core energy is subtracted by removing the cells included in a �⌘⇥�� = 0.125⇥ 0.175 rectangle around the
candidate’s direction, as illustrated in Figure 10. The advantage of this method is its simplicity and stable
subtraction scheme for both the signal and background candidates. A disadvantage of this method is that
the candidate object may deposit energy outside of this fixed rectangular area which may be incorrectly
assigned as additional activity, requiring an additional leakage correction to the subtracted core energy. The
core leakage correction is evaluated using samples of simulated single electrons (without additional pile-up
activity). The energy leaking into the cone is then fit to a Crystal Ball function; its most probable value
µCB is parameterised as a function of ET and is used as an estimator of the average leakage, ET,leakage(ET).
The corrections are derived in ten bins of the associated cluster ⌘ position.

Figure 11 shows the isolation energy corrected with a rectangular core, without and with the calculated
leakage correction, as a function of the electron ET for a sample of simulated single electrons which
includes the e↵ects of pile-up; a leakage correction is essential when using a rectangular core region.

The pile-up and underlying-event contribution to the isolation cone is estimated from the ambient energy
density [39]. For each event, the entire calorimeter acceptance up to |⌘| = 5 is used to gather positive-energy
topological clusters using the kt jet-clustering algorithm [40, 41] with radius parameter R = 0.5, with no
jet pT threshold. The area A of each jet is estimated and the transverse energy density ⇢ of each jet is
computed as ⇢ = pT/A. The median energy density ⇢median of the distribution of jet densities in the event
is used as an estimator of the transverse energy density of the event. For a simulated Z ! ee sample atp

s = 13 TeV with average pile-up hµi = 22, ⇢median is approximately 4 GeV per unit of ⌘ � � space in

29

Figure 9.5: A schematic of the calorimeter-based isolation calculation for elec-
trons. The grid represents the cells of the second layer of the EM calorimeter in
the η− φ plane. The purple circle represents the isolation cone, with the electron
candidate at the center. Topoclusters are shown in red, and those with barycenters
inside of the cone are included in the isolation calculation. The yellow rectangle
indicates the expected core of the electron shower and all topoclusters within this
area are excluded from the calculation [97].

most compressed signal scenarios. To combat this, the isolation variables for both

muons and electrons are calculated in a way that omits the contribution from the

nearby lepton. Specifically, each event looks for baseline leptons that fail the sig-

nal isolation requirement. If another baseline lepton is found within its isolation

cones, the tracks and/or topoclusters associated to this nearby lepton are removed

from the isolation sums and the isolation requirements are reevaluated, ultimately

leading to a significant increase in signal efficiencies for events at low-m``.

Despite the improved handling of the isolation variables in events with nearby

leptons, it was found that the fake/non-prompt lepton estimate, detailed in Sec-

tion 11.2, became negative for small angular separations between the leptons

where the isolation cones overlap. Schematically, there is a term in the expres-

sion for the fake/non-prompt lepton estimate that subtracts events containing

two baseline leptons that fail the isolation criteria, and if this terms gets too
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large, then the estimate can become negative. Such poor modeling would severely

limit the sensitivity to the most compressed electroweakino signals that produce

these collimated di-lepton events. As described in Section 11.2.1, this feature was

traced back to an underlying assumption in the method for deriving the data-

driven fake/non-prompt background. Specifically, the method assumes that the

probabilities for the baseline leptons in an event to fail the isolation criteria can

be thought of as being uncorrelated. This is manifestly not true when there is

significant overlap between the isolation cones, in which case if one lepton fails

the isolation requirement, then the second lepton has a higher probability of also

failing it. The correlation obviously grows with the amount of overlap between

the cones.

To combat this effect, an additional correction has been developed and imple-

mented to address tracks and topoclusters that fall within both leptons’ isolation

cones and yet cannot be associated to either lepton (otherwise they would have

been corrected for by the method described above). Such objects are called “stray”

tracks and topoclusters and the goal of the algorithm is to assign all of the stray

tracks and topoclusters entering into the overlapping region to only one of the

leptons’ isolation cones.

After the previous correction takes place, additional loops are initiated over

stray tracks and topoclusters, and those that fall into both leptons’ isolation cones

have their four-vectors summed to form new four-vectors. The four-vector sum of

these stray tracks is called vtrk and the equivalent four-vector sum for topoclusters

is called vtopo. Once these four-vectors are formed, their angular distances from

each lepton are calculated based on ∆R. Finally, the contributions from the stray

tracks (topoclusters) that went into building vtrk (vtopo) are subtracted from the

isolation cone of the lepton that is farther away based on this distance measure. A
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lep2 lep2

Figure 9.6: An illustration of the additional isolation correction for
tracks/topoclusters that lie within the overlapping isolation cones of nearby lep-
tons but are not associated to either lepton. Here, the green points generically
represent these stray tracks or topoclusters. Before the correction, they contribute
equally to both leptons’ isolation cones. After the correction, they only contribute
to the isolation cone of the lepton that is closest in ∆R to the sum of their four-
vectors – in this case, the lepton on the right.

generic cartoon describing this additional correction is shown in Figure 9.6. After

this additional correction, significant improvements are observed in the modeling

of fake/non-prompt leptons in highly collimated events, though some residual mis-

modeling is observed in ee and eµ events, which is reflected in the cuts detailed

in Section 10.2.

9.3 Jets

Due to the confinement phenomenon of QCD, the bare quarks and gluons that

are produced in the pp collisions are not observed in the final state. Instead, these

particles undergo hadronization, which results in a jet of colorless hadrons along

the original particle direction that leave energy deposits in the electromagnetic

and hadronic calorimeters, where the electromagnetic component comes from e.g.

π0 → γγ decays. From there, a series of clustering algorithms are used to ulti-

mately reconstruct objects called jets that can be thought of as representing the

underlying parton.

The jet clustering algorithms in ATLAS are performed using three-dimensional
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topoclusters, which consist of adjacent calorimeter cells with signals that are at

least four times the expected noise level. Several sequential jet clustering algo-

rithms exist [102, 103, 104], but they are all based on the distance measures dij

between different topoclusters and diB, which is a distance in momentum space

between the topocluster and the beam line. These are generally defined as

dij = min
(
k2p
ti , k

2p
tj

) ∆2
ij

R2 ,

diB = k2p
ti ,

(9.1)

where ∆2
ij = (yi−yj)2+(φi−φj)2, and kti, yi, and φi are the transverse momentum,

rapidity, and azimuthal angle of the ith topocluster, respectively. R is a radius

parameter that sets the overall size of the jet and p is a parameter that controls

the relative power of the energy scale in relation to the geometrical scale used

for the clustering. These sequential jet clustering algorithms proceed by first

computing all values of dij and diB. If the smallest such value is a dij, then

the objects i and j are combined by summing their four-momenta and they are

removed from the list. If the smallest value is diB, then object i is considered a

jet and removed from the list. This process is repeated until there are no more

remaining objects i. Different choices of p correspond to different sequential jet

clustering algorithms. In ATLAS, the anti-kt algorithm [104, 57] is used, which

sets p = −1, such that hard objects are clustered first and the resulting jets are

cone-shaped (for sufficiently hard jets). In the jets considered in these search, the

radius parameter that controls the size of the jet cones is R = 0.4.

Reconstructed jets are calibrated according to the procedure defined in [105].

The goal of the calibration is to establish the Jet Energy Scale (JES) that corrects

the measured jet energy to that of the underlying parton. The JES calibration

starts with correcting the jet direction (without changing its energy) so that it
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points back to the PV in order to obtain better resolution on η. A series of

corrections are then applied to reduce the contamination in the jet from pileup

interaction. These corrections are based on the jet area as well as the number of

reconstructed primary vertex candidates and µ, where the latter two corrections

are based on MC studies. The next step is to derive a global JES calibration that

aims to correct the jet four-momentum to the particle-level energy scale by using

comparisons of the reconstructed and truth-level jets in a Pythia MC sample. A

global sequential calibration is then applied to reduce the impact on the jet energy

due to flavor-dependence. In particular, jets initiated by quarks and gluons tend

to produce showers with different particle multiplicities and energy spectra. For

example, gluon splitting tends to produce showers containing more particles with

lower energies on average compared to quark jets. Finally, an in situ calibration

is performed to account for residual discrepancies between jets in data and MC by

using pT-balance in dijet events, which are also used to measure the Jet Energy

Resolution (JER). After applying all of these calibrations, baseline jets in these

searches must have pT > 20 GeV and |η| < 4.5, while the signal jets that are

used to calculate analysis-level variables are required to satisfy pT > 30 GeV and

|η| < 2.8.

In order to discriminate between jets produced from the hard scatter vertex and

those from pileup interactions, a multivariate algorithm call the Jet Vertex Tagger

(JVT) is used [106]. This consists of a two-dimensional likelihood using variables

called the corrected Jet Vertex Fraction (corrJVF) and RpT. The corrJVF variable

is defined to be the scalar transverse momentum sum of tracks assigned to the

jet and associated to the PV divided by the scalar transverse momentum sum off

all of the tracks assigned to the jet. An additional correction is applied to this

variable to account for a bias in the scalar transverse momentum sum due to the
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number of interaction vertices in the event. Jets with larger values of corrJVF are

more likely to have originated from the hard-scatter. The RpT variable is defined

as the scalar sum of the transverse momenta of the tracks assigned to the jet as

well as the PV divided by the fully calibrated jet pT. Again, larger values of this

variable indicate a higher probability that the jet originated from the hard-scatter.

In the searches presented here, signal jets with pT < 120 GeV and |η| < 2.5 are

required to pass the Medium JVT working point [106].

9.3.1 b-Tagging

Identifying b-hadrons inside of jets, a process called b-tagging, can act as a

powerful discriminant across many analyses at the LHC due to the large cross-

sections for top-quark production, coupled with the ∼ 100% branching ratio of

t→ bW . In these searches, this discrimination power allows for a reduction of the

SM background involving top-quarks by vetoing events containing b-tagged jets.

Inverting this veto also allows for control regions to be constructed and used for

estimating the normalization of these backgrounds.

Tagging jets as containing a b-hadron is made possible by the relatively long

lifetime of b-hadrons, which is approximately 1.5 ps. At relativistic speeds, this

corresponds to a decay distance of around 450 µm, which is long enough for sec-

ondary vertices to be reconstructed due to the excellent resolution of the ID. It is

also possible to reconstruct tertiary vertices from the decays of hadrons containing

c-quarks that can be produced from the b-hadron decay. Aside from these ver-

tices, the other hallmark of b-hadron decays is the presence of tracks with large

impact parameters when evaluated with respect to the PV. Several algorithms

are used by ATLAS to exploit these features, with each algorithm focusing on

either secondary vertex reconstruction or using the impact parameters and their
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uncertainties to tag jets via a likelihood ratio. To further increase the b-tagging

performance, the output of these low-level algorithms are passed to a multivariate

algorithm called MV2 [107] that is based on boosted decision trees and trained on

a SM tt̄ and a high-pT Z ′ → tt̄ sample. The particular version of the algorithm

used in these searches is called MV2c10, which uses a mixture of 93% light-flavor

jets and 7% c-jets as the background sample for the training.

In these searches, b-tagging is applied to baseline jets with pT > 20 GeV and

|η| < 4.5. A working point for the MV2c10 algorithm is chosen such that the b-

tagging efficiency in a simulated tt̄ sample is 85% with rejection factors of 2.7 and

25 for c-jets and light-flavor jets, respectively [107]. As summarized in Table 9.1,

signal b-tagged jets are further required to have |η| < 2.5 and pass the same JVT

requirements as signal jets.

9.4 Overlap Removal

After running the identification algorithms for the objects defined above, it is

possible that some combination of energy deposits in the ATLAS detector will be

reconstructed as two distinct physics objects. For example, a jet can deposit a sig-

nificant fraction of its energy in the LAr calorimeter due to π0 → γγ decays, which

may result in the additional reconstruction of an electron. In order to mitigate

such double-counting, a procedure known as “overlap removal” is implemented

in order to solve the ambiguities and guarantee object exclusivity. The overlap

removal procedure is based on a distance between two reconstructed objects de-

fined as ∆Ry =
√

(∆y)2 + (∆φ)2, where y is the rapidity. Rapidity is used for

this procedure (in place of pseudorapidity) to better account for the jet mass.

This procedure is performed sequentially, with the surviving object being fed

into the next step of the removal. The first takes place between reconstructed
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electrons and muons. In order to account for muon bremsstrahlung followed by

photon conversion, electrons sharing an ID track with a muon are removed. After

this, non-b-tagged jets are removed if they are within ∆Ry < 0.2 of an electron.

Electrons are then removed from the event if they are within ∆Ry < 0.4 of a

jet. These last two steps are in place to remove electrons that are likely due

to semi-leptonic b- or c-hadron decays, while also removing jets that were likely

reconstructed from an electron shower. Next, non-b-tagged jets are removed if

they are within ∆Ry < 0.2 of a muon and have less than three associated tracks

with pT > 500 MeV in order to account for muon bremsstrahlung. Finally, muons

within ∆Ry < 0.4 of a surviving jet are removed. Again, this combination of

criteria is in place to remove muons that are likely due to semi-leptonic b- or

c-hadron decays while rejecting fake jets.

9.5 Missing Transverse Energy

At the LHC, the pp collisions are at sufficiently high enough energies to resolve

the internal structure of the protons, so the collisions are best described by inter-

actions among individual partons. Unfortunately, the longitudinal component of

the parton momenta cannot be known, which precludes the overall conservation

of momentum from being exploited by reconstruction and analysis techniques.

What is known, however, is that the initial-state partons do not carry momentum

in the transverse plane. Consequently, the transverse momentum of all particles

emerging from a single parton-parton interaction should sum to zero to conserve

momentum. In cases where particles that do not interact with the detector are

produced (e.g. neutrinos and various SUSY states), their transverse momenta is

not measured, which leads to an overall imbalance in the transverse momentum

in the event. This imbalance can therefore be used to infer the production of such
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particles.

This missing transverse momentum vector, pmiss
T , is calculated as the negative

vectorial sum of the transverse momenta of all reconstructed objects that pass an

overlap removal procedure similar to the one described in Section 9.4, including a

“soft” term that accounts for tracks from the PV that are not associated to any

object. More explicitly,

− pmiss
T =

∑
e

pT +
∑
µ

pT +
∑
τ

pT +
∑
γ

pT +
∑
jet

pT +
∑
soft

pT, (9.2)

where each term represents the contribution from electrons, muons, taus, photons,

jets, and unassociated tracks, respectively. The missing transverse momentum,

Emiss
T , is a scalar that is defined to be the magnitude of the missing transverse

momentum vector. All baseline objects described in the above sections are used

in the calculation of pmiss
T , though jets with 20 GeV < pT < 30 GeV and |η| > 2.4

are omitted to reduce pileup dependency. Since Emiss
T is an event-level variable,

its resolution is highly-dependent on the object content of the event. Fake sources

of Emiss
T include mis-measurements of jets, contributions from pileup jets, and

particles traversing regions of the detector that are not sufficiently instrumented.
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Chapter 10

Event Selection

This chapter is dedicated to motivating the set of event-level criteria that are

used to define the SRs. For both the electroweakino and slepton searches, dedi-

cated high-Emiss
T and low-Emiss

T SRs are constructed in order to maximize sensitiv-

ity to a wide range of SUSY mass-splittings. Most of the sensitivity in each search

stems from the high-Emiss
T SRs, while the low-Emiss

T versions provide complemen-

tary sensitivity for moderate and large mass-splittings since less boost is required

from the ISR activity to put the leptons over the reconstruction thresholds.

First, a series of variables that are used as discriminants between the back-

ground and signal processes are described in Section 10.1. Next, a set of cri-

teria called the “preselection” is applied to all SRs in order to target common

topologies and is described in Section 10.2. The remaining requirements on the

electroweakino and slepton SRs are motivated in Section 10.3 and Section 10.4,

respectively. Finally, the strategy of forming inclusive SRs to be used for model-

independent searches for new physics is provided in Section 10.5.

The optimization procedures make use of the significance metric Zn [108],
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defined as

Zn =
[
2
(

(s+ b) ln
[

(s+ b) (b+ σ2
b )

b2 + (s+ b)σ2
b

]
− b2

σ2
b

ln
[
1 + σ2

bs

b (b+ σ2
b )

])]1/2

, (10.1)

where s and b are the expected signal and background event yields, respectively,

and σb is the expected uncertainty on the background yield. This metric provides

an estimate of the discovery significance and performs similarly to the profile

likelihood ratio method described in Section 13.3. When optimizing a cut on a

variable, the N −1 method is used. In this method, all cuts are applied except on

the variable in question. Then, the Zn metric is calculated as a function of different

cuts on this variable and the cut that produces the largest value of Zn is considered

optimal. Since this analysis ultimately exploits the shape of the discriminating

variables m`` and m100
T2 , the N − 1 procedure is performed separately for each bin

of these variables to arrive at cuts that provide good discrimination across the

entire SR.

10.1 Discriminating Variables

Analysis variables are built using the physics objects defined in Chapter 9, and

selections are placed on them in order to define the signal, control, and validation

regions. In this section, the variables that are used to build these regions and

discriminate between signal and background are defined. In the following, `1

refers to the lepton with the highest pT (leading lepton) and `2 refers to the

lepton lepton with the lower pT (subleading lepton). Similarly j1 denotes the jet

in the event with the highest pT, which is also referred to as the leading jet.
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∆R`` The angular distance between the leptons `1 and `2 defined by ∆R`` =√
(η`1 − η`2)2 + (φ`1 − φ`2)2. Leptons from electroweakino production tend to be

collimated, especially for low mass-splittings, since they originate from off-shell

Z boson decays. Comparatively, the leptons from the pair-production of sleptons

tend to be further apart since they originate from different decay legs. A lower

bound on ∆R`` is useful for rejecting photon conversions.

∆φ(j1, p
miss
T ) The angular separation in φ between the highest-pT jet in the

event and the missing transverse momentum vector. A lower bound on this vari-

able ensures the boosted topology, as expected in signal events, in which the

invisible particles recoil from additional hadronic activity.

min(∆φ(any jet, pmiss
T )) The minimum angle in φ between any jet and the

missing transverse momentum vector. This variable is sensitive to mis-measurements

of the jet energies, which often result in pmiss
T being aligned with one of the jets.

Placing a lower bound on this variable helps to reduce contributions from QCD

multi-jet and Z + jets events.

m`1
T This is the transverse mass associated with the highest-pT lepton in the

event, which is defined using the missing transverse momentum to be

m`1
T =

√
2
(
E`1

T E
miss
T − p`1T · pmiss

T

)
(10.2)

The transverse mass is a variable with a kinematic endpoint corresponding to the

mass of a parent particle if it decays to one visible and one invisible particle in

the detector (and no other invisible particles are produced in the event). It is

therefore useful for rejecting W (→ `ν) + jets events (which can enter the SRs

when the jet is misidentified as a lepton) as it attempts to reconstruct the W
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Figure 38: Schematic illustrating the fully leptonic (Z ! ⌧⌧) + jets system motivating the construction of m⌧⌧ .

Emiss
T /HT The HT variable is defined as the scalar sum the jet momenta925

HT =

jetsX

i

p ji
T . (6)

The Emiss
T /HT variable discriminates between events with strong correlation between the visible hadronic926

activity and the Emiss
T , as typical for compressed signal events, and events where the jets are harder and the927

Emiss
T dominated by instrumental e�ects mainly associated to jet mismeasurement, which roughly scale as928 p
HT.929

m⌧⌧ The di-tau invariant mass m⌧⌧

⇣
p`1, p`2, pmiss

T

⌘
used in this analysis is defined by Equation (12),930

which is a function of the measured leptonic p`1, p`2 and transverse missing momenta pmiss
T related by931

Equations (9) and (10).932

This variable aims to reconstruct the fully leptonic Z ! ⌧⌧ processes to provide leverage on this933

background. Figure 38 illustrates this system schematically. By reconstructing the tau 4-momenta p⌧i ,934

the invariant mass squared m2
⌧⌧ =

�
p⌧1 + p⌧2

�2 of the Z can be calculated and appropriately vetoed.935

Various definitions of m⌧⌧ exist in the literature to resolve the kinematic ambiguities due to immeasurable936

neutrino momenta by imposing assumptions on the underlying process. This analysis primarily follows937

Refs. [Han:2014kaa, Baer:2014kya, Barr:2015eva].938

In the Z ! ⌧⌧ process where both taus undergo leptonic decays ⌧ ! `⌫`⌫⌧ , only the missing transverse
momentum pmiss

T and 4-momenta of the two leptons p`i from the i-th tau are observable, where i = {1, 2}
label the tau decay chains. The reconstruction relies on the large boost of the taus, decaying from
the Z recoiling o� hadronic activity. This boost ensures the daughter leptons and neutrinos are nearly
collinear, so the 4-momentum of the neutrino system p⌫i from the i-th tau defined by p⌫i = p⌫`i + p⌫⌧i ,
is well approximated as a rescaling of the visible lepton momenta p⌫i ' ⇠ip`i , where ⇠i is a scalar
to be determined. The i-th tau 4-momentum is the sum of the daughter lepton and neutrino system
p⌧i = p`i + p⌫i . Then the ⌧ momentum is a rescaling of the observable lepton momenta p`i

p⌧i = (1 + ⇠i )p`i ⌘ f ip`i, (7)
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Figure 10.1: A schematic of the boosted Z → ττ topology targeted by the mττ

variable. The tau leptons decays are both fully leptonic and the boost provided
by the hadronic activity approximately aligns the neutrino momentum with the
visible lepton momentum.

mass in such events.

Emiss
T /H lep

T In this ratio, H lep
T is defined to be the scalar sum of the lepton

pT. This variable is useful for distinguishing between signal and background, as

events from tt̄ and WW → `ν`ν, for example, tend to have harder leptons than

signal for a given value of Emiss
T .

mττ In order to reject events coming from fully leptonic Z → ττ decays, a

variable called mττ [109, 110, 111] is constructed. In these fully leptonic decays,

the tau leptons decay according to τ → ντ`ν`. The mττ variable attempts to

reconstruct the invariant mass of the tau lepton pair in events where this system

is boosted so that the tau leptons are not produced back-to-back in the detector.

In sufficiently boosted cases, the neutrinos from the tau decays are approximately

collinear with the visible leptons. A schematic of this boosted topology is shown

in Figure 10.1.

The four-momentum of the neutrino system in a given decay leg is pνi = pντi +

pν`i , where the subscript i refers to the specific decay leg. In the collinear regime,

this can be approximated as a rescaling of the visible lepton momentum such that
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pνi ' ξip`i , where ξi is the rescaling factor. Since the tau four-momentum, pτi , is

the sum of the visible lepton’s four-momentum and the neutrino system’s four-

momentum, it can be written as pτi = (1+ξi)p`i . In this case, the di-tau invariant

mass is given by

m2
ττ = (pτ1 + pτ2)2 ' 2p`1 · p`2(1 + ξ1)(1 + ξ2), (10.3)

where the masses of the tau leptons have been neglected in the second step since

the boosted topology ensures that the tau leptons are ultra-relativistic in the

laboratory frame. All that is needed now is to solve for the scaling factors ξ1 and

ξ2, which are constrained by the missing transverse momentum according to

pmiss
T = ξ1p`1T + ξ2p`2T . (10.4)

This is just a system of two equations with two unknown variables, which can

easily be solved. Notably, as defined in Equation 10.3, m2
ττ can obtain negative

values if exactly one of the decay legs has ξi < −1 and Emiss
T > |p`iT |. It is also

asymmetric aboutmττ = 0. Negativemττ situation corresponds to events in which

one of the leptons is in the opposite hemisphere of the detector as the the missing

transverse momentum and has a pT that is smaller in magnitude. This is a rare

occurrence for boosted Z → ττ events but is more likely for less-boosted processes

like WW and tt̄ where the leptons are produced back-to-back. To account for the

asymmetric nature of m2
ττ , the mττ discriminating variable is finally defined to be

mττ =


√
m2
ττ , for m2

ττ ≥ 0

−
√
|m2

ττ |, for m2
ττ < 0

. (10.5)

With this definition, the region defined by 0 GeV < mττ < 160 GeV is expected
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II. SPARTICLES IN MOTION

Motivated by R parity and phenomenologically similar
new physics models with aZ2 symmetry, we consider cases
where initial sparticle parents ( ~P) are pair produced, and
each decay to a system of reconstructable SM particles and
one, or more, weakly interacting ones. In the following
discussion, we assume for simplicity that the masses of
these parents are identical, as are the masses their weakly
interacting daughters ( ~χ0). An experimental search for
instances of these events can be difficult if the mass
splitting between these sparticle states, m ~P−m~χ0 , is small,
as the momenta of each parent sparticle’s decay products
(both visible and invisible) will not receive a large amount
of momentum in their production. If the mass-splitting
scale in sparticle production is to that of SM background
processes then disentangling the two is challenging.
In this case, it is not the mass-splitting scale which is

distinctive from backgrounds, but rather, the potentially
large absolute mass scale of weakly interacting particles in
these events. While we cannot measure these masses from
only the measurement of missing transverse momentum

( ~ET), as it only represents the sum momentum of escaping
particles, we can gain indirect sensitivity by observing their
reaction to a probing force. The laboratory of a hadron
collider naturally provides such a probe: strong initial state
radiation from interacting partons can provide large
momentum to the sparticles produced in these reactions,
in turn endowing their decay products with this momentum.
In the limit where the LSPs receive no momentum from

their parents’ decays, the ~ET results solely from the recoil
against ISR, and the following approximation holds:

~ET ∼ −~pISR
T ×

m~χ

m ~P
; ð1Þ

where ~pISR
T is the total ISR system transverse momentum.

Recent studies of searches for compressed SUSY signals
in the literature have suggested exploiting this feature. In
these analyses, a kinematic selection is used to isolate
events where a single, hard ISR jet recoils approximately
opposite ~ET in the event transverse plane. One can then use

various reconstructed proxies of the quantity j ~ET j=j~pISR
T j,

such as j ~ET j=p
lead jet
T or j ~ET j=

ffiffiffiffiffiffiffi
HT

p
, as observables sensitive

to the presence of massive LSPs [6,7]. Alternatively, using
assumed knowledge of the sparticle mass splittings, one
can attempt to sort non-ISR jets from radiative ones using,
for example, the sum of jet energies in each class and
multiplicities as discriminating observables [8]. While
these approaches all benefit from the above feature, they
are limited to the subset of events where the momentum of
the ISR system is carried predominantly by a single jet.
For less restrictive event selections, the suggested observ-
ables become progressively less accurate estimators of

j ~ET j=j~pISR
T j and, correspondingly, less sensitive to the

kinematic correlation between radiated jets and missing
momentum.
We propose a different approach to an ISR-assisted

search for compressed signals, both generalizing to cases
where momentum can be shared democratically among
many radiated jets and attempting to more accurately
reconstruct the quantity j ~ET j=j~pISR

T j. Using the technique
of recursive jigsaw reconstruction, a “decay tree” is
imposed on the analysis of each event, chosen to capture
the kinematic features specific to the signal topology under
study. The decay tree both specifies the systems of relevant
reconstructed objects and the reference frames correspond-
ing to each intermediate combination of them. The analysis
of each event proceeds by assigning reconstructed objects
to their appropriate places in the decay tree, determining
the relative velocities relating each reference frame, and
calculating kinematic observables from the resulting event
abstraction. The simplified decay tree for generic com-
pressed scenarios is shown in Fig. 1.
In this decay tree, each reconstructed object hypoth-

esized to come from the decay of sparticles in the event is
assigned to the “V” system, while those identified as initial
state radiation are associated with “ISR.”With the missing
momentum reconstructed in each event interpreted as the
system “I,” the total sparticle system (“S”) and center-of-
mass system of the whole reaction (“CM”) are defined as
the sum of their constituents. The CM frame is approxi-
mated by considering only transverse momenta, and by
setting the mass of the I frame to zero. With the four-
vectors of each element of the decay tree specified, an

estimator of the quantity j ~ET j=j~pISR
T j, RISR, is calculated as

RISR ≡ j~pCM
I;T · p̂CM

ISR;T j
j~pCM

ISR;T j
; ð2Þ

LAB

CM

ISR S
V I

Lab State

Decay States

Visible States

Invisible States

FIG. 1. A simplified decay tree diagram for analyzing com-
pressed signal topologies in events with an ISR system.
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035031-2

Figure 10.2: The RJR decay tree imposed on the events [113]. This tree targets
topologies consistent with ISR activity boosting a SUSY system that decays to
visible and invisible particles.

to be dominated by fully leptonic Z → ττ events, with a peak at the Z mass.

RISR and MS
T Both of these variables are derived from the recursive jigsaw

reconstruction technique [112], which attempts to resolve issues associated with

events containing indistinguishable or invisible particles by imposing a set of decay

trees and reference frames consistent with the targeted event topology. In these

searches, the jets associated with the hadronic ISR activity are assigned to a frame

called “ISR,” while the remaining visible and invisible particles in the events that

originate from the sparticle decays are assigned to the “S” frame. The S frame

itself can be further divided in the decay tree according an invisible frame “I” that

contains the missing transverse momentum associated to the final-state χ̃0
1 par-

ticles, and a visible frame “V” which consists of the visible final-state particles

from the sparticle decays. Together, the ISR and S frames form the center-of-mass

frame “CM,” which moves with respect to the lab frame “Lab.” A schematic of

this decay tree is shown in Figure 10.2.
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   Identifying ISR in CM Frame

• ISR is identified in the CM frame by minimizing the 
sparticle system and ISR system masses 

!
• Can think of this in 2 equivalent ways 

!
1. Large jet clustering along two jet axis that are back 

to back using mass as a distance metric 

!
2. Minimizing Ms and MISR is identical to maximizing the 

amount of back to back PT of the two systems. 

• Because Etot = sqrt(MS

2

 + PT S

2

) + sqrt(MISR

2

 + PT ISR

2

) 

• Etot is constant for the event and PT = PT S = -PT ISR 

• Maximizing PT along a back to back axis is the 
same thing as calculating the thrust axis 

• The event is then divided into hemisphere wheres 
the hemisphere containing the MET is the sparticle 
system and other hemisphere the ISR system.

5

Accepted 
Jets

MET

Thrust 
Axis

ISR 
Hemisphere

Sparticle 
Hemisphere

CM Frame

Figure 10.3: A schematic of an event that is divided into the plane transverse
to the thrust axis as determined by the applied jigsaw rule in the RJR procedure.
All objects in the event are placed into either the sparticle or ISR hemisphere.

The ISR, V, and I frames consist of the four-vectors of the objects that are

assigned to them. In the case of the I frame, which consists of the missing trans-

verse momentum vector, both the z component of the four-vector and mass of

the invisible particles are unknown. Following the procedure laid out in [113],

the longitudinal component of the momentum and the mass are both set to zero.

For the V and ISR frames, there is an assignment ambiguity. While the leptons

are obviously assigned to the V frame, a choice must be made when assigning

other final-state particles to either V or ISR. This is accomplished via a “jigsaw”

rule, which in this case, is designed to maximize the back-to-back pT of the ISR

and S frames. This essentially defines the thrust axis that divides the event into

two hemispheres in the CM frame, as shown schematically in Figure 10.3. One

hemisphere is expected to contain the ISR system and the other is expected to

contain the sparticle system.

From here, the RJR variables are constructed. RISR is designed to be an

estimator of the quantity Emiss
T /pISR

T , where pISR
T is the transverse momentum of
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the ISR system. The explicit definition takes the form

RISR ≡
∣∣∣~pCM

I,T · p̂CM
ISR,T

∣∣∣∣∣∣~pCM
ISR,T

∣∣∣ . (10.6)

Signal events, therefore, exhibit a peak at RISR ≈ 1. An additional feature is that

RISR scales approximately with m(χ̃0
1)

m(s̃) , where s̃ is a placeholder for a generic parent

sparticle that decays to χ̃0
1. Therefore, RISR is sensitive to the mass-splitting,

which is exploited in the SR definitions. Finally, the MS
T variable is defined to be

transverse mass of the S system, which tends to peak at lower values compared

to the backgrounds.

m`` The invariant mass of the dilepton system. This variable is kinematically

bound by m(χ̃0
2) −m(χ̃0

1) in simplified electroweakino models considered and its

shape is used as the final discriminant in those searches. An upper bound on m``

is also useful for rejecting backgrounds involving on-shell Z → `` decays, such as

those from Z + jets and ZZ → ``νν.

m
mχ̃

T2 The “stransverse mass” [114, 115], which is the generalization of the trans-

verse mass for events in which a particle is pair-produced and each of these par-

ticles subsequently decays into one visible and one invisible particle. Such is the

case for the slepton signatures considered in this dissertation, where each slepton

decays according to ˜̀→ `χ̃0
1. The complication in these events arises from the

ambiguity induced by the presence of two invisible particles in the final state.

The transverse momenta of these particles cannot be inferred separately, since

they both contribute to pmiss
T . If it were possible to reconstruct each invisible

particle’s transverse momenta, then one could simply derive a bound on slepton
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mass according to

m˜̀≥ max
{
mT

(
p`1T ,p

χ̃1
T

)
,mT

(
p`2T ,p

χ̃2
T

)}
(10.7)

Since this is not possible, the stransverse mass attempts to recover the useful

features of the transverse mass by considering all possible partitions of pmiss
T among

the two invisible particles and performing a minimization over these partitions.

Defining qT to be sum of the invisible transverse momenta vectors pχ̃1
T and pχ̃2

T ,

the stransverse mass is expressed as

m
mχ̃
T2

(
p`1T ,p

`2
T ,pmiss

T

)
= min

qT

(
max

[
mT

(
p`1T ,qT,mχ̃

)
,mT

(
p`2T ,pmiss

T − qT,mχ̃

)])
,

(10.8)

which retains the feature that mmχ̃
T2 ≤ m˜̀ when the mass of the invisible particles,

mχ̃, is correctly chosen. In the searches presented here, it is assumed in the

calculation of mmχ̃
T2 that mχ̃ = 100 GeV, which is denoted by the variable m100

T2 .

This distribution exhibits a kinematic endpoint that corresponds to the mass-

splitting between the slepton and the lightest neutralino. This feature provides

an excellent handle on signal and background discrimination, and is therefore used

as the final discriminant in slepton search. Importantly, in the slepton mass ranges

and mass-splittings considered by this search, it is found that them100
T2 distribution

does not change significantly for the generated signals with mχ̃ 6= 100 GeV.

10.2 Preselection

All events entering the SRs are required to pass a common set of cuts called

the preselection. The purpose of the preselection is to provide a starting point for

dedicated SR optimization studies by first establishing a loose selection that tar-
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Table 10.1: Preselection requirements applied to all events entering into elec-
troweakino and slepton SRs.

Variable Preselection Requirements
Number of leptons = 2 leptons
Lepton pT [GeV] p`1T > 5
∆R`` ∆Ree > 0.30, ∆Rµµ > 0.05, ∆Reµ > 0.2
Lepton charge and flavor e±e∓ or µ±µ∓
Lepton invariant mass [GeV] 3 < mee < 60, 1 < mµµ < 60
J/ψ invariant mass [GeV] veto 3 < m`` < 3.2
mττ [GeV] < 0 or > 160
Emiss

T [GeV] > 120
Number of jets ≥ 1
Number of b-tagged jets = 0
Leading jet pT [GeV] ≥ 100
min(∆φ(any jet,pmiss

T )) > 0.4
∆φ(j1,pmiss

T ) ≥ 2.0

gets signal-like topologies and suppresses common backgrounds. Control regions

can also be built by inverting one or more of these preselection requirements so

that they remain orthogonal to the SRs but close in kinematic phase space. A

summary of the preselection is presented in Table 10.1 and the variables therein

are defined below.

Exactly two signal leptons of the same flavor (ee or µµ) and opposite electric

charge are required since the sleptons are assumed to be pair-produced and the

electroweakino searches target leptons from Z∗ → `` decays. In this dissertation,

the lepton with the largest pT in the event is referred to as the “leading” lepton

(`1) and the softer lepton in the event is denoted as the “subleading” lepton (`2).

This convention is carried over to the jets as well, such that the leading jet in the

event is the jet with highest pT and is indicated by j1. In order to reduce the

fake/non-prompt lepton background in the SRs, the leading lepton in the event
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is required to have p`1T > 5 GeV.

To promote the boosted topology in which the SUSY particles recoil against

hadronic ISR activity, the leading jet in the event must have pT > 100 GeV and the

missing transverse energy must satisfy Emiss
T > 120 GeV. It is possible, though,

to reconstruct significant Emiss
T in events where there is also a significant mis-

measurement of the jet energy. In such events, the missing transverse momentum

vector, pmiss
T , tends to be aligned with one the jets. To suppress these events, the

minimum angular separation in φ between any of the jets and pmiss
T is required to

be greater than 0.4 radians. The leading jet and pmiss
T are also required to have

an angular separation in φ of at least 2.0 radians in order to further enforce the

boosted topology. Due to the large t → Wb branching ratio, events are rejected

if they contain any b-tagged jets in order to suppress the backgrounds containing

top-quarks.

Various selections are applied based on the invariant mass of objects decaying

to leptons in order to suppress these resonant backgrounds. The invariant mass

of the di-lepton system, m``, is required to be less than 60 GeV in order to veto

on-shell Z → ee/µµ decays. On the other end of the spectrum, requiring m`` >

1 GeV reduces the contribution from collinear leptons due to energetic photon

conversions. The requirement that ∆R`` > 0.05 also helps to reject events with

photon conversions. In order to veto events with lepton pairs originating from J/ψ

decays, the invariant di-lepton invariant mass must not satisfy 3.0 GeV < m`` <

3.2 GeV. No equivalent vetoes exist for other low-mass resonances such as the Υ

states since their contributions to the SRs are expected to be negligible. As good

background modeling could not be achieved in ee events with m`` < 3 GeV, these

events are excluded from the SRs. Finally, events entering the SRs are required

have mττ < 0 GeV or mττ > 160 GeV in order to suppress fully leptonic Z → ττ
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events.

The remaining cuts at preselection-level are on the angular distances between

the leptons in order to ensure good modeling of the fake/non-prompt lepton back-

ground. As noted in Section 11.2.1, the data-driven estimate of the fake/non-

prompt lepton background becomes difficult in highly collimated di-lepton events

due to correlations between their isolation cones and shower shapes (in the case

of electrons). Events containing two electrons are therefore required to have

∆Ree > 0.30 in order to avoid overlapping electron showers, while events con-

taining an electron and a muon must satisfy ∆Reµ > 0.2 to avoid the muon

overlapping with the electron showers. Note that these eµ events do not enter any

of the SRs but are instead only used in CRs and VRs, as described in Section 11.1.

10.3 Electroweakino Signal Regions

In total, four orthogonal SRs are constructed for the electroweakino search in

order to establish sensitivity to a wide range possible mass-splittings. In each

case, the final discriminant is m``, which is divided into exclusive bins in order

to exploit the kinematic endpoint that is expected in signal events. The final

event selections that result from the optimizations described below are given in

Table 10.2, where the preselection cuts from Table 10.1 are implied.

A region called SR–E–high provides the majority of the overall electroweakino

sensitivity and is kept orthogonal from other SRs called SR–E–low and SR–E–

med by requiring Emiss
T > 200 GeV. Both SR–E–low and SR–E–med, meanwhile,

require 120 GeV < Emiss
T < 200 GeV. SR–E–low is constructed to be sensitive to

electroweakinos with ∆m & 10 GeV, while SR–E–med is sensitive to low mass-

splitting. As indicated in Table 10.1, SR–E–low and SR–E–med are constructed

to be orthogonal based on Emiss
T /H lep

T . Finally, a region called SR–E–1`1T , briefly
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Table 10.2: Requirements applied to events entering into the four signal regions
used for electroweakino searches. The 1`1T preselection requirements from Ta-
ble 10.1 are implied for SR–E–1`1T , while the 2` ones are implied for the other
SRs.

Electroweakino SR Requirements
Variable SR–E–low SR–E–med SR–E–high SR–E–1`1T
Emiss

T [GeV] [120, 200] [120, 200] > 200 > 200
Emiss

T /H lep
T < 10 > 10 – > 30

∆φ(lep,pmiss
T ) – – – < 1.0

Lepton or track pT [GeV] p`2T > 5 +m``/4 – p`2T > min(10, 2 +m``/3) ptrack
T < 5

MS
T [GeV] – < 50 – –

m`1
T [GeV] [10, 60] – < 60 –

RISR [0.8, 1.0] – [max(0.85, 0.98− 0.02×m``), 1.0] –

described below, also requires Emiss
T > 200 GeV but is kept orthogonal from SR–

E–high by selecting events containing one signal lepton and one isolated track

that is not associated to a signal lepton. This SR targets events from signals with

very small mass splittings where one of the leptons is too soft to be reconstructed.

SR–E–high In order to be on the plateau of the inclusive Emiss
T -trigger efficiency

curve, where the efficiency is > 95%, SR–E–high requires Emiss
T > 200 GeV. The

m`` binning corresponding to the exclusive SR–E–high regions is chosen to be

m`` [GeV]: [1,2], [2,3], [3.2,5], [5,10], [10,20], [20,30], [30,40], [40,60],

which provides good discrimination for a large range of mass-splittings.

An important feature of the signal processes is that RISR and the transverse

momenta of the leptons are correlated with the mass-splitting. In order to exploit

these features, sliding cuts are placed on RISR and p`2T that scale with m``. The

latter cut is particularly powerful in discriminating signal from the fake/non-

prompt lepton background. The scaling retains good lepton efficiency for signals

with low ∆m, while rejecting fake/non-prompt leptons in the larger m`` bins. The

m``-dependence of both RISR and p`2T is roughly linear, which is reflected by the

linear optimized cuts.
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In each case, N − 1 scans are performed separately in the exclusive m`` bins

using the Zn metric, and the evolution of the optimal cuts withm`` is used to derive

final cut values. Examples of the N − 1 scans for p`2T are shown in Figure 10.4,

where the optimal cuts are seen to increase when moving to a higher m`` bin.

The optimized cut that provides good discrimination for a variety of signal mass-

splittings is given by p`2T > min(10 GeV, 2 GeV+m``/3). The correlations between

RISR and m`` for both the background and higgsino signals of different mass-

splittings are shown in Figure 10.5, where the red line indicates the analogous

optimized sliding cut on RISR: RISR > [max(0.85, 0.8− 0.02×m``, 1.0)].

Finally, the m`1
T variable is found to provide good separation between signal

and background events containing W bosons, which peak near the W mass, while

signal events reside at lower values. Since the fake/non-prompt lepton background

originates mostly from W + jets events in which a jet is reconstructed as a lepton,

this variable also provides good rejection power against these events. During the

optimization, the N − 1 procedure for m`1
T is performed in separate m`` bins,

but no strong dependence is found on the optimal cut. Instead, a simple cut of

m`1
T < 60 GeV is found to perform well for a wide variety of higgsino signals, as

shown in the m``-inclusive distribution in Figure 10.6.

Figure 10.7 shows the final blinded SRs ee and µµ events using the exclusive

m`` binning defined above, prior to any normalization of the major backgrounds.

Despite the cut on p`2T designed to reject fake/non-prompt leptons, these processes

still represent the largest expected background in these SRs.

SR–E–low/SR–E–med The Emiss
T /H lep

T variable has been shown to be a good

discriminant in compressed SUSY topologies and was used in a previous AT-

LAS search for these signal scenarios [116]. Its distribution is sensitive to the

electroweakino mass splitting, where larger mass splittings correspond to harder
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(a) 1 ≤ mll < 2 GeV.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
Fake/nonprompt (1.2, 34, 57.9%)

 (0.0, 0, 0.0%)l 2≥ tt

t, tW (0.0, 0, 0.0%)

Top other (0.0, 2, 0.0%)

)+jets (0.0, 0, 0.0%)ττ→Z(

)+jets (0.0, 0, 0.0%)µµee/→Z(

 (0.0, 0, 0.0%)lVV 4

 (0.8, 21, 37.0%)lVV 3

 (0.1, 2, 5.1%)lVV 2

 (0.0, 0, 0.0%)lVV 1

Higgs (0.0, 0, 0.0%)

VVV (0.0, 0, 0.0%)

 InternalATLAS
1− = 13 TeV, 140.5 fbs

µµSRSF-RJR-MLLab ee+
SusySkimHiggsino v2.7b (R21)

15+16+17+18 Data, mc16a+d+e

Sample (Weighted, Raw, Fraction)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
nBJet20_MV2c10 == 0
(MTauTau < 0 || MTauTau > 160)
RJR_RISR > max(0.85,0.98-2*mll/100)
RJR_RISR < 1.0
mt_lep1<60
mll >= 2 && mll < 3
lep1Flavor == lep2Flavor
 met_Et > 200 
RandomRunNumber > 0  
&& ((lep1TruthMatched && lep2TruthMatched) || 
(DatasetNumber >= 407311 && DatasetNumber <= 407315))

0 2 4 6 8 10 12 14 16 18 20
) [GeV]2l(T

p

0

0.5

1

S
ig

ni
fic

an
ce

 Z Cut right
 [102, 100] (0.0, 1)H

~

 [128, 125] (2.0, 409)H
~

 [205, 200] (1.7, 998)H
~

 [165, 150] (0.9, 106)H
~

 [145, 125] (0.4, 44)H
~

SM Total (2.1, 59, 100%)
 20% syst⊕Stat 

(b) 2 ≤ mll < 3 GeV.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7 Fake/nonprompt (5.7, 178, 61.0%)

 (0.1, 1, 1.4%)l 2≥ tt

t, tW (0.0, 0, 0.0%)

Top other (0.0, 2, 0.1%)

)+jets (1.4, 14, 14.9%)ττ→Z(

)+jets (0.0, 0, 0.0%)µµee/→Z(

 (0.0, 8, 0.0%)lVV 4

 (1.5, 164, 16.0%)lVV 3

 (0.6, 44, 6.1%)lVV 2

 (0.0, 0, 0.0%)lVV 1

Higgs (0.0, 5, 0.4%)

VVV (0.0, 0, 0.0%)

 InternalATLAS
1− = 13 TeV, 140.5 fbs

µµSRSF-RJR-MLLb ee+
SusySkimHiggsino v2.7b (R21)

15+16+17+18 Data, mc16a+d+e

Sample (Weighted, Raw, Fraction)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
nBJet20_MV2c10 == 0
(MTauTau < 0 || MTauTau > 160)
RJR_RISR > max(0.85,0.98-2*mll/100)
RJR_RISR < 1.0
mt_lep1<60
mll >= 3.2 && mll < 5
lep1Flavor == lep2Flavor
 met_Et > 200 
RandomRunNumber > 0  
&& ((lep1TruthMatched && lep2TruthMatched) || 
(DatasetNumber >= 407311 && DatasetNumber <= 407315))

0 2 4 6 8 10 12 14 16 18 20
) [GeV]2l(T

p

0

0.5

1

1.5

2

S
ig

ni
fic

an
ce

 Z Cut right
 [102, 100] (0.0, 5)H

~

 [128, 125] (0.0, 10)H
~

 [205, 200] (1.4, 799)H
~

 [165, 150] (4.1, 502)H
~

 [145, 125] (2.8, 241)H
~

SM Total (9.4, 416, 100%)
 20% syst⊕Stat 

(c) 3.2 ≤ mll < 5 GeV.
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(d) 5 ≤ mll < 10 GeV.
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(e) 10 ≤ mll < 15 GeV.
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(f) 15 ≤ mll < 20 GeV.

Figure 10.4: Example N − 1 plots for p`2T in SR–E–high. The bottom panel
shows the Zn values for different higgsino signals and different cuts. In this case,
the black arrow indicates the lower bound on p`2T .
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Figure 10.6: N-1 plots of analysis variables for the high-Emiss
T higgsino regions inclusively inmll . The legend includes

the relative contribution of each background. Statistical uncertainties and a flat 20% background systematic uncer-

tainty are included. Arrows indicate the cut value chosen for the SR.
���

Figure 10.6: N − 1 plot for the m`1
T variable in the m``-inclusive SR–E–high.

The bottom panel shows the Zn values for different higgsino signals and different
cuts. The black arrow indicates the final cut used in the definition of the SR.
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Figure 10.7: The blinded m`` distributions in SR–E–high for the ee channel
(left) and the µµ channel (right) before normalizing the backgrounds with the
CRs. The uncertainty bands account for both statistical uncertainties on the
backgrounds and a flat 20% systematic uncertainty.

leptons and thus smaller values of Emiss
T /H lep

T . In order to exploit this, the low-

Emiss
T SRs are kept orthogonal by a cut on this variable, with SR–E–low requiring

Emiss
T /H lep

T < 10 and SR–E–med requiring Emiss
T /H lep

T > 10. In this way, SR–E–

low has sensitivity to signals with larger mass-splitting, while SR–E–med targets

lower mass splittings. Figure 10.9 shows both the Emiss
T and Emiss

T /H lep
T distri-

butions for higgsino signals with a variety of mass-splittings after applying the

preselection (except the Emiss
T > 200 GeV requirement). The m`` binning within

SR–E–low and SR–E–med is the same as that used for SR–E–high. The only

difference is that the bins with m`` > 30 GeV are excluded from SR–E–med, since

these bins are not expected to be populated by the low-∆m signals that this SR

is sensitive to.

The combination of the Emiss
T < 200 GeV and Emiss

T /H lep
T > 10 cuts that partly

define SR–E–med restricts the value of H lep
T to a narrow range of 12 GeV < H lep

T <

20 GeV. Given the available statistics, cuts on RISRand p`2T while retaining some
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signal acceptance are not feasible. The MS
T variable, though, was observed to

provide additional discrimination for the targeted low mass-splitting signals and

an N − 1 scan in the various m`` bins suggests an optimal cut of MS
T < 50 GeV,

as shown in Figure 10.8. This variable performs well since SR–E–med is domi-

nated by the fake/non-prompt lepton background, which primarily originates from

misidentifiedW + jets events. In such events, MS
T has a peak around theW boson

mass, which is effectively cut away by the MS
T < 50 GeV requirement.

On the other hand, the Emiss
T /H lep

T < 10 requirement applied to SR–E–low does

not limit the phase space as severely, leaving enough room for further optimization.

It is found that in these less-boosted, low-Emiss
T regions, the correlation between

RISR and m`` is diminished, thought the signals still peak near one. Ultimately,

a window cut of 0.8 < RISR < 1.0 is chosen for SR–E–low, which provides a good

balance of background rejection and signal acceptance for the larger mass-splitting

signals. The m``-dependent cut is still viable for this SR, though, since fake/non-

prompt leptons are typically soft, while high-∆m signals tend to produce harder

leptons. The strategy used for the optimization of this cut in SR–E–high was ap-

plied to SR–E–low, and the resulting cut is p`2T > 5 GeV+m`` [GeV]
4 . Finally, another

window cut is placed on m`1
T according to 10 GeV < m`1

T < 60 GeV. While the

large-∆m signals are roughly flat in this variable, the Z(∗)/γ∗(→ ττ) + jets back-

ground tends to peak around m`1
T < 10 GeV, and the remaining backgrounds peak

around m`1
T & 80 GeV, motivating this cut.

The blinded SRs with this binning scheme are shown in Figure 10.10 and

Figure 10.11 for SR–E–low and SR–E–med, respectively, before any background

normalization. Since fake/non-prompt leptons tend to be soft, the fake/non-

prompt background mostly falls into SR–E–med.

114



1−10

1

10

E
nt

rie
s 

/ 1
0 

G
eV ATLAS Internal

-1 = 13 TeV, 140.0 fbs

 < 2ll1 < m

SusySkimHiggsino v2.7b

fakes (FF) (24.24) diboson (8.05)

Zttjets (3.64) Z+jets (1.01)

other (0.89) top (0.09)

: (102,100) (1.94)H
~

: (103,100) (11.49)H
~

: (155,150) (3.90)H
~

: (135,125) (3.48)H
~

0 20 40 60 80 100 120 140 160 180 200
 [GeV]S

TM

0
1
2

Z

1−10

1

10

E
nt

rie
s 

/ 1
0 

G
eV ATLAS Internal

-1 = 13 TeV, 140.0 fbs

 < 3ll2 < m

SusySkimHiggsino v2.7b

fakes (FF) (13.47) diboson (6.35)

Z+jets (1.39) Zttjets (1.20)

top (0.16) other (0.10)

: (102,100) (0.00)H
~

: (103,100) (3.09)H
~

: (155,150) (4.04)H
~

: (135,125) (4.58)H
~

0 20 40 60 80 100 120 140 160 180 200
 [GeV]S

TM

0
1
2

Z

1−10

1

10

E
nt

rie
s 

/ 1
0 

G
eV ATLAS Internal

-1 = 13 TeV, 140.0 fbs

 < 5ll3 < m

SusySkimHiggsino v2.7b

fakes (FF) (26.58) diboson (3.25)

Z+jets (0.39) top (0.24)

other (0.06) Zttjets (-1.30)

: (102,100) (0.00)H
~

: (103,100) (0.00)H
~

: (155,150) (2.96)H
~

: (135,125) (11.25)H
~

0 20 40 60 80 100 120 140 160 180 200
 [GeV]S

TM

0
1
2

Z

1−10

1

10

210
E

nt
rie

s 
/ 1

0 
G

eV ATLAS Internal
-1 = 13 TeV, 140.0 fbs

 < 10ll5 < m

SusySkimHiggsino v2.7b

fakes (FF) (121.43) diboson (8.43)

Zttjets (7.19) top (1.44)

other (0.05) Z+jets (0.00)

: (102,100) (0.05)H
~

: (103,100) (0.15)H
~

: (155,150) (0.20)H
~

: (135,125) (19.56)H
~

0 20 40 60 80 100 120 140 160 180 200
 [GeV]S

TM

0
1
2

Z

1−10

1

10

210

E
nt

rie
s 

/ 1
0 

G
eV ATLAS Internal

-1 = 13 TeV, 140.0 fbs

 < 20ll10 < m

SusySkimHiggsino v2.7b

fakes (FF) (298.61) Zttjets (16.83)

diboson (9.36) top (2.77)

Z+jets (1.51) other (0.86)

: (102,100) (0.07)H
~

: (103,100) (0.65)H
~

: (155,150) (0.53)H
~

: (135,125) (3.23)H
~

0 20 40 60 80 100 120 140 160 180 200
 [GeV]S

TM

0
1
2

Z

1−10

1

10

210

E
nt

rie
s 

/ 1
0 

G
eV ATLAS Internal

-1 = 13 TeV, 140.0 fbs

 < 30ll20 < m

SusySkimHiggsino v2.7b

fakes (FF) (94.28) diboson (1.53)

top (0.82) other (0.02)

Z+jets (0.00) Zttjets (-0.07)

: (102,100) (0.00)H
~

: (103,100) (0.01)H
~

: (155,150) (0.01)H
~

: (135,125) (0.13)H
~

0 20 40 60 80 100 120 140 160 180 200
 [GeV]S

TM

0
1
2

Z

Figure 10.8: N − 1 plots for the MS
T variable in each exclusive m`` bin of SR–

E–med. The black arrow indicates the final cut in the SR definition.

115



100 150 200 250 300 350 400 450 500
 [GeV]miss

TE

0

0.05

0.1

0.15

0.2

0.25

0.3

no
rm

al
iz

ed
 a

.u
.

ATLAS Internal
-1

 L dt = 140.0 fb∫  = 13 TeVs

preselection

SusySkimHiggsino v2.5

: (102,100)H
~

: (155,150)H
~

: (135,125)H
~

: (130,100)H
~

: (140,100)H
~

0 5 10 15 20 25 30 35 40 45 50
 [GeV]

lep
T/Hmiss

TE

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

no
rm

al
iz

ed
 a

.u
.

ATLAS Internal
-1

 L dt = 140.0 fb∫  = 13 TeVs

preselection

SusySkimHiggsino v2.5

: (102,100)H
~

: (155,150)H
~

: (135,125)H
~

: (130,100)H
~

: (140,100)H
~

Figure 10.9: The Emiss
T (left) and Emiss

T /H lep
T (right) distributions for a variety of
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Figure 10.10: The blinded m`` distributions in SR–E–low for the ee channel
(left) and the µµ channel (right) before normalizing the backgrounds with the
CRs. The uncertainty bands account for both statistical uncertainties on the
backgrounds and a flat 20% systematic uncertainty.
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Figure 10.11: The blinded m`` distributions in SR–E–med for the ee channel
(left) and the µµ channel (right) before normalizing the backgrounds with the
CRs. The uncertainty bands account for both statistical uncertainties on the
backgrounds and a flat 20% systematic uncertainty.

SR–E–1`1T A signal region called SR–E–1`1T was designed to target elec-

troweakinos with very small mass-splittings. In these scenarios, one of the leptons

may be too soft to be reconstructed as such, leading to a significant loss in signal

efficiency. In most cases, though, these soft leptons will still lead to reconstructed

tracks, which have a minimum pT threshold of 500 MeV. The approach taken

by SR–E–1`1T is therefore to select events with exactly one reconstructed signal

lepton and one isolated signal track (of the opposite electric charge), which is used

as a proxy for the second lepton. In this case, the final discriminating variable is

the invariant mass of the selected lepton and track, m`track. In order to reduce the

large combinatorial background of tracks in a given event, the signal tracks must

be matched to an electron or muon candidate that have transverse momentum

reconstruction thresholds of 3 GeV and 2 GeV, respectively. To remain orthog-

onal to the two-lepton electroweakino SRs, these electron and muon candidates

must fail the signal lepton requirements. A similar preselection as that listed in
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Table 10.1 is employed in order to select boosted topologies, including a cut on

the angular distance between the lepton and track of 0.05 < ∆R`track < 1.5 to

enforce that they be near each other. The remaining SR requirements are listed

in Table 10.2, which are in place to maximize the signal event yields with respect

to the background from selecting random tracks in the event.

Since MC is not expected to provide good modeling of this combinatorial

background, the background estimation is completely data-driven using events in

which the lepton and track have the same electric charge. This method assumes

that same-sign and opposite-sign events are produced with equal rates such that

the same-sign events can directly used as the background estimate in the opposite-

sign SR. Uncertainties on this assumption are derived by comparing same-sign

and opposite-sign event yields in kinematic phase spaces that are close to the

SR. Since SR–E–1`1T is in place to target very compressed signals, the lepton-

track invariant mass is required to satisfy 0.5 GeV < m`track < 5 GeV with bins

boundaries at m`track = 0.5, 1, 1.5, 2, 3, 4, and 5 GeV. A detailed description of

this SR and its associated background estimation is beyond the scope of this

dissertation, but its results are included in the model-independent search for new

physics detailed in Section 14.3 as well as the model-dependent limits within the

wino/bino models that are derived in Section 15.2.1.

10.4 Slepton Signal Regions

Two separate SRs called SR–S–high and SR–S–low are optimized to provide

sensitivity to slepton production over a wide range of mass splittings. The op-

timized SR requirements are given in Table 10.3, where the preselection require-

ments in Table 10.1 are implied. Similar to the electroweakino SRs, they are

kept orthogonal by cuts on Emiss
T , with SR–S–low requiring 150 GeV < Emiss

T <
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Table 10.3: Requirements applied to all events entering into signal regions used
for slepton searches. The preselection requirements from Table 10.1 are implied.

Slepton SR Requirements
Variable SR–S–low SR–S–high
Emiss

T [GeV] [150, 200] > 200
m100

T2 [GeV] < 140 < 140
p`2T [GeV] > min(15, 7.5 + 0.75× (m100

T2 − 100)) > min(20, 2.5 + 2.5× (m100
T2 − 100))

RISR [0.8, 1.0] [max(0.85, 0.98− 0.02× (m100
T2 − 100)), 1.0]

200 GeV and SR–S–high requiring Emiss
T > 200 GeV. SR–S–high is designed to

have good sensitivity over the bulk of the m( ˜̀) vs. ∆m( ˜̀, χ̃0
1) mass plane, while

SR–S–low provides additional sensitivity to signals with larger mass splittings

(∆m & 10 GeV). For m( ˜̀) = 100 GeV, the inclusion of SR–S–low extends the ex-

pected sensitivity by ∼ 10 GeV in ∆m. The exclusive SRs within SR–S–high and

SR–S–low, which consist of non-overlapping regions in m100
T2 , are binned according

to:

m100
T2 [GeV]: [100, 100.5], [100.5,101],[100,102],[102,105],

[105, 110], [110, 120], [120, 130], [130, 140].

The optimization strategy for the slepton SRs is similar to that used for the

electroweakino SRs. Cuts on p`2T scale withm100
T2 in order to exploit the dependence

of the lepton kinematics on the signal mass splitting. These sliding cuts manage

to retain good soft lepton efficiency for the most compressed signals, while sig-

nificantly reducing the background due to fake/non-prompt leptons in the higher

m100
T2 bins that provide sensitivity to signals with larger mass splittings. For a fixed

mass-splitting, the leptons from the slepton decays will tend to be harder than

those from the electroweakino decays due to the two-body nature of the former

process. This allows for tighter sliding cuts on p`2T in SR–S–high and SR–S–low

compared to those in the electroweakino SRs, thereby giving slightly better at

rejection of fake/non-prompt leptons, which tend to be very soft.
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SR–S–high Since the lepton pT in signal events should scale roughly linearly

with ∆m, the m100
T2 -dependent cut on p`2T was optimized by considering a linear

cut of the form p`2T > α(m100
T2 − 100 GeV) + β. Subsequently, a two-dimensional

optimization was performed over the variables α and β according to the following

procedure.

For each cut corresponding to particular values of α and β, the significance

metric Zn(i) is calculated for each m100
T2 bin i, assuming a 30% background uncer-

tainty. In order to better emulate the results of a likelihood test that exploits the

shape of the m100
T2 distribution, each Zn(i) is added in quadrature according to

Zn =
∑
i

√
Zn(i)2 (10.9)

to derive a single value of the expected significance Zn. Since the m100
T2 distribution

in signal is bounded by the mass-splitting, only m100
T2 bins with m100

T2 < 100 GeV +

∆m are included in the sum. The optimized cut for a given signal hypothesis

corresponds to values of α and β that maximize Zn. Examples of the optimized

cuts for different signal hypotheses are shown in Figure 10.12.

Since the goal is to have a single m100
T2 -dependent cut on p`2T that provides

sensitivity to the widest range of signal hypotheses, the final metric is chosen

to be the number of signal samples with with Zn > 1.0 after applying a given

cut. In this way, the cut that maximizes this metric should lead to the broadest

sensitivity to compressed sleptons. The results of the scan over α and β are shown

in Figure 10.13, where an island around α = 2.5 and β = 2.5 indicates the cuts

that lead to the best overall sensitivity across the m( ˜̀) vs. ∆m( ˜̀, χ̃0
1) plane.

Other hotspots can be seen in this distribution, but they are not expected to be

robust against statistical fluctuations. Ultimately, the sliding cut on p`2T is chosen

according to use α = 2.5 and β = 2.5, as indicated in Table 10.3.
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Figure 10.12: Results of the optimized cuts on p`2T for examples slepton signal
samples with ∆m = 5, 10, 15, and 20 GeV. The signal distributions are shown
in blue, while the total expected background is indicated by the boxes. The
optimized cuts are shown using a red line.
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Figure 10.13: The results of the optimization of the m100
T2 -dependent cut on

p`2T , where α indicates the slope of the linear cut and β indicates the offset. The
colors indicate the number of the slepton signal samples that have a significance
of Zn > 1.0 after applying the cut. Empty bins indicate extreme cuts that do not
lead to meaningful values of Zn due to low statistics.

Similar to SR–E–high, the RISR distribution in SR–S–high signal events is

highly correlated with m100
T2 , while background events show no strong dependence.

This motivates them100
T2 -dependent cut on RISR, which is optimized using theN−1

method within each of the m100
T2 bins. The result of the optimization is given by

RISR > [max (0.85, 0.98− 0.02× (m100
T2 − 100)) , 1.0] and depicted in Figure 10.14.

After applying all of the optimized cuts, the blinded SRs are shown in Figure 10.15

before any background normalization factors are applied.

SR–S–low A similar methodology is used to optimize this SR with respect to

slepton signals in less compressed mass spectra. In order to remain orthogonal

to SR–S–high, an upper bound of 200 GeV is placed on Emiss
T . The lower bound

of Emiss
T > 150 GeV is determined using the N − 1 method separately for each

exclusive m100
T2 bin and a variety of signal samples. The significance metric for the
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Figure 10.15: The blinded m100
T2 distributions in SR–S–high for the ee channel

(left) and the µµ channel (right) before normalizing the backgrounds with the
CRs. The uncertainty bands account for both statistical uncertainties on the
backgrounds and a flat 20% systematic uncertainty.
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high-m100
T2 bins is rather flat across Emiss

T in the 120 GeV < Emiss
T < 200 GeV, but

peaks around 150 GeV for the bins with m100
T2 . 105 GeV, motivating this tighter

cut compared to the low-Emiss
T electroweakino SRs. This method is repeated for

the RISR variable and, like SR–E–low, the study shows that no improvements to

the sensitivity are expected by scaling a cut on RISR according to the reconstructed

m100
T2 of the event. Instead, the significance metric indicates that a simple window

cut of 0.8 < RISR < 1.0 around the signal peaks is sufficient. On the other hand,

a strong correlation between m100
T2 and p`2T is again found for signal events, which

motivates anm100
T2 -dependent cut on the pT of the subleading lepton pT. The N−1

scans on p`2T for each m100
T2 bin are shown in Figure 10.16 and are used to motivate

the final cut of p`2T > min(15 GeV, 7.5 GeV+0.75×(m100
T2 −100 GeV)). The blinded

m100
T2 distributions in SR–S–high are shown separately for the ee and µµ channels

in Figure 10.17 before applying any background normalization factors.

10.5 Inclusive Signal Regions

In addition to the exclusive SRs defined in the previous sections, which consist

of non-overlapping regions in m100
T2 or m``/m`track, a series of inclusive SRs are pro-

vided in order to search for new physics with minimal model assumptions. These

inclusive SRs are built by simply merging the exclusive SRs below some m100
T2 or

m``/m`track boundary so that each inclusive SR consists of a single bin, thereby

removing any shape information. In the case of the slepton SRs, a total of eight

inclusive SRs are defined by merging m100
T2 bins in both SR–S–high and SR–S–

low according to m100
T2 < 100.5, 101, 102, 105, 110, 120, 130, and 140 GeV. For the

electroweakino version, a total of nine inclusive SRs are defined by performing

the merging of SR–E–high, SR–E–med, SR–E–low, and SR–E–1`1T according to

m``/m`track < 1, 2, 3, 5, 10, 20, 30, 40, and 60 GeV. These inclusive SRs are there-
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Figure 10.16: N-1 plots of p`2T in SR–S–low for all exclusive m100
T2 bins. The mid-

dle panel shows the value of the significance metric where the cut is applied to the
right. The bottom panel shows the relative contributions from each background.
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Figure 10.17: The blinded m100
T2 distributions in SR–S–low for the ee channel

(left) and the µµ channel (right) before normalizing the backgrounds with the
CRs. The uncertainty bands account for both statistical uncertainties on the
backgrounds and a flat 20% systematic uncertainty.

fore not orthogonal, as the SR defined by some boundary contains all of the

events in the inclusive SRs with lower boundaries. By merging the ee and µµ

events together, these definitions of the inclusive SRs implicitly assume that the

new physics does not violate lepton flavor conservation.
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Chapter 11

Background Estimation

The searches presented here target signal processes that produce events con-

taining hadronic activity, significant Emiss
T , and two soft leptons of the same flavor

and opposite electric charge. While the SRs are optimized to be enriched in these

signal-like events, contributions from SM background processes must be estimated

and well-understood. The major sources of irreducible backgrounds containing

two leptons arise from tt̄/tW , Z(∗)/γ∗(→ ττ) + jets, and events containing two

vector bosons (V V ). These backgrounds are normalized using dedicated control

regions and their estimation is detailed in Section 11.1. The reducible background

arises from events containing at least one fake or non-prompt lepton. This back-

ground is derived using a data-driven technique called the fake factor method and

is discussed in Section 11.2.

11.1 Irreducible Backgrounds

When targeting final states involving jets, significant Emiss
T , and two same-

flavor, opposite-sign leptons with low-pT, the dominant sources of irreducible

background arise from the tt̄/tW , WW/WZ, and Z(∗)/γ∗(→ ττ) + jets processes.
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Smaller contributions arise from the Drell-Yan production of electron or muon

pairs, as well as triboson, Higgs boson, and other single-top processes in associ-

ation with vector bosons. For all of these backgrounds, the shapes of all kine-

matic distributions are taken directly from the simulated samples described in

Section 8.3. Those backgrounds that only lead to small contributions in the SRs

are normalized according to simulation as well.

For the dominant irreducible backgrounds, though, a data-driven approach is

used in order to constrain their normalizations in the SRs. In particular, dedi-

cated single-bin control regions (CRs) are constructed for the tt̄/tW , WW/WZ,

and Z(∗)/γ∗(→ ττ)+jets processes, each of which are designed to be orthogonal to

the SRs and enriched in the targeted background process, all while remaining close

to the kinematic phase space defined by the SRs. The methodology employed is to

perform a simultaneous likelihood fit to these CRs in order to extract normaliza-

tion factors that separately scale the tt̄/tW , WW/WZ, and Z(∗)/γ∗(→ ττ) + jets

processes to match the data yields in these regions. A more detailed description

of this this fit is given in Section 14.1. Once the normalization factors are ex-

tracted from the fit, they are applied to MC background estimates in validation

regions (VRs), designed to be closer to the SRs, in order to assess the background

modeling. Eventually, these normalization factors are applied to the background

estimates in the SRs when searching for evidence of new physics in the SRs.

Summaries of the CR and VR definitions, including their orthogonality with

respect to the SRs, are given in Table 11.1 and Table 11.2 for the searches

targeting electroweakinos and sleptons, respectively. Those regions denoted by

“CRtop” are designed to constrain the normalization of the tt̄/tW processes.

The Z(∗)/γ∗(→ ττ) + jets background normalization is targeted by those re-

gions denoted by “CRtau.” Finally, the “CRVV” control regions are in place
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Table 11.1: Definition of control (“CR” prefix) and validation (“VR” prefix)
regions used for background estimation in the electroweakino search, presented
relative to the definitions of the corresponding signal regions SR–E–high, SR–E–
med and SR–E–low. The 2` preselection criteria from Table 10.1 and selection
criteria from Table 10.2 are implied, unless specified otherwise.

Region SR orthogonality Lepton Flavor Additional requirements

CRtop–E–high
N20
b−jet ≥ 1 ee+ µµ+ eµ+ µe

RISR ∈ [0.7, 1.0], m`1
T removed

CRtop–E–low Emiss
T /H lep

T and m`1
T removed

CRtau–E–high
mττ ∈ [60, 120] GeV ee+ µµ+ eµ+ µe

RISR ∈ [0.7, 1.0], m`1
T removed

CRtau–E–low RISR ∈ [0.6, 1.0], m`1
T removed

VRtau–E–med –

CRVV–E–high RISR ∈ [0.7, 0.85]
ee+ µµ+ eµ+ µe

m`1
T removed

CRVV–E–low RISR ∈ [0.6, 0.8] m`1
T > 30 GeV, Njets ∈ [1, 2], Emiss

T /H lep
T removed

VRSS–E–high
Same sign `±`± ee+ µe, µµ+ eµ

RISR ∈ [0.7, 1.0], m`1
T and p`2T removed

VRSS–E–low Emiss
T /H lep

T , m`1
T and p`2T removed

VRSS–E–med –

VRDF–E–high
eµ+ µe eµ+ µe

–
VRDF–E–low –
VRDF–E–med –

to constrain the diboson contributions. Notably, the tt̄/tW , WW/WZ, and

Z(∗)/γ∗(→ ττ) + jets processes produce same-flavor and different-flavor lepton

pairs at the same rate. All of the CRs, therefore, accept all lepton flavor combina-

tions (ee, µµ, eµ, and µe, where the first lepton is the leading lepton) in order to

increase their statistical power when constraining the normalization factors. Cuts

on kinematic variables such as RISR and m`1
T are also loosened with respect to the

SR definitions in order increase the statistics and purity in the CRs. Each of the

CRs are described in more detail in the following sections.

For assessing the background modeling, three types of VRs are defined in

Table 11.1 and Table 11.2. The first set is denoted by “VRDF,” which is a

shorthand for “different-flavor validation region.” For each SR, a corresponding

VRDF region is defined that only differs from the SR definition by requiring two

different-flavor leptons (eµ or µe, where the first lepton is the leading lepton). In

this way, the backgrounds can be checked in regions that have the exact same
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Table 11.2: Definition of control (“CR” prefix) and validation (“VR” prefix)
regions used for background estimation in the slepton search, presented relative
to the definitions of the corresponding signal regions SR–S–high and SR–S–low.
The 2` preselection criteria from Table 10.1 and selection criteria from Table 10.3
are implied, unless specified otherwise.

Region SR orthogonality Lepton Flavor Additional requirements

CRtop–S–high
N20
b−jet ≥ 1 ee+ µµ+ eµ+ µe

RISR ∈ [0.7, 1.0]
CRtop–S–low –

CRtau–S–high
mττ ∈ [60, 120] GeV ee+ µµ+ eµ+ µe

RISR ∈ [0.7, 1.0]
CRtau–S–low RISR ∈ [0.6, 1.0]

CRVV–S–high RISR ∈ [0.7, 0.85]
ee+ µµ+ eµ+ µe

–
CRVV–S–low RISR ∈ [0.6, 0.8] m`1

T > 30, Njets ∈ [1, 2]

VRSS–S–high Same sign `±`± ee+ µe, µµ+ eµ
RISR ∈ [0.7, 1.0], p`2T removed

VRSS–S–low p`2T removed

VRDF–S–high
eµ+ µe eµ+ µe

–
VRDF–S–low –

kinematic requirements as the SRs and similar background compositions. The

second set of VRs is denoted by “VRSS,” which is meant to convey “same-sign

validation region.” These regions are kept orthogonal to the SRs by requiring

two leptons with the same electric charge and are designed to be enriched in

events containing fake/non-prompt leptons. Scrutiny of these regions is given in

Section 11.2.5. Unfortunately, it is difficult to construct a dedicated CR targeting

the Z(∗)/γ∗(→ ττ)+ jets normalization in the SR–E–med due to limited statistics.

Instead, this background is normalized using CRtau–E–low, and the extrapolation

is checked in VRtau–E–med, which requires mττ ∈ [60, 120] GeV but is otherwise

identical to SR–E–med.
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11.1.1 Top-quark Control Regions

In total, four CRs are defined in order to constrain the tt̄/tW normaliza-

tion in the various SRs. CRtop–E–high and CR–top–E–low are are used to de-

rive normalization factors for the electroweakino SRs with Emiss
T > 200 GeV and

Emiss
T < 200 GeV, respectively. CRtop–S–high and CRtop–S–low are the analo-

gous CRs for the slepton SRs. In each case, these CRs take advantage of the

large t→ Wb branching ratio by requiring at least one b-tagged jet in the event,

thereby enforcing orthogonality with the SRs. Based on simulation, these re-

gions are between 83% and 94% pure in the tt̄/tW processes. Relevant kinematic

distributions for CRtop–E–high and CRtop–E–low are presented in Figure 11.1

and Figure 11.2, respectively. Distributions in CR–S–high and CR–S–low are pre-

sented in Figure 11.3 and Figure 11.4. In each case, the regions are shown prior to

any fits and therefore do not include any normalization factors for the dominant

irreducible backgrounds. Nonetheless, good agreement is observed between the

data and the background estimates, though some mis-modeling is apparent in the

number of b-tagged jets.

11.1.2 Ditau Control Regions

Similarly, CRtau–E–high, CRtau–E–low, CRtau–S–high, and CRtau–S–low

are constructed in order to extract normalization factors for the Z(∗)/γ∗(→ ττ) +

jets irreducible background for the electroweakinos and slepton SRs with Emiss
T >

200 GeV and Emiss
T < 200 GeV. In order to enrich these regions in Z(∗)/γ∗(→

ττ) + jets events, the mττ variable is required to be consistent with the Z boson

mass. In particular, the mττwindow that defines the SRs is inverted so that the

CRtau regions remain orthogonal by selecting events with mττ ∈ [60, 120] GeV.

In this case, the CRtau regions are at least 75% pure in Z(∗)/γ∗(→ ττ) + jets

131



2−10

1

210

410

610

710

E
ve

nt
s 

/ b
in

Fake/nonprompt (418.1, 32382, 10.2%)

 (3174.2, 30052, 77.1%)l 2≥ tt

t, tW (321.9, 1233, 7.8%)

Top other (27.3, 5423, 0.7%)

)+jets (29.8, 926, 0.7%)ττ→Z(

)+jets (0.0, 2, 0.0%)µµee/→Z(

 (0.1, 111, 0.0%)lVV 4

 (18.2, 2984, 0.4%)lVV 3

 (112.0, 9936, 2.7%)lVV 2

 (0.0, 0, 0.0%)lVV 1

Higgs (12.8, 2136, 0.3%)

VVV (0.6, 86, 0.0%)

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµCR-RJR-top ee+
SusySkimHiggsino v2.7b (R21)

15+16+17+18 Data, mc16a+d+e

Sample (Weighted, Raw, Fraction)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
lep2Pt > min(10, 2+mll/3 )
RJR_RISR > 0.7 && RJR_RISR < 1.0
(MTauTau < 0 || MTauTau > 160)
nBJet20_MV2c10 >= 1
RandomRunNumber > 0 &&  met_Et > 200 
&& ((lep1TruthMatched && lep2TruthMatched) || 
(DatasetNumber >= 407311 && DatasetNumber <= 407315))

0 10 20 30 40 50 60

) [GeV]llm(

0

1

2

3

D
at

a 
/ S

M  [102, 100] (1.1, 206)H
~

 [128, 125] (2.4, 438)H
~

 [205, 200] (1.1, 659)H
~

 [165, 150] (10.3, 1196)H
~

 [145, 125] (17.0, 1316)H
~

Data (4327 Events)

SM Total (4115.0, 85271, 100%)
 20% syst⊕Stat 

2−10

1

210

410

610

710

E
ve

nt
s 

/ 1
 

Fake/nonprompt (418.1, 32383, 10.2%)

 (3174.2, 30052, 77.1%)l 2≥ tt

t, tW (321.9, 1233, 7.8%)

Top other (27.3, 5423, 0.7%)

)+jets (29.8, 926, 0.7%)ττ→Z(

)+jets (0.0, 2, 0.0%)µµee/→Z(

 (0.1, 111, 0.0%)lVV 4

 (18.2, 2984, 0.4%)lVV 3

 (112.0, 9936, 2.7%)lVV 2

 (0.0, 0, 0.0%)lVV 1

Higgs (12.8, 2136, 0.3%)

VVV (0.6, 86, 0.0%)

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµCR-RJR-top ee+
SusySkimHiggsino v2.7b (R21)

15+16+17+18 Data, mc16a+d+e

Sample (Weighted, Raw, Fraction)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
lep2Pt > min(10, 2+mll/3 )
RJR_RISR > 0.7 && RJR_RISR < 1.0
(MTauTau < 0 || MTauTau > 160)
nBJet20_MV2c10 >= 1
RandomRunNumber > 0 &&  met_Et > 200 
&& ((lep1TruthMatched && lep2TruthMatched) || 
(DatasetNumber >= 407311 && DatasetNumber <= 407315))

0 1 2 3 4 5 6 7

, MV2c10 FixedCutBEff 85%
pT>20GeV
b-jetN

0

1

2

3

D
at

a 
/ S

M  [102, 100] (1.1, 206)H
~

 [128, 125] (2.4, 438)H
~

 [205, 200] (1.1, 659)H
~

 [165, 150] (10.3, 1196)H
~

 [145, 125] (17.0, 1316)H
~

Data (4327 Events)

SM Total (4115.0, 85272, 100%)
 20% syst⊕Stat 

2−10

1

210

410

610

710

E
ve

nt
s 

/ 0
.0

1 

Fake/nonprompt (418.1, 32382, 10.2%)

 (3174.2, 30052, 77.1%)l 2≥ tt

t, tW (321.9, 1233, 7.8%)

Top other (27.3, 5423, 0.7%)

)+jets (29.8, 927, 0.7%)ττ→Z(

)+jets (0.0, 2, 0.0%)µµee/→Z(

 (0.1, 111, 0.0%)lVV 4

 (18.2, 2984, 0.4%)lVV 3

 (112.0, 9936, 2.7%)lVV 2

 (0.0, 0, 0.0%)lVV 1

Higgs (12.8, 2136, 0.3%)

VVV (0.6, 86, 0.0%)

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµCR-RJR-top ee+
SusySkimHiggsino v2.7b (R21)

15+16+17+18 Data, mc16a+d+e

Sample (Weighted, Raw, Fraction)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
lep2Pt > min(10, 2+mll/3 )
RJR_RISR > 0.7 && RJR_RISR < 1.0
(MTauTau < 0 || MTauTau > 160)
nBJet20_MV2c10 >= 1
RandomRunNumber > 0 &&  met_Et > 200 
&& ((lep1TruthMatched && lep2TruthMatched) || 
(DatasetNumber >= 407311 && DatasetNumber <= 407315))

0.60.650.70.750.80.850.90.95 1 1.051.1

ISRR

0

1

2

3

D
at

a 
/ S

M  [102, 100] (1.1, 206)H
~

 [128, 125] (2.4, 438)H
~

 [205, 200] (1.1, 659)H
~

 [165, 150] (10.3, 1196)H
~

 [145, 125] (17.0, 1316)H
~

Data (4327 Events)

SM Total (4115.0, 85272, 100%)
 20% syst⊕Stat 

2−10

1

210

410

610

710

E
ve

nt
s 

/ b
in

Fake/nonprompt (418.1, 32382, 10.2%)

 (3174.2, 30052, 77.1%)l 2≥ tt

t, tW (321.9, 1233, 7.8%)

Top other (27.3, 5423, 0.7%)

)+jets (29.8, 926, 0.7%)ττ→Z(

)+jets (0.0, 2, 0.0%)µµee/→Z(

 (0.1, 111, 0.0%)lVV 4

 (18.2, 2984, 0.4%)lVV 3

 (112.0, 9936, 2.7%)lVV 2

 (0.0, 0, 0.0%)lVV 1

Higgs (12.8, 2136, 0.3%)

VVV (0.6, 86, 0.0%)

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµCR-RJR-top ee+
SusySkimHiggsino v2.7b (R21)

15+16+17+18 Data, mc16a+d+e

Sample (Weighted, Raw, Fraction)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
lep2Pt > min(10, 2+mll/3 )
RJR_RISR > 0.7 && RJR_RISR < 1.0
(MTauTau < 0 || MTauTau > 160)
nBJet20_MV2c10 >= 1
RandomRunNumber > 0 &&  met_Et > 200 
&& ((lep1TruthMatched && lep2TruthMatched) || 
(DatasetNumber >= 407311 && DatasetNumber <= 407315))

0 50 100150200250300350400450500

 [GeV]miss
TE

0

1

2

3

D
at

a 
/ S

M  [102, 100] (1.1, 206)H
~

 [128, 125] (2.4, 438)H
~

 [205, 200] (1.1, 659)H
~

 [165, 150] (10.3, 1196)H
~

 [145, 125] (17.0, 1316)H
~

Data (4327 Events)

SM Total (4115.0, 85271, 100%)
 20% syst⊕Stat 

Figure 11.1: Kinematic distributions in CRtop–E–high prior to the application
of any normalization factors. The uncertainty band shows the statistical uncer-
tainty added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.2: Kinematic distributions in CRtop–E–low prior to the application of
any normalization factors. The uncertainty band shows the statistical uncertainty
added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.3: Kinematic distributions in CRtop–S–high prior to the application of
any normalization factors. The uncertainty band shows the statistical uncertainty
added in quadrature with a flat 20% systematic uncertainty.

134



2−10

1

210

410

610

710

E
ve

nt
s 

/ b
in

Fake/nonprompt (276.3, 31531, 4.8%)

 (5100.8, 48442, 88.0%)l 2≥ tt

t, tW (331.0, 1264, 5.7%)

Top other (11.5, 1924, 0.2%)

)+jets (8.6, 210, 0.1%)ττ→Z(

)+jets (0.6, 5, 0.0%)µµee/→Z(

 (0.1, 58, 0.0%)lVV 4

 (6.2, 1024, 0.1%)lVV 3

 (54.2, 3889, 0.9%)lVV 2

 (0.0, 0, 0.0%)lVV 1

Higgs (7.7, 1002, 0.1%)

VVV (0.2, 39, 0.0%)

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµCR-LowMET-MT2-top ee+
SusySkimHiggsino v2.7b (R21)

15+16+17+18 Data, mc16a+d+e

Sample (Weighted, Raw, Fraction)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
lep2Pt > min(15.0, 7.5 + 0.75*(mt2leplsp_100-100.0)) 

RJR_RISR > 0.8 && RJR_RISR < 1.0
(MTauTau < 0 || MTauTau > 160)
nBJet20_MV2c10 >= 1
mt2leplsp_100 < 140
RandomRunNumber > 0 &&  met_Et < 200 
&& ((lep1TruthMatched && lep2TruthMatched) || 
(DatasetNumber >= 407311 && DatasetNumber <= 407315))

100 105 110 115 120 125 130 135 140

 [GeV]100
T2m

0

1

2

3

D
at

a 
/ S

M  [100, 99.5] (0.0, 0)l
~

 [125, 120] (11.6, 45)l
~

 [150, 124.3] (8.3, 9)l
~

 [200, 190] (3.9, 13)l
~

Data (5779 Events)

SM Total (5797.3, 89388, 100%)
 20% syst⊕Stat 

2−10

1

210

410

610

710

E
ve

nt
s 

/ 1
 

Fake/nonprompt (276.3, 31533, 4.8%)

 (5100.8, 48442, 88.0%)l 2≥ tt

t, tW (331.0, 1264, 5.7%)

Top other (11.5, 1924, 0.2%)

)+jets (8.6, 208, 0.1%)ττ→Z(

)+jets (0.6, 5, 0.0%)µµee/→Z(

 (0.1, 57, 0.0%)lVV 4

 (6.2, 1024, 0.1%)lVV 3

 (54.2, 3889, 0.9%)lVV 2

 (0.0, 0, 0.0%)lVV 1

Higgs (7.7, 1002, 0.1%)

VVV (0.2, 39, 0.0%)

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµCR-LowMET-MT2-top ee+
SusySkimHiggsino v2.7b (R21)

15+16+17+18 Data, mc16a+d+e

Sample (Weighted, Raw, Fraction)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
lep2Pt > min(15.0, 7.5 + 0.75*(mt2leplsp_100-100.0)) 

RJR_RISR > 0.8 && RJR_RISR < 1.0
(MTauTau < 0 || MTauTau > 160)
nBJet20_MV2c10 >= 1
mt2leplsp_100 < 140
RandomRunNumber > 0 &&  met_Et < 200 
&& ((lep1TruthMatched && lep2TruthMatched) || 
(DatasetNumber >= 407311 && DatasetNumber <= 407315))

0 1 2 3 4 5 6 7

, MV2c10 FixedCutBEff 85%
pT>20GeV
b-jetN

0

1

2

3

D
at

a 
/ S

M  [100, 99.5] (0.0, 0)l
~

 [125, 120] (11.6, 45)l
~

 [150, 124.3] (8.3, 9)l
~

 [200, 190] (3.9, 13)l
~

Data (5779 Events)

SM Total (5797.3, 89387, 100%)
 20% syst⊕Stat 

2−10

1

210

410

610

710

E
ve

nt
s 

/ 0
.0

1 

Fake/nonprompt (276.3, 31531, 4.8%)

 (5100.8, 48442, 88.0%)l 2≥ tt

t, tW (331.0, 1264, 5.7%)

Top other (11.5, 1924, 0.2%)

)+jets (8.6, 212, 0.1%)ττ→Z(

)+jets (0.6, 5, 0.0%)µµee/→Z(

 (0.1, 58, 0.0%)lVV 4

 (6.2, 1024, 0.1%)lVV 3

 (54.2, 3889, 0.9%)lVV 2

 (0.0, 0, 0.0%)lVV 1

Higgs (7.7, 1002, 0.1%)

VVV (0.2, 39, 0.0%)

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµCR-LowMET-MT2-top ee+
SusySkimHiggsino v2.7b (R21)

15+16+17+18 Data, mc16a+d+e

Sample (Weighted, Raw, Fraction)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
lep2Pt > min(15.0, 7.5 + 0.75*(mt2leplsp_100-100.0)) 

RJR_RISR > 0.8 && RJR_RISR < 1.0
(MTauTau < 0 || MTauTau > 160)
nBJet20_MV2c10 >= 1
mt2leplsp_100 < 140
RandomRunNumber > 0 &&  met_Et < 200 
&& ((lep1TruthMatched && lep2TruthMatched) || 
(DatasetNumber >= 407311 && DatasetNumber <= 407315))

0.60.650.70.750.80.850.90.95 1 1.051.1

ISRR

0

1

2

3

D
at

a 
/ S

M  [100, 99.5] (0.0, 0)l
~

 [125, 120] (11.6, 45)l
~

 [150, 124.3] (8.3, 9)l
~

 [200, 190] (3.9, 13)l
~

Data (5779 Events)

SM Total (5797.3, 89390, 100%)
 20% syst⊕Stat 

2−10

1

210

410

610

710

E
ve

nt
s 

/ b
in

Fake/nonprompt (276.3, 31531, 4.8%)

 (5100.8, 48442, 88.0%)l 2≥ tt

t, tW (331.0, 1264, 5.7%)

Top other (11.5, 1924, 0.2%)

)+jets (8.6, 209, 0.1%)ττ→Z(

)+jets (0.6, 5, 0.0%)µµee/→Z(

 (0.1, 57, 0.0%)lVV 4

 (6.2, 1024, 0.1%)lVV 3

 (54.2, 3889, 0.9%)lVV 2

 (0.0, 0, 0.0%)lVV 1

Higgs (7.7, 1002, 0.1%)

VVV (0.2, 39, 0.0%)

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµCR-LowMET-MT2-top ee+
SusySkimHiggsino v2.7b (R21)

15+16+17+18 Data, mc16a+d+e

Sample (Weighted, Raw, Fraction)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
lep2Pt > min(15.0, 7.5 + 0.75*(mt2leplsp_100-100.0)) 

RJR_RISR > 0.8 && RJR_RISR < 1.0
(MTauTau < 0 || MTauTau > 160)
nBJet20_MV2c10 >= 1
mt2leplsp_100 < 140
RandomRunNumber > 0 &&  met_Et < 200 
&& ((lep1TruthMatched && lep2TruthMatched) || 
(DatasetNumber >= 407311 && DatasetNumber <= 407315))

0 50 100150200250300350400450500

 [GeV]miss
TE

0

1

2

3

D
at

a 
/ S

M  [100, 99.5] (0.0, 0)l
~

 [125, 120] (11.6, 45)l
~

 [150, 124.3] (8.3, 9)l
~

 [200, 190] (3.9, 13)l
~

Data (5779 Events)

SM Total (5797.3, 89386, 100%)
 20% syst⊕Stat 

Figure 11.4: Kinematic distributions in CRtop–S–low prior to the application of
any normalization factors. The uncertainty band shows the statistical uncertainty
added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.5: Kinematic distributions in CRtau–E–high prior to the application
of any normalization factors. The uncertainty band shows the statistical uncer-
tainty added in quadrature with a flat 20% systematic uncertainty.

events according to simulation. Pre-fit kinematic distributions in CRtau–E–high

and CRtau–E–low are shown in Figures 11.5–11.6, while those for CRtau–S–high

and CRtau–S–low are presented in Figures 11.7–11.8. Again, good agreement is

observed between the data and the pre-fit background expectation.

11.1.3 Diboson Control Regions

Finally, the CRVV regions are in place to derive normalization factors for the

diboson processes that contribute to the SRs. These control regions are kept

orthogonal from their corresponding SRs by selecting events in the RISR side-
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Figure 11.6: Kinematic distributions in CRtau–E–low prior to the application of
any normalization factors. The uncertainty band shows the statistical uncertainty
added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.7: Kinematic distributions in CRtau–S–high prior to the application of
any normalization factors. The uncertainty band shows the statistical uncertainty
added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.8: Kinematic distributions in CRtau–S–low prior to the application of
any normalization factors. The uncertainty band shows the statistical uncertainty
added in quadrature with a flat 20% systematic uncertainty.
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bands, with CRVV–E–high and CRVV–S–high requiring RISR ∈ [0.7, 0.85] GeV

and CRVV-E–low and CRVV requiring RISR ∈ [0.6, 0.8] GeV. Pre-fit kinematic

distributions in the CRs that are used to normalize the diboson background in

the electroweakino SRs are shown in Figures 11.9–11.10. Similar distributions for

CRVV–S–high and CRVV–S–low are shown in Figures 11.11–11.12, again before

any normalization factors are applied. According to simulation, these CRs are

only 41%–45% pure in V V events. Of the remaining irreducible backgrounds in

these regions, the largest contributions come from tt̄/tW and Z(∗)/γ∗(→ ττ)+jets,

respectively. Since these processes are constrained by their own dedicated CRs

in the combined background-only fits to CRs, normalization factors for the di-

boson processes can still be obtained with reasonable uncertainties. While the

shapes of the distributions in these CRs show good agreement between the data

and background expectation, the latter consistently over-predicts, indicating some

mis-modeling of the diboson production rates in these phase spaces. This offset

is eventually accounted for in the SRs by the diboson normalization factors that

are extracted from the fits to the CRs.

11.1.4 Validation Regions

Since the shapes of all background processes producing real leptons are taken

directly from simulation, it is instructive to inspect the various VRs even before the

application of any normalization factors in order to check for signs of systematic

mis-modeling. The VRSS regions are used to assess the data-driven modeling

of the fake/non-prompt lepton background and so those regions are shown in

Section 11.2.5. Instead, the VRDF regions are shown here in order to inspect the

background modeling in regions that occupy the same kinematic phase space as

the SRs and have similar background compositions. Additionally, the agreement
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Figure 11.9: Kinematic distributions in CRVV–E–high prior to the application
of any normalization factors. The uncertainty band shows the statistical uncer-
tainty added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.10: Kinematic distributions in CRVV–E–low prior to the application
of any normalization factors. The uncertainty band shows the statistical uncer-
tainty added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.11: Kinematic distributions in CRVV–S–high prior to the applica-
tion of any normalization factors. The uncertainty band shows the statistical
uncertainty added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.12: Kinematic distributions in CRVV–S–low prior to the application
of any normalization factors. The uncertainty band shows the statistical uncer-
tainty added in quadrature with a flat 20% systematic uncertainty.
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in VRtau–E–med is checked in order to verify that CRtau–E–low can be used to

normalize the Z(∗)/γ∗(→ ττ) + jets background in SR–E–med.

Pre-fit kinematic distributions for important observables are shown in Fig-

ures 11.13–11.15 for VRDF–E–high, VRDF–E–med, and VR–DF–low. In VRDF–

E–high and VRDF–E–low, events due to real leptons represent approximately 70%

and 76% of the total background expectation, respectively. On the other hand,

VRDF–E–med is dominated by the fake/non-prompt lepton background (as is its

corresponding SR), with approximately 26% of the expected background coming

from events producing real leptons. In general, there is good agreement between

the data and the pre-fit backgrounds in the VRs.

The different-flavor VRs that mirror the slepton SRs are also inspected. Fig-

ure 11.16 shows important kinematic distributions in VRDF–S–high, while Fig-

ure 11.17 shows the same distributions in VRDF–S–low. In the case of VRDF–S–

high, approximately 70% of the total pre-fit background estimate is expected to

be due to processes producing real leptons. This figure increases to approximately

83% for VRDF–S–low. Excellent agreement is observed in these validation regions

even before any normalization factors are applied.

Finally an inspection is made of VRtau–E–med in Figure 11.18. Despite the

limited statistics, good agreement is observed between the data and the pre-fit

background estimate, giving confidence to the chosen method for constraining the

Z(∗)/γ∗(→ ττ) + jets process in SR–E–med.
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Figure 11.13: Kinematic distributions in VRDF–E–high prior to the applica-
tion of any normalization factors. The uncertainty band shows the statistical
uncertainty added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.14: Kinematic distributions in VRDF–E–med prior to the applica-
tion of any normalization factors. The uncertainty band shows the statistical
uncertainty added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.15: Kinematic distributions in VRDF–E–low prior to the application
of any normalization factors. The uncertainty band shows the statistical uncer-
tainty added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.16: Kinematic distributions in VRDF–S–high prior to the applica-
tion of any normalization factors. The uncertainty band shows the statistical
uncertainty added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.17: Kinematic distributions in VRDF–S–low prior to the application
of any normalization factors. The uncertainty band shows the statistical uncer-
tainty added in quadrature with a flat 20% systematic uncertainty.

2−10

1

210

410

610

710

E
ve

nt
s 

/ b
in

Fake/nonprompt (23.0, 2159, 26.9%)

 (0.2, 1, 0.2%)l 2≥ tt

t, tW (0.0, 0, 0.0%)

Top other (0.0, 4, 0.0%)

)+jets (61.1, 590, 71.4%)ττ→Z(

)+jets (0.0, 0, 0.0%)µµee/→Z(

 (0.0, 11, 0.0%)lVV 4

 (0.8, 146, 1.0%)lVV 3

 (0.4, 42, 0.5%)lVV 2

 (0.0, 0, 0.0%)lVV 1

Higgs (0.0, 1, 0.0%)

VVV (0.0, 0, 0.0%)

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµVR-LowMET-tau-low ee+
SusySkimHiggsino v2.7b (R21)

15+16+17+18 Data, mc16a+d+e

Sample (Weighted, Raw, Fraction)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
(MTauTau > 60 && MTauTau < 120)
nBJet20_MV2c10 == 0
RJR_MS < 50
METOverHTLep > 10.0
RandomRunNumber > 0 &&  met_Et < 200 
&& ((lep1TruthMatched && lep2TruthMatched) || 
(DatasetNumber >= 407311 && DatasetNumber <= 407315))

0 10 20 30 40 50 60

) [GeV]llm(

0

1

2

3

D
at

a 
/ S

M  [102, 100] (0.0, 0)H
~

 [128, 125] (0.0, 1)H
~

 [205, 200] (0.1, 41)H
~

 [165, 150] (2.0, 247)H
~

 [145, 125] (1.9, 164)H
~

Data (91 Events)

SM Total (85.6, 2954, 100%)
 20% syst⊕Stat 

2−10

1

210

410

610

710

E
ve

nt
s 

/ 1
 

Fake/nonprompt (23.0, 2163, 26.9%)

 (0.2, 1, 0.2%)l 2≥ tt

t, tW (0.0, 0, 0.0%)

Top other (0.0, 3, 0.0%)

)+jets (61.1, 593, 71.4%)ττ→Z(

)+jets (0.0, 0, 0.0%)µµee/→Z(

 (0.0, 11, 0.0%)lVV 4

 (0.8, 148, 1.0%)lVV 3

 (0.4, 43, 0.5%)lVV 2

 (0.0, 0, 0.0%)lVV 1

Higgs (0.0, 1, 0.0%)

VVV (0.0, 0, 0.0%)

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµVR-LowMET-tau-low ee+
SusySkimHiggsino v2.7b (R21)

15+16+17+18 Data, mc16a+d+e

Sample (Weighted, Raw, Fraction)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
(MTauTau > 60 && MTauTau < 120)
nBJet20_MV2c10 == 0
RJR_MS < 50
METOverHTLep > 10.0
RandomRunNumber > 0 &&  met_Et < 200 
&& ((lep1TruthMatched && lep2TruthMatched) || 
(DatasetNumber >= 407311 && DatasetNumber <= 407315))

0 5 10 15 20 25 30
leptons
T/Hmiss

TE

0

1

2

3

D
at

a 
/ S

M  [102, 100] (0.0, 0)H
~

 [128, 125] (0.0, 1)H
~

 [205, 200] (0.1, 41)H
~

 [165, 150] (2.0, 247)H
~

 [145, 125] (1.9, 164)H
~

Data (91 Events)

SM Total (85.6, 2963, 100%)
 20% syst⊕Stat 

Figure 11.18: Kinematic distributions in VRtau–E–med prior to the applica-
tion of any normalization factors. The uncertainty band shows the statistical
uncertainty added in quadrature with a flat 20% systematic uncertainty.
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11.2 Reducible Background: Fake/Non-prompt

Leptons

The primary source of reducible background in the searches presented here

arises from fake and non-prompt leptons that primarily originate from W (→
`ν) + jets events. In this vernacular, fake leptons refer to charged hadrons whose

energy deposits in the calorimeters cause them to be misidentified at leptons.

Non-prompt leptons, instead, refer to real leptons that are produced in the event

but do not originate from the primary interaction (e.g. from prompt W or Z de-

cays). This category includes real leptons originating from semi-leptonic decays of

heavy-flavor hadrons, in-flight meson decays, and photon conversions. Since muon

reconstruction requires hits in both the ID and MS, the majority of the reducible

muon background comes from non-prompt muons produced in these heavy-flavor

and meson decays. Electron reconstruction, meanwhile, requires energy deposits

in the calorimeters; therefore jets, photon conversions, and semi-leptonic heavy

flavor decays all contribute to the overall fake/non-prompt electron background.

For both electrons and muons, the fake/non-prompt backgrounds increase sharply

at low-pT, exactly where these searches are focused.

In general, though, the identification, isolation, and impact parameter cuts

that are applied to signal leptons provide excellent discrimination against these

fake/non-prompt backgrounds, with jet suppression at the level of 10−5. On the

other hand, the production cross-section for the W + jets process is many orders

of magnitude larger than the signal cross-sections targeted here so that even these

otherwise relatively rare backgrounds are expected to make significant contribu-

tions to the SRs.

Unfortunately, these backgrounds are not expected to be well-modeled in sim-
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ulation, as this would require an excellent understanding of the misidentification

rates for each of the fake/non-prompt sources mentioned above. These rates

are primarily determined by the non-Gaussian tails of the detector response to

jets, the modeling of which is beyond the current level of detail included in sim-

ulation of particle reconstruction. Instead, the fake/non-prompt lepton back-

grounds are determined using data-driven techniques. The particular data-driven

approach chosen for the searches presented here is called the fake factor method.

A generic description of this method is given in the next section, followed by a

detailed description of the fake/non-prompt background estimation performed for

the searches presented here.

11.2.1 The Fake Factor Method

The fake factor method is well-established technique for deriving the fake/non-

prompt lepton background in a data-driven way, though it can be generalized to

other objects as well (e.g. fake photons). In the context of the searches presented

here, the basic principle of the fake factor method is to select a CR enriched in

fake/non-prompt leptons and apply extrapolation factors (called fake factors) to

estimate this background in the corresponding SR. The kinematic requirements

on this CR should be as close as possible to the SR so that the extrapolation only

takes place in particle identification space.

To measure the fake factors, two sets of lepton selection criteria called “ID” and

“anti-ID” are defined. ID leptons are reconstructed leptons that pass the signal

lepton criteria presented in Chapter 9, while “anti-ID” leptons satisfy the baseline

lepton requirements but fail at least one of the signal requirements. The anti-ID

definition should be chosen in such a way that the anti-ID sample is dominated by

fake/non-prompt leptons. Typically, this is done by requiring the anti-ID leptons
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to fail some combination of the identification, isolation, and impact parameter

requirements that partly define the ID leptons. Using these lepton categories, the

fake factor, F , is defined as

F (i) = NID(i)
Nanti-ID(i) , (11.1)

where NID and Nanti-ID are the number of the ID and anti-ID leptons, respec-

tively. The fake factors are usually measured in different bins of some correlated

kinematic variable and so the i in this definition refers to the ith bin of that

distribution.

The fake factors should be measured in kinematic regions that are enriched in

fake/non-prompt leptons, with a composition similar to what is expected in the

SR. While these regions can reach very high levels of purity, some contamination

is expected from processes producing prompt leptons. The ID lepton definition is

efficient at selecting these prompt leptons by design. The anti-ID selection criteria

will also have some non-zero efficiency for selecting prompt leptons, and so the

contribution from prompt processes must be subtracted during the fake factor

measurement in order to better isolate the contributions to the numerator and

denominator of the fake factor from fake/non-prompt leptons. This subtraction is

performed using MC estimates of the prompt lepton processes that contaminate

the measurement region. Accounting for this subtraction modifies the fake factor

definition to be

F (i) = NID(i)−NMC
ID (i)

Nanti-ID(i)−NMC
anti-ID(i) , (11.2)

where NMC
ID and NMC

anti-ID are the number of ID and anti-ID leptons from prompt

lepton processes, respectively, as estimated using MC.

Once the fake factors are measured, they are used to estimate the background
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in the SR by scaling events in a CR that is enriched in fake/non-prompt leptons but

otherwise kinematically the same as the SR. Since the anti-ID selection criteria

is designed to be efficient for fake/non-prompt leptons, this CR is orthogonal

to the SR only by requiring at least one anti-ID lepton. This fake/non-prompt

enriched CR is therefore called the anti-ID CR. As in the case of the fake factor

measurement region, the anti-ID CR is expected to have a small contribution from

prompt lepton processes that need to be subtracted using MC estimates. In the

simplest case of a SR that requires exactly one signal lepton, the fake/non-prompt

lepton contribution to the SR, NSR
reducible, is given by

NSR
reducible =

∑
i

(
Nanti-ID CR(i)−NMC

anti-ID CR(i)
)
· F (i), (11.3)

where Nanti-ID CR(i) is the number of events in the ith bin of the anti-ID CR

and NMC
anti-ID CR(i) is the number of events in the same bin due to prompt lepton

processes. Again, the sum runs over the bins in the kinematic distribution in

which the fake factors are measured.

In the searches presented here, though, the SRs target di-lepton final states.

This complicates the estimate since it is possible for events containing two fake/non-

prompt leptons to enter the SRs, which needs to be accounted for in the back-

ground estimation. It can be shown (see [117], for example) that a proper treat-

ment of the fake factor method in di-lepton events results in a fake/non-prompt

lepton estimate given by

NSR
reducible = F1

(
NAI −NMC

AI

)
+ F2

(
NIA −NMC

IA

)
− F1F2

(
NAA −NMC

AA

)
, (11.4)

where N indicates the number of events in the anti-ID control region and its

subscripts indicate whether the leptons pass the ID (I) or anti-ID (A) criteria.
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These subscripts are also ordered such that the first subscript corresponds to the

lepton with the largest pT. For example, NAI is the number of events in the anti-ID

CR where the highest-pT lepton is an anti-ID lepton and the softer lepton is an ID

lepton. Terms with an “MC” superscript indicate the contributions from prompt

lepton processes that are estimated using MC and subtracted in order to better

isolate the fake/non-prompt lepton contribution. Finally, F1 and F2 correspond

to the fake factors of the harder and softer lepton in the event, respectively. Note

that the minus sign in the last term serves to correct for the double-counting of

events with two fake/non-prompt leptons, since these can contribute to both the

NIA and NAI terms.

An important assumption of the fake factor method in di-lepton events is that

the leptons can be thought of as uncorrelated objects. Specifically, it does not

account for situations in which the leptons are so collimated that their isolation

cones (or even their showers, in the case of electrons) overlap and become highly

correlated. Since the signal isolation requirement is often inverted in the anti-ID

lepton definition, if one of the leptons in these highly-collimated events is an anti-

ID lepton, then the other lepton has a higher probability of being one as well. This

leads to a larger fraction of events containing two anti-ID leptons when the angular

separation is small, resulting in over-subtraction according to Equation 11.4. Left

unchecked, the fake factor method will therefore systematically underestimate

the fake/non-prompt lepton background at low values of ∆R`` (and equivalently,

low-m``), which would severely limit the ability to search for the most compressed

electroweakino signals considered targeted in this dissertation. One solution could

be to drop the inverted isolation requirement from the anti-ID lepton definition,

but this results in a large drop in anti-ID CR statistics that make the fake/non-

prompt estimation unreliable. Instead, a new isolation algorithm was developed,
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as described in Section 9.2.3, in order to break the correlation between overlapping

isolation cones and avoid over-subtraction.

11.2.2 Fake Factor Measurement Regions

Since the fake/non-prompt lepton background in this analysis is primarily due

to W (→ `ν) + jets events, the fake factors would ideally be measured in a region

of the data dominated by this process. Unfortunately, W (→ `ν) + jets events

have very similar topologies to other processes with large cross-sections (including

tt̄, for example) that make it difficult to construct a measurement region with

sufficient purity. Instead, the fake factors are measured in dijet events firing low-

pT, prescaled single-lepton triggers. At the cost of being less topologically similar

to the SRs, such events provide a rather pure sample of fake/non-prompt leptons,

with small contributions from both tt̄ and W + jets that are eventually subtracted

off using MC. The prescaled single-lepton triggers used for measuring the electron

and muon fake factors are listed according to the year of data-taking in Table 11.3,

with pT thresholds ranging from 5–20 GeV for electrons and 4–18 GeV for muons.

In each case, the trigger-level requirements on the lepton identification quality are

kept looser than those used to define the anti-ID leptons in order to avoid a bias

in the fake factors. When measuring the fake factors, the trigger prescales are

used to unfold the kinematic distributions of the ID and anti-ID leptons. which

are defined in the following sections.

Events entering the fake factor measurement regions are required to contain a

single ID or anti-ID lepton, a jet with pT > 100 GeV, and m`1
T < 40 GeV. The ID

or anti-ID lepton must have a pT that is consistent with the single-lepton trigger

that fired and events firing multiple triggers are vetoed to avoid significant com-

plications that would arise when applying the prescales. The hard jet requirement
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Table 11.3: Prescaled single-lepton triggers used to compute the fake factors,
broken down by year of data-taking. Trigger names starting with “HLT_eX” are
single-electron triggers and those starting with “HLT_muX” are single-muon trig-
gers, where the “X” refers to the specific lepton pT threshold. The “lhvloose” in
the electron trigger names indicates that the VeryLoose identification requirement
is applied at trigger-level.

2015 and 2016 2017 2018
HLT_e5_lhvloose HLT_e5_lhvloose_nod0 HLT_e5_lhvloose_nod0
HLT_e10_lhvloose_L1EM7 HLT_e12_lhvloose_nod0_L1EM10VH HLT_e10_lhvloose_nod0_L1EM7
HLT_e15_lhvloose_L1EM13VH HLT_e17_lhvloose_nod0 HLT_e15_lhvloose_nod0_L1EM7
HLT_e20_lhvloose HLT_e20_lhvloose_nod0 HLT_e20_lhvloose_nod0
HLT_mu4 HLT_mu4 HLT_mu4
HLT_mu10 HLT_mu10_idperf HLT_mu10_idperf
HLT_mu14 HLT_mu14 HLT_mu14
HLT_mu18

is in place in order to make the measurement region more kinematically similar

to the SRs, while the m`1
T requirement serves to suppress contributions from the

tt̄ and W + jets processes. These processes are normalized to the data in a region

with m`1
T > 100 GeV that is dominated by prompt lepton processes before any

subtraction is performed. In contrast to the electron fake factor measurement

region, requirements on the muon-jet overlap removal are relaxed in order to have

sufficient statistics when measuring the muon fake factors. Finally, separate mea-

surement regions for both the electron and muon fake factors are constructed

based on the number of b-tagged jets in the event in order to account for any

jet flavor-dependence. Specifically, events are categorized as containing exactly

zero or at least one b-tagged jet and dedicated fake factors are measured in each

of these bins. Practically speaking, the fake factors that are measured in events

with N20
b−jet > 0 are only used to estimate the fake/non-prompt lepton background

in the CRtop regions.
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11.2.3 Electron Fake Factors

When measuring the electron fake factors, ID electrons are defined to be iden-

tical to the signal electrons described in Section 9.2.1. The ID electrons, therefore,

are required to be baseline electrons that also pass the MediumLLH identification

working point, the Gradient isolation working point, and have |d0/σ(d0)| < 5.0.

Anti-ID electrons, on the other hand, are required to pass an identification working

point called LooseAndBLayer, which is tighter than the baseline lepton require-

ment but looser than the requirement for signal leptons. Additionally, anti-ID

electrons must fail some combination of the signal identification, isolation, and

impact parameter requirements, but are not allowed to fail identification and iso-

lation requirements simultaneously. While reducing the available statistics in the

anti-ID electron CR, the decision to not allow all failure modes was made in order

to reduce the extrapolation from anti-ID to ID electrons. This definition was also

seen to give better closure in the VRSS regions and has little impact on the fake

factor statistical uncertainties since they are dominated by the available ID lepton

statistics in the measurement region. A summary of the anti-ID electron definition

is given in Table 11.4. Additionally, the composition of electrons in the measure-

ment region failing at least one of the identification, isolation, and |d0/σ(d0)|
requirements is shown as a function of several observables in Figure 11.19 and

Figure 11.20.

Events from tt̄ and W + jets processes that enter the fake factor measurement

regions are taken from directly from MC and are normalized to the data in a region

with m`1
T > 100 GeV. This rescaling of the prompt lepton background processes

is performed separately for ID and anti-ID electrons, as well as for the N20
b−jet = 0

and N20
b−jet > 0 regions. For events with N20

b−jet = 0, the normalization factor for

ID electrons is 1.42± 0.04 and 6.14± 0.44 for anti-ID electrons. For events with
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Table 11.4: Summary of the anti-ID electron definition. Anti-ID electrons must
fail at least one of the identification, isolation, or |d0/σ(d0)| requirements applied
to signal electrons, but are not allowed to fail the isolation and identification
requirements simultaneously.

Anti-ID Electrons
pT > 4.5 GeV
|η| < 2.47
|z0 sin θ| < 0.5 mm
Pass LooseAndBLayer identification
(Fail Medium identification OR fail Gradient isolation OR |d0/σ(d0)| > 5.0)
AND (pass Medium identification OR pass Gradient isolation)
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Figure 11.19: Anti-ID electron composition in events with exactly zero b-tagged
jets (top) and one or more b-tagged jets (bottom) as a function of m`1

T (left) and
as a function of Emiss

T (right). The Emiss
T distribution corresponds to events with

m`1
T < 40 GeV. Note that electrons failing both the isolation and identification

working points are not considered anti-ID electrons.
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Figure 11.20: Anti-ID electron composition in events with exactly zero b-tagged
jets (top) and one or more b-tagged jets (bottom) as a function of pT (left) and
as a function of η (right). Only events with m`1

T < 40 GeV are shown. Note
that electrons failing both the isolation and identification working points are not
considered anti-ID electrons.
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N20
b−jet > 0, the extracted normalization factors are 1.13± 0.04 and 2.54± 0.22 for

ID and anti-ID electrons, respectively. If the MC is instead rescaled to the data in

a region with Emiss
T > 200 GeV, also thought to be dominated by processes involv-

ing prompt lepton production, these normalization factors become 2.30±0.19 and

1.38±0.30 for ID and anti-ID electrons in events with N20
b−jet = 0. For events con-

taining at least one b-tagged jet, the new ID and anti-ID electron normalization

factors obtained are 0.91± 0.09 and 0.85± 0.31. While the normalization factors

themselves appear to show a large dependence on the chosen normalization region,

the impact on the fake factors themselves is small since these prompt processes

contribute relatively little to the fake factor measurement regions. The m`1
T distri-

butions for ID and anti-ID electrons are shown in Figure 11.21, where the MC has

been scaled to match the data in the m`1
T > 100 GeV regions and the fake factor

measurement regions reside in the m`1
T < 40 GeV part of the distributions.

Ultimately, the fake factors are measured and applied as a function of the

lepton pT such that the fake factor, F , corresponding to a some pT bin is given by

F = N ID
data −N ID

MC
Nanti-ID

data −Nanti-ID
MC

(11.5)

where N ID
data and Nanti-ID

data are the number of ID and anti-ID electrons in data,

respectively, and N ID
MC and Nanti-ID

MC are the number of ID and anti-ID electrons

from prompt lepton processes modeled by MC. These distributions are shown

in Figure 11.22 and Figure 11.23 for events with N20
b−jet = 0 and N20

b−jet > 0,

respectively, before the final binning in lepton pT is applied.

Unfortunately, no single-electron triggers exist in ATLAS with pT thresholds

lower than 5 GeV, eliminating the possibility of using the above methodology

to measure fake factors for electrons with pT < 5 GeV. Instead, the ID and

anti-ID pT distributions are extrapolated below 5 GeV and the ratios of the ID
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Figure 11.21: The m`1
T distributions for ID (top) and anti-ID (bottom) electrons

in the fake factor measurement region for events with exactly zero b-tagged jets
(left) and at least one b-tagged jet (right). The MC contributions have been scaled
to the data in the m`1

T > 100 GeV region.

and anti-ID extrapolations are used to derive fake factors for the electrons with

4.5 GeV < pT < 5 GeV. These extrapolations are derived from exponential fits to

the pT distributions with fit ranges that are chosen to mitigate biases from trigger

turn-on effects. Specifically, the fits, as shown in Figure 11.24, are performed

from 6 GeV to 10 GeV in order to avoid the turn-on effect from the 5 GeV triggers

and any discontinuity from the transition to the 10 GeV triggers. In order to be

conservative, the uncertainty on the extrapolated fake factor is chosen to be the

statistical uncertainty of the lowest directly-measured fake factor (i.e. from 5-6

GeV) added in quadrature with the uncertainty from the fit.

The electron fake factors used in this search, which include the extrapolation

below 5 GeV are shown in Figure 11.25. Due to the large prescales applied to
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Figure 11.22: The pT distributions for ID (left) and anti-ID (right) electrons in
the fake factor measurement region with N20

b−jet = 0. Contributions from processes
involving prompt leptons are modeled by MC and are rescaled to the data in the
m`1

T > 100 GeV region.
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Figure 11.23: The pT distributions for ID (left) and anti-ID (right) electrons in
the fake factor measurement region with N20

b−jet > 0. Contributions from processes
involving prompt leptons are modeled by MC and are rescaled to the data in the
m`1

T > 100 GeV region.

163



0 2 4 6 8 10 12 14

 [GeV]
T

p

0

2

4

6

8

10

12

14

16

18

20

22

610×
ATLAS Work in progress

0 2 4 6 8 10 12 14

 [GeV]
T

p

0

2

4

6

8

10

12

610×
ATLAS Work in progress

0 2 4 6 8 10 12 14

 [GeV]
T

p

0

10

20

30

40

50

610×
ATLAS Work in progress

0 2 4 6 8 10 12 14

 [GeV]
T

p

0

2

4

6

8

10

12

14

16

18

20

610×
ATLAS Work in progress

Figure 11.24: Exponential fits to the ID (top) and anti-ID (bottom) electron
pT distributions used for the fake factor extrapolation. Events with exactly zero
b-tagged jets are shown on the left, while events with at least one b-tagged jet are
shown on the right.
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Figure 11.25: Electron fake factors as a function of electron pT for events with
zero b-tagged jets (left) and at least one b-tagged jet (right). A red line denotes
the average electron fake factor over all electron pT values.

the low-pT single-lepton triggers, the data sample in the fake factor measurement

region is too small to allow for the fake factors to be binned in several observables

without acquiring very large statistical uncertainties. Nonetheless, the fake factors

are measured as a function of other kinematic variables to check for additional

dependencies that can be used to derive systematic uncertainties based on the

choice of parameterization. This issue is discussed in more detail in Section 12.2.

Figures 11.26–11.28 show the fake factors as a function of other observables in

order to check for strong dependencies.

11.2.4 Muon Fake Factors

The strategy for computing the muon fake factors is completely analogous

to the electron case. ID muons are defined to be identical to the signal muons

described in Section 9.2.2. Specifically, ID muons are baseline muons that also

pass the FCTightTrackOnly isolation working point and have |d0/σ(d0)| < 3.0.

Anti-ID muons, as summarized in Table 11.5, are instead defined to be baseline

muons that fail exactly one of these additional requirements. Again, this choice
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Figure 11.26: Electron fake factors as a function of electron |η| for events with
zero b-tagged jets (left) and at least one b-tagged jet (right). A red line denotes
the average electron fake factor.
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Figure 11.27: Electron fake factors as a function of ∆φ(j1,pmiss
T ) for events with

zero b-tagged jets (left) and at least one b-tagged jet (right). A red line denotes
the average electron fake factor.
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Figure 11.28: Electron fake factors as a function of RISR for events with zero
b-tagged jets (left) and at least one b-tagged jet (right). A red line denotes the
average electron fake factor.

Table 11.5: Summary of the anti-ID muon definition. Anti-ID muons must fail
exactly one of the isolation and |d0/σ(d0)| requirements applied to signal muons.

Anti-ID Muons
pT > 3 GeV
|η| < 2.5
|z0 sin θ| < 0.5 mm
Pass LowPt identification
(Fail FCTightTrackOnly isolation OR |d0/σ(d0)| > 3.0)
AND (pass FCTightTrackOnly isolation OR |d0/σ(d0)| < 3.0)

reduces the anti-ID CR statistics but also reduces the extrapolation from anti-

ID to ID muons and has little impact on the fake factor statistical uncertainties.

The composition of muons in the measurement region failing at least one of the

isolation or |d0/σ(d0)| requirements is shown as a function of several observables

in Figure 11.29 and Figure 11.30.

The tt̄ and W + jets processes that produce real leptons contaminate can also

contaminate the muon fake factor measurement regions and need to be subtracted

using MC during the fake factor calculation. Before the subtraction, these simu-

lated events are rescaled to match the data in the m`1
T > 100 GeV region where the
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Figure 11.29: Anti-ID muon composition in events with exactly zero b-tagged
jets (top) and one or more b-tagged jets (bottom) as a function of m`1

T (left) and
as a function of Emiss

T (right). The Emiss
T distribution corresponds to events with

m`1
T < 40 GeV. Note that muons failing both isolation and d0 significance are not

considered anti-ID muons.

fake/non-prompt lepton contribution is expected to be small. The extracted nor-

malization factors in events with zero b-tagged jets are 1.32± 0.05 and 3.62± 0.7

for ID and anti-ID muons, respectively. When requiring at least one b-tagged jet,

the ID muon normalization factor is 1.10± 0.05 and the anti-ID muon normaliza-

tion factor is 2.90 ± 0.46. Again, the effect of the choice of normalization region

is tested by re-deriving these factors using a region requiring Emiss
T > 200 GeV.

In doing so, the normalization factor for ID muons becomes 3.74± 0.76 in events

with zero b-tagged jets and 1.42 ± 0.19 in events with at least one. The anti-ID

muon normalization factors extracted from this high-Emiss
T region are 6.09± 3.91

and 1.58 ± 1.76 for events with zero and at least one b-tagged jet, respectively.
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Figure 11.30: Anti-ID muon composition in events with exactly zero b-tagged
jets (top) and one or more b-tagged jets (bottom) as a function of pT (left) and
as a function of η (right). Only events with m`1

T < 40 GeV are shown. Note that
muons failing both isolation and d0 significance are not considered anti-ID muons.

Since the tt̄ and W + jets processes provide only a small fraction of the overall

contribution to the fake factor measurement regions, the change in the muon fake

factors due to choice of normalization region is small compared to the statistical

uncertainties themselves. After the normalizing the tt̄ andW + jets contributions,

the pT distributions for ID and anti-ID muons are shown in Figure 11.32 for events

with N20
b−jet = 0 and in Figure 11.33 for events with N20

b−jet > 0.

Similar to the electron case, the use of single-muon triggers prohibits the direct

measurement of fake factors for muons with pT < 4 GeV since no such triggers

exist with pT thresholds below 4 GeV. Since this search utilizes with muons trans-

verse momenta as low as 3 GeV, the ID and anti-ID muon pT distributions are

extrapolated down to 3 GeV in order to derive these fake factors. Again, these
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Figure 11.31: The m`1
T distributions for ID (top) and anti-ID (bottom) muons

in the fake factor measurement region for events with exactly zero b-tagged jets
(left) and at least one b-tagged jet (right). The MC contributions have been scaled
to match the data in the m`1

T > 100 GeV region.

distributions are fit using a simple exponential function, where the fit range now

runs from 4.5 GeV to 10 GeV in order to avoid the trigger turn-on at 4 GeV and the

transition to a different trigger at 10 GeV, which can bias the fits. These fit results

are shown in Figure 11.34 for both b-tagged jet multiplicity bins. The statistical

uncertainty on the extrapolated fake factor for muons with 3 GeV < pT < 4 GeV

is conservatively set to be the uncertainty from the fit added in quadrature with

the statistical uncertainty on the nearest directly-measurable fake factor (in this

case corresponding to 4 GeV < pT < 5 GeV.

In this search, the muon fake factors are applied as a function of the muon pT.

These fake factors, including the extrapolation, are presented in Figure 11.35. The

fake factors are also checked as a function of other observables for other significant
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Figure 11.32: The pT distributions for ID (left) and anti-ID (right) muons in
the fake factor measurement region with N20

b−jet = 0. Contributions from processes
involving prompt leptons are modeled by MC and are rescaled to the data in the
m`1

T > 100 GeV region.
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Figure 11.33: The pT distributions for ID (left) and anti-ID (right) muons in
the fake factor measurement region with N20

b−jet > 0. Contributions from processes
involving prompt leptons are modeled by MC and are rescaled to the data in the
m`1

T > 100 GeV region.
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Figure 11.34: Exponential fits to the ID (top) and anti-ID (bottom) muon pT
distributions used for the fake factor extrapolation. Events with exactly zero b-
tagged jets are shown on the left, while events with at least one b-tagged jet are
shown on the right.
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Figure 11.35: Muon fake factors as a function of muon pT for events with zero
b-tagged jets (left) and at least one b-tagged jet (right). A red line denotes the
average muon fake factor over all muon pT.

dependencies that are later used to derive a flat systematic uncertainty on the fake

factors themselves. Figures 11.36–11.38 show such distributions.

11.2.5 Fake/Non-Prompt Lepton Background Validation

The VRSS regions defined in Table 11.1 and Table 11.2 are used to validate

the modeling of the fake/non-prompt lepton background. Within these same-sign

regions, the subleading lepton is treated as a proxy for the fake/non-prompt lep-

ton. Therefore, events in which the subleading lepton is an electron (denoted

ee + µe) are used to assess the modeling of the fake/non-prompt electron back-

ground. Similarly, events in which a muon is the subleading lepton (µµ + eµ)

are used to validate the fake/non-prompt muon background. With respect to

the SRs, the VRSS regions also relax some of the kinematic requirements in or-

der to increase the available statistics. Most notably, the cuts on the subleading

lepton pT are removed since these are designed to suppress the fake/non-prompt

lepton background. The pre-fit distributions of m`` and p`2T are presented in Fig-

ures 11.39–11.41 for VRSS–E–high, VRSS–E–med, and VRSS–E–low, with each
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Figure 11.36: Muon fake factors as a function of muon |η| for events with zero
b-tagged jets (left) and at least one b-tagged jet (right). A red line denotes the
average muon fake factor.
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Figure 11.37: Muon fake factors as a function of ∆φ(j1,pmiss
T ) for events with

zero b-tagged jets (left) and at least one b-tagged jet (right). A red line denotes
the average muon fake factor.
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Figure 11.38: Muon fake factors as a function of RISR for events with zero b-
tagged jets (left) and at least one b-tagged jet (right). A red line denotes the
average electron fake factor.

separated into ee + µe and µµ + eµ events. For the slepton search, the m100
T2 and

p`2T distributions in VRSS–S–high and VRSS–S–low are presented in Figure 11.42

and Figure 11.43, respectively, again separated into ee+ µe and µµ+ eµ events.

In each case, good agreement is seen between the total background prediction

and the data in both the p`2T distributions and the distributions corresponding to

the final discriminating variables. In each of the p`2T distributions shown, the low-

est bin includes the events that have the extrapolated fake factors applied and the

excellent agreement validates the methodology. Importantly, the p`2T distributions

in these regions are used to derive dedicated non-closure uncertainties to account

for any differences between the data and predicted background that are not al-

ready covered by other systematic uncertainties related to the fake/non-prompt

background. A detailed description of these uncertainties is given in Section 12.2.
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Figure 11.39: Kinematic distributions in VRSS–E–high prior to the application
of any normalization factors. The ee+µe channel is shown in the top row, while the
bottom row shows the µµ+eµ channel. The uncertainty band shows the statistical
uncertainty added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.40: Kinematic distributions in VRSS–E–med prior to the application
of any normalization factors. The ee+µe channel is shown in the top row, while the
bottom row shows the µµ+eµ channel. The uncertainty band shows the statistical
uncertainty added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.41: Kinematic distributions in VRSS–E–low prior to the application of
any normalization factors. The ee+µe channel is shown in the top row, while the
bottom row shows the µµ+eµ channel. The uncertainty band shows the statistical
uncertainty added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.42: Kinematic distributions in VRSS–S–high prior to the application
of any normalization factors. The ee+µe channel is shown in the top row, while the
bottom row shows the µµ+eµ channel. The uncertainty band shows the statistical
uncertainty added in quadrature with a flat 20% systematic uncertainty.
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Figure 11.43: Kinematic distributions in VRSS–S–low prior to the application of
any normalization factors. The ee+µe channel is shown in the top row, while the
bottom row shows the µµ+eµ channel. The uncertainty band shows the statistical
uncertainty added in quadrature with a flat 20% systematic uncertainty.
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Chapter 12

Systematic Uncertainties

Systematic uncertainties are categorized according to experimental and the-

oretical sources. Experimental uncertainties stem from the modeling of particle

identification, pileup, and the luminosity measurement and are discussed in Sec-

tion 12.1. Additionally, dedicated experimental uncertainties are derived on the

modeling of the fake/non-prompt lepton background, as described in Section 12.2.

Theoretical uncertainties, outlined in Section 12.3, are due to the choice of gen-

erator and PDF configurations, as well the modeling of the ISR process in signal

events. Each uncertainty is incorporated as a nuisance parameter in the likelihood

function described in Section 13.2

The impact of these uncertainties on the event yields in the SRs is shown in

Section 15.1, where the dominant contributions are from the modeling fake/non-

prompt lepton background, especially in the low-m`` and low-m100
T2 bins, as well

those associated to the jet energy scale and resolution.
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12.1 Experimental Uncertainties

Within the ATLAS collaboration, systematic uncertainties related to physics

object reconstruction, luminosity measurements, and pileup conditions are pro-

vided by dedicated working groups. As these uncertainties can affect both the

background and signal yields, they need to be accounted for when searching for

new physics. The experimental systematic uncertainties that end up having siz-

able impacts on the results depends on the physics objects that are used in the

analysis. In this search, the targeted final states include jets, Emiss
T , and electrons

or muons. In addition to luminosity and pileup uncertainties, systematic uncer-

tainties related to these objects are therefore considered. Additionally, since this

search includes cuts on the number of b-tagged jets in the event, systematic uncer-

tainties related to flavor-tagging performance are included. The relevant experi-

mental uncertainties for this search are described in more detail below, grouped

by their source.

• Luminosity: The uncertainty on the luminosity corresponding to this dataset

is 1.7%, which affects the background and signal yields in a correlated way.

The absolute luminosity scale and uncertainty was determined using dedi-

cated van der Meer scans with the primary measurements coming from the

LUCID-2 detector.

• Pileup conditions: As a matter of practicality, MC samples for both signal

and background processes are simulated before the end of the data-taking

period. Therefore, when overlaying soft QCD events to simulate the effects

of pileup, an assumption is made about what the pileup profile will be in

the final dataset. Since reconstruction performance depends on these pileup

conditions, differences in the observed and assumed profiles could result in
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poor modeling of many physics processes. In order to account for deficien-

cies in the pileup assumption used for MC generation, the simulated samples

are reweighted in order to match the 〈µ〉 distribution observed in data. The

uncertainty on this procedure is determined by varying this reweighting fac-

tor by an amount that reflects uncertainties related to vertex reconstruction

efficiencies.

• Electrons and muons: The tag-and-probe method is used to derive uncer-

tainties on the reconstruction, identification, and isolation efficiency scale

factors that are applied to simulated events in order to match the overall

muon [100] and electron [99] efficiencies observed in data. For muons, the

method uses Z → µµ events, while a combination of Z → ee, W → eν, and

J/ψ → ee events are used for electrons. Additional uncertainties are placed

on the momentum scale and resolution. For the muon momentum resolu-

tion, dedicated uncertainties are derived for ID and MS tracks. Finally,

the muon systematic effects include an uncertainty on the track-to-vertex

association efficiency scale factor. Overall, the experimental uncertainties

related to muons and electrons are found to be small.

• Jets: Uncertainties on the jet energy scale and resolution are derived as a

function of the jet pT and η, as well as the pileup conditions and jet flavor

composition in the jet sample under study. These in situ calibrations are

performed using dijet, γ + jets, and Z + jets events in simulation and data,

taking advantage of the pT balance in the events [105]. These studies result

in many JES and JER uncertainties, the number of which can be reduced us-

ing the method of eigenvector decomposition while still maintaining a good

model for the experimental uncertainty. In this search, the reduced set of

JES and JER uncertainties amount to 8 and 12 nuisance parameters, respec-
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tively. Additionally, dedicated systematic uncertainties are implemented to

account for differences in the JVT and b-tagging efficiencies observed in data

and simulation.

• Missing transverse energy: As defined in Section 9.5, Emiss
T is calculated us-

ing all identified physics objects in the event, as well as an additional soft

term to account for tracks from the primary vertex that are not associated

to any of these objects. As such, the uncertainty on Emiss
T is partially de-

termined by propagating the uncertainties on the momenta of these physics

objects to Emiss
T calculation. The largest such contribution comes from the

jet uncertainties. Dedicated uncertainties related to the scale and resolution

of the soft term entering the Emiss
T calculation are also considered [118].

• Trigger scale factors: For events with Emiss
T < 200 GeV, where the Emiss

T -

triggers are not fully efficient, scale factors are derived to account for differ-

ences in the trigger efficiencies between the data and simulation. Statistical

uncertainties on these scale factors stem from the size of the dataset in the

measurement region. Systematic uncertainties are also derived to account

for any potential dependence of the scale factors on m``, m100
T2 , and RISR and

amount to 5%. Finally, the trigger efficiencies are checked for dependence

on the underlying physics process and uncertainties on the scale factors are

derived in accordance with these differences. Overall, these uncertainties

have small impact on the results. A more detailed description of the Emiss
T -

trigger scale factor uncertainties is given in Appendix A.4. Uncertainties on

the trigger efficiencies for events with Emiss
T > 200 GeV are negligible.

Of the systematic uncertainties described above, the largest contribution to

the overall experimental uncertainty comes from uncertainties on the jet energy
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scale (JES) and jet energy resolution (JER). The impact that these uncertainties

have on the expected yields in the SRs is shown in more detail in Section 15.1.

12.2 Fake Factor Method Uncertainties

The background from events containing fake/non-prompt leptons is derived in

a data-driven way such that the experimental uncertainties enumerated in the pre-

vious section do not apply. Instead, several sources of uncertainty are identified in

the fake factor method that in turn affect the uncertainty on the fake/non-prompt

lepton background, which tends to dominate the overall background uncertainty

in the SRs, especially those targeting electroweakino production. More details

about the relative size of the fake/non-prompt lepton background uncertainty are

given in Section 15.1 and Section 15.2.2. The systematic uncertainties considered

for the fake factor method are due to statistical uncertainties on the fake fac-

tors, the fake factor extrapolation at low-pT, subtraction of MC events containing

prompt leptons, kinematic dependencies of the fake factors, and non-closure in

the same-sign validation regions.

Statistical uncertainties on the fake factors themselves are due to the available

statistics in the fake factor measurement region. These events are collected using

heavily prescaled single-lepton triggers that only accept a small fraction of the to-

tal number of dijet events containing a fake/non-prompt lepton. Additionally, the

size of the data sample in the fake factor measurement region impacts the exponen-

tial fits that are used to derive the extrapolated fake factors in the lowest pT bins.

In order to be conservative, the statistical uncertainty on the extrapolated fake

factors is set equal to the statistical uncertainty on the lowest directly-measurable

fake factor summed in quadrature with the fit uncertainty. These relative statis-

tical uncertainties on the fake factors are shown in Figure 12.1 and Figure 12.2
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Figure 12.1: The relative statistical uncertainties on the electron fake factors
for events with N20

b−jet = 0 (left) and N20
b−jet > 0 (right) The relative uncertainties

in the lowest pT bins are the sum in quadrature of the statistical uncertainty from
the neighboring bin and the uncertainty from the extrapolation procedure.

for electrons and muons, respectively.

While the fake factor measurement region is dominated by dijet events con-

taining fake/non-prompt leptons, there is still a small prompt lepton contribution

from the tt̄ and W + jets processes, which grows with the lepton pT. In order to

isolate the fake/non-prompt lepton contribution, these prompt processes are first

normalized in a high-mT control region and then subtracted using MC before the

fake factors are measured. In order to assess the impact of this subtraction, this

normalization factor is varied up and down by a factor of two before recalculating

the fake factors. An additional check on this subtraction is performed by instead

normalizing the prompt processes in a region with Emiss
T > 200 GeV. In each

case, the changes in the fake factors are small compared to the other uncertainties

considered. The other place where prompt subtraction comes into play is in the

anti-ID control region (where the fake factors are applied), since this region also

has a small amount of prompt lepton contamination. In this case, the amount of

prompt subtraction is varied up and down by 10%. The impact on the expected

yields in the SRs is then checked and the yields are observed to change by a few
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Figure 12.2: The relative statistical uncertainties on the muon fake factors for
events with N20

b−jet = 0 (left) and N20
b−jet > 0 (right) The relative uncertainties in

the lowest pT bins are the sum in quadrature of the statistical uncertainty from
the neighboring bin and the uncertainty from the extrapolation procedure.

percent at most, as shown in Figure 12.3 and Figure 12.4 for SR–E–high and

SR–S–high, respectively.

The fake factors are ultimately parameterized and applied as a function of the

lepton pT and the number of b-tagged jets in the event, although other impor-

tant kinematic dependencies are possible. Given the limited statistics in the fake

factor measurement region, though, it is not feasible to bin the fake factors in

more observables in order to capture these correlations. Instead, these kinematic

dependencies are checked and flat systematic uncertainties are applied to the fake

factors in order to cover any statistically significant differences in these distri-

butions with respect to the average fake factors. For electrons, the fake factors

are shown as a function of important kinematic variables in Figures 11.26–11.28,

while those for muons are shown in Figures 11.36–11.38. The observables with the

strongest kinematic dependencies are RISR and the lepton |η|. For the electron

fake factors, this uncertainty amounts to 40%, while the muon fake factors acquire

a 20% uncertainty. These parameterization uncertainties represent the dominant

source of uncertainty on the fake/non-prompt lepton background.
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(b) µµ channel

Figure 12.3: The m`` distributions in SR–E–high after varying the amount of
prompt subtraction in the anti-ID CR by 10%.
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(b) µµ channel

Figure 12.4: The m100
T2 distributions in SR–S–high after varying the amount of

prompt subtraction in the anti-ID CR by 10%.
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Finally, the modeling of this background is checked in same-sign validation re-

gions, which are dominated by events containing fake/non-prompt leptons. Here,

the fake/non-prompt lepton is assumed to be the subleading lepton in the event.

Those events where the subleading lepton is an electron are used to assess the need

for an additional non-closure uncertainty on the electron fake factors, while those

where the subleading lepton is a muon are used to do the same for the muon fake

factors. Since the fake factors are parameterized as a function of the lepton pT, the

subleading lepton pT distribution is used for the comparison. This distribution is

binned to match the fake factor binning, and any discrepancies between the data

and the background prediction that are not already covered by the uncertainties

described above are used to derive an additional non-closure uncertainty.

In particular, the uncertainty on the fake/non-prompt lepton background in a

given p`2T bin is taken as the RMS of the variations due to the above uncertainties,

and any uncovered discrepancy is measured in quadrature and taken to be the

non-closure uncertainty. If the difference between the data and the prediction

is already covered by the variation, then no additional uncertainty is assigned.

Since V V processes represent the subleading contribution to the same-sign vali-

dation regions, a normalization factor obtained with a background-only fit to the

CRs (described in Section 14.1) is applied to better isolate the fake/non-prompt

background in the comparison. The data and fake/non-prompt background com-

parisons for the high-Emiss
T and low-Emiss

T same-sign validation regions are shown

in Figure 12.5 and Figure 12.6, respectively. The largest non-closure uncertainty

by far is assigned to the electron fake factor for pT > 20 GeV. Ultimately, though,

this uncertainty has little effect on the yields in the SRs, as the fake/non-prompt

lepton contribution resides at lower values of pT.

Nominally, the same-sign validation regions just discussed require N20
b−jet = 0,
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(a) ee+ µe channel
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(b) µµ+ eµ channel

Figure 12.5: Data compared with the fake/non-prompt lepton estimate in high-
Emiss

T VRSS region for the ee+ µe channel (left) and the µµ+ eµ channel (right).
Differences beyond the ±1σ band are used to derive non-closure systematic un-
certainties.
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(b) µµ+ eµ channel

Figure 12.6: Data compared with the fake lepton estimate in low-MET VR-SS
for the ee+µe channel (left) and the µµ+ eµ channel (right). Differences beyond
the ±1σ band are used to derive non-closure systematic uncertainties.
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(a) ee+ µe channel
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(b) µµ+ eµ channel

Figure 12.7: Data compared with the fake/non-prompt lepton estimate in the
same-sign high-Emiss

T CRtop region for the ee+ µe channel (left) and the µµ+ eµ
channel (right). Differences beyond the ±1σ band are used to derive non-closure
systematics uncertainties.

which does not allow for a non-closure uncertainty to be assigned on the fake

factors that are measured in events with N20
b−jet > 0. Therefore, this procedure

is also performed in same-sign versions of the CRtop regions, which differ from

their definition given in Section 11.1 only by requiring two signal leptons with the

same electric charge. The comparisons between the background estimate and the

data, including the ±1σ band from all other fake factor uncertainties, are shown

in Figure 12.7 and Figure 12.8.

12.3 Theoretical Uncertainties

Theoretical uncertainties on the signal and background event yields arise from

the choice of various parameters used for the event generation, as described in

the following sections. Additionally, a dedicated uncertainty on the modeling of

the ISR process in the signal samples is derived by comparing data and simulated

events in Z → µµ + jets events, where the MC samples are generated using the

same generator configuration as that used for the signals.
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(a) ee+ µe channel
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(b) µµ+ eµ channel

Figure 12.8: Data compared with the fake/non-prompt lepton estimate in the
same-sign low-Emiss

T CRtop region for the ee+ µe channel (left) and the µµ+ eµ
channel (right). Differences beyond the ±1σ band are used to derive non-closure
systematics.

12.3.1 Background Processes

The dominant sources of background taken from MC simulation are tt̄/Wt,

Z(∗)/γ∗(→ ττ) + jets, and V V . While their normalizations are determined using

dedicated CRs, the shapes of their m`` and m100
T2 distributions remain sensitive

to theoretical uncertainties related to the parameters of the MC generators. The

theoretical uncertainties are determined by evaluating the changes in the back-

ground yields in the m`` and m100
T2 bins that define the exclusive electroweakino

and slepton SRs.

In order to assess the effect of the choice of QCD renormalization scale (µR) and

factorization scale (µF ), the corresponding MC generator parameters are varied

up and down by a factor of two around their nominal values. The envelope of the

six possible variation combinations is taken as the uncertainty. Additionally, an

uncertainty is derived by varying the strong coupling constant, αs, up and down

within its uncertainty. Finally, the uncertainty due to the choice of the PDF set is

assessed by reweighting the nominal samples to the central values of the MMHT2014
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and CT14 PDF sets. The uncertainty is determined by symmetrizing the changes

in the signal yields and taking the envelope.

Figures 12.9–12.11 show the changes in the event yields in SR–E–high and

SR–S–high after applying the variations on αs, µR and µF , and the PDF sets

for the tt̄, V V , and Z(∗)/γ∗(→ ττ) + jets, respectively. The equivalent results

for SR–E–low and SR–S–low are presented in Figures 12.12–12.14. Finally, the

results for SR–E–med are shown in Figures 12.15–12.16. All lepton flavor combi-

nations are considered in these results since the theoretical uncertainties involved

are not expected to be flavor-dependent. Integrating over the full m`` and m100
T2

distributions, uncertainties on the background estimation in the SRs due to αs

and PDF variations are both . 3%. The uncertainties from variations of µR and

µF are larger but typically . 25%.

12.3.2 Signal Processes

Since the targeted signal processes rely on hadronic ISR to boost the SUSY

system, the generator modeling of this ISR process represents an important source

systematic uncertainty. This uncertainty is assessed in a data-driven way by com-

paring data to the simulated background in Z(→ µµ)+jets events and treating the

dimuon system as a proxy for the SUSY system. Since the dominant production

modes for Z(→ µµ)+ jets, electroweakinos, and sleptons involve quarks in the ini-

tial state, the ISR process is assumed to be similar for each of these processes. In

order to ensure that the ISR modeling is the same between the simulated events,

the Z(→ µµ) + jets MC sample is generated using the same MG5_aMC@NLO

configuration as the signal samples.

Events containing exactly two muons with opposite electric charge are col-

lected using unprescaled single-muon triggers, which must be matched to one of
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Figure 12.9: Uncertainties on αs (top), QCD renormalization/factorization
(middle), and PDF (bottom) as a function of mll in SR–E–high (left) and m100

T2 in
SR–S–high (right) for the tt̄ background.
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Figure 12.10: Uncertainties on αs (top), QCD renormalization/factorization
(middle), and PDF (bottom) as a function of mll in SR–E–high (left) and m100

T2 in
SR–S–high (right) for the V V background.
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Figure 12.11: Uncertainties on αs (top), QCD renormalization/factorization
(middle), and PDF (bottom) as a function of mll in SR–E–high (left) and m100

T2 in
SR–S–high (right) for the Z(∗)/γ∗(→ ττ) + jets background.
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Figure 12.12: Uncertainties on αs (top), QCD renormalization/factorization
(middle), and PDF (bottom) as a function of mll in SR–E–low (left) and m100

T2 in
SR–S–low (right) for the tt̄ background.
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Figure 12.13: Uncertainties on αs (top), QCD renormalization/factorization
(middle), and PDF (bottom) as a function of mll in SR–E–low (left) and m100

T2 in
SR–S–low (right) for the V V background.
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Figure 12.14: Uncertainties on αs (top), QCD renormalization/factorization
(middle), and PDF (bottom) as a function of mll in SR–E–low (left) and m100

T2 in
SR–S–low (right) for the Z(∗)/γ∗(→ ττ) + jets background.

199



0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

_s nominal 0.118)α(
nominal

_s down 0.117)α(
PDFset265000

_s up 0.119)α(
PDFset266000

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµSRSF-LowMET-MLL-low ee+
SusySkimHiggsino v2.7c (R21)

_sα l 2≥ tt
15+16+17+18 Data, mc16a+d+e

Weight (Variation)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
nBJet20_MV2c10 == 0
(MTauTau < 0 || MTauTau > 160)
METOverHTLep > 10
RJR_MS < 50
RandomRunNumber > 0 &&  met_Et < 200

0 10 20 30 40 50 60

) [GeV]llm(

0.8

0.9

1

1.1

1.2

N
om

 / 
S

ys
t

SM Total (2.8, 39, 100%)

 20% syst⊕Stat 

0 10 20 30 40 50 60
0

2

4

6

8

10

_s nominal 0.118)α(
MUR1_MUF1_PDF261000

_s down 0.117)α(
MUR1_MUF1_PDF269000

_s up 0.119)α(
MUR1_MUF1_PDF270000

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµSRSF-LowMET-MLL-low ee+
SusySkimHiggsino v2.7c (R21)

_sαVV 

15+16+17+18 Data, mc16a+d+e

Weight (Variation)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
nBJet20_MV2c10 == 0
(MTauTau < 0 || MTauTau > 160)
METOverHTLep > 10
RJR_MS < 50
RandomRunNumber > 0 &&  met_Et < 200

0 10 20 30 40 50 60

) [GeV]llm(

0.8

0.9

1

1.1

1.2

N
om

 / 
S

ys
t

SM Total (12.4, 929, 100%)

 20% syst⊕Stat 

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
nominal

muR2,muF2

muR2,muF1

muR1,muF0.5

muR0.5,muF0.5

muR1,muF2

muR0.5,muF1

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµSRSF-LowMET-MLL-low ee+
SusySkimHiggsino v2.7c (R21)

 scale variationsl 2≥ tt
15+16+17+18 Data, mc16a+d+e

Weight (Variation)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
nBJet20_MV2c10 == 0
(MTauTau < 0 || MTauTau > 160)
METOverHTLep > 10
RJR_MS < 50
RandomRunNumber > 0 &&  met_Et < 200

0 10 20 30 40 50 60

) [GeV]llm(

0

0.5

1

1.5

2

N
om

 / 
S

ys
t

SM Total (2.8, 39, 100%)

 20% syst⊕Stat 

0 10 20 30 40 50 60
0

2

4

6

8

10

MUR1_MUF1_PDF261000

MUR2_MUF2_PDF261000

MUR2_MUF1_PDF261000

MUR1_MUF0.5_PDF261000

MUR0.5_MUF0.5_PDF261000

MUR1_MUF2_PDF261000

MUR0.5_MUF1_PDF261000

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµSRSF-LowMET-MLL-low ee+
SusySkimHiggsino v2.7c (R21)

VV scale variations

15+16+17+18 Data, mc16a+d+e

Weight (Variation)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
nBJet20_MV2c10 == 0
(MTauTau < 0 || MTauTau > 160)
METOverHTLep > 10
RJR_MS < 50
RandomRunNumber > 0 &&  met_Et < 200

0 10 20 30 40 50 60

) [GeV]llm(

0

0.5

1

1.5

2

N
om

 / 
S

ys
t

SM Total (12.4, 929, 100%)

 20% syst⊕Stat 

]

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

NNPDF3.0 (nom)

NNPDF3.0 - error

NNPDF3.0 + error

CT14 NNLO

MMHT2014

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµSRSF-LowMET-MLL-low ee+
SusySkimHiggsino v2.7c (R21)

 PDF Variationsl 2≥ tt
15+16+17+18 Data, mc16a+d+e

Weight (Variation)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
nBJet20_MV2c10 == 0
(MTauTau < 0 || MTauTau > 160)
METOverHTLep > 10
RJR_MS < 50
RandomRunNumber > 0 &&  met_Et < 200

0 10 20 30 40 50 60

) [GeV]llm(

0.8

0.9

1

1.1

1.2

N
om

 / 
S

ys
t

SM Total (2.8, 39, 100%)

 20% syst⊕Stat 

0 10 20 30 40 50 60
0

2

4

6

8

10

NNPDF3.0 (nom)

NNPDF3.0 - error

NNPDF3.0 + error

CT14 NNLO

MMHT2014

 InternalATLAS
1− = 13 TeV, 140.5 fbs

eµ+µ+eµµSRSF-LowMET-MLL-low ee+
SusySkimHiggsino v2.7c (R21)

VV PDF Variations

15+16+17+18 Data, mc16a+d+e

Weight (Variation)met_Et>120 && jetPt[0]>100 && DPhiJ1Met > 2.0
minDPhiAllJetsMet > 0.4
FS != 206 && FS != 207
trigMatch_metTrig
lep1Pt > 5
(lep1Flavor != lep2Flavor ? Rll > 0.2 : Rll > 0.05)

( (lep1Flavor == 1 && lep2Flavor == 1) ? (Rll > 0.3 && mll > 3) : 1 )

mll > 1 && mll < 60 && (mll < 3 || mll > 3.2)
(lep1Author != 16 && lep2Author != 16)
nLep_signal == 2 && nLep_base == 2
lep1Charge != lep2Charge
nBJet20_MV2c10 == 0
(MTauTau < 0 || MTauTau > 160)
METOverHTLep > 10
RJR_MS < 50
RandomRunNumber > 0 &&  met_Et < 200

0 10 20 30 40 50 60

) [GeV]llm(

0.8

0.9

1

1.1

1.2

N
om

 / 
S

ys
t

SM Total (12.4, 929, 100%)

 20% syst⊕Stat 

Figure 12.15: Uncertainties on tt̄ (left) and V V (right) backgrounds from αs
(top), QCD renormalization/factorization (middle), and PDF (bottom) as a func-
tion of mll in SR–E–med.
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Figure 12.16: Uncertainties on the Z(∗)/γ∗(→ ττ) + jets background from αs
(top left), QCD renormalization/factorization (top right), and PDF (bottom) as
a function of mll in SR–E–low.

201



Ptll

1

10

210

310

410

510

610

710

20
 G

eV
 / 

E
ve

nt
s

Data Total SM

 (MG5_aMC@NLO)µµ→Z Diboson

, single toptt W+jets

  ATLAS
-1 = 13 TeV, 139 fbs

ISR Measurement Region

100 200 300 400 500 600 700 800 900 1000
) [GeV]µ, µ(

T
p

0.5

1

1.5S
M

 / 
D

at
a

linear fit jetSystemPt20

1

10

210

310

410

510

610

710

20
 G

eV
 / 

E
ve

nt
s

Data Total SM

 (MG5_aMC@NLO)µµ→Z Diboson

, single toptt W+jets

  ATLAS
-1 = 13 TeV, 139 fbs

ISR Measurement Region

100 200 300 400 500 600 700 800 900 1000
(jet system) [GeV]

T
p

0.5

1

1.5S
M

 / 
D

at
a

linear fit

Figure 12.17: Comparison of Z → µµ events in data with Z → µµ+jets events
generated using the same MG5_aMC@NLO configuration as the higgsino and
wino/bino signal samples. Only statistical uncertainties are shown. The pT of the
dimuon (jet) system is shown on the left (right). In each case, a linear fit to the
data/MC ratio is performed in the bottom panel.

the muons in the event. The invariant mass of the dimuon system must satisfy

70 GeV < mµµ < 110 GeV in order to select events around the Z resonance. In

order to enforce the boosted topology targeted by the electroweakino and slepton

SRs, the leading jet in the event is required to have pT > 100 GeV and the recoil-

ing Z system must satisfy pT(µ, µ) > 100 GeV. Finally, events are vetoed if they

contain at least one b-tagged jet in order to suppress contributions from events

containing top-quarks, such as tt̄. In simulation, this selection is around 98% pure

in the Z(→ µµ) + jets process. Since the uncertainty is derived using only the

shape of the pT(µ, µ) distribution, the simulated background is normalized to the

data in this region.

The distributions of pT(µ, µ) in data and simulation are shown for this mea-

surement region in Figure 12.17. As a cross-check, this figure also shows the pT

of the jet system, which is calculated using the sum of all jet four-vectors in the

event, since this should also be sensitive to the ISR modeling. In each case, a dis-

crepancy between the data and background prediction is observed, which grows

with pT(µ, µ) and pT(jet system). In order to assess the mismodeling, a linear fit
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Figure 12.18: Linear fits to the data/MC distributions for pT(µ, µ) (yellow) and
the pT of the jet system (purple). The bands represent the fit uncertainties using
the 95% CL interval for the fit parameters.

is performed to the data/MC ratio as a function of both of these variables between

100 GeV and 1 TeV. The results of these fits are compared in Figure 12.18, which

shows consistent results for each ISR proxy system.

In order to derive a systematic uncertainty on the ISR modeling, the fit to

data/MC as a function of pT(µ, µ) is used to reweight signal events on an event-by-

event basis. In particular, each signal event is assigned a weight that corresponds

to the value of the fit function as evaluated at the truth-level pT of the SUSY

system. As the impact on the m`` and m100
T2 distributions from this reweighting

is small, the ISR uncertainties for each signal point are only given by the relative

changes in the SR yields after applying these weights. In mathematical terms, the

relative uncertainty due to the ISR modeling in a given SR, ∆σISR/σISR is given

by

∆σISR

σISR
= |Nnom(SR)−Nsyst(SR)|

Nnom(SR) , (12.1)

whereNnom(SR) is the nominal signal yield in the SR andNsyst(SR) is the yield
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after applying the event-by-event ISR weights. The electroweakino uncertainties

due to ISR modeling are shown in the ∆m(χ̃0
2, χ̃

0
1) vs m(χ̃0

2) plane for each of the

electroweakino SRs in Figure 12.19. The analogous uncertainties for the slepton

signals are shown in the ∆m( ˜̀, χ̃0
1) vs m( ˜̀) plane in Figure 12.20. In the case of

SR–S–high, the SR definition was slightly loosened in order to have sufficient signal

statistics for a reliable uncertainty calculation. Specifically, the m100
T2 -dependent

cut on p`2T is removed and the cut on RISR is loosened to RISR > 0.85. Since

the modeling of the pT of the SUSY system gets worse at larger values, the ISR

uncertainties are larger in the SRs requiring Emiss
T > 200 GeV. Additionally, the pT

distribution of the SUSY system tends to be harder for signal points with smaller

mass-splittings, making these uncertainties similarly larger. In general, the SRs

requiring Emiss
T < 200 GeV have ISR modeling uncertainties on the order of 2–3%.

In the SRs requiring Emiss
T > 200 GeV, these uncertainties range from 7–20%,

with the largest uncertainties corresponding to the most compressed signals. In a

previous version of this analysis [116], these uncertainties were assessed by varying

the renormalization, factorization, and jet-parton matching scales in addition to

the shower tune parameters. This method resulted in ISR modeling uncertainties

as large as 40% for compressed sleptons, showing the advantage of the data-driven

approach presented here.

Uncertainties related to the underlying proton PDF are evaluated for the sig-

nal samples according to PDF4LHC15 recommendations [119] and the impact on

the shape of the m`` and m100
T2 distributions is found to be negligible. The uncer-

tainty on the signal yields in the SRs is 15% at most, with the largest uncertainties

corresponding to the signal points with the largest values of m(χ̃0
2) and m( ˜̀) – in-

dicative of the larger PDF uncertainties at high values of the momentum fraction.

Finally, uncertainties on the signal cross-sections, as described in Section 8.2, are
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Figure 12.19: Data-driven ISR uncertainty estimates for the electroweakino SRs.
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Figure 12.20: Data-driven ISR uncertainty estimates for the slepton SRs. The
SR–E–high definition is loosened for these calculations, as described in the text.

typically less than 5%.
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Part V

Statistical Analysis and Results

Is SUSY the best fit?
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Chapter 13

Statistical Methods in the Search

for New Physics

A statistical analysis based on the profile likelihood ratio is used to assess the

compatibility of the data observed in the SRs with various hypotheses. When

searching for evidence of new physics, the data are compared to the background-

only hypothesis in which only contributions form SM processes are considered. If

the observed data are determined to be sufficiently improbable under this hypoth-

esis, then a discovery of new physics can be claimed. In almost all cases, BSM

physics processes produce an excess of events over the SM background, thus a

deficit in the data compared to the background-only hypothesis is not taken to be

evidence of new physics.

If no evidence of new physics is found based on the background-only hypothesis

test, then limits on the production of new physics can be derived. This is done

by comparing the data to the signal-plus-background hypothesis that includes a

signal component that is scaled by a signal strength parameter µ. This parameter

is extracted by fitting the data to the signal-plus-background hypothesis and is
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defined by

µ = σobs

σexp
, (13.1)

where σobs is the fitted value of the signal cross-section and σexp is the expected

cross-section from the signal model. Thus, µ = 0 corresponds to the background-

only hypothesis and µ = 1 corresponds to the signal-plus-background hypothesis.

Additionally, the best-fit value of µ can be transformed into an upper limit on the

production cross-section of some new physics process.

All of the likelihood construction, fitting machinery, and statistical tests are in-

corporated into the HistFitter package [120], which is utilized by these searches.

This chapter proceeds by first reviewing the concept of hypothesis testing in Sec-

tion 13.1 before describing the likelihood function in Section 13.2. Finally, an

outline of the profile likelihood ratio method in the context of searching for new

physics and setting limits is given in Section 13.3.

13.1 Hypothesis Testing

Central to the search for new phenomena at the LHC is the notion of hypoth-

esis testing. The goal of such a test is to construct a test statistic that maps the

outcome of an experiment to a single real number (called a p-value) that quantifies

the probability of obtaining data of equal or greater incompatibility with some hy-

pothesis. This p-value can then be used to claim the discovery or exclusion of some

physics process at a chosen confidence level (CL). When conducting a hypothesis

test in the context of a particle physics experiment, one needs to construct two

hypotheses: the background-only hypothesis (H0) and the signal-plus-background

hypothesis (H1), each of which are represented by probability density functions

called likelihoods. In these experiments, which essentially count the number of
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events satisfying some kinematic properties, the presence of signal almost always

implies the presence of additional events when compared to the background-only

hypothesis. In some cases, quantum mechanical interference effects from the in-

troduction of a new physics process can lead to event yields that are not strictly

additive, but this scenario is outside the scope of this dissertation.

Often, the p-value is translated into a significance Z, which is the corresponding

quantile of a unit Gaussian distribution, expressed as a multiple of the standard

deviation σ. When comparing the data to the background-only hypothesis, the

threshold adopted by the particle physics community for claiming a discovery

is Z = 5σ, which has a corresponding p-value of p = 2.9 × 10−7. Similarly,

the conventional threshold for rejecting the signal-plus-background hypothesis is

p = 0.05, which corresponds to Z = 1.64σ.

13.2 Likelihood Function

The likelihood function consists of all of the event yields in the relevant SRs

and CRs as well additional nuisance parameter terms that account for both sta-

tistical and systematic uncertainties. The set of nuisance parameters is denoted

by θ, whose values can impact the expected signal and background contributions.

Therefore, the expected total number of events in a given bin i of region r is

given by µsri(θ) + bri(θ), where sri(θ) and bri(θ) are the expected number of sig-

nal and background events, respectively. In the likelihood function, these event

rates are modeled using Poisson terms. In the case of systematic uncertainties,

the nuisance parameter terms are described by Gaussian probability distribution

functions that are constrained by auxiliary measurements. Poisson probabilities

are used for nuisance parameter terms related to statistical uncertainties. The

likelihood function L, which is a function of the parameter of interest µ and the
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nuisance parameters θ, is constructed as the product of these terms according to

L(µ,θ) =
∏

r∈regions

∏
i∈bins

(µsri(θ) + bri(θ))nri
nri!

e−(µsri(θ)+bri(θ)) ∏
k∈θ

fk (θ′k|θk) , (13.2)

where nri is the observed number of events in bin i of region r and fk is the

probability distribution function used to model the nuisance parameter θk.

When setting limits on direct slepton production, the SRs included in the

likelihood are all of the exclusive SRs bins within SR–S–high and SR–S–low.

Similarly, the likelihood for electroweakino exclusion fits includes the exclusive SR

bins in SR–E–high, SR–E–med, SR–E–low. Only the wino/bino interpretations

include SR–E–1`1T , since this SR is not expected to be sensitive to direct higgsino

production due to the lower cross-sections.

13.3 Test Statistics, Discovery, and Limit Set-

ting

The Neyman–Pearson lemma states that the optimal test statistic for discern-

ing between H1 and H0 is the likelihood ratio Ls+b
Lb

, where Ls+b and Lb are the

likelihood functions of H1 and H0, respectively. But the simple likelihood ratio

has an important drawback in that it is a function of both the signal strength

parameter and nuisance parameters, whereas searches for new physics are only

interested in the former. The experiments at the LHC have therefore adopted the

profile likelihood ratio method, which eliminates the explicit dependence of the

likelihood ratio on the nuisance parameters by making them functions of the sig-

nal strength itself in a process called “profiling.” Explicitly, the profile likelihood
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ratio test statistic λ(µ) is given by

λ(µ) = L(µ, ˆ̂θ(µ))
L(µ̂, θ̂)

, (13.3)

where µ̂ and θ̂ are maximum likelihood estimators and ˆ̂
θ is a conditional maxi-

mum likelihood estimator. That is, µ̂ and θ̂ are the values that maximize L(µ,θ)

globally, while ˆ̂
θ(µ) is the value of θ that maximizes L(µ,θ) for some fixed value

of µ. Thus, by profiling over θ, the profile likelihood ratio is manifestly indepen-

dent of the values of the nuisance parameters. In practice, the profiling over the

nuisance parameters is achieved by interpolating between histograms that repre-

sent the yield variations due to a given uncertainty. One should understand λ(µ)

as having the property that 0 ≤ λ(µ) ≤ 1, with larger values indicating better

agreement between the data and the model for a given value of µ.

Unfortunately, the profile likelihood ratio as defined in Equation 13.3 does

not satisfy our physical intuition in at least one special case: what happens if

we observe fewer events than is predicted by the µ = 0 (i.e. background-only)

hypothesis? In this case, the maximum likelihood estimator µ̂ will be negative,

when in fact, the presence of signal should not reduce the number of expected

events compared to background-only hypothesis 1. Another way to state this is

that physicists work in a theoretical framework where signal processes can only

have positive or vanishing rates (i.e. µ ≥ 0). Simply using Equation 13.3 as

the test statistic would also have the undesirable feature of counting a downward

fluctuation in the data as evidence against the background-only hypothesis.

Nevertheless, allowing for µ̂ < 0 means that µ̂ can be approximated as be-
1Again, we are ignoring the rare case where quantum mechanical interference effects between

the background and signal processes can lead to a signal-plus-background model that is not
strictly additive in the number of events.
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ing Gaussian-distributed, which in turn allows one to determine the asymptotic

behavior of the final test statistics used in searches for new physics at the LHC

[121]. Instead, the profile likelihood ratio can be redefined in such a way that

when µ̂ < 0, the best agreement with the data is taken to be at µ̂ = 0:

λ̃(µ) =


L(µ,ˆ̂θ(µ))
L(µ̂,θ̂) µ̂ ≥ 0,

L(µ,ˆ̂θ(µ))
L(0,ˆ̂θ(0))

µ̂ < 0.
(13.4)

By convention (and to reduce computational cost), a new test statistic t̃µ is

defined based on Equation 13.4:

t̃µ = −2 ln λ̃(µ) =


−2 ln L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0,

−2 ln L(µ,ˆ̂θ(µ))
L(µ̂,θ̂) µ̂ ≥ 0.

(13.5)

Thus, the problem of maximizing the likelihood becomes a problem of min-

imizing its negative logarithm. With this definition of the test statistic, larger

values correspond to worse agreement between the data and the model at a given

value of µ. In order to determine p-values, one must know the distribution of

the test statistic. This can be achieved by generating pseudo-experiments with

MC techniques, but this procedure can be extremely computationally expensive.

An important feature of this test statistic is that its distribution asymptotically

approaches a χ2 distribution [121]. Thus, the asymptotic formulation of t̃µ can

be used when the data sample is sufficiently large, which is the approach taken in

the exclusion fits presented in this dissertation.

During the discovery phase of the search, the compatibility of the observed

data is tested against the background-only hypothesis (i.e. µ = 0). In this case,
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the test statistic is denoted by q0 and takes the form

q0 =


−2 lnλ(0) µ̂ ≥ 0

0 µ̂ < 0
. (13.6)

In this definition, larger values of q0 indicate greater disagreement between the

data and the background-only hypothesis. The discovery p-value, p0, can then be

calculated according to

p0 =
∫ ∞
q0,obs

f (q0|µ = 0) dq0, (13.7)

where q0,obs is the observed value of the test statistic and f (q0|µ = 0) is the dis-

tribution of the test statistic q0 under the background-only hypothesis, estimated

either with MC methods or asymptotic approximations.

For limit setting, the data are checked for consistency with the signal-plus-

background hypothesis. With the constraint that µ ≥ 0, the test statistic, q̃µ, is

given by

q̃µ =


−2 ln λ̃(µ) µ̂ ≤ µ

0 µ̂ > µ
. (13.8)

Similar to the discovery case, the p-value for a given value of µ is obtained using

the observed value of q̃µ and the expected distribution of the test statistic for some

signal-plus-background hypothesis, f(q̃µ|µ), according to

pµ =
∫ ∞
qµ,obs

f (qµ|µ) dqµ. (13.9)

Instead of using pµ to set limits, ATLAS has adopted the CLs method [122], which

prescribes the use of

CLs = pµ
1− pb

, (13.10)
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where pb is the p-value corresponding to the background-only hypothesis using

the same test statistic:

pb =
∫ ∞
qµ,obs

f (qµ|µ = 0) dqµ. (13.11)

Since 1 − pb < 1, this construction is a conservative method that aims to miti-

gate cases in which downward fluctuations of the data can lead to exclusions for

arbitrarily small signals. In order to set upper limits on a particular signal hypoth-

esis, a scan is performed over µ to find the particular value, µ95, corresponding

to CLs = 0.05. One can therefore claim that all values of µ greater than µ95

are excluded at the 95% CL. All signal hypotheses with µ95 < 1.0 are therefore

considered to be excluded, also at the 95% CL.
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Chapter 14

Model-Independent Search for

New Physics

With the SRs, background estimation strategy, and fit models defined, the

discovery phase of the searches begins. First, background-only fits to the CRs are

performed using the statistical methods described in the previous chapter. These

fits result in normalization factors that are propagated to the VRs in order to

inspect the overall background modeling. After this validation, the SRs can be

unblinded to check for significant excesses over the background expectation. All

of this is presented in Section 14.1.

During the search for generic new physics, the agreement between the data and

the SM expectation is quantified by extracting p-values under the background-only

hypothesis from simultaneous fits to the CRs and one of the single-bin inclusive

SRs. The results of the fit can also be used to set 95% CL upper limits on the

number of signal events in the inclusive SRs and the visible cross-section, which

accounts for the efficiencies of the reconstruction and event selections. Motivation

for providing these limits is discussed in Section 14.2 and the results themselves

are given in Section 14.3.
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14.1 Background-Only Fits to the CRs and Un-

blinded Results

Before the SRs can be unblinded, the quality of the background modeling

needs to be assessed. The shapes of all kinematic distributions for all background

processes are taken directly from MC simulation, aside from the component due

to fake/non-prompt leptons. Of the simulated backgrounds, the largest contribu-

tions to the SRs come from the tt̄/Wt, Z(∗)/γ∗(→ ττ) + jets, and V V processes.

Dedicated CRs are constructed in order to extract normalization factors for these

backgrounds, which are then propagated to the VRs when assessing the back-

ground modeling.

The normalization factors and uncertainties are obtained from a background-

only fit of the CRs. These fits are performed simultaneously to all of the CRs

targeting sleptons or electroweakinos, with floating parameters of interest that

correspond to the normalization factors for the tt̄/Wt, Z(∗)/γ∗(→ ττ) + jets, and

V V backgrounds. While the CRs constructed for the V V background are not

very pure, the fact that these fits are performed simultaneously still allows for a

reasonable normalization factor uncertainty to be obtained since the contributions

from tt̄/Wt and Z(∗)/γ∗(→ ττ)+ jets are constrained by their own dedicated CRs.

In order to match the SR definitions, separate normalization factors are derived

for the high-Emiss
T and low-Emiss

T regions. The results of the background-only fit of

the CRs are shown in Table 14.1. The normalization factors obtained for the low-

Emiss
T CRs targeting the V V background differ from unity by slightly more than

their uncertainties, indicating some mis-modeling in this phase space. Examples

of various kinematic distributions in the electroweakino CRs after the background-

only fit of the CRs are shown in Figure 14.1, while those for the slepton CRs are
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presented in Figure 14.2.

Table 14.1: Normalization factors obtained from a background-only fit of the
CRs defined for electroweakino and slepton searches. The uncertainties account
for both statistical and systematic contributions.

Normalization Parameters
Backgrounds Emiss

T region electroweakino slepton

tt̄/Wt
high 1.08± 0.20 1.05± 0.20
low 1.08± 0.18 1.09± 0.19

Z(∗)/γ∗(→ ττ) + jets high 0.96± 0.14 0.80± 0.17
low 1.02± 0.15 1.08± 0.17

V V
high 0.89± 0.27 0.85± 0.28
low 0.69± 0.22 0.71± 0.23

Applying the fitted normalization factors, the backgrounds are extrapolated

to the VRs to check the level of agreement between the data and the background

estimates. Figure 14.3 shows the results in the VRDF regions, which are designed

to have similar background compositions to the SRs. Additionally, they consist

of exclusive bins in either m`` or m100
T2 that match the bin intervals used by the

SRs. Overall, good agreement is observed between the data and the extrapo-

lated backgrounds, as no deviations exceed the 2σ level. Additional kinematic

distributions in the VRDF and VRtau–E–med regions are shown in Figure 14.4,

where both the shape and normalization of the background predictions are in good

agreement with the data. Due to the limited number of events, it is difficult to

derive a dedicated CR for the Z(∗)/γ∗(→ ττ) + jets contribution to SR–E–med.

Instead, CRtau–E–low is used to normalize this background in SR–E–med and

this method is subsequently checked in VRtau–E–med, which is only orthogonal

to SR–E–med by requiring mττ ∈ [60, 120] GeV. The good background modeling

seen in VRtau–E–med gives confidence in the extrapolation from CRtau–E–low
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Figure 14.1: Examples of kinematic distributions after the background-only fit
of the electroweakino CRs showing the data as well as the expected background
in the control regions. The full event selection of the corresponding regions is ap-
plied, except for distributions showing blue arrows, where the requirement on the
variable being plotted is removed and indicated by the arrows in the distributions
instead. The first (last) bin includes underflow (overflow). The uncertainty bands
plotted include all statistical and systematic uncertainties.
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Figure 14.2: Examples of kinematic distributions after the background-only fit
of the slepton CRs showing the data as well as the expected background in the
control regions. The full event selection of the corresponding regions is applied,
except for distributions showing blue arrows, where the requirement on the vari-
able being plotted is removed and indicated by the arrows in the distributions
instead. The first (last) bin includes underflow (overflow). The uncertainty bands
plotted include all statistical and systematic uncertainties.
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to SR–E–med, which requires Emiss
T /H lep

T < 10 and Emiss
T /H lep

T > 10, respectively.

Additionally, the VRSS regions are checked after background-only fit of the

CRs. By requiring two leptons of the same electric charge, these VRs are en-

riched with events containing fake/non-prompt leptons that allow the modeling

of this background to be assessed. The m``- and m100
T2 -dependent cuts on p`2T are

not applied in the VRSS regions in order to increase the statistics of this back-

ground. Figure 14.5 and Figure 14.6 show several kinematic distributions in the

electroweakino and slepton VRSS regions, respectively, where good agreement be-

tween the data and prediction can be seen, indicating sufficient modeling of the

fake/non-prompt background via the fake factor method.

Once the background modeling in the VRs is deemed sufficient, the SRs can

be unblinded and checked for excesses over the background prediction that could

indicate the existence of some BSM process. Examples of ee and µµ events that

fall into SR–E–high and SR–S–high are shown in Figure 14.7 and 14.8, respec-

tively. When forming the background prediction in the SRs, the normalization

factors obtained from the simultaneous fits to the CRs under the background-only

hypothesis are applied to the tt̄/Wt, Z(∗)/γ∗(→ ττ)+jets, and V V processes. The

data and extrapolated background yields in the exclusive electroweakino and slep-

ton SRs are shown in Table 14.2 and Table 14.3, respectively. Various kinematic

distributions in the electroweakino SRs are presented in Figure 14.9 after per-

forming the background-only fit of the CRs. Distributions in the slepton SRs are

shown in Figure 14.10 and Figure 14.11. While the data yields are consistently

higher than the fitted background yields in SR–E–med, none of the other SRs

show signs of obvious excesses above the background prediction. In order to test

for the production of some generic BSM physics process that could be populating

the SRs, these fits are extended to include one of the single-bin inclusive SRs. The
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Figure 14.3: Comparison of observed and expected event yields in the VRDF
regions after a background-only fit of the CRs. The three VRDF–E regions are
shown at the top, while the the two VRDF–S regions are shown at the bottom.
In each case, the VRs are binned in the relevant discriminating variable according
to the corresponding SR. The background uncertainties shown include those from
both statistical and systematic sources. The bottom panel in both plots shows
the significance of the difference between the expected and observed yields.
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Figure 14.4: Examples of kinematic distributions after the background-only fit
of the CRs showing the data as well as the expected background in the validation
regions VRtau–E–med (top left), VRDF–E–high (top right), VRDF–S–low (bot-
tom left), and VRDF–S–high (bottom right). The full event selection of the cor-
responding regions is applied, except for distributions showing blue arrows, where
the requirement on the variable being plotted is removed and indicated by the ar-
rows in the distributions instead. The first (last) bin includes underflow (overflow).
The uncertainty bands plotted include all statistical and systematic uncertainties.
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Figure 14.5: Examples of kinematic distributions after the background-only fit
of the CRs showing the data as well as the expected background in the validation
regions VRSS–E–med (top) and VRSS–E–high (bottom). The full event selec-
tion of the corresponding regions is applied, except for distributions showing blue
arrows, where the requirement on the variable being plotted is removed and in-
dicated by the arrows in the distributions instead. The first (last) bin includes
underflow (overflow). The uncertainty bands plotted include all statistical and
systematic uncertainties.
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Figure 14.6: Examples of kinematic distributions after the background-only fit
of the CRs showing the data as well as the expected background in the validation
regions VRSS–S–low (left) and VRSS–S–high (right). The first (last) bin includes
underflow (overflow). The uncertainty bands plotted include all statistical and
systematic uncertainties.
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Figure 14.7: Event displays of two events from 2018 data that fall into SR–E–
high. The top (bottom) row shows two different views of the same event containing
two electrons (muons) with m`` = 7.8 GeV (13.2 GeV). The missing momentum
in the event is displayed as a dashed white line. Muon trajectories are shown in
red and energy deposits corresponding to electrons are shown in blue. Finally,
reconstructed jets are pictured as yellow cones. Various pT thresholds are applied
to each object type in order to make the event displays cleaner.

background predictions in these inclusive SRs are determined by the background-

only fit of the CRs and are compared to the data yields via hypothesis tests. The

result of the hypothesis tests are p-values that represent the probability under

the background-only hypothesis to produce event yields greater than or equal to

the observed data in a given inclusive SR. These model-independent limits on the

production of new physics phenomena are presented in Section 14.3.
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Figure 14.8: Event displays of two events from 2018 data that fall into SR–S–
high. The top (bottom) row shows two different views of the same event containing
two electrons (muons) with m100

T2 = 103.2 GeV (101.2 GeV). The missing momen-
tum in the event is displayed as a dashed white line. Muon trajectories are shown
in red and energy deposits corresponding to electrons are shown in blue. Finally,
reconstructed jets are pictured as yellow cones. Various pT thresholds are applied
to each object type in order to make the event displays cleaner.
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Table 14.2: Observed event yields and fit results using a background-only fit of
the CRs for the exclusive electroweakino SRs. Background processes containing
fewer than two prompt leptons are categorized as “Fake/nonprompt.” The cat-
egory “Others” contains rare backgrounds from triboson, Higgs boson, and the
remaining top-quark production processes listed in Table 8.3. Uncertainties in
the fitted background estimates combine statistical and systematic uncertainties.

SR bin [GeV] [1,2] [2,3] [3.2,5] [5,10] [10,20] [20,30] [30,40] [40,60]

SR
-E

-h
ig
h
ee

Observed 1 16 13 8 8 18
Fitted SM events 0.7± 0.4 4.8± 1.6 11.3± 3.0 10.5± 2.5 11.1± 2.6 19.2± 3.5
Fake/nonprompt 0.00+0.16

−0.00 1.4± 1.3 3.4± 2.0 3.8± 2.1 4.3± 2.3 5.9± 3.0
tt̄, single top 0.00+0.05

−0.00 0.51± 0.24 1.8± 0.5 1.6± 0.4 3.6± 0.7 6.3± 1.1
Diboson 0.68± 0.29 1.4± 0.5 2.5± 0.8 2.8± 0.9 2.8± 0.7 6.3± 1.4
Z(→ ττ)+jets 0.00+0.24

−0.00 1.3± 0.6 2.7± 1.5 0.92± 0.31 0.06± 0.06 0.52± 0.16
Others 0.000+0.006

−0.000 0.11± 0.06 0.76± 0.19 1.20± 0.20 0.27± 0.07 0.26± 0.18

SR
-E

-h
ig
h
µ
µ Observed 5 5 0 9 23 3 5 20

Fitted SM events 2.5± 1.2 2.1± 1.3 6.9± 2.4 12.1± 2.6 14.6± 3.0 10.0± 2.0 11.1± 2.0 20.1± 2.8
Fake/nonprompt 1.3± 1.1 1.2± 1.2 3.5± 1.9 3.3± 2.1 4.0± 2.1 1.7± 1.1 2.3± 1.2 1.1+1.2

−1.1
tt̄, single top 0.00+0.05

−0.00 0.00+0.05
−0.00 0.13± 0.12 0.81± 0.34 1.8± 0.6 2.5± 0.7 3.8± 1.2 10.0± 1.9

Diboson 1.1± 0.4 0.9± 0.4 1.7± 0.8 3.1± 0.8 3.4± 0.8 4.1± 1.1 4.3± 1.0 7.6± 1.7
Z(→ ττ)+jets 0.00+0.24

−0.00 0.00+0.24
−0.00 1.5± 0.7 4.1± 1.1 4.6± 1.4 0.5± 0.4 0.00+0.24

−0.00 0.4± 0.4
Others 0.04+0.07

−0.04 0.0± 0.0 0.04± 0.04 0.7± 0.5 0.86± 0.16 1.21± 0.22 0.78± 0.24 1.06± 0.10

SR
-E

-m
ed

ee

Observed 0 4 11 4
Fitted SM events 0.13+0.31

−0.13 4.5± 2.3 4.1± 1.9 0.9± 0.8
Fake/nonprompt 0.00+0.16

−0.00 3.3± 1.7 3.8± 1.9 0.6+0.7
−0.6

tt̄, single top 0.00+0.05
−0.00 0.00+0.05

−0.00 0.00+0.05
−0.00 0.23+0.27

−0.23
Diboson 0.09± 0.05 0.14± 0.14 0.25± 0.24 0.00+0.09

−0.00
Z(→ ττ)+jets 0.00+0.25

−0.00 1.0+1.5
−1.0 0.00+0.25

−0.00 0.00+0.25
−0.00

Others 0.000+0.019
−0.000 0.0± 0.0 0.0± 0.0 0.0± 0.0

SR
-E

-m
ed

µ
µ Observed 16 8 6 41 59 21

Fitted SM events 13± 5 5.5± 2.9 6.3± 3.1 23± 5 40± 8 15± 4
Fake/nonprompt 7± 4 3.5± 2.8 5.4± 3.0 17± 5 33± 7 14± 4
tt̄, single top 0.00+0.05

−0.00 0.00+0.05
−0.00 0.00+0.05

−0.00 0.09+0.10
−0.09 0.21± 0.08 0.10+0.13

−0.10
Diboson 2.3± 0.9 0.9± 0.4 0.75± 0.27 1.9± 0.7 0.84± 0.26 0.14± 0.07
Z(→ ττ)+jets 3.2± 1.9 1.2± 0.5 0.1+0.4

−0.1 4.1± 1.5 5.2± 2.1 0.00+0.25
−0.00

Others 0.5± 0.4 0.01+0.04
−0.01 0.036± 0.022 0.016+0.018

−0.016 0.8± 0.7 0.0± 0.0

SR
-E

-lo
w
ee

Observed 7 11 16 16 10 9
Fitted SM events 3.9± 1.8 6.9± 2.2 16± 4 13± 4 13.6± 3.2 21.9± 3.5
Fake/nonprompt 1.1± 0.9 2.3± 1.5 5.4± 2.8 4.7± 2.6 4.3± 2.6 3.2± 2.1
tt̄, single top 0.000+0.006

−0.000 0.31+0.33
−0.31 2.9± 0.8 3.1± 1.2 4.7± 1.3 11.5± 2.1

Diboson 1.0± 0.6 2.3± 0.8 3.2± 0.8 2.2± 0.8 2.5± 0.8 4.6± 1.2
Z(→ ττ)+jets 1.8± 1.1 1.8± 0.9 4.3± 1.8 2.3± 1.1 1.5± 0.9 0.2+0.7

−0.2
Others 0.01+0.04

−0.01 0.19± 0.06 0.79± 0.26 1.1± 0.8 0.58± 0.11 2.5± 0.6

SR
-E

-lo
w
µ
µ Observed 9 7 7 12 17 18 16 44

Fitted SM events 18± 4 9.2± 2.8 6.0± 2.4 11.0± 2.4 14.8± 3.0 16.4± 3.0 14.6± 2.5 33± 4
Fake/nonprompt 9.0± 2.5 0.7+1.2

−0.7 0.00+0.21
−0.00 2.3± 1.2 3.9± 1.8 2.1± 1.4 2.2± 1.5 3.4± 1.7

tt̄, single top 0.00+0.05
−0.00 0.28± 0.08 0.00+0.05

−0.00 1.1± 0.7 3.3± 0.9 5.1± 1.8 7.7± 1.6 18.1± 3.3
Diboson 6.1± 1.9 2.9± 0.9 3.1± 1.1 3.8± 1.1 4.1± 1.0 3.8± 0.9 3.7± 0.9 7.7± 1.7
Z(→ ττ)+jets 2.4± 0.9 4.3± 1.6 2.3± 1.9 3.4± 1.5 2.1± 1.8 3.2± 1.1 0.00+0.25

−0.00 1.6± 0.6
Others 1.1± 1.1 1.0± 1.0 0.51± 0.29 0.53± 0.17 1.32± 0.19 2.1± 0.4 0.92± 0.13 2.50± 0.20
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Table 14.3: Observed event yields and exclusion fit results using a background-
only fit of the CRs for the exclusive slepton SRs. Background processes containing
fewer than two prompt leptons are categorized as “Fake/nonprompt.” The cat-
egory “Others” contains rare backgrounds from triboson, Higgs boson, and the
remaining top-quark production processes listed in Table 8.3. Uncertainties in
the fitted background estimates combine statistical and systematic uncertainties.

SR bin [GeV] [100,100.5] [100.5,101] [101,102] [102,105] [105,110] [110,120] [120,130] [130,140]

SR
-S
-h
ig
h
ee

Observed 3 3 9 13 9 6 8 6
Fitted SM events 4.0± 1.6 3.3± 1.3 7.8± 2.7 13.6± 2.9 7.9± 1.6 7.8± 1.6 6.8± 1.4 6.1± 1.2
Fake/nonprompt 3.0± 1.5 2.1± 1.2 4.7± 2.5 4.3± 2.4 0.2+0.7

−0.2 0.00+0.16
−0.00 0.00+0.16

−0.00 0.00+0.16
−0.00

tt̄, single top 0.50± 0.24 0.49± 0.31 1.0± 0.5 4.4± 1.0 2.7± 0.8 4.1± 1.0 3.1± 0.8 2.9± 0.7
Diboson 0.51± 0.21 0.69± 0.25 2.0± 0.7 4.3± 1.3 3.6± 1.1 3.6± 1.1 3.6± 1.0 3.2± 0.9
Z(→ ττ)+jets 0.00+0.20

−0.00 0.00+0.20
−0.00 0.052± 0.020 0.44± 0.18 1.12± 0.27 0.00+0.04

−0.00 0.00+0.20
−0.00 0.00+0.20

−0.00
Others 0.0± 0.0 0.016+0.029

−0.016 0.08± 0.05 0.24± 0.17 0.21± 0.11 0.14+0.32
−0.14 0.14+0.16

−0.14 0.029+0.032
−0.029

SR
-S
-h
ig
h
µ
µ Observed 10 3 11 12 9 11 10 8

Fitted SM events 11.6± 3.2 6.9± 1.9 7.1± 1.7 15.4± 2.5 12.5± 2.2 11.3± 1.9 12.4± 2.0 6.8± 1.4
Fake/nonprompt 10.2± 3.2 4.0± 1.7 3.3± 1.5 2.7± 1.5 1.6± 1.2 0.7+0.9

−0.7 0.5+0.6
−0.5 0.19+0.35

−0.19
tt̄, single top 0.5± 0.4 1.6± 0.6 1.9± 0.5 5.4± 1.0 4.3± 0.9 5.1± 0.9 6.4± 1.0 2.2± 0.8
Diboson 0.90± 0.33 1.1± 0.4 1.7± 0.8 6.5± 1.9 5.3± 1.5 5.0± 1.4 5.5± 1.6 4.3± 1.2
Z(→ ττ)+jets 0.00+0.20

−0.00 0.14± 0.04 0.15± 0.12 0.5± 0.5 1.0± 0.4 0.16± 0.12 0.00+0.20
−0.00 0.00+0.20

−0.00
Others 0.000+0.009

−0.000 0.029± 0.018 0.09± 0.05 0.28± 0.15 0.22± 0.15 0.28± 0.21 0.07± 0.06 0.07± 0.05

SR
-S
-lo

w
ee

Observed 8 5 15 19 30 24 32 11
Fitted SM events 4.0± 1.4 5.3± 2.4 9.1± 2.4 21± 5 27± 5 17.8± 3.1 23± 4 19.2± 2.7
Fake/nonprompt 1.9± 1.2 2.4± 1.4 3.4± 1.9 9± 4 5.5± 3.3 1.4+1.6

−1.4 2.4± 1.9 1.2± 1.2
tt̄, single top 1.4± 0.5 1.9± 0.7 3.2± 1.0 5.7± 1.5 9.4± 1.7 6.8± 1.8 12.7± 2.7 12.5± 1.9
Diboson 0.7± 0.4 0.52± 0.22 1.8± 0.6 4.6± 1.4 5.4± 1.7 7.0± 2.0 7.3± 2.1 5.5± 1.5
Z(→ ττ)+jets 0.00+0.26

−0.00 0.4+1.7
−0.4 0.5± 0.5 0.3+0.8

−0.3 5.4± 2.1 0.00+0.26
−0.00 0.00+0.26

−0.00 0.00+0.26
−0.00

Others 0.09± 0.06 0.09± 0.07 0.22± 0.14 1.7± 0.9 1.2+1.6
−1.2 2.6± 2.2 0.8± 0.7 0.11± 0.07

SR
-S
-lo

w
µ
µ Observed 3 6 15 23 37 44 41 28

Fitted SM events 7.0± 1.6 4.4± 1.2 11.8± 2.1 25.9± 3.4 36± 5 35± 4 34± 4 24.8± 2.9
Fake/nonprompt 3.8± 1.4 0.8± 0.7 4.6± 1.6 6.2± 2.2 3.0± 1.9 3.5± 1.9 1.4± 1.1 0.00+0.10

−0.00
tt̄, single top 1.8± 0.5 2.2± 0.7 3.8± 0.9 8.6± 1.4 12.6± 2.4 18.4± 2.7 20.0± 2.7 16.9± 2.6
Diboson 1.1± 0.4 1.1± 0.4 2.5± 0.8 6.9± 2.0 9.2± 2.5 9.5± 2.5 10.5± 3.0 7.7± 2.1
Z(→ ττ)+jets 0.19+0.27

−0.19 0.1+0.4
−0.1 0.65± 0.26 3.0± 1.7 7.8± 3.1 1.4± 0.9 0.00+0.26

−0.00 0.00+0.26
−0.00

Others 0.12± 0.09 0.18± 0.10 0.28± 0.15 1.1± 0.6 3.5± 2.1 2.3± 1.2 1.6± 1.2 0.14± 0.09
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Figure 14.9: Examples of kinematic distributions after the background-only fit of
the CRs showing the data as well as the expected background in the signal regions
sensitive to electroweakinos. The first (last) bin includes underflow (overflow).
The uncertainty bands plotted include all statistical and systematic uncertainties.

230



 [GeV]100
T2m

4 
G

eV
 / 

E
ve

nt
s

1−10

1

10

210

310

Data Total SM

Diboson Top

Fake/nonprompt )+jetsττ→Z(

Others

) = (100,98) GeV
0

1
χ∼, l

~
: m(l

~

) = (150,140) GeV
0

1
χ∼, l

~
: m(l

~

 ATLAS
-1 = 13 TeV, 139 fbs

SR-S-high

 [GeV]100
T2m

100 105 110 115 120 125 130 135 140

S
M

 / 
D

at
a

0

1

2

obs_x_SRSF_MT2_hghmet_met_Et
50

 G
eV

 / 
E

ve
nt

s

1−10

1

10

210

310

Data Total SM

Diboson Top

Fake/nonprompt )+jetsττ→Z(

Others

) = (100,98) GeV
0

1
χ∼, l

~
: m(l

~

) = (150,140) GeV
0

1
χ∼, l

~
: m(l

~

 ATLAS
-1 = 13 TeV, 139 fbs

SR-S-high

 [GeV]miss
TE

200 250 300 350 400 450 500 550 600 650 700

S
M

 / 
D

at
a

0

1

2

obs_x_SRSF_MT2_hghmet_RJR_RISR

0.
01

 / 
E

ve
nt

s

0

5

10

15

20

25

30

Data Total SM

Diboson Top

Fake/nonprompt )+jetsττ→Z(

Others) = (100,98) GeV
0

1
χ∼, l

~
: m(l

~

) = (150,140) GeV
0

1
χ∼, l

~
: m(l

~

 ATLAS
-1 = 13 TeV, 139 fbs

SR-S-high

ISRR
0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

S
M

 / 
D

at
a

0

1

2

obs_x_SRSF_MT2_hghmet_lep2Pt

2 
G

eV
 / 

E
ve

nt
s

0

5

10

15

20

25

30

35
Data Total SM

Diboson Top

Fake/nonprompt )+jetsττ→Z(

Others

) = (100,98) GeV
0

1
χ∼, l

~
: m(l

~

) = (150,140) GeV
0

1
χ∼, l

~
: m(l

~

 ATLAS
-1 = 13 TeV, 139 fbs

SR-S-high

) [GeV]2l(T
p

5 10 15 20 25 30 35 40

S
M

 / 
D

at
a

0

1

2

Figure 14.10: Examples of kinematic distributions after the background-only fit
of the CRs showing the data as well as the expected background in SR–S–high.
The first (last) bin includes underflow (overflow). The uncertainty bands plotted
include all statistical and systematic uncertainties.
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Figure 14.11: Examples of kinematic distributions after the background-only fit
of the CRs showing the data as well as the expected background in SR–S–low.
The first (last) bin includes underflow (overflow). The uncertainty bands plotted
include all statistical and systematic uncertainties.
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14.2 Motivation

Despite the attractiveness of the simplified SUSY models targeted in this anal-

ysis, it is crucial to remain agnostic about potential sources of new physics that

could populate the various signal regions. Even if SUSY is realized in nature, there

is certainly no guarantee that it adheres to the simplifying assumptions made in

Section 4.1. Instead, these simplified models often serve as tractable benchmark

scenarios for which analyses can be optimized. When a well-motivated model for

BSM physics has many free parameters, its phenomenology can be very compli-

cated and it is often unfeasible to address the model in the most general way.

Instead, physicists have recently focused their attention on the simplest parame-

ter configurations as a practical way of probing these models. Such has been the

case for SUSY searches at the LHC ever since the start of Run 2, at least, whereas

the Run 1 searches tended to interpret results in the context of the MSSM. Re-

gardless of this strategic choice, to limit the results of a search for new physics to

statements about a particular model would be to reduce its value to the broader

program of particle physics.

Instead, given the complexity of its phenomenology, any search for a particular

flavor of SUSY should provide an interpretation of the results that is as indepen-

dent of the model assumptions as possible. In doing so, the results can be used

by others to check the validity of any other model for BSM physics that would

produce the same final states considered by the analysis. Of particular interest

for these reinterpretations are the number of expected and observed events in the

signal regions, obtained using a background-only fit to the CRs and a single SR

bin. From these, one can derive model-independent upper limits on the visible

cross section for generic BSM processes, to which models can be compared. Here,

the visible cross-section represents the production cross-section for a BSM physics
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process multiplied by the detector’s reconstruction efficiency and the acceptance

of the inclusive SR. Since this limit includes the effects of the detector’s recon-

struction efficiency and the SR acceptance, this is often done by employing a fast,

parametric simulation of the detector response like Delphes [123]. The model-

independent limits on new physics obtained by this analysis are presented in the

following section.

14.3 Search Results and Model-Independent Lim-

its

Inclusive SRs, as defined in Section 10.5, are used to search for physics pro-

cesses that can lead to final states containing jets, Emiss
T , and soft leptons. This is

done by calculating p-values that quantify the probability of producing event yields

greater than or equal to those observed in the SRs, assuming the background-only

hypothesis. Additionally, hypothesis tests are performed using the CLs prescrip-

tion [122] to set 95% CL upper limits on the number of events from some generic

new physics process that could be populating the SRs. Since no information

about the shapes of the m`` or m100
T2 distributions is assumed for a potential signal

process, these SRs consists of a single bin in either m`` or m100
T2 . They are con-

structed and correlated in such a way that the more inclusive SRs contain all of

the events in the less inclusive SRs. This is done by increasing the upper limit on

either m`` or m100
T2 . The SR–E inclusive SRs are constructed by merging all of the

SR–E–high, SR–E–med, SR–E–low, and SR–E–1`1T bins below some m`` value

that corresponds to a bin edge. Similarly, the SR–S inclusive SRs are constructed

by merging all of the SR–S–high and SR–S–low bins below some m100
T2 value that

corresponds to a bin edge.
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Each fit used to derive the model-independent results consists of the CRs and

one single-bin inclusive SR. The CRs are assumed to contain no signal events. A

single unconstrained normalization factor is included in the fit to account for any

potential contribution to the SR in question from processes not described by the

SM. A hypothesis test is performed using the CLs prescription to extract limits on

the number of observed (expected) signal events S95
obs (exp) in a given inclusive SR

at 95% CL. Upper limits on the observed (expected) visible cross-section for new

physics 〈εσ〉95
obs (exp) are obtained by dividing S95

obs (exp) by the integrated luminosity.

Additionally, p-values under the background-only hypothesis are calculated for

each inclusive SR using 200,000 pseudo-experiments. A summary of the model-

independent results is shown in Table 14.4. The smallest observed p-value is

associated with the SR–E bin defined by m`` < 20 GeV, and corresponds to a

local significance of 2.7σ. Examples of the scans over the 95% CL upper limits on

the observed (S95
obs) and expected

(
S95

exp

)
number of events from some generic BSM

signal process are shown in Figure 14.12, including those corresponding to them``-

and m100
T2 -defined SRs with the smallest p-values. As all excesses fall well short of

the conventional threshold for claiming a discovery, the data is subsequently used

to place model-dependent limits on the production of electroweak SUSY within

simplified models.

235



Table 14.4: Left to right: The first column denotes the inclusive signal regions
according to their upper bound on the discriminating variables. These SRs are
defined in Section 10.5. The regions defined by m`` include events from both
the 2` and 1`1T channels, while those defined by m100

T2 only include 2` events.
The next two columns show the observed (Nobs) and expected (Nexp) number of
events in the SRs, respectively. Nexp is obtained from the background-only fit
of the CRs. The next column shows the observed 95% CL upper limits on the
visible cross-section (〈εσ〉95

obs) for some potentially new physics process. The next
two columns show the 95% CL upper limits on the observed (S95

obs) and expected(
S95

exp

)
number of signal events. The latter is obtained by assuming the expected

number of background events from the background-only fit of the CRs. The last
column shows the discovery p-value (p(s = 0)) obtained from the background-only
hypothesis test.

Signal Region Nobs Nexp 〈εσ〉95
obs [fb] S95

obs S95
exp p(s = 0)

SR
–E

m`` < 1 0 1.0 ± 1.0 0.022 3.0 3.0+1.3
−0.0 0.50

m`` < 2 46 44 ± 6.8 0.15 21 19+7
−5 0.38

m`` < 3 90 77 ± 12 0.29 41 31+11
−9 0.18

m`` < 5 151 138 ± 18 0.38 52 43+16
−11 0.24

m`` < 10 244 200 ± 19 0.62 86 49+26
−13 0.034

m`` < 20 383 301 ± 23 0.95 132 61+22
−16 0.0034

m`` < 30 453 366 ± 27 1.04 144 70+26
−20 0.0065

m`` < 40 492 420 ± 30 0.96 134 74+29
−20 0.027

m`` < 60 583 520 ± 35 0.97 135 84+32
−23 0.063

SR
–S

m100
T2 < 100.5 24 27 ± 4.8 0.09 13 14+5

−4 0.50
m100

T2 < 101 41 46 ± 6.5 0.11 16 18+7
−5 0.50

m100
T2 < 102 91 82 ± 10 0.25 35 28+10

−8 0.25
m100

T2 < 105 158 158 ± 17 0.30 41 41+16
−11 0.50

m100
T2 < 110 243 242 ± 21 0.38 52 52+19

−14 0.36
m100

T2 < 120 328 312 ± 24 0.51 71 60+22
−17 0.26

m100
T2 < 130 419 388 ± 28 0.66 92 68+27

−18 0.17
m100

T2 < 140 472 443 ± 31 0.69 95 74+28
−21 0.19
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(d) 100 GeV ≤ m100
T2 < 130 GeV

Figure 14.12: Example scans of the 95% CL upper limits on the observed (S95
obs)

and expected
(
S95

exp

)
number of events from some generic BSM signal process using

the inclusive signal regions defined by m`` (top) and m100
T2 (bottom).
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Chapter 15

Model-Dependent Limits on

Compressed Electroweak SUSY

In the absence of any statistically significant excesses over the SM background,

results are interpreted in the context of specific signal models with well-defined

kinematics and cross-sections. These additional handles allow for the construction

of dedicated, non-overlapping SRs that can be combined in a statistical manner

in order to gain additional sensitivity via bin-by-bin correlations exhibited by the

signal process. Ultimately, the results are used to set limits on the masses of the

SUSY particles.

For electroweakinos (sleptons), the relevant kinematic distribution ism`` (m100
T2 ),

which has a characteristic cutoff that corresponds to the mass-splitting between

the χ̃0
2 ( ˜̀) and χ̃0

1. Binning these distributions therefore allows one to exploit the

different kinematic shapes of the signal and background processes to improve sen-

sitivity to this mass-splitting. The parameter of interest in these exclusion fits is

the signal strength µsig, which is defined as the ratio of the observed cross-section

limit, σobs, to the theoretical cross-section, σtheory:
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µsig = σobs

σtheory
(15.1)

In this way, µsig = 1 corresponds to the signal hypothesis in question, while

µsig = 0 corresponds to the background-only hypothesis. This parameter, which

coherently scales the signal yield across all regions, is allowed to float in the

exclusion fit. Following the CLs prescription, one can calculate a CLs value for

µsig = 1 and therefore reject the signal hypothesis at some CL. By convention,

the LHC experiments typically use the 95% CL threshold (i.e. CLs(µsig = 1) <

0.05) for excluding signals. When setting mass limits in a two-dimensional plane,

CLs(µsig = 1) is first calculated for a grid of signal points in the plane. Exclusion

contours are then constructed by interpolating log
(
CLs(µsig = 1)

)
and drawing

the contour corresponding to CLs(µsig = 1) = 0.05.

The addition of many SR bins greatly increases the overall fit complexity and

so validating the fit model and overall stability is an important check to perform

before proceeding to limit setting. This can be done by performing background-

only fits that are constrained by both the CRs and exclusive SRs, which gives

an idea of how the various background contributions will behave in the eventual

exclusion fits with a floating signal strength parameter. This assessment is detailed

in Section 15.1, while the model-dependent limits on direct electroweakino and

slepton production are provided in Section 15.2.1 and Section 15.2.2, respectively.

15.1 Background-Only Fits to the CRs and Ex-

clusive SRs

In order to assess the stability of the exclusion fits that exploit the m`` or m100
T2

shapes, diagnostic fits are performed simultaneously to the CRs and exclusive
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SRs, assuming the background-only hypothesis. Even with assumption, these fits

act as a good proxy for how the background prediction will be constrained in

the fits that include a signal component when setting model-dependent limits on

electroweakino and slepton production. As with the background-only fits to the

CRs, the only floating parameters in these CR+SR background-only fits are the

normalization factors for the tt̄/Wt, Z(∗)/γ∗(→ ττ) + jets, and V V processes, but

now each exclusive SR also acts to constrain the backgrounds. A comparison of

the data and the post-fit backgrounds in the m`` and m100
T2 bins that define the

exclusive SRs are shown in Figure 15.1. The event yields and uncertainties after

the CR+SR background-only fits are also shown in Table 15.1 and Table 15.2 for

the electroweakino and slepton exclusive SRs, respectively. All excesses in the

data over the predicted backgrounds are within the 2σ level.

Since the SRs consist of several non-overlapping bins, the CR+SR background-

only fits will attempt to accommodate any deviations from the nominal back-

ground estimate by pulling the nuisance parameters away from their original es-

timates during the likelihood maximization. Once typically defines the pull of

a nuisance parameter to be (θ − θ0)/σ(θ0), where θ and θ0 are the post-fit and

pre-fit values of the nuisance parameters, respectively, and σ(θ0) is the pre-fit

uncertainty on the nuisance parameter. The nuisance parameters pulls resulting

from the CR+SR background-only fits are shown in Figure 15.2 and Figure 15.3

using the electroweakino and slepton regions, respectively. In each case, the nui-

sance parameters are never pulled outside of their pre-fit uncertainties, which

are generally consistent with the post-fit uncertainties, lending credence to the

validity of these complex fits. Despite the large number of jet-related nuisance

parameters included in the likelihood, they appear to be over-constrained by the

electroweakino fit, as the post-fit uncertainties are consistently smaller than their
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Figure 15.1: Comparison of observed and expected event yields in the SRs after
the CR+SR background-only fits. The SRs used in searches for electroweakinos
recoiling against ISR are shown at the top, binned in m``. The SRs used in
searches for sleptons recoiling against ISR are shown at the bottom, binned in
m100

T2 . Uncertainties in the background estimates include both the statistical and
systematic uncertainties.
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Table 15.1: Observed event yields and fit results using a CR+SR background-
only fit for the exclusive electroweakino SRs. Background processes containing
fewer than two prompt leptons are categorized as “Fake/nonprompt.” The cat-
egory “Others” contains rare backgrounds from triboson, Higgs boson, and the
remaining top-quark production processes listed in Table 8.3. Uncertainties in
the fitted background estimates combine statistical and systematic uncertainties.

SR bin [GeV] [1,2] [2,3] [3.2,5] [5,10] [10,20] [20,30] [30,40] [40,60]

SR
–E

–h
ig
h
ee Observed 1 16 13 8 8 18

Fitted SM events 0.7± 0.4 10.3± 2.5 12.1± 2.2 10.1± 1.7 10.4± 1.7 19.3± 2.5
Fake/nonprompt 0.03+0.19

−0.03 6.6± 2.7 4.6± 2.0 4.0± 1.5 4.4± 1.6 6.7± 2.3
tt̄, single top 0.01+0.06

−0.01 0.59± 0.27 1.9± 0.5 1.6± 0.4 3.3± 0.6 6.4± 0.9
Diboson 0.62± 0.23 1.4± 0.5 2.3± 0.7 2.5± 0.7 2.3± 0.6 5.4± 1.3
Z(→ ττ)+jets 0.06+0.29

−0.06 1.7± 0.7 2.6± 1.2 0.93± 0.24 0.04± 0.04 0.62± 0.23
Others 0.000+0.004

−0.000 0.12± 0.05 0.74± 0.18 1.14± 0.19 0.29± 0.07 0.27± 0.14

SR
–E

–h
ig
h
µ
µ Observed 5 5 0 9 23 3 5 20

Fitted SM events 3.4± 1.2 3.5± 1.3 3.9± 1.3 11.0± 2.0 17.8± 2.7 8.3± 1.4 10.1± 1.5 19.6± 2.3
Fake/nonprompt 2.4± 1.2 2.6± 1.4 1.9± 1.0 3.1± 1.7 6.0± 2.8 1.3± 0.8 2.0± 0.9 1.4± 1.3
tt̄, single top 0.01+0.06

−0.01 0.01+0.06
−0.01 0.09± 0.07 0.67± 0.25 2.0± 0.5 2.4± 0.5 3.7± 0.9 10.2± 1.7

Diboson 0.92± 0.32 0.84± 0.32 0.9± 0.4 2.7± 0.7 3.1± 0.8 3.3± 0.8 3.6± 0.8 6.6± 1.5
Z(→ ττ)+jets 0.07+0.34

−0.07 0.06+0.34
−0.06 1.0± 0.4 3.9± 0.9 5.7± 1.6 0.31± 0.25 0.00+0.04

−0.00 0.31± 0.16
Others 0.032+0.035

−0.032 – 0.025± 0.018 0.66± 0.33 0.91± 0.14 1.10± 0.18 0.75± 0.16 1.06± 0.09

SR
–E

–m
ed

ee Observed 0 4 11 4
Fitted SM events 0.11± 0.08 5.1± 1.6 7.3± 1.9 2.2± 0.9
Fake/nonprompt 0.000+0.016

−0.000 3.8± 1.3 6.9± 2.0 1.6± 1.1
tt̄, single top 0.00+0.05

−0.00 0.00+0.04
−0.00 0.01+0.06

−0.01 0.23+0.25
−0.23

Diboson 0.10± 0.05 0.10± 0.09 0.28± 0.26 0.02+0.13
−0.02

Z(→ ττ)+jets 0.000+0.028
−0.000 1.2± 1.2 0.1+0.5

−0.1 0.3+0.6
−0.3

Others 0.000+0.012
−0.000 – – –

SR
–E

–m
ed

µ
µ Observed 16 8 6 41 59 21

Fitted SM events 14.6± 2.9 6.9± 2.1 6.2± 1.9 34± 4 52± 6 18.5± 3.2
Fake/nonprompt 7.9± 3.2 4.8± 2.1 5.1± 2.0 27± 5 44± 6 18.2± 3.2
tt̄, single top 0.01+0.06

−0.01 0.01+0.06
−0.01 0.00+0.05

−0.00 0.12+0.13
−0.12 0.24± 0.08 0.14+0.19

−0.14
Diboson 2.3± 0.8 0.9± 0.4 0.73± 0.24 1.9± 0.7 0.87± 0.26 0.13± 0.07
Z(→ ττ)+jets 3.8± 1.8 1.2± 0.5 0.3+0.6

−0.3 4.9± 1.6 6.1± 2.1 0.02+0.29
−0.02

Others 0.5± 0.4 0.000+0.026
−0.000 0.036± 0.015 0.019± 0.017 0.9± 0.6 –

SR
–E

–l
ow

ee

Observed 7 11 16 16 10 9
Fitted SM events 5.3± 1.5 8.6± 1.8 16.7± 2.5 15.5± 2.6 12.9± 2.1 18.8± 2.2
Fake/nonprompt 1.6± 1.1 3.8± 1.8 6.2± 2.2 5.8± 2.3 4.2± 1.8 2.8± 1.4
tt̄, single top 0.015± 0.006 0.32± 0.30 2.8± 0.6 3.4± 1.1 4.5± 0.9 9.7± 1.5
Diboson 1.3± 0.6 2.4± 0.8 3.0± 0.7 2.1± 0.7 2.4± 0.7 4.2± 1.0
Z(→ ττ)+jets 2.5± 1.1 1.8± 0.7 3.9± 1.3 2.8± 1.0 1.4± 0.7 0.07+0.20

−0.07
Others 0.01+0.05

−0.01 0.20± 0.05 0.79± 0.23 1.3± 0.8 0.54± 0.09 2.10± 0.34

SR
–E

–l
ow

µ
µ Observed 9 7 7 12 17 18 16 44

Fitted SM events 15.4± 2.4 8.0± 1.7 6.5± 1.6 11.3± 1.9 15.6± 2.3 16.7± 2.3 15.3± 2.0 35.9± 3.3
Fake/nonprompt 7.7± 1.9 0.3+0.6

−0.3 0.01+0.22
−0.01 2.6± 1.3 4.7± 1.9 2.8± 1.6 2.8± 1.6 4.9± 2.3

tt̄, single top 0.00+0.04
−0.00 0.26± 0.07 0.01+0.06

−0.01 1.2± 0.5 3.4± 0.7 5.1± 1.5 7.8± 1.3 18.9± 2.7
Diboson 4.9± 1.3 2.7± 0.7 3.2± 0.9 3.8± 0.9 4.1± 1.0 3.7± 0.9 3.8± 0.8 7.8± 1.6
Z(→ ττ)+jets 2.0± 0.7 3.8± 1.1 2.7± 1.2 3.2± 1.1 2.0± 1.2 2.9± 0.8 0.01+0.27

−0.01 1.6± 0.6
Others 0.8± 0.5 0.9± 0.8 0.52± 0.24 0.57± 0.16 1.32± 0.18 2.1± 0.4 0.94± 0.11 2.60± 0.20
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Table 15.2: Observed event yields and fit results using a CR+SR background-
only fit for the exclusive slepton SRs. Background processes containing fewer than
two prompt leptons are categorized as “Fake/nonprompt.” The category “Oth-
ers” contains rare backgrounds from triboson, Higgs boson, and the remaining
top-quark production processes listed in Table 8.3. Uncertainties in the fitted
background estimates combine statistical and systematic uncertainties.

SR bin [GeV] [100,100.5] [100.5,101] [101,102] [102,105] [105,110] [110,120] [120,130] [130,140]

SR
-S
-h
ig
h
ee

Observed 3 3 9 13 9 6 8 6
Fitted SM events 4.0± 1.1 3.6± 1.0 7.9± 1.9 13.2± 2.1 8.6± 1.4 5.7± 1.0 7.0± 1.2 6.8± 1.1
Fake/nonprompt 2.7± 1.1 2.1± 1.0 5.6± 1.9 4.7± 1.9 0.2+0.5

−0.2 0.01+0.17
−0.01 0.01+0.17

−0.01 0.00+0.15
−0.00

tt̄, single top 0.8± 0.4 0.8± 0.5 0.8± 0.4 3.5± 0.7 4.5± 1.2 3.0± 0.7 3.9± 0.9 3.9± 0.9
Diboson 0.42± 0.16 0.68± 0.23 1.4± 0.4 4.2± 1.1 2.4± 0.7 2.5± 0.7 3.0± 0.8 2.8± 0.7
Z(→ ττ)+jets 0.00+0.08

−0.00 0.00+0.18
−0.00 0.027± 0.012 0.38± 0.16 1.32± 0.31 0.00+0.12

−0.00 0.02+0.22
−0.02 0.00+0.19

−0.00
Others 0.0± 0.0 0.06+0.11

−0.06 0.09± 0.05 0.43± 0.32 0.26± 0.14 0.2+0.5
−0.2 0.06+0.08

−0.06 0.05± 0.05

SR
-S
-h
ig
h
µ
µ Observed 10 3 11 12 9 11 10 8

Fitted SM events 11.0± 2.2 5.8± 1.3 8.6± 1.6 14.2± 1.9 10.0± 1.5 11.2± 1.6 11.5± 1.5 7.8± 1.4
Fake/nonprompt 9.1± 2.2 3.0± 1.1 3.5± 1.4 2.4± 1.2 1.5± 1.0 0.7+0.8

−0.7 0.4+0.5
−0.4 0.19+0.33

−0.19
tt̄, single top 0.8± 0.5 1.5± 0.5 1.9± 0.5 4.4± 0.8 3.3± 0.7 5.9± 1.1 5.9± 0.9 3.9± 1.3
Diboson 1.1± 0.4 1.2± 0.4 2.9± 1.3 6.7± 1.7 3.9± 1.1 4.2± 1.0 5.0± 1.3 3.7± 0.9
Z(→ ττ)+jets 0.00+0.19

−0.00 0.15± 0.04 0.22± 0.19 0.40± 0.34 1.03± 0.34 0.19± 0.12 0.00+0.19
−0.00 0.00+0.21

−0.00
Others 0.000+0.019

−0.000 0.029± 0.017 0.09± 0.05 0.29± 0.14 0.32± 0.22 0.13± 0.11 0.15± 0.12 0.06± 0.05

SR
-S
-lo

w
ee

Observed 8 5 15 19 30 24 32 11
Fitted SM events 6.0± 1.4 5.3± 2.1 11.6± 2.5 22.9± 3.3 31± 4 23.3± 3.0 27.1± 3.1 16.8± 2.1
Fake/nonprompt 2.4± 1.2 2.5± 1.2 4.4± 2.0 9.0± 2.8 5.7± 2.7 1.6+1.7

−1.6 3.4± 2.3 1.0± 0.9
tt̄, single top 2.3± 0.9 1.4± 0.5 2.2± 0.7 7.6± 1.7 9.6± 1.7 13.3± 3.3 16.4± 3.0 9.8± 1.5
Diboson 1.1± 0.6 0.71± 0.30 2.4± 0.8 3.8± 1.3 6.9± 2.1 7.1± 2.1 6.2± 2.0 5.9± 1.6
Z(→ ττ)+jets 0.1+0.4

−0.1 0.6+2.0
−0.6 2.5± 2.4 0.7+1.5

−0.7 6.5± 2.2 0.01+0.26
−0.01 0.03+0.30

−0.03 0.000+0.032
−0.000

Others 0.11± 0.06 0.17± 0.15 0.13± 0.09 1.8± 0.9 2.4± 2.4 1.3± 1.2 1.1± 1.0 0.042± 0.034

SR
-S
-lo

w
µ
µ Observed 3 6 15 23 37 44 41 28

Fitted SM events 5.2± 1.1 4.3± 1.0 12.8± 1.8 24.8± 2.6 38± 5 37.8± 3.3 36.0± 3.4 28.0± 2.7
Fake/nonprompt 3.2± 1.0 0.9± 0.7 4.6± 1.5 5.6± 1.8 2.8± 1.7 3.8± 2.0 1.5± 1.2 0.00+0.10

−0.00
tt̄, single top 0.45± 0.18 2.0± 0.5 4.7± 1.0 9.1± 1.6 10.6± 1.9 21.2± 2.9 21.8± 2.6 20.2± 2.7
Diboson 1.4± 0.5 1.02± 0.34 2.2± 0.8 6.7± 1.9 8.8± 2.6 9.4± 2.6 11.2± 3.2 7.5± 2.2
Z(→ ττ)+jets 0.09+0.16

−0.09 0.1+0.5
−0.1 0.9± 0.4 2.1± 1.0 13± 5 1.0± 0.6 0.02+0.29

−0.02 0.00+0.26
−0.00

Others 0.032± 0.026 0.19± 0.11 0.37± 0.19 1.4± 0.8 2.6± 1.5 2.4± 1.2 1.5± 0.8 0.22± 0.13
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pre-fit counterparts. It is difficult to say whether or not this could be due to a

lack of flexibility in the likelihood function (which could be improved by including

even more nuisance parameters) or a genuine example of being able to measure

these jet uncertainties with more precision than the auxiliary measurements due

to the specific phase space targeted by this search. In any case, these complicated

fits are deemed to be sufficiently healthy for setting model-dependent limits on

electroweakinos and sleptons, as presented in Section 15.2.

Another important check of these fits is to determine how the various sources of

systematic uncertainties contribute to the overall uncertainty on the background

yields. Figure 15.4 shows the breakdown of the systematic uncertainties in each

exclusive SR after the CR+SR background-only fits, grouped according to the

source of the uncertainty. Here, the bins defined by exclusive ranges of m`` or

m100
T2 include both dielectron and dimuon events. The uncertainties related to

the data-driven fake/non-prompt lepton background estimate tend to dominate

at low values of m`` and m100
T2 , where these events tend to concentrate. This is

not the case for SR–E–med, though, which is consistently dominated by events

with fake/non-prompt leptons as it does not include an m``-dependent cut on

p`2T . For the SRs defined by higher values of m`` and m100
T2 , the total systematic

uncertainties are more evenly split between those related to the normalization

of the tt̄/Wt, Z(∗)/γ∗(→ ττ) + jets, and V V processes, theoretical uncertainties

on the shape of the backgrounds, statistical size of the simulated background

samples, and various experimental uncertainties (such as that on the jet energy

resolution). With the unblinded SRs and confidence in the fit models, hypothesis

tests can now be run to quantify the consistency of the background-only hypothesis

with the data. Additionally, in the absence of any statistically significant excess,

limits can be derived on the production of electroweak SUSY with compressed
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Figure 15.2: Nuisance parameter pull plots from the CR+SR background-only
fits to the electroweakino regions. The top panel shows the best-fit values and
uncertainties for the normalization factors that scale the tt̄/Wt, Z(∗)/γ∗(→ ττ) +
jets, and V V backgrounds. For each nuisance parameter, the markers in the
bottom panel show (θ − θ0)/σ(θ0), where θ is the post-fit value, θ0 is pre-fit
value, and σ(θ0) is pre-fit uncertainty. The marker errors indicate the post-fit
uncertainties on the nuisance parameters.
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Figure 15.3: Nuisance parameter pull plots from the CR+SR background-only
fits to the slepton regions. The top panel shows the best-fit values and uncertain-
ties for the normalization factors that scale the tt̄/Wt, Z(∗)/γ∗(→ ττ) + jets, and
V V backgrounds. For each nuisance parameter, the markers in the bottom panel
show (θ − θ0)/σ(θ0), where θ is the post-fit value, θ0 is pre-fit value, and σ(θ0) is
pre-fit uncertainty. The marker errors indicate the post-fit uncertainties on the
nuisance parameters.
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mass spectra.

15.2 Model-Dependent Limits

With the fit model validated, the fits to the CRs and exclusive SRs are ex-

tended to include signal contributions. These contributions are unconstrained in

the fits and the signal strength µsig represents the parameter of interest. The

results for the direct production of electroweakinos are presented in Section 15.2.1

and those for direct slepton production are presented in Section 15.2.2.

15.2.1 Electroweakinos

As no statistically significant excesses over the SM background prediction are

found in the inclusive SRs defined by m``, exclusion fits are performed using

the exclusive SRs to set limits on electroweakino production in several simplified

models. These limits are then projected onto the ∆m(χ̃0
2, χ̃

0
1) vs. m(χ̃0

2) plane to

derive regions of excluded masses at 95% CL. The upper limits on the production

cross-sections are shown in Appendix C.1.

Exclusion contours are derived for each of the three simplified electroweakino

models. Figure 15.5 shows the exclusion contour for the simplified higgsino model.

For direct wino production, the shape of the m`` distribution for the signal pro-

cess depends on the relative sign of the χ̃0
2 and χ̃0

1 mass parameters. Therefore,

separate exclusion contours are derived for each of these possibilities. Figure 15.6

shows the mass exclusions for direct wino production in the simplified model un-

der the assumption that m(χ̃0
2) × m(χ̃0

1) > 0, while Figure 15.7 assumes that

m(χ̃0
2) ×m(χ̃0

1) < 0. In addition to the final exclusion contours that result from

the statistical combination of all of the electroweakino SRs, the contributions
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Figure 15.4: The relative systematic uncertainties in the fitted SM background
as obtained from CR+SR background-only fits for the electroweakino SRs (top)
and slepton SRs (bottom). The MC Statistics uncertainty originates from the
limited size of the MC samples used to model the irreducible background contri-
butions. The Normalization uncertainty arises from the use of CRs to normalize
the contributions of tt̄/tW , Z(∗)/γ∗(→ ττ) + jets and WW/WZ backgrounds,
while Background modeling includes the different sources of theoretical modeling
uncertainties in the m`` or m100

T2 lineshapes for the irreducible backgrounds. All
sources of uncertainty affecting the fake/non-prompt background estimate are in-
cluded under Fake/nonprompt. The uncertainties arising from the reconstruction
and selection of signal leptons, jets and Emiss

T are included under the Experimental
category. The individual uncertainties can be correlated and do not necessarily
add up in quadrature to the total uncertainty.
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from each individual SR are also shown to highlight their respective sensitivity to

different ranges of mass-splitting.

In general, the search is more sensitive to winos than higgsinos, as the for-

mer process is expected to have a larger production cross-section for a given χ̃0
2

mass. Additionally, in each interpretation, the vast majority of the overall exclu-

sion power is due to SR–E–high. SR–E–med and SR–E–low provide additional

expected exclusion power at moderate and high mass splittings, respectively. Fi-

nally, SR–E–1`1T contributes to the sensitivity at very low mass splittings for

wino production, while it has no sensitivity to the lower cross-section higgsino

process. Some large differences exist between the expected and observed exclu-

sion contours at high-∆m. This can be attributed to an underestimation of the

SM background in SR–E–high for 10 GeV < mµµ < 20 GeV and an overestimation

from 20 GeV < mµµ < 40 GeV, as shown in Figure 15.1. This effect is especially

strong for wino production with m(χ̃0
2)×m(χ̃0

1) > 0 due to the asymmetric nature

of the signal’s m`` distribution, which peaks at higher values of m`` for a given

mass splitting.

In the case of higgsino production, the maximum excluded χ̃0
2 mass reaches

up to 193.4 GeV, corresponding to a mass splitting of 9.3 GeV. The minimum

mass splitting excluded by this search for higgsino production is 2.4 GeV. For

wino production, the maximum excluded χ̃0
2 mass is 240.5 GeV (240.7 GeV) at

a mass splitting of 7 GeV (9 GeV) when the mass eigenvalues m(χ̃0
2) and m(χ̃0

1)

have the same (opposite) sign. When m(χ̃0
2)×m(χ̃0

1) > 0, the minimum excluded

mass splitting is 1.5 GeV. For m(χ̃0
2) ×m(χ̃0

1) < 0, this value corresponds to 1.7

GeV. A summary of these exclusion values is shown in Table 15.3.
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Figure 15.5: Expected (dashed lines) and observed (solid lines) exclusion limits
at 95% CL for direct higgsino production within the simplified higgsino model
where the chargino χ̃±1 mass is assumed to be halfway between the χ̃0

2 and χ̃0
1

masses. The limits are derived using fits to the m`` spectrum with the signal
process included (up to an overall normalization factor). The gray regions show
the constraints on the chargino mass from LEP [124]. The blue regions show the
constraints from an ATLAS Run 2 search with 36 fb−1 [116]. The top plot shows
the results of the combined fits to SR–E–high, SR–E–med, SR–E–low, and SR–
E–1`1T . The bottom plot shows the limits from each of these SRs separately, as
well as their combination. SR–E–1`1T has no sensitivity to higgsino production
and is therefore not shown in the plot.
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Figure 15.6: Expected (dashed lines) and observed (solid lines) exclusion limits
at 95% CL for direct wino production within the simplified wino/bino model
where m(χ̃±1 ) = m(χ̃0

2) is assumed. Here, m(χ̃0
2)×m(χ̃0

1) > 0 is also assumed.The
limits are derived using fits to the m`` spectrum with the signal process included
(up to an overall normalization factor). The gray regions show the constraints on
the chargino mass from LEP [124]. The blue regions show the constraints from
ATLAS Run 1 [125, 126] and ATLAS Run 2 [116] searches. The top plot shows
the results of the combined fits to SR–E–high, SR–E–med, SR–E–low, and SR–
E–1`1T . The bottom plot shows the limits from each of these SRs separately, as
well as their combination.
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Figure 15.7: Expected (dashed lines) and observed (solid lines) exclusion limits
at 95% CL for direct wino production within the simplified wino/bino model where
m(χ̃±1 ) = m(χ̃0

2) is assumed. Here, m(χ̃0
2)×m(χ̃0

1) < 0 is also assumed.The limits
are derived using fits to the m`` spectrum with the signal process included (up
to an overall normalization factor). The gray regions show the constraints on the
chargino mass from LEP [124]. The top plot shows the results of the combined fits
to SR–E–high, SR–E–med, SR–E–low, and SR–E–1`1T . The bottom plot shows
the limits from each of these SRs separately, as well as their combination.
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Table 15.3: Left to right: the first column indicates the specific electroweakino
interpretation being considered. For the wino/bino interpretations, “same sign”
and “opposite sign” refer to the relative signs of the mass eigenvalues m(χ̃0

2) and
m(χ̃0

1). The second column shows the maximum excluded χ̃0
2 mass obtained via

the exclusion fits. The third column shows the mass-splitting between the χ̃0
2 and

the LSP evaluated at the maximum excluded χ̃0
2 mass. The fourth (fifth) column

shows the minimum (maximum) excluded mass-splitting between the χ̃0
2 and the

LSP.

Interpretation m(χ̃0
2)excl

max ∆m(χ̃0
2, χ̃

0
1)
∣∣∣
m(χ̃0

2)excl
max

∆m(χ̃0
2, χ̃

0
1)excl

min ∆m(χ̃0
2, χ̃

0
1)excl

max

Higgsino 193.4 GeV 9.3 GeV 2.4 GeV 54.7 GeV

Wino/Bino
(same sign) 240.5 GeV 7.0 GeV 1.5 GeV 46.5 GeV

Wino/Bino
(opposite sign) 240.7 GeV 9.0 GeV 1.7 GeV 38.7 GeV

15.2.2 Sleptons

In the absence of statistically significant excesses over the background esti-

mation in the slepton SRs, exclusion fits are used to set upper limits on the

cross-section for slepton pair production in the simplified model. These exclusion

fits are performed using all of the slepton CRs and exclusive SRs and exploit the

characteristic shape of the m100
T2 distribution for the signal processes. The param-

eter of interest in these fits is the signal strength, which is a single factor that

coherently scales the signal yields across all regions included in the fit. The re-

sulting limits are projected onto the ∆m( ˜̀, χ̃0
1) vs. m( ˜̀) plane to derive the range

of excluded masses at 95% CL. The upper limits on the production cross-sections

are shown in Appendix C.2.

In general, the simplified model makes no assumptions about potential mass-

degeneracies based on either the slepton flavor or the chirality of the slepton’s

corresponding SM partner. Nevertheless, limits are set using a variety of different

mass-degeneracy assumptions since these degeneracies are not strictly forbidden.
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For simplicity, whenever the chirality of a slepton is referred to in the text, it is

really a statement about the chirality of its SM partner lepton. The following

mass-degeneracy scenarios are considered in this analysis:

• Sleptons are both flavor- and chirality-degenerate: m(µ̃L) = m(µ̃R) =

m(ẽL) = m(ẽR)

• Sleptons are flavor-degenerate: m(µ̃L) = m(ẽL), m(µ̃R) = m(ẽR)

• Sleptons are chirality-degenerate: m(µ̃L) = m(µ̃R), m(ẽL) = m(ẽR)

• Sleptons are neither flavor- nor chirality-degenerate: m(µ̃L) 6= m(µ̃R) 6=
m(ẽL) 6= m(ẽR)

When setting limits on a specific slepton flavor, the signal region targeting the

other flavor is not included in the fit. For example, when setting limits on chirality-

degenerate selectrons, the signal regions that require two muons in the event

are not considered in the exclusion fit. This choice was made by inspecting the

expected exclusion contours with and without the opposite-flavor signal regions

included. In principle, these opposite-flavor signal regions can help constrain the

background but the impact on the expected sensitivity was found to be negligible.

Therefore, in order to simplify the final exclusion fits, they are not included when

assuming m(µ̃) 6= m(ẽ).

The available slepton signal samples contain an admixture of left-handed and

right-handed sleptons. In these samples, the fraction of events containing slep-

tons of a given chirality is determined by its relative production cross-section

compared to the opposite chirality state. In general, the cross-section for pro-

ducing left-handed sleptons, σL, is larger than that for producing right-handed

sleptons, σR. The ratio of these two cross-sections depends on the slepton mass,

where the relative cross-section for left-handed sleptons increases as the slepton

254



mass decreases. In the mass range considered by this analysis, the ratio σL
σR

runs

from ∼ 2.98 at m( ˜̀) = 50 GeV to ∼ 2.64 at m( ˜̀) = 300 GeV.

When setting limits on sleptons of a given chirality, the number of events in

the signal samples proved to be a limiting factor when only signal events with

the corresponding chirality were selected. The efficiencies of the event selections

defining the slepton signal regions were checked separately for sleptons of a given

flavor but different chirality. An example of the selection efficiencies for each cut

in the slepton SRs is shown for the
(
m(˜̀),m(χ̃0

1)
)

= (150 GeV, 140 GeV) signal

point in Figure 15.8. Further details on this study are shown in Appendix B.

In each case, no systematic difference was observed in the selection efficiency for

left-handed and right- handed sleptons, indicating that the relevant event-level

kinematics do not depend on the slepton chirality. Thus, in order to increase the

statistical power of the available signal samples, both right-handed and left-handed

signal events are considered when setting limits on sleptons of a given chirality.

When doing so, the signal events are scaled down such that the inclusion of both

chirality states does not modify the expected event yield. In particular, when

setting limits on right-handed sleptons, signal events are scaled down by a factor

of 1
1+σL/σR in order to maintain the expected signal yield. For the left-handed

interpretations, the signal events are correspondingly scaled down by a factor of
1

1+σR/σL . Due to the mass-dependence of σL
σR

, shown in Figure 15.9, these factors

are calculated and applied separately for each slepton mass.

Figures 15.10–15.13 show the expected and observed exclusion contours for

each mass-degeneracy assumption. Representative examples of the scans over the

signal strength parameter µsig are shown in Figure 15.14, under the assumption

that the sleptons are both flavor- and chirality-degenerate. Naturally, the maxi-

mum excluded slepton mass is derived under the assumption that the sleptons are
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Figure 15.8: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (150 GeV, 140 GeV) slepton
signal point. The top (bottom) row shows the efficiencies of the cuts defining SR–
S–high (SR–S–low). The left (right) column corresponds to selectrons (smuons).
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Figure 15.9: The Left-handed slepton cross-section divided by the right-handed
slepton cross-section as a function of the slepton mass. The cross-sections and
associated uncertainties, which are independent of slepton flavor, are calculated
using Resummino 2.0.1 at NLO+NLL precision.
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both flavor- and chirality-degenerate (Figure 15.10). In this case, the maximum

excluded slepton mass is observed to be 251 GeV, which corresponds to a mass-

splitting of 10.0 GeV. The maximum (minimum) mass splitting that is excluded

by the observed data under this assumption is 30.4 GeV (0.55 GeV). A summary

of these exclusion numbers is shown for each of the mass-degeneracy assumptions

in Table 15.4.

Table 15.4: Left to right: the first column indicates the specific slepton inter-
pretation being considered. The second column shows the maximum excluded
slepton mass obtained via the exclusion fits. The third column shows the mass-
splitting between the slepton and the LSP evaluated at the maximum excluded
slepton mass. The fourth (fifth) column shows the minimum (maximum) excluded
mass-splitting between the slepton and the LSP.

Interpretation m( ˜̀)excl
max ∆m( ˜̀, χ̃0

1)
∣∣∣
m(˜̀)excl

max
∆m( ˜̀, χ̃0

1)excl
min ∆m( ˜̀, χ̃0

1)excl
max

˜̀
L,R 251.0 GeV 10.0 GeV 0.6 GeV 30.4 GeV
ẽL,R 187.6 GeV 7.5 GeV 1.0 GeV 21.9 GeV
µ̃L,R 242.3 GeV 10.5 GeV 0.4 GeV 32.0 GeV˜̀
L 221.0 GeV 9.5 GeV 0.6 GeV 26.4 GeV˜̀
R 157.3 GeV 8.2 GeV 1.3 GeV 16.6 GeV
µ̃L 216.0 GeV 10.0 GeV 0.4 GeV 27.6 GeV
µ̃R 150.2 GeV 8.2 GeV 0.9 GeV 16.0 GeV
ẽL 169.4 GeV 7.1 GeV 1.2 GeV 19.0 GeV
ẽR 101.4 GeV 7.5 GeV 5.5 GeV 9.3 GeV

Since the slepton chirality does not affect the event kinematics, the exclu-

sion power for left-handed sleptons is greater than that for right-handed sleptons,

simply due to their larger cross-sections. Additionally, larger exclusion power

is observed for smuons compared to selectrons, which is largely driven by the

higher overall efficiency for signal muons compared to signal electrons. Finally,

Figure 15.10 shows how SR–S–high and SR–S–low contribute to the combined

sensitivity of the analysis. While SR–S–high drives the most of the sensitivity,

SR–S–low improves the expected exclusion power at high mass splittings. This
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Figure 15.10: Expected (dashed lines) and observed (solid lines) exclusion limits
at 95% CL for fully-degenerate sleptons. The limits are derived using fits to the
m100

T2 spectrum with the signal process included (up to an overall normalization
factor). The gray region shows the constraints on right-handed selectrons from
LEP [127]. The blue regions show the constraints on fully-degenerate sleptons
from ATLAS Run 1 [125] and ATLAS Run 2 [116] searches. The top plot shows
the results of the combined fits to both SR–S–low and SR–S–high. The bottom
plot shows the limits from SR–S–low and SR–S–high separately, as well as their
combination.
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LEP ẽR excluded

ATLAS√
s = 13 TeV, 139 fb−1

ee/µµ, m100
T2 shape fit

All limits at 95% CL

pp → ˜̀+
L/R

˜̀−
L/R, ˜̀→ `χ̃0

1, ` ∈ [e,µ]

Figure 15.11: Expected (dashed lines) and observed (solid lines) exclusion limits
at 95% CL for non-degenerate sleptons. The limits are derived using fits to the
m100

T2 spectrum with the signal process included (up to an overall normalization
factor). The gray (yellow) region shows the constraints on right-handed selectrons
(smuons) from LEP [127].

259



100 150 200 250 300 350

m( ˜̀L/R) [GeV]

0.5

1

5

10

50

∆
m

(˜̀
,χ̃

0 1)
[G

eV
]

Expected limit ( ˜̀L)
Observed limit ( ˜̀L)
Expected limit ( ˜̀R)
Observed limit ( ˜̀R)
LEP ẽR excluded

ATLAS√
s = 13 TeV, 139 fb−1

ee/µµ, m100
T2 shape fit

All limits at 95% CL

pp → ˜̀+
L/R

˜̀−
L/R, ˜̀→ `χ̃0

1, ` ∈ [e,µ]

Figure 15.12: Expected (dashed lines) and observed (solid lines) exclusion limits
at 95% CL for flavor-degenerate sleptons. The limits are derived using fits to the
m100

T2 spectrum with the signal process included (up to an overall normalization
factor). The gray region shows the constraints on right-handed selectrons from
LEP [127].
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Figure 15.13: Expected (dashed lines) and observed (solid lines) exclusion limits
at 95% CL for chirality-degenerate sleptons. The limits are derived using fits to
them100

T2 spectrum with the signal process included (up to an overall normalization
factor). The gray (yellow) region shows the constraints on right-handed selectrons
(smuons) from LEP [127].
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Figure 15.14: Results of the hypothesis tests as a function of the signal strength
parameter µsig for two excluded signal points. Here, the sleptons are assumed to
have a four-fold mass degeneracy (i.e. m(µ̃L) = m(µ̃R) = m(ẽL) = m(ẽR)). In
each case shown, µsig = 1 is excluded at 95% CL using the CLs prescription.
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slightly counterintuitive feature is due to the fact that, in low-Emiss
T events, larger

mass splittings are needing in order to boost the leptons enough to put them over

their reconstruction and analysis selection thresholds.

An important aspect understanding the limitations the search is inspecting

which uncertainties have the largest impact on the fitted signal strength. This

can be done by checking how the results of the exclusion fits change after fixing

each nuisance parameter (one at a time) to it’s maximum and minimum values,

defined by its post-fit uncertainty. In general, fixing these parameters in the fit

allows for different best-fit values of µsig to be obtained. These values are then

compared to the best-fit value of µsig that was obtained using the fit with all

nuisance parameters floating, and the deviations are used to rank the nuisance

parameters according to their impact on the exclusion power for a given signal

hypothesis. Since the background composition changes across the m100
T2 spectrum

and because signals with different mass-splittings populate different ranges of

m100
T2 , it is important to make perform this check for different for a variety of

signal hypotheses. In doing so, one can get a sense of which uncertainties have

the biggest impact in different parts of the ∆m( ˜̀, χ̃0
1) vs. m( ˜̀) plane.

Assuming that the sleptons are both flavor- and chirality-degenerate, Fig-

ures 15.15–15.20 show the top 25 nuisance parameters according to this metric for

exclusion fits using signals hypothesis with mass-splittings ranging from 1 GeV to

40 GeV. The nuisance parameter pulls and post-fit uncertainties are also presented

and show little signs of profiling, indicating a healthy fit model.

Depending on the mass splitting, the nuisance parameters with the largest im-

pact on µsig are related to either the fake/non-prompt background estimate or the

normalization of the V V background. Since the fake/non-prompt lepton back-

ground dominates at small values of m100
T2 in the slepton SRs, these uncertainties
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Figure 15.15: The top 25 NPs, ranked according to their impact on the best-fit
value of µsig, assuming m( ˜̀) = 100 GeV and m(χ̃0

1) = 99 GeV. NPs that are
correlated (anticorrelated) with µsig are shown in blue (green). The NP pulls and
post-fit uncertainties are shown using black points and their associated error bars.
NP names that start with “alpha” are systematic in nature, while those starting
with “gamma” correspond to statistical uncertainties.
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Figure 15.16: The top 25 NPs, ranked according to their impact on the best-fit
value of µsig, assuming m( ˜̀) = 125 GeV and m(χ̃0

1) = 123 GeV. NPs that are
correlated (anticorrelated) with µsig are shown in blue (green). The NP pulls and
post-fit uncertainties are shown using black points and their associated error bars.
NP names that start with “alpha” are systematic in nature, while those starting
with “gamma” correspond to statistical uncertainties.

264



2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

alpha_JET_JER_EffectiveNP_1

alpha_JET_Pileup_OffsetMu

gamma_stat_SRmm_eMT2c_hghmet

alpha_JET_JER_EffectiveNP_9

alpha_JET_JER_EffectiveNP_4

alpha_JET_JER_EffectiveNP_5

gamma_shape_fakes_stat_fakes_SRee_eMT2d_lowmet

alpha_JET_EffectiveNP_1

gamma_shape_fakes_stat_fakes_SRmm_eMT2a_hghmet

gamma_shape_fakes_stat_fakes_SRee_eMT2b_hghmet

alpha_JET_SingleParticle_HighPt

alpha_JET_Pileup_RhoTopology

alpha_FF_syst_closure_el_CRVV

gamma_stat_SRmm_eMT2b_hghmet

alpha_JET_BJES_Response

alpha_JET_JER_EffectiveNP_10

alpha_JET_JER_EffectiveNP_2

alpha_JET_Flavor_Composition

 hghmet
VV

µ

alpha_FF_syst_closure_el

alpha_FF_syst_closure_mu

gamma_shape_fakes_stat_fakes_SRee_eMT2c_hghmet

gamma_shape_fakes_stat_fakes_SRmm_eMT2c_hghmet

alpha_FF_syst_param_mu

alpha_FF_syst_param_el

1− 0.5− 0 0.5 1
sig

µ∆

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

θ∆)/0θ - θ(

Pull

1 standard deviation

sig
µPrefit Impact on 

sig
µPostfit Impact on 

ATLAS Internal
 = 13 TeVs

-1139 fb

Figure 15.17: The top 25 NPs, ranked according to their impact on the best-fit
value of µsig, assuming m( ˜̀) = 300 GeV and m(χ̃0

1) = 295 GeV. NPs that are
correlated (anticorrelated) with µsig are shown in blue (green). The NP pulls and
post-fit uncertainties are shown using black points and their associated error bars.
NP names that start with “alpha” are systematic in nature, while those starting
with “gamma” correspond to statistical uncertainties.
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Figure 15.18: The top 25 NPs, ranked according to their impact on the best-fit
value of µsig, assuming m( ˜̀) = 150 GeV and m(χ̃0

1) = 140 GeV. NPs that are
correlated (anticorrelated) with µsig are shown in blue (green). The NP pulls and
post-fit uncertainties are shown using black points and their associated error bars.
NP names that start with “alpha” are systematic in nature, while those starting
with “gamma” correspond to statistical uncertainties.
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Figure 15.19: The top 25 NPs, ranked according to their impact on the best-fit
value of µsig, assuming m( ˜̀) = 250 GeV and m(χ̃0

1) = 230 GeV. NPs that are
correlated (anticorrelated) with µsig are shown in blue (green). The NP pulls and
post-fit uncertainties are shown using black points and their associated error bars.
NP names that start with “alpha” are systematic in nature, while those starting
with “gamma” correspond to statistical uncertainties.
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Figure 15.20: The top 25 NPs, ranked according to their impact on the best-fit
value of µsig, assuming m( ˜̀) = 150 GeV and m(χ̃0

1) = 110 GeV. NPs that are
correlated (anticorrelated) with µsig are shown in blue (green). The NP pulls and
post-fit uncertainties are shown using black points and their associated error bars.
NP names that start with “alpha” are systematic in nature, while those starting
with “gamma” correspond to statistical uncertainties.
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tend to dominate as well for signals with small mass-splittings. The fake/non-

prompt lepton uncertainties with the largest impact on µsig in this regime are

both statistical and systematic in nature. The former refers to the statistical un-

certainty on the fake/non-prompt background simply due to the available data

statistics in the anti-ID CRs. The dominant systematic uncertainties related to

this background are the “parameterization” systematics that place flat uncertain-

ties on the fake factors themselves in order to account for potential correlations

with kinematic variables other than the lepton pT. For the very compressed signal

hypothesis with m( ˜̀) = 100 GeV and m(χ̃0
1) = 99 GeV, the uncertainties on the

signal yields due to ISR modeling and the choice of PDF set are also among the

top-ranked nuisance parameters.

As the mass splitting increases, a larger fraction of the the signal events pop-

ulate the SR bins corresponding to larger values of m100
T2 , where the dominant

backgrounds are from the tt̄/Wt and V V processes. Since the CRs targeting the

V V background are not particularly pure in these processes, the V V normalization

factors obtained from the fit come with larger uncertainties than those controlling

the tt̄/Wt normalization. The end result is that the V V normalization parameters

tend to be among the top ranked nuisance parameters when performing hypothesis

tests using signals with mass-splittings & 10 GeV. In general, nuisance parame-

ters associated with experimental uncertainties are subleading compared to the

fake/non-prompt and V V normalization systematics. Within these experimental

uncertainties, though, those related to the jet energy resolution and pileup effects

tend to have the largest impact on the extracted signal strength. Finding ways

of reducing these uncertainties, especially those relate to the fake/non-prompt

lepton background will be of clear importance for future searches for electroweak

SUSY in compressed scenarios.
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Chapter 16

Analysis Preservation for

Reinterpretation

In the current state of particle physics, there is no shortage of ideas when

it comes to extending the SM.. Despite the huge effort from experimentalists,

addressing the large number of viable models of new physics remains a significant

challenge at the LHC.

Typically, a search for new physics will target some small set of models, for

which constraints are derived in the absence of signal. This is not because exper-

imental physicists want to limit the impact of their results, but rather because

performing these interpretations requires significant personpower, time, and ex-

pertise. Quite often, though, the sensitivity of these searches still extends beyond

the set of models they were originally designed to address. In such cases, it is

possible in principle to rerun the analysis code using a new simulated signal sam-

ple and ultimately provide constraints on the model. In practice, though, the

complexity of these searches and the expertise required to execute them make

reinterpretation a rather difficult task. Despite internal documentation, it could

be years after a search is completed before an interest in reinterpreting the results
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takes hold. By this time, the technical challenges that come with running the full

analysis chain often make this impossible.

Instead, the experiments at the LHC have recently made an effort to use

modern computing technologies to preserve the analysis software, workflow, and

results in such a way that executing the analysis can be done much more easily and

reliably. This chapter highlights the effort to preserve this search for electroweak

SUSY so that the results can be reinterpreted in the context of other models

leading to final states with Emiss
T and soft leptons.

16.1 Overview and Methodology

The execution of analysis code at LHC-based experiments has itself become

a complex issue. Reproducing a result requires the use of specific software re-

leases and a complex workflow to be executed correctly. As analyzers come and

go, expertise is lost and reproducibility becomes harder and harder to achieve.

Yet, as the time it takes to double the size of the ATLAS dataset increases, using

the results of previous searches to derive constraints on new physics models will

become more and more important. Recently, the LHC experiments have made a

push to utilize advances in operating system virtualization in order to preserve

the entire software environments that are used to produce physics results, mak-

ing reproducibility a much more tractable problem. Additionally, the RECAST

framework [128] has been introduced to not only preserve analysis software, but

also provide infrastructure for reinterpreting the results of searches for new physics

in the context of models that were not considered originally. In this way, RECAST

aims to broaden the scientific impact of such searches by capturing the necessary

software and automating the analysis workflow. The goal of this effort is to estab-

lish a framework in which the user only needs to provide a minimal set of inputs
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(the signal samples, cross-sections, and theoretical uncertainties) and receives the

result of a hypothesis test as the output.

In order to recast the analysis, the entire software environment needs to be

preserved. This not only includes the analysis code and its dependencies, but also

the compiler and operating system used when originally performing the analysis.

While this could be accomplished with virtual machines, ATLAS has chosen to

utilize recent developments in Linux container images, which do not require hard-

ware virtualization. Specifically, the software environments used by this analysis

are captured using Docker images [129], which can be deployed on a wide variety

of computing infrastructures. Two Docker images are used to fully preserve this

analysis. The first image captures the software used to process the data, including

the specific ATLAS software release that is used to calibrate the various physics

objects. A second image preserves the software environment that was used when

performing the statistical analysis.

Once the software environment is captured in Docker images, the series of com-

mands needed to execute the analysis from start to finish must also be preserved.

These interdependent commands are captured using the workflow description lan-

guage yadage [130], which models workflows using directed acyclic graphs. This

allows the workflows to be non-linear and even makes the workflows executable

across distributed systems. The workflow design and specific commands are de-

fined in YAML files. Where necessary, the commands are parameterized in order to

accept different inputs from the user. A detailed description of the workflow used

for this search is presented in Section 16.3.

Finally, since the background estimates (including their systematic uncertain-

ties) and data yields are frozen, they are archived in the form of ROOT histogram

objects that can be used directly in the exclusion fits without the need for any
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additional data processing.

16.2 Required Inputs for New Signals

Beyond providing the simulated signal samples themselves, further information

related to the signal process must be provided by the user in order to reinterpret

the results of any search for new physics. This section briefly describes what

is needed in order to ensure that the new signal is handled properly within the

analysis workflow.

Firstly, the user must specify the necessary information for correctly normal-

izing the simulated signal events to the overall expected event yield. Therefore,

the inputs to the preserved analysis workflow include a text file that must contain

the signal cross-section (along with its uncertainty) and any branching fractions

to the desired final states. Additionally, if any generator-level requirements are

applied during the event generation, the efficiency of these cuts must be specified.

This file is referred to as signal_xsec in the workflow described in Section 16.3.

One important complication when trying to reinterpret a preserved analysis is

accounting for theoretical uncertainties that depend on the specific signal under

test. The user should not assume that the uncertainties derived for the SUSY

processes considered by this analysis are also applicable to their signal. Therefore,

the user must provide the uncertainties on the signal yields in the SRs that stem

from the theoretical modeling of the ISR process, as described in Section 12.3.2.

This information must be stored in a JSON file, referred to as ISR_unc_file in

Section 16.3, that pairs each SR name with a number representing the relative

uncertainty on the signal event yield within it.
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16.3 Analysis Workflow

The goal of the preserved analysis workflow is to take some signal process as

the input and output a CLs value that represents the compatibility of the observed

data with this new hypothesis. In broad terms, this is achieved by processing the

signal events, applying the event selection to them, and finally performing the

exclusion fits using the archived background histograms. These fits are configured

in exactly the same way as those described in Section 15.2 and therefore exploit any

differences in the shape of the m`` or m100
T2 distributions between the background

and signal processes. A schematic of the full workflow, which currently does not

include the 1`1T channel, is shown in Figure 16.1 and the individual steps are

described in detail below.

• dataprocessing_mc16a/d/e: Convert the centrally-produced signal sam-

ples from an ATLAS data format called the “derived Analysis Object Data”

(DxAOD) format to standard ROOT files. These samples are generated with

different pileup profiles to match the data taken in 2015+2016, 2017, and

2018, and therefore there is a dedicated step for processing the events cor-

responding to each of these periods. The events corresponding to each of

these periods are reweighted according that period’s relative contribution

to the total integrated luminosity. During the processing, important kine-

matic variables such as m`` and m100
T2 are are calculated and the events are

reweighted according to the user-defined signal cross-section. This process is

repeated for each experimental systematic uncertainty. While functionally

the same, these steps remain separate so that they can run in parallel and

therefore cut down on computing time.

• fetchfiles: Retrieves the ROOT files containing the background and data
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histograms as well as the user-defined JSON file that stores the ISR modeling

uncertainties for the signal being tested. These files are then passed to the

fit_MLL and fit_MT2 steps.

• augmentntuple: Merges the ROOT files from the data processing steps and

adds the Emiss
T trigger scale factors that model the trigger efficiencies ob-

served in data.

• fit_MLL: Applies the event selection on the signal events and performs the

exclusion fit to the two-lepton CRs and exclusive SRs defined by m``. Ad-

ditionally, a scan is performed over the signal strength parameter µsig.

• fit_MT2: Applies the event selection and performs the exclusion fit using the

CRs and exclusive SRs defined by m100
T2 . Additionally, a scan is performed

over the signal strength parameter µsig.

16.4 Validation

In order to validate the RECAST workflow, the machinery was run using

some of the same signal samples that were used in the search for slepton and wino

production. The figure of merit for the validation is the CLs from the model-

dependent exclusion fits.

To validate the fits to the exclusive SRs defined by ranges of m100
T2 , the slepton

signal sample with m( ˜̀) = 125 GeV and m(χ̃0
1) = 105 GeV was chosen. For this

test, a fourfold mass degeneracy is assumed between left- and right-handed smuons

and selectrons. Assuming µsig = 1, both the RECAST workflow and nominal

analysis results give CLs = 1.80 × 10−3 for this hypothesis test. Additionally,

scans of the CLs values as a function of µsig are shown in Figure 16.2, where again

the RECAST results are identical to what was obtained originally.
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Figure 16.2: Results of the hypothesis tests as a function of the signal strength
parameter µsig for the slepton interpretation assuming both flavor- and chirality-
degeneracy with m( ˜̀) = 125 GeV and m(χ̃0

1) = 105 GeV. The results from the
original analysis are shown on the left, while those obtained with the RECAST
workflow are shown on the right.

Equivalently, the RECAST workflow is validated against the fits to the ex-

clusive SRs that are defined by ranges of m`` by running on an electroweakino

signal sample that was used in the nominal analysis. The chosen signal sample

corresponds to the wino/bino simplified model with (m(χ̃0
2),m(χ̃0

1)) = (150, 140)

GeV and assuming m(χ̃0
2) ×m(χ̃0

1) > 0. The choice of mass splitting was made

in order to avoid the part of the mass-plane where the 1`1T channel has some

sensitivity (∆m(χ̃0
2, χ̃

0
1) . 5 GeV), since this part of the analysis is not yet in-

cluded in the RECAST workflow. This makes a comparison of the CLs values

much more direct. As with the previous check, the RECAST workflow and nom-

inal analysis results agree, this time giving CLs = 1.97× 10−6 under the µsig = 1

assumption. Again, the scans of the CLs values from each set of hypothesis tests,

presented in Figure 16.3, yield identical results. With the full workflow validated

and preserved, this results of this analysis can now be reinterpreted in the context

of other models that can produce events with Emiss
T and soft leptons.
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Figure 16.3: Results of the hypothesis tests as a function of the signal strength
parameter µsig for the wino/bino interpretation assuming m(χ̃0

2) × m(χ̃0
1) > 0,

m(χ̃0
2) = 150 GeV, and m(χ̃0

1) = 140 GeV. The results from the original analysis
are shown on the left, while those obtained with the RECAST workflow are shown
on the right.
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Chapter 17

Conclusions

This dissertation presented searches for the direct production of electroweaki-

nos and sleptons in
√
s = 13 TeV proton-proton collisions provided by the LHC

between 2015 and 2018. The collisions were recorded by the ATLAS detector,

resulting in a dataset corresponding to an integrated luminosity of 139 fb−1. The

SUSY models targeted by these searches involve compressed mass spectra and

decay chains that lead to missing transverse energy and soft leptons of the same

flavor and opposite electric charge in the final state. At tree level, these scenarios

are difficult to probe at the LHC due to trigger bandwidth limitations and lepton

reconstruction thresholds. To combat this, additional hadronic activity in the

form of ISR is required in order to provide a boost to the SUSY system in the

transverse plane, affectively aligning the LSPs so that Emiss
T -triggers can be used

to collect events with sufficient efficiency. This boost also serves to increase the pT

of the final-state leptons, thus increasing the acceptance for the most compressed

signals.

The final discriminants used to search for electroweakinos and sleptons were

chosen to be m`` and m100
T2 , respectively. In each case, signal events have kine-

matic endpoints in these variables that correspond to the mass splitting, which
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is exploited by the model-dependent exclusion fits. Various kinematic cuts were

optimized separately for electroweakinos and sleptons to promote boosted topolo-

gies and provide signal sensitivity over a wide range of mass-splittings. Notably,

SRs that require Emiss
T < 200 GeV were developed in order to target signals with

moderate-to-large mass splittings, though the high-Emiss
T SRs provide the bulk of

the exclusion power in the SUSY mass planes.

Due to the presence of very soft leptons, a large reducible background from

fake/non-prompt leptons was estimated using the data-driven Fake Factor method,

which required new isolation algorithms for successful modeling in highly colli-

mated dilepton events. Major sources of irreducible background arise from tt̄/tW ,

Z(∗)/γ∗(→ ττ) + jets, and V V events, whose normalizations were constrained us-

ing background-only fits to dedicated high-Emiss
T and low-Emiss

T CRs. Systematic

uncertainties stem from both experimental and theoretical sources, with those

related to the fake/non-prompt lepton estimation and the normalization of the

major irreducible backgrounds having the largest effect on the background uncer-

tainty in the SRs.

Hypothesis tests were performed to quantify the consistency of the data in the

inclusive SRs with the background-only hypothesis, but no statistically significant

excesses were observed (the largest corresponding to a local significance of 2.7σ).

These results were used to set model-independent limits on the production of

BSM physics. Additionally, the exclusive SRs defined by m`` and m100
T2 were used

to perform hypothesis tests on a variety of signals within the context of simplified

SUSY models. The results of these hypothesis tests were then transformed into

95% CL exclusion contours in the ∆m(χ̃0
2, χ̃

0
1) vs. m(χ̃0

2) and ∆m( ˜̀, χ̃0
1) vs. m( ˜̀)

planes.

For direct wino production, lower bounds on m(χ̃0
2) reach up to 240 GeV at a
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mass-splitting of 7 GeV and extend down to ∆m(χ̃0
2, χ̃

0
1) = 1.5 GeV at the LEP

chargino mass limit, regardless of the relative sign of the χ̃0
1 and χ̃0

2 mass eigenval-

ues. For direct higgsino production, the lower limits on the χ̃0
2 mass reach up to

193 GeV at a mass-splitting of 9.3 GeV and extend down to ∆m(χ̃0
2, χ̃

0
1) = 2.4 GeV

at the LEP chargino mass limit. In the case of direct light-flavor slepton pro-

duction, several mass-degeneracy scenarios were considered. Assuming a four-

fold mass degeneracy among the sleptons, the lower limit on m(`L.R) reaches

up 251 GeV at a mass-splitting of 10 GeV and extends down to ∆m( ˜̀L,R, χ̃0
1) =

550 MeV at the LEP ẽR mass limit. A rather important point to make is that

all of these limits were derived within simplified models that make optimistic as-

sumptions on e.g. the branching ratios of the produced SUSY states. With this

in mind, the searches presented here have been preserved within the RECAST

framework in order to allow for easy reinterpretations using more realistic SUSY

models and even non-SUSY models of BSM physics.

The story is far from over, though. Plenty of the parameter space relevant

to natural SUSY models remains to be explored, especially in the electroweak

sector. The upcoming data from Run 3 of the LHC (and the eventual HL-LHC)

will provide an opportunity to extend the sensitivity to higher masses, but signif-

icant improvements in the most compressed regime will require new ideas, from

improved reconstruction and background-rejection techniques to completely new

event topologies. The problems facing particle physics today are deep and it’s not

clear whether current (or even planned) experiments will be able shed light on

them. But there’s only one way to find out.

Happy hunting!
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Appendix A

Emiss
T -Trigger Scale Factors

The triggers used in this search are based on Emiss
T and are found to be fully

efficient only for events with Emiss
T > 200 GeV. Below this threshold, the efficiency

changes quickly with Emiss
T in what is knows as a trigger “turn-on” curve. Since

the low-Emiss
T regions used in the search fall into this region, the modeling of

the trigger efficiencies in simulation needs to be checked and corrected for. In

this section, the trigger efficiencies in both data and MC are measured in an

unbiased event sample with kinematic requirements similar to the SRs and CRs.

Differences in these efficiencies are measured as a function of Emiss
T, µ invis (defined

in the following section) and are ultimately used to derive scale factors that are

applied to MC events, thereby improving the background modeling in the regions

with Emiss
T < 200 GeV.

A.1 Methodology and Event Selection

The basic strategy for measuring the the Emiss
T -trigger scale factors is to select

and unbiased sample and compare data and MC efficiencies in a region that has

similar kinematic requirements as the SRs. Since the Emiss
T that is calculated
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at the trigger-level does not include information from the Muon Spectrometer

system, the unbiased sample is therefore selected using single-muon triggers. The

efficiencies and scale factors are measured separately for each Emiss
T -trigger used

in the search, where the efficiencies are defined as the number of events passing

both the the muon-triggers and the Emiss
T -trigger divided by the number of events

that only pass the muon triggers. In order to account for the difference between

the trigger-level and offline Emiss
T calculations, the efficiencies and scale factors are

measured as a function of Emiss
T, µ invis, which differs from the offline Emiss

T definition

by treating the muons as if they were invisible to the detector.

Since Emiss
T is an event-level variable, it remains sensitive to specific event

topologies, and so an event selection is derived to target the boosted topologies

that motivate the SRs. Events are required to contain exactly two signal leptons

with opposite electric charge and have ∆R`` > 0.05. One of the signal leptons

needs to be a muon that can be matched to the firing muon trigger. In order to

avoid contributions from low-mass resonances such as J/ψ and Υ, the dilepton

invariant mass is required to be m`` > 10 GeV. Finally, boosted-like topologies

are selected by requiring the same jet requirements that are used to define the

preselection defined in Table 10.2. As with the fake factors, the Emiss
T -trigger scale

factors are measured separately for events with zero and at least one b-tagged jet.

Since the lowest muon-trigger threshold used for this measurement is pT > 20 GeV,

the contribution from fake/non-prompt leptons is assumed to be small and so this

process is taken from the MC simulation.

A.2 Efficiency and Scale Factor Measurements

The efficiencies, as defined in the previous section, measured in data and MC

are shown in Figure A.1 for the representative HLT_xe110_pufit_L1XE55 trigger,
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Figure A.1: Emiss
T -trigger efficiencies in data (black) and MC (red) as a function

of Emiss
T, µ invis for the HLT_xe110_pufit_L1XE55 trigger.

where the turn-on effect is clearly visible for events with Emiss
T, µ invis < 200 GeV.

The ratio of the efficiencies in data to the efficiencies in MC are used to derive

the scale factors.

In order to mitigate the effects of statistical fluctuations, especially at low

values of Emiss
T, µ invis, a fit is performed to this ratio and the scale factors are taken

from the fit. The fit function used is

F (Emiss
T, µ invis) = 0.5 ·

1 + Erf

Emiss
T, µ invis − p0√

2p2
1

 , (A.1)

where Erf is the error function and p0 and p1 are free parameters that roughly

map onto the location and width of the turn-on. Using the HLT_xe110_pufit_L1XE55

trigger as a representative example, the fit results, representing the scale factors

for this trigger, are shown in Figure A.2. In each case, a χ2 test is used to validate

the fit model against the data.
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Figure A.2: Fits to the data/MC efficiency ratio that provide Emiss
T -trigger scale

factors for the trigger HLT_xe110_pufit_L1XE55. The yellow band indicates the
statistical uncertainty of the fit.

A.3 Application

The scale factors described in the previous section are applied to the MC

background events with Emiss
T, µ invis in order to account for any mismodeling of

the Emiss
T -trigger efficiencies. Figure A.3 shows improved modeling of the Emiss

T

distribution at preselection-level after applying the scale factors. In general, the

Emiss
T -triggers appear more efficient in MC compared to data and the scale factors

act to scale down the MC yields to be in better agreement with the data.

A.4 Uncertainties

Various sources of uncertainties on the Emiss
T -trigger scale factors are consid-

ered and applied for events with Emiss
T < 200 GeV. These uncertainties can be

both statistical and systematic in nature. The statistical uncertainty on the scale

factors arises from the limited size of the dataset used to derive them. When per-
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Figure A.3: The Emiss
T distributions at preselection level before and after apply-

ing the Emiss
T -trigger scale factors. The hatched band in the bottom panel shows

only the statistical uncertainty.

forming the fit using the function defined in Equation A.1, the floating parameters

p0 and p1 acquire uncertainties that are reflective of the available statistics. Ulti-

mately, the statistical uncertainty on the scale factors are obtained by propagating

the uncertainties on p0 and p1 (including their correlation) to the function. This

statistical uncertainty is shown as the yellow bands in Figure A.2, for example.

One source of systematic uncertainty on the Emiss
T -trigger scale factors arises

from potential dependence on important kinematic variables other than Emiss
T, µ invis.

In order to check this, the scale factors are checked for correlations with m``, mT2,

and RISR at the preselection level, defined in Table 10.1, with Emiss
T < 200 GeV.

These correlations are shown in Figure A.4, where little dependence on these

variables is observed. Still, a conservative uncertainty of 5% is applied to the scale

factors. Finally, the trigger efficiencies are checked for individual background and

signal processes separately and uncertainties on the scale factors are derived in

order to cover these differences.
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Figure A.4: Correlation between the Emiss
T trigger scale factors andm``, mT2 and

RISR at preselection level with Emiss
T < 200 GeV. The z-axis shows the number of

weighted background MC events.
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Appendix B

Slepton Chirality: Effect on

Kinematics

The available slepton signal samples contain an admixture of left-handed and

right-handed sleptons, according to their relative cross-sections. For the interpre-

tations that do not assume mass degeneracy between sleptons of different chirality,

in principle, one should only consider the sleptons in the signal samples that have

the correct chirality. Unfortunately, this leads to a significant reduction in the

statistical power of these samples and may lead to results that are sensitive to

statistical fluctuations.

In order to retain the original statistical power of the signal samples, one

can instead try to include the sleptons of the opposite chirality in such a way

that the signal yield is preserved. For example, when searching for µ̃L, one can

include the µ̃R events (rather than throwing them away), provided that the events

are reweighted to maintain the expected yield for the µ̃L process alone. Crucially,

though, this procedure is only valid if the acceptance and efficiency of the analysis

are the same for both left-handed and right-handed sleptons. If this were not true,

then some additional correction factors would need to be derived on an event-by-
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event basis using the relevant kinematic variables in order to avoid a bias. To check

whether or not the event kinematics are chirality-dependent, important kinematic

distributions and cutflows for the slepton SRs are investigated for left-handed

and right-handed sleptons separately. No systematic bias based on the slepton

chirality is observed and differences in the final SR efficiencies are typically below

the percent level, giving confidence to the assumption that the slepton chirality

has a negligible effect on the relevant kinematics.

B.1 Kinematics

In this section, we show relevant kinematic distributions for left-handed and

right-handed selectrons and smuons to check for a potential bias that could be

introduced by the chirality of the particles. For a representative sample of signal

points, we show the following normalized distributions, where the only selection

applied is to require exactly two baseline leptons:

• pT(`1) in Figure B.1

• pT(`2) in Figure B.2

• η(`1) in Figure B.3

• η(`2) in Figure B.4

• Emiss
T in Figure B.5

• RISR in Figure B.6

• m100
T2 in Figure B.7

In general, no evidence of a chirality dependence on the shapes of these distri-

butions is observed.
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Figure B.1: Leading lepton pT distributions for selectrons (left) and smuons
(right) split by chirality for various signal points.
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Figure B.2: Subleading lepton pT distributions for selectrons (left) and smuons
(right) split by chirality for various signal points.
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Figure B.3: Leading lepton η distributions for selectrons (left) and smuons
(right) split by chirality for various signal points.
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Figure B.4: Subleading lepton η distributions for selectrons (left) and smuons
(right) split by chirality for various signal points.
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Figure B.5: Emiss
T distributions for selectrons (left) and smuons (right) split by

chirality for various signal points.
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Figure B.6: RISR distributions for selectrons (left) and smuons (right) split by
chirality for various signal points.
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Figure B.7: m100
T2 distributions for selectrons (left) and smuons (right) split by

chirality for various signal points.
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(d) Smuons: low-Emiss
T

Figure B.8: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (70, 65) signal point.

B.2 Cutflows

Here we check the cut efficiencies separately for left-handed and right-handed

smuons and selectrons. Cutflows are produced for both the high-Emiss
T and low-

Emiss
T slepton SRs to check for systematic differences in efficiency that would im-

ply significant differences in the event kinematics between left-handed and right-

handed sleptons. These are produced using unskimmed signal ntuples and are

shown in Figures B.8-B.38, with the selectron SRs on the left and the smuon SRs

on the right. Small differences in efficiency are are observed for left-handed and

right-handed sleptons, especially for very low mass-splitting points where statistics

in the signal samples are limited, but no systematic effect is apparent.
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Figure B.9: Cutflows for the
(
m(˜̀),m(χ̃0
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= (70, 68) signal point.
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(d) Smuons: low-Emiss
T

Figure B.10: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (70, 69) signal point.
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(d) Smuons: low-Emiss
T

Figure B.11: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (70, 69.3) signal point.
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(d) Smuons: low-Emiss
T

Figure B.12: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (90, 50) signal point.
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(d) Smuons: low-Emiss
T

Figure B.13: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (90, 70) signal point.
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(d) Smuons: low-Emiss
T

Figure B.14: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (100, 60) signal point.
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(d) Smuons: low-Emiss
T

Figure B.15: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (100, 70) signal point.

None  = 2
base

lep
N

 = 2

signal
lep

N ) > 51
(lT

p

)T2

) > f(m2
(lT

p
ll

m
ll

R MET > 200
 = 0bjet

N ) > 1001
(jT

p
, MET) > 2

1
(jφ∆

, MET)) > 0.4

all
(jφ∆

min( trigMatch
RISR ττ

m OS Author
ee

2−10

1−10

1 LH

RH

(100.0, 80.0)
ATLAS Work in progress

(a) Selectrons: high-Emiss
T

None  = 2
base

lep
N

 = 2

signal
lep

N ) > 51
(lT

p

)T2

) > f(m2
(lT

p
ll

m
ll

R MET > 200
 = 0bjet

N ) > 1001
(jT

p
, MET) > 2

1
(jφ∆

, MET)) > 0.4

all
(jφ∆

min( trigMatch
RISR ττ

m OS Author
mm

2−10

1−10

1 LH

RH

(100.0, 80.0)
ATLAS Work in progress

(b) Smuons: high-Emiss
T

None  = 2
base

lep
N

 = 2

signal
lep

N ) > 51
(lT

p

)T2

) > f(m2
(lT

p
ll

m
ll

R 150 < MET < 200

 = 0bjet
N ) > 1001

(jT
p

, MET) > 2
1
(jφ∆

, MET)) > 0.4

all
(jφ∆

min( trigMatch
RISR ττ

m OS Author
ee

2−10

1−10

1 LH

RH

(100.0, 80.0)
ATLAS Work in progress

(c) Selectrons: low-Emiss
T

None  = 2
base

lep
N

 = 2

signal
lep

N ) > 51
(lT

p

)T2

) > f(m2
(lT

p
ll

m
ll

R 150 < MET < 200

 = 0bjet
N ) > 1001

(jT
p

, MET) > 2
1
(jφ∆

, MET)) > 0.4

all
(jφ∆

min( trigMatch
RISR ττ

m OS Author
mm

2−10

1−10

1 LH

RH

(100.0, 80.0)
ATLAS Work in progress

(d) Smuons: low-Emiss
T

Figure B.16: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (100, 80) signal point.
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(d) Smuons: low-Emiss
T

Figure B.17: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (100, 90) signal point.
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(d) Smuons: low-Emiss
T

Figure B.18: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (100, 95) signal point.
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(d) Smuons: low-Emiss
T

Figure B.19: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (100, 99) signal point.
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(d) Smuons: low-Emiss
T

Figure B.20: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (100, 99.3) signal point.
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(d) Smuons: low-Emiss
T

Figure B.21: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (125, 123) signal point.
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(d) Smuons: low-Emiss
T

Figure B.22: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (150, 110) signal point.
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(d) Smuons: low-Emiss
T

Figure B.23: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (150, 120) signal point.
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(d) Smuons: low-Emiss
T

Figure B.24: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (150, 140) signal point.
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(d) Smuons: low-Emiss
T

Figure B.25: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (150, 145) signal point.
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(d) Smuons: low-Emiss
T

Figure B.26: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (150, 148) signal point.
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(d) Smuons: low-Emiss
T

Figure B.27: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (150, 149) signal point.
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(d) Smuons: low-Emiss
T

Figure B.28: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (175, 173) signal point.
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(d) Smuons: low-Emiss
T

Figure B.29: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (200, 170) signal point.
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(d) Smuons: low-Emiss
T

Figure B.30: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (200, 190) signal point.
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(d) Smuons: low-Emiss
T

Figure B.31: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (200, 195) signal point.
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(d) Smuons: low-Emiss
T

Figure B.32: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (225, 224) signal point.
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(d) Smuons: low-Emiss
T

Figure B.33: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (250, 230) signal point.
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(d) Smuons: low-Emiss
T

Figure B.34: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (250, 240) signal point.
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(d) Smuons: low-Emiss
T

Figure B.35: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (250, 248) signal point.
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(d) Smuons: low-Emiss
T

Figure B.36: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (250, 249) signal point.
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(d) Smuons: low-Emiss
T

Figure B.37: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (300, 290) signal point.
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(d) Smuons: low-Emiss
T

Figure B.38: Cutflows for the
(
m(˜̀),m(χ̃0

1)
)

= (300, 298) signal point.
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Appendix C

Cross-Section Upper Limits

Using the CLs prescription, hypothesis tests are performed using the exclu-

sive SRs to set upper limits on the production cross-section at 95% CL for the

electroweakino and slepton processes considered in this search. The expected and

observed upper limits are derived for each simulated signal point in the grid. Ap-

pendix C.1 shows the cross-section upper limits for electroweakino production,

while Appendix C.2 shows the cross-section upper limits for slepton production.

C.1 Electroweakinos

Exclusion fits to the exclusive SRs targeting electroweakino production with

a floating signal normalization parameter are used to derive upper limits on the

production cross-sections at 95% CL. Figure C.1 shows the upper limits on the

cross-section for wino production within each simplified wino/bino scenario con-

sidered. Figure C.2 shows the cross-section upper limits for higgsino production

in the simplified model.
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Figure C.1: The observed (left) and expected (right) upper limits on the
production cross-section for the wino/bino scenarios. The top row assumes
m(χ̃0

1)×m(χ̃0
2) > 0, while the bottom row assumes m(χ̃0

1)×m(χ̃0
2) < 0.

C.2 Sleptons

Exclusion fits to the exclusive SRs targeting slepton production with a floating

signal normalization parameter are used to derive upper limits on the production

cross-sections at 95% CL. Figures C.3–C.5 show the upper limits on the cross-

section for slepton production assuming each mass-degeneracy scenario considered

by this analysis.

315



100 150 200 250 300 350

m(χ̃0
2) [GeV]

1

5

10

50

∆
m

(χ̃
0 2,
χ̃

0 1)
[G

eV
]

11.5

6.1

155.9

24.6

9.0

3.3

1.9

8.9

3.4

4.7

9.7

7.1

171.3

27.3

8.6

6.1

2.9

1.4

5.4

3.1

12.0

4.0

32.0

7.9

5.1

2.9

6.6

1.3

3.9

2.3

3.4

9.1

3.2

2.5

1.2

3.0

2.1

3.0

52.7

7.7

2.9

1.0

2.0

2.8

2.7

2.8

1.1

2.3

2.1

10.0

2.8

1.1

1.8

2.5

2.4

1.6

146.8

23.4

11.3

4.0

2.5

4.1

Expected limit
(
±1σexp

)

Observed limit
(
±1σtheory

)

LEP χ̃±1 excluded
ATLAS 13 TeV 36 fb−1 excluded
Upper limit σ95

obs [pb]

ATLAS√
s = 13 TeV, 139 fb−1

ee/µµ, m`` shape fit
All limits at 95% CL

pp → χ̃0
2χ̃
±
1 , χ̃0

2χ̃
0
1, χ̃+

1χ̃
−
1 (Higgsino)

χ̃0
2 → Z ∗χ̃0

1, χ̃±1 →W ∗χ̃0
1

m(χ̃±1 ) = [m(χ̃0
2) + m(χ̃0

1)]/2

100 150 200 250 300 350

m(χ̃0
2) [GeV]

1

5

10

50
∆

m
(χ̃

0 2,
χ̃

0 1)
[G

eV
]

10.6

3.4

83.3

13.8

4.4

2.5

1.8

5.1

2.0

2.4

17.5

7.3

104.2

14.9

4.3

4.0

2.0

1.4

5.7

1.7

12.8

2.0

17.6

4.0

3.2

2.0

10.3

1.2

4.4

1.3

1.7

5.2

2.4

1.8

1.1

3.7

1.2

1.4

33.8

4.5

2.0

0.984

1.1

1.3

1.9

2.0

0.931

2.7

1.0

5.8

1.9

0.976

0.963

1.1

1.6

2.2

75.0

13.2

5.5

3.3

2.3

2.5

Expected limit
(
±1σexp

)

Observed limit
(
±1σtheory

)

LEP χ̃±1 excluded
ATLAS 13 TeV 36 fb−1 excluded
Upper limit σ95

exp [pb]

ATLAS√
s = 13 TeV, 139 fb−1

ee/µµ, m`` shape fit
All limits at 95% CL

pp → χ̃0
2χ̃
±
1 , χ̃0

2χ̃
0
1, χ̃+

1χ̃
−
1 (Higgsino)

χ̃0
2 → Z ∗χ̃0

1, χ̃±1 →W ∗χ̃0
1

m(χ̃±1 ) = [m(χ̃0
2) + m(χ̃0

1)]/2

Figure C.2: The observed (left) and expected (right) upper limits on the pro-
duction cross-section for higgsinos.
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Figure C.3: The observed (left) and expected (right) upper limits on the pro-
duction cross-section for sleptons (top), left-handed sleptons (middle) and right-
handed sleptons (bottom).
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Figure C.4: The observed (left) and expected (right) upper limits on the produc-
tion cross-section for smuons (top), left-handed smuons (middle) and right-handed
smuons (bottom).
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Figure C.5: The observed (left) and expected (right) upper limits on the produc-
tion cross-section for selectrons (top), left-handed selectrons (middle) and right-
handed selectrons (bottom).
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