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Abstract

Models of visual saliency normally belong to one of two
camps: models such as Experience Guided Search (E-GS),
which emphasize top-down guidance based on task features,
and models such as Attention as Information Maximisation
(AIM), which emphasize the role of bottom-up saliency. In
this paper, we show that E-GS and AIM are structurally simi-
lar and can be unified to create a general model of visual search
which includes a generic prior over potential non-task related
objects. We demonstrate that this model displays inattentional
blindness, and that blindness can be modulated by adjusting
the relative precisions of several terms within the model. At
the same time, our model correctly accounts for a series of
classical visual search results.

Keywords: Inattentional Blindness; Conjunction Search; Vi-
sual Attention; Bayesian Modelling; Predictive Processing

Introduction
Visual search, where agents search for a target amongst dis-
tractors, is an important paradigm in the study of human at-
tention (Wolfe, 1994) (see Figure 1 for an example trial).
Inattentional blindness, where unexpected objects fail to cap-
ture attention, provides a useful insight into how constraints
of processing and access lead to failures in the visual system
(Simons, 2000). The literature on the two domains is distinct;
in this paper we show that extending a model of visual search
by adding an environmental prior produces a model that can
reproduce empirical results from both domains.

The motivation for our extension hinges on the idea that
the brain, due to the pressures of an ever changing environ-
ment, never solely models a task; it must always additionally
maintain what are effectively generic, non-task-specific prior
expectations about possible interesting states of the world.
For example, in conjunction search (Nakayama & Silverman,
1986), where participants search for a target amongst distrac-
tors, a simple model of the search environment should in-
clude both “targets” and “distractors” (the statistics of which
are learned during training), and “non-task entities” (which
are unrelated to the task), as possible kinds. Ignoring non-
task entities allows the brain to attend to (and successfully
perform) a task, at the expense of potentially missing useful
information about the world.

The contributions of this work are threefold. We demon-
strate a successful joint model of visual search and inatten-
tional blindness in which search is driven by saliency, gen-
erated using precision-weighted error terms. We show the

Figure 1: Example trial taken from Task 5 (see Results, be-
low). Task is to find red vertical target amongst green vertical
and red titled distractors.

structural equality of two distinct models of saliency, one
top-down, and the other bottom-up. Finally, by constructing
a model where both task relevant and task irrelevant stimuli
contribute to saliency, we shed light on what it means to per-
form a task – namely, for an agent to have high confidence in
its model of those stimuli that constitute the task, compared
with its model of other possible stimuli.

Related Work
Conjunction Search
Empirically, we can distinguish between five forms of guid-
ance in visual search (Wolfe & Horowitz, 2017). The two of
interest to this work are bottom-up (where visual properties of
aspects of a scene attract more attention than others, Koehler,
Guo, Zhang, & Eckstein, 2014), and top-down (where execu-
tive control drives attention towards desired targets, Maunsell
& Treue, 2006).

The majority of the many models of top-down visual search
(Itti, Koch, & Niebur, 1998; Torralba, Oliva, Castelhano, &
Henderson, 2006; Navalpakkam & Itti, 2006; Cave, 1999;
Choi, Torralba, & Willsky, 2012)1 share the basic structure of

1We cite Itti and Koch’s work here, as well as in the section on
bottom-up drivers of saliency, because whilst their work focusses on
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Guided Search (GS; Wolfe, 1994): primitive visual features
are detected across the retina by feature maps, which repre-
sent features via a coarse (i.e., highly overlapping) encoding.
These feature maps are then passed through a local differenc-
ing operator, which enhances local contrasts, and the feature
maps are combined using a top-down, task specific weighting
to produce a saliency map. A Bayesian treatment of GS called
Experience-Guided Search has been proposed by Mozer and
Baldwin (2007).

There is also a body of work that focuses specifically on
the bottom-up drivers of saliency (Koehler et al., 2014; Itti &
Koch, 2001), an example of which is Attention as Information
Maximisation (AIM), proposed by Bruce and Tsotsos (2009).
These authors argue that the self-information of a location
in an image, estimated on its surrounding context, is a good
measure of its visual saliency.

Bottom-up models can be thought of as mapping the
saliency of a task-neutral environment; but they provide no
account of the relationship between this base saliency and the
task at hand. Top-down models provide a qualitative account
of various phenomena in visual search (see Results for a de-
tailed discussion of relevant phenomena). However, a limita-
tion of these models is that they do not attempt to model tasks
as situated in a wider environment containing task-irrelevant
stimuli, or competing tasks. A paradigm where modelling the
relative saliency of task-relevant and task-irrelevant items be-
comes important is that of inattentional blindness (IB; Mack
& Rock, 1998).

Inattentional Blindness
To model IB in the context of visual search, we use an “ad-
ditional singleton” approach (see, e.g., Simons, 2000), where
an unexpected single item has a distinctive unique feature,
and that item is never the target item. There are several fac-
tors which have been shown to affect the rate of unexpected
object detection when performing a task: increased cogni-
tive load increases blindness (Kreitz, Furley, Memmert, & Si-
mons, 2016), the similarity of the unexpected object to task-
relevant objects increases the probability that the unexpected
object will capture attention (Most et al., 2001; Simons &
Chabris, 1999), as do shared features between task relevant
objects and unexpected objects (Koivisto & Revonsuo, 2009).

Models of the causes of inattentional blindness range from
claims of inattentional amnesia (we see the object, but fail to
report it after the trial, Wolfe, 1999), to arguments that we are
blind to objects we do not expect to see (Braun, 2001). More
recent accounts have focused on the relationship between
bottom-up saliency (which drives transient attentional cap-
ture) and a top-down attentional set, which governs whether
transient attention is sufficient to generate sustained attention,
and subsequent awareness (Most, Scholl, Clifford, & Simons,
2005). In spirit, our approach falls under this latter umbrella,

saliency maps, they assume that these maps are combined accord-
ing to top-down attentional drivers, which makes them less purely
bottom-up than AIM, for example. See the section on bottom-up
visual attention, below.

but we show that blindness can be explicitly thought of as a
result of a ratio of precisions in a mathematical model that
extends the conjunction search literature (and is also able to
replicate standard results in that domain).

Model
Our starting point is Experience-Guided Search (E-GS;
Mozer & Baldwin, 2007), a Bayesian treatment of GS devel-
oped to overcome a shortcomings of GS (Wolfe, 1994; Wolfe
& Horowitz, 2017), namely that GS produces better than hu-
man performance without the addition of noise or regularis-
ing constraints on the top-down weighting of features. Mozer
and Baldwin’s premise is that a location in the visual field is
salient if a target is likely to be at that location. They define
P(Tx = 1|FFFx) as a measure of saliency computed using statis-
tics obtained from recent experience performing the task:

P(Tx|FFFx,ρρρ) =
P(Tx)

∏
i P(Fxi|Tx,ρρρi)∑1

t=0 P(Tx = t)
∏

i P(Fxi|Tx = t,ρρρi)
(1)

Here, FFFx is the feature activity vector at retinal location x, Tx
is the binary indicator of targethood, ρρρ parameterises the stim-
ulus environment, and Fxi is the feature vector corresponding
to feature i.

Whilst we lack the space to give a full treatment here,
by assuming a generative model with Fxi|{Tx = t,ρρρ} ∼
Binomial(n,ρit), where ρit is the parameterising spike rate as-
sociated with feature i for target and non-target items (t =

1, t = 0), in the limit of reasonably large n we can approx-
imate P(Fxi| . . . ) as Gaussian, with mean nρit and variance
nρit(1− ρit). This allows the authors to derive a measure of
saliency, S EGS, as:

S EGS =
∑

i

[
Λρi0( fxi−nρi0)2−Λρi1( fxi−nρi1)2

]
(2)

Where Λρit denotes the precision (inverse variance) of the
model’s current estimate of ρit.2

This is a sum of terms, two for each feature i, which cap-
ture how surprising the activation corresponding to that fea-
ture, fxi, is with respect to the target or not-target cases, the
model’s beliefs about which are parameterised by ρi1 and ρi0
respectively. The saliency of feature i increases if the ob-
served activation is distant from the mean activity observed
in the past in the absence of a target. It decreases if the ob-
served behaviour is distant from the mean activity observed
its presence. This surprisal is weighted by observed preci-
sions: high variance features contribute less to saliency.

This remains a strictly task-based model, however. To ex-
pand it, we need to consider how the saliency of a feature
changes under a generic, non-task specific prior. To do this,
we turn to the literature on bottom-up measures of saliency,

2A difference between this presentation and that in Mozer and
Baldwin is that we have not ignored the scaling n; whilst in E-GS
only the relative magnitude of the terms in (2) is relevant, here we
do care about how much data the model has seen.
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in particular AIM (Bruce & Tsotsos, 2009). In doing so, we
note the structural similarity between AIM and E-GS.

The premise of AIM is that those areas of an image that
contain the most Shannon self-information are those that con-
tain content of interest. Hence visual saliency is driven by
surprise with respect just to visual input. First, “a sparse spa-
tiochromatic basis” is generated in an unsupervised fashion
using ICA, such that every image patch can be expressed as
a vector of coefficient contributions (if projected back into
image space, the coefficients, not incidentally, look a lot like
Gabor filters and colour opposition patches3).

For each location x we can characterise the content of the
local neighbourhood Cx by a vector αααx. For each of the
i features, the p.d.f of the surround is estimated by mak-
ing a histogram of all αi values for every nearby patch.
Then αxi’s likelihood P(αxi) can be estimated from the his-
togram and thus its Shannon information content computed
by log(1/P(αxi)). Adding the Shannon information from each
coefficient inαααx gives us an estimate of the Shannon informa-
tion contained in patch x, and hence the saliency of that patch:

S AIM = −
∑

i

log P(αxi) (3)

We then approximate the histogram P(αxi) as Gaussian dis-
tributed with mean ᾱi and variance σ2

αi, which are the statis-
tical mean and unbiased variance computed from the activa-
tions of surrounding patches for feature i.

This means we can rewrite (3) as:

S AIM =
∑

i

[
1
σ2
αi

(αxi− ᾱi)2
]

(4)

Comparing to (2), we can see that if we make the same as-
sumptions about the form of the likelihood of our incom-
ing data, the measures of saliency used by E-GS and AIM
are both sums of precision-weighted errors. The main differ-
ence is that AIM learns its model statistics from surrounding,
synchronic activations, whereas E-GS learns its statistics di-
achronically, and with respect to the pertinent categories of a
task oriented model.

Our final step is to argue that true saliency is a combination
of many such terms, driven by the pressure to balance atten-
tion between task-driven stimuli and the world in which a task
takes place. We therefore propose the following measure of
saliency of location x, Sx:

Sx =
∑

i

[
−Λi,1( fi −µi,1)2 +Λi,0( fi −µi,0)2 +Λi,α( fi −µi,α)2

]
(5)

Where for clarity we have simplified the learned means to µ,
and the learned precisions to Λ, for target, 1, distractors, 0,
and non-task foils, α.

3AIM uses ICA to find a roughly orthogonal basis which the au-
thors argue can be usefully compared to sparse coding in early visual
cortex. E-GS uses the handcrafted sparse basis from GS. Both can
summarised as: response activity is computed in parallel for multi-
ple features. Activity which is surprising on a feature is salient.

We might think of the third term in (5) as constant: in the
absence of any task, this is likely the term that dominates
saliency. However, once I have a particular task, then the
other terms will contribute to my estimate of the saliency.
Rather nicely, we can also see how expertise might play a
role: if a task has been repeated many times, then the preci-
sions associated with those task-relevant features will be high,
and so will dominate the saliency computation.

It is easy to see how this formulation could give rise to
inattentional blindness: if a surprising object is neutral with
respect to a task, then whether it affects the overall saliency
measure will depend on the relative precision weighting of
the first two terms and the third (if it is extremely surpris-
ing because it is blue, for example, but our task is clear-cut
so the precisions associated with the top-down terms is high,
then it still might not be that salient overall – if it is the only
blue object we have seen, then its associated precision may
be quite low). In a free viewing paradigm, the search task-
relevant terms would be absent, the model would collapse to
AIM, and unexpected objects would be salient. If the object
possesses some task relevant features, then the first and sec-
ond terms will contribute to its saliency, and it is more likely
to be attended.

The leveraging of precision weighted errors to produce dif-
ferent effects can also be related to the predictive coding work
of Friston and colleagues (Friston, Adams, Perrint, & Break-
spear, 2012), where a free-energy minimising agent passes
precision-weighted surprisals up a processing hierarchy, and
expectations down. Indeed, Friston has explicitly claimed
that (covert) attention can be thought of as precision weight-
ing (Feldman & Friston, 2010), which our simple model cer-
tainly aligns with.

Methods
To test our model in a conjunction search paradigm, we sim-
ulated image environments of distractor and target objects
on a 5× 5 grid with a white background (See Figure 1 for
an example trial). We represented images both at the ob-
ject level and the pixel level (see Feature Spaces, below);
in either case, at test time a vector valued representation Fx
scaled to [0,1] was passed to a learned model, which re-
turned the saliency score for each location x by computing
Eρ[Sx], where we assume Beta priors over the expected ac-
tivations, such that ρi,t ∼ Beta(αi,t,βi,t), ρi,d ∼ Beta(αi,d,βi,d)
and ρi,nt ∼ Beta(αi,nt,βi,nt). We used a Beta prior as the model
assumes fxi are rate activations, and hence fall in [0,1].
Eρ[Sx] is the sum of the expected value of each of the terms

in (5). For the ith feature of the kth term at location x, this is:

Eρk
[
Λi,k( fxi−µi,k)2

]
= nk

[
f 2
xi

(αik +βik −1)(αik +βik −2)
(αik −1)(βik −1)

− fxi
2(αik +βik −1)

βik −1
+

αik

βik −1

] (6)

In the case of an object-level representation, x corresponds to
an object in the image. In the case of the pixel-level represen-
tation, we computed saliency for every second pixel, which
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gave reasonable results and was less costly than computing
for every pixel.

For each task, the posterior beliefs of the model were
learned from 100 labelled example trials. The learned model
was then used to generate saliency maps for 1000 unlabelled
trials, where, for object-level saliency maps, rank order of
objects by saliency was taken to be directly proportional to
response time (RT).

When pixel-level saliency maps were generated, we explic-
itly “saccade” through the most salient pixels in order, and
introduce inhibition of return, which depresses the saliency S
at pixel i at step t according to:

S i,t = S i,t − (S i,t ·Ri,t−1)

Ri,t−1 = G(S i,t) +
1
2

Ri,t−2
(7)

where G(S i,t) is a Gaussian function, with a standard devia-
tion 1/16 the size of the image, of the distance of i from the
target of the tth saccade. The sequence of response times to
any particular object is then taken to be proportional to the
value of t when a pixel of that object is first visited.

Feature Spaces
Our saliency measure relies on the assumption that we have
access to a sparse, independent feature representation of the
visual space; either at the object level or at the pixel level.
In principle, both should perform similarly, and so we tested
our hypotheses (see Results) against both a variant of Guided
Search’s handcrafted approach to generating activations from
features (Wolfe, 1994), and AIM’s unsupervised approach
(Bruce & Tsotsos, 2009), which uses ICA to generate a vector
of activations from an image patch.

Guided Search has an eight-dimensional feature space:
four activations correspond to colour, four to orientation. The
four orientation dimensions are given by:

Steep: cos(2x)0.25, −45 < x < 45
Shallow: |cos(2x)|0.25, −90 < x < −45 and 45 < x < 90
Left: |sin(2x)|0.25, −90 < x < 0
Right: sin(2x)0.25, 0 < x < 90

The four colour receptors are red, yellow, green, and blue,
described as the “quite arbitrary . . . third root of triangluar
functions” (Wolfe, 1994) that have peaks at positions evenly
spaced at their ordinal positions in the spectrum. These acti-
vations are then passed through a local differencing operator
to yield a bottom-up activation.

For unsupervised extraction of a sparse basis, we sampled
250,000 image patches of size 21× 21 from a dataset of nat-
ural images (Hodosh & Hockenmaier, 2013), and used Jade-
ICA (Cardoso, 1999), preserving 90% variance to extract an
independent basis (27 dimensions were retained). ICA infers
the mixing matrix, B, between the independent causes and
the perceived data (the patches). We then use B−1 to produce
a vector of activations for any new patch.

Both approaches are claimed to produce activations corre-
sponding to neuronal activity; Wolfe (1994) chose the eight
features of Guided Search accordingly, and Bruce and Tsot-
sos (2009) argue that the roughly orthogonal basis learned by
ICA can be usefully compared to sparse coding in early visual
cortex. Hence it should be the case that our model produces
similar performance from both forms of preprocessing.

Learning
The posteriors are computed using:

ρk |Fxk ∼ Beta
(
λα0

k + (1−λ)
[
αk +

∑
x∈Xk

fxk
]
,

λβ0
k + (1−λ)

[
βk +

∑
x∈Xk

1− fxk
]) (8)

where Xk denotes the set of points labelled k in the training
examples. This, as in Mozer and Baldwin (2007), interpolates
between the prior distribution ∼ Beta(α0

k ,β
0
k) and the empiri-

cal posterior. This interpolation regularises the model’s fit to
the data, and improves its performance.

For all experiments, α0
id = β0

jt = 10, α0
it = β0

jd = 25, for all i
and j, α0

int = β0
int = 10, and λ = 0.3. These parameter values

are mostly taken from Mozer and Baldwin (2007), as there
was no reason to change them.

Results
We tested two hypotheses: that our model would reproduce a
range of standard effects in visual search, and that our model
could reproduce two standard results from the inattentional
blindness literature.

Visual Search
To evaluate the performance of the model in the visual search
paradigm, we followed Wolfe (1994) and Mozer and Baldwin
(2007), and tested our model against six search tasks used to
evaluate the original guided search model. These tasks are as
follows. All graphs shown are using the eight simple features
of guided search. Standard error bars are included.

1. Vertical target among homogeneous distractors (Figure 2):
As the angle of the distractors increases from 0–55 degrees
(where 0 is vertical), time to target should become constant
with respect to the number of distractors (i.e., pop-out oc-
curs).

2. Categorical search (Figure 3): Target among two types of
distractors defined with respect to a single feature (angle of
orientation). Distractors are 100 degrees apart, and target is
40/60 degrees from the distractors in two cases, but in the
third case it is the only near vertical item, allowing pop-out.

3. Target-distractor similarity (Figure 4): Search efficiency
for target among heterogeneous distractors. There are two
target orientations, and two degrees of target similarity. For
each orientation, search should be more efficient when tar-
get and distractors are dissimilar.
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Figure 2: (Task 1) Horizontal; distractor orientation (de-
grees). Vertical; Gradient of time-to-target against number
of distractors. Pop-out clearly occurs at around 20 degrees
from the vertical.

Figure 3: (Task 2) Horizontal; total number of distractors.
Vertical; response time/time-to-target (in fixations, t). Blue;
target at 10, distractors at −30 and 70 degrees. Orange; target
at 20, distractors at −20 and 80 degrees. Green; corresponds
to case where distractor is the only near-vertical item. Target
at 10, distractors at −50 and 50 degrees.

4. Feature search asymmetry (Figure 5): It is more efficient
to find a tilted bar among verticals than a vertical among
tilted. This is because tilted items activate features that
make them more discriminable; for example in the 8 di-
mensional feature space described above, one feature acti-
vates when presented with vertical objects, but two activate
when presented with objects at 20 degrees.

5. Conjunction search – distractor confusability (Figure 6):
Red vertical target among green vertical and red tilted dis-
tractors. Red tilt can be 90 or 40 degrees: both are ineffi-
cient, but should vary in relative difficulty.

6. Distractor ratio effect (Figure 7): Response times for red
vertical target amongst red tilted and yellow vertical dis-
tractors, as a function of ratio of distractor types. Search
should be most efficient in the extremes, where there are a
minimum of distractors of one particular type.

Figure 4: (Task 3) Horizontal; total number of distractors.
Vertical; response time/time-to-target (in fixations, t). Blue
and Orange; target at 0, distractors at −20 and 20 degrees,
and −40 and 40 degrees respectively. Green and Red; target
at 20, distractors at 0 and 40 degrees, and −20 and 60 degrees,
respectively.

Figure 5: (Task 4) Horizontal; total number of distractors.
Vertical; response time/time-to-target (in fixations, t). Blue;
Target at 0, distractors at 20, orange; target at 20, distractors
at 0.

Inattentional Blindness
We aimed to test two basic results in the inattention blindness
literature. First, that performing a task reduces the probability
of fixating or reporting unexpected objects, when compared
to a task-free control (Simons & Chabris, 1999).

With reference to Equation (5), we assume that Λi,1 ≈

Λi,0 = ΛT ,∀i (i.e., the two task-specific confidences are sim-
ilar), the relative magnitude of ΛT to Λα should be central
to the relationship between performing a task, and corre-
sponding inattentional blindness. This is because if ΛT is
much larger than Λα then the task-specific terms dominate the
saliency score, and objects which are surprising in features
that are not task specific have lower probability of detection.

In free viewing, however, where Λα is larger than, or equal
to ΛT (the task does not dominate attention), the context-
dependent surprisals should contribute to the overall saliency,
and generically unexpected objects (persons in gorilla suits,
for example), are more likely to capture attention.
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Figure 6: (Task 5) Horizontal; total number of distractors.
Vertical; response time/time-to-target (in fixations, t). Red
targets at 0 degrees, one set of green distractors at 0 degrees.
Blue; second set of red distractors at 40 degrees. Orange;
second set of red distractors at 90 degrees.

Figure 7: (Task 6) Horizontal; number of red tilted distractors
(of a total 35 distractors). Vertical; response time/time-to-
target (in fixations, t). Distractors were yellow vertical, and
red 60 degrees. Target was red vertical.

To test this we introduced critical trials into our normal ex-
periment. On a critical trial an unexpected (blue, left-leaning)
object (see Figure 8a for an example) is also present along
with the normal distractors and target. We varied the ratio
nT /nα between 0.005 and 20. Figures 8b and 8c show a clear
transition between the scenario in which the α term dom-
inates the saliency computation – in which the unexpected
item pops out amidst the red task-relevant objects – and that
in which the T terms dominate – where the same object does
not pop out of the target and distractors, even though it is
clearly surprising to an outside observer.

Second, we checked that if an unexpected object possesses
features that are also task relevant, it is more likely to be fix-
ated or reported (Most et al., 2001). We modified Task 2 (see
Visual Search, above), as here the target and distractors are
defined with respect to only one feature dimension. For a
critical trial with a red target at 10 degrees, and red distrac-
tors at 30 and 70 degrees, we added an unexpected blue sin-
gleton at −70 or 15 degrees. Average number of fixations to

target for the singleton at a task-relevant angle (70 degrees)
was 13.99± 0.002. For the singleton at a task-irrelevant an-
gle it was 2.0±0.001. This was for a constant 12 distractors,
and the ratio nT /nα was set to 100. This is quite a substantial
difference (probably because the experimental set-up was as
simple as possible), but it bears out our hypothesis.

Conclusion and Future Work
A weakness of this work is that as it is intended as a theoret-
ical starting point, our analysis is primarily qualitative, and
we have not compared the original predictions of our model
to data from human participants. We will focus on these defi-
ciencies in upcoming work via two main avenues.

The first approach is to test human participants to show that
modulating the relative model precisions of (i.e., confidences
in) targets specifically affects the probability that unexpected
objects might be detected. If, for example, participants were
initially provided only with a verbal descriptions of a visual
target, we would expect probability of inattention to a non-
target singleton to increase over the course of several trials,
as participants became more confident in the target of their
search task. We would also expect probability of inattention
to be greater for a comparable task where participants are pro-
vided with a visual example of their target.

Our second approach, which lies solely in the conjunction
search paradigm, would be to include distractors in a con-
junction search task that shared no features with the target.
We hypothesise that both overt indications of attention (fix-
ations) and covert indications of attention (average time to
target) to these non task-relevant objects would decrease over
the course of several trials.

We have made three distinct contributions; we have pre-
sented a model of visual search that exhibits inattentional
blindness, we have shown the equivalency of AIM and E-GS
under certain assumptions, and we have argued that an inter-
pretation of what it is to “perform a task” should be grounded
on the relative precisions of parts of the brain’s generative
model.

We conclude that modelling task-based behaviour as ex-
plicitly located in a wider context can bear explanatory fruit.
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