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Abstract 

Recognition of geometrical patterns seems to be an important 
aspect of human intelligence. Geometric pattern recognition is 
used in many intelligence tests, including Dehaene’s odd-one-
out test of Core Geometry (CG)) based on intuitive geometrical 
concepts (Dehaene et al., 2006). Earlier work has developed a 
symmetry-based cognitive model of Dehaene’s test and 
demonstrated performance comparable to that of humans. In 
this work, we further investigate the role of symmetry in 
geometrical intuition and build a cognitive model for the 2-
Alternative Forced Choice (2-AFC) variation of the CG test 
(Marupudi & Varma 2021). In contrast to Dehaene’s test, 2-
AFC leaves almost no space for cognitive models based on 
generalization over multiple examples. Our symmetry-based 
model achieves an accuracy comparable to the human average 
on the 2-AFC test and appears to capture an essential part of 
intuitive geometry. 

Keywords: intelligence tests; intuitive geometry; symmetry 

Introduction 

Geometric intelligence refers to recognition, reasoning and 

learning of geometric concepts, relations, and patterns. 

Research in cognitive science recently has witnessed much 

work on geometric intelligence in large part because of the 

presence of geometric problems on tests of general human 

intelligence (Bringsjord 2011; Carpenter, Just & Shell 1990; 

Dastani & Indurkhya 2001; Evans 1969; Kunda, McGreggor 

& Goel 2013; Lovett & Forbus 2011; Lovett, Lockwood & 

Forbus 2008; McGreggor, Kunda & Goel 2014; Santoro et al. 

2017, 2018; Schwering et al. 2007; Shegheva & Goel 2018; 

Zhang et al. 2019a, 2019b). The study of geometric 

intelligence by constructing computational models of 

intelligence tests provides essential insights into human 

cognition that complement the results of other experiments. 

Figure 1(a) illustrates an example1 from the Standard 

Raven’s Progressive Matrices (RPM) test of intelligence 

(Raven, Raven & Court 1998), and Figure 1(b) illustrates an 

example from the Core Geometry (CG) test (Dehaene et al. 

2006). RPM is a very common test used around the world to 

measure general human intelligence. In RPM, given a 3x3 

matrix of geometric figures with one entry at the bottom right 

missing (top of Figure 1(a)), the task is to select a figure from 

a set of eight choices (bottom of Figure 1(a)) that would best 

complete the pattern in the matrix. Problems on RPM are 

 
1 Due to copyright reasons, we have included an example similar 

to the RPM test rather than an actual example from the test. 

classified into multiple categories that test different types of 

geometric inferences. In CG, given a set of six geometric 

figures (Figure 1(b)), the task is to select the odd one out. As 

with RPM, problems on CG are classified into multiple 

categories that test different geometric abilities such as 

Euclidean geometry, metric properties, chirality, etc. 

 

 

 

A major question in cognitive science is what part of 

human geometric knowledge (if any) is “innate” in that it 

developed over biological evolution, or “intuitive” in that it 

is part of unconscious cognition (Kahneman 2011; Stanovich 

& West 2000). Dehaene et al. (2006) suggest that geometric 

knowledge needed to address the CG test may be intuitive (or 

perhaps innate). When they administered the CG test to 

humans schooled in the modern educational system and to 

unschooled tribal people, they found that the tribal people 

performed about as well on the CG test as people who had 

had the benefit of formal schooling. Their results have been 

replicated by similar studies such as Izard et al. (2011). 

Various computational models of geometric intelligence 

make different assumptions about the intuitiveness of 

geometric knowledge. For example, the Lovett and 

colleagues’ model of RPM (Lovett, Lockwood & Forbus 

2008) and CG (Lovett & Forbus 2011) is based on analogy 

with the basic set of geometric figures: it assumes prior 

knowledge of geometric concepts such as triangles and 

closed figures, and analogical generalizations across a set of 

figures often are derived at problem-solving time. In contrast, 

Figure 1(a) and 1(b): An illustrative problem from the 

Raven’s Progressive Matrices test (on the left) and the Core 

Geometry test (on the right). 
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Shegheva & Goel’s model of RPM (Shegheva & Goel 2018) 

and CG (Shegheva & Goel 2021) is based on the use of 

symmetry; it assumes prior knowledge mainly of symmetry. 

Recently, Marupudi & Varma (2020, 2021) have proposed 

a 2 Alternative Forced Choice variation (2-AFC) of the CG 

test. As Figure 2 illustrates, Marupudi & Varma’s 2-AFC 

variation consists of selecting one out of two figures that are 

most similar to a given figure. Problems on their 2-AFC test 

cover the same range of geometric inferences that CG covers. 

Interestingly, and perhaps also a little surprisingly, Marupudi 

& Varma (2021) found that humans perform much better than 

chance at the 2-AFC test. As they point out, this argues 

against a model based on induction because the top row in 2-

AFC consists of only one figure. 

  

 

 

This helps frame the research question in our work: can the 

symmetry method address the 2-AFC test, and, if so, how 

well does it relate to human performance on the test? 

Related Work 

The literature on addressing geometry problems on 

intelligence tests is rapidly growing. Carpenter, Just & Shell 

(1990) describe two early models of the Raven’s Progressive 

Matrices Test of general human intelligence. Their models 

express geometrical patterns in the form of production rules. 

Earlier, Evans (1969) had built a (partial) computational 

model that used analogy to address problems similar to 

(though simpler than) the RPM test. Forbus and colleagues 

have long been strong proponents of analogy as the core 

process for addressing geometry problems on intelligence 

tests. They have used the structure-mapping theory of 

analogy as the basis for developing computational models for 

the RPM test (Lovett, Lockwood & Forbus 2008) as well as 

the Dehaene’s Core Geometry test (Lovett & Forbus 2011). 

The performance of their models for these tasks is 

comparable to that of humans. Bringsjord (2011) has 

proposed the performance in intelligent tests as a measure of 

progress in AI. 

The literature on the role of symmetry in visual perception 

is large. In both computer vision and computer graphics, 

symmetry enables analysis of geometrical shapes in terms of 

their mathematical properties (Liu et al. 2010). In compelling 

research on human perception described in Generative 

Theory of Shape, Leyton (2001) emphasizes the role of 

symmetry in understanding complex shapes constructed from 

primitive forms via deconstructive representations.  

Symmetry transformations lie at the core of Gestalt 

principles of visual perception (Wagemans et al. 2012; 

Wertheimer 1945). Dastani & Indurkhya (2001) and 

Schwering et al. (2007) have used Gestalt principles to 

understand (simple) geometric proportional analogies. In 

observing a set of shapes related via direct or latent features, 

symmetry provides a framework for studying the generative 

processes of the shapes as well as their relationships with one 

another figures. Shegheva & Goel (2021) demonstrate the 

usefulness of applying Gestalt principles to Dehaene’s CG 

images for identifying features that highlight potential 

“symmetry-breaking”. In a related computational model 

addressing the RPM test, Shegheva & Goel (2018) developed 

a method that used structure alignment to detect patterns of 

relationships between images at a pixel level. The two models 

achieved performance comparable to human performance on 

the RPM and CG tests, respectively. 

Earlier, Kunda, McGreggor & Goel (2013) applied affine 

transformations such as translation, rotation, and reflection 

(typical symmetry operations) directly to the pixel-level 

representations of the images in the RPM test. This research 

was based on evidence that human perception applies similar 

operations to visual images (Kosslyn, Thompson & Ganis 

2006). The results showed a significant correlation with the 

visual strategies used by individuals with autistic traits 

(Kunda & Goel 2011). McGreggor, Kunda & Goel (2014) 

proposed a fractal representation that captures self-similarity 

of an image. Their technique executes an automatic 

adjustment of the level that allows viewing of the images 

under different magnifications to assess their similarity. They 

successfully used the fractal approach for various visual tasks 

such as RPM, CG, and other Odd-One-Out tests, and 

demonstrated a performance comparable to that of humans 

(McGreggor & Goel 2013). Common to all these 

computational models is the idea that symmetry captures a 

strictly intuitive sense of visual perception in which shapes 

are analyzed under mental transformations. 

Some recent work has explored the use of convolutional 

neural networks and deep learning to address geometric 

problems similar to those on the RPM test (Santoro et al. 

2017, 2018; Zhang et al. 2019b). However, this line of work 

typically requires the construction of large synthetic data sets 

of RPM-like problems (Zhang et al. 2019a) that are 

implausible from the perspective of human learning. In any 

case, this research line has not yet addressed the CG test and 

thus is not applicable to 2-AFC problems deriving from CG. 

Figure 2: An illustrative example of the 2-AFC problem 

adapted from Marupudi & Varma (2021). The original 

stimulus by Dehaene et al. (2006) (on the left) and the 

corresponding experimental 2-AFC trial (on the right). 
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2-AFC Testing Trials 

Like Marupudi & Varma’s construction of experimental 2-

AFC problems (2021), our 2-AFC testing trials are generated 

directly from Dehaene’s CG test and cover 43 geometric 

concepts in 7 categories. As shown in Figure 2, each 2-AFC 

trial includes the only image not following the concept as one 

choice and two images that embody the concept as the target 

image and the other choice, respectively. Figure 3 illustrates 

example trials for different concepts from each of the seven 

categories: topology, Euclidean geometry, geometrical 

figures, symmetrical figures, chiral figures, metric properties, 

and geometrical transformations. 

 

 

 

As shown in Figure 4, for our experiments, we built twenty 

2-AFC trials for every CG concept, including all possible 

permutations from every CG problem. This allows an 

accuracy measurement at a granularity of 5% for each 

concept. 

 

 

A Symmetry-Based Cognitive Model of 2-AFC 

Problems 

Overall Structure 

As in Shegheva & Goel’s model for Dehaene’s CG test 

(2021), the core of our symmetry-based model for 2-AFC 

problems is the symmetry transformation of images through 

Principal Component Analysis (PCA). However, our model 

also considers symmetry at the feature level by introducing 

self-symmetry after the symmetry-based alignment via PCA. 

To conserve chirality, our computational model uses only the 

first principal component of PCA, and the images are aligned 

with the first principal axis through rotation. As a result, two 

alternative orientations are possible, and both need to be 

considered as indicated in Figure 5. 

 

 

 

Measurement of dissimilarity between images is based on 

a set of features. Our model looks at three simple features 

(center-shift, area, and spread) that capture the basic 

characteristics of the geometrical figures in the image space 

and the self-symmetry of these base features. The decision on 

the image orientations too is based on the measurements with 

the same three base features. The subsequent image 

comparisons during answer selection consider a preset subset 

of all six features, including the base features and self-

symmetry features, with equal weights. For a pair of images, 

the overall difference is computed by adding the differences 

in the chosen features. The choice image with a less overall 

difference from the target image is selected as the answer. 

Image Preprocessing 

For the convenience of computation in later stages, all input 

images are converted into binary ones based on a preset 

Figure 3: Seven examples of the 2-AFC trial, one from each 

category. Each trial includes three images. The target image 

is at the top, and two choices are shown at the bottom. 

Figure 4: Generation of all possible 2-AFC trials for one 

concept from the original stimulus by Dehaene et al. (2006). 

Figure 5: Symmetry transformation for a 2-AFC trial. For 

each choice, the alternative with less difference from the 

target out of the two possible orientations is selected. 
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threshold before any processing. The binary image 

distinguishes the pixels belonging to the geometrical figure 

from those belonging to the background. 

Symmetry Transformation 

Visual artifacts for measuring intelligence may contain 

various noise sources - measurement errors such as image 

alignment issues and intentional transformations applied to 

test the brain’s agility in the presence of irrelevant features. 

As Figure 5 illustrates, the first step in our symmetry-based 

model involves the symmetry transformation of images that 

addresses alignment, position, and orientation noise while 

accenting the features relevant to the geometry concepts in 

the given task. 

For each image, the geometrical figure’s pixels are 

extracted as a set of 2D points, with each point as the 

horizontal and vertical coordinates of the corresponding 

pixel. Applying PCA to the set of points finds the first 

principal axis of the figure. Then, the original binary image 

is centered and aligned with the first principal axis through 

rotation. 

The rotation may align the image in two different 

orientations, which are the 180-degree rotated images of each 

other. Our model checks both orientations of each choice 

image and chooses the one with less a difference from the 

target image using the base features, ensuring the ideal 

alignment with the target image after the transformations. 

The three transformed images, like the ones shown at the 

bottom in Figure 5, are used for further comparison. 

Feature Extraction 

Understanding geometrical concepts may require multiple 

priors ranging from simple geometrical tasks of scaling and 

rotating the objects to extracting topological features 

indicating object containment inside or outside of a 

perimeter. This paper aims to implement a model that is 

limited to a set of only symmetry priors and evaluate its 

ability to perform on the extended range of concepts as 

described in the 2-AFC problems. 

To test the dissimilarity between images, our model 

considers three base symmetry features that represent the 

basic statistical characteristics: center shift, area, and spread. 

While one feature may correlate with other features on certain 

geometrical concepts, each feature reflects different aspects 

of the image space. 

The computation of features is based on the set of points A 

that belong to the geometrical figure in the transformed 

images. In all equations below, X[a] and Y[a] denote the x 

and y coordinates of point a, respectively. 

 

Center Shift The center shift measures how the center of 

slices of the figure shifts along the axis. Thus, it detects the 

symmetry of the figure along the axis. The center shift C 

along the vertical and horizontal dimensions, Cv and Ch, are: 

• 𝐶𝑣(𝑦) =
1

𝑘
∑ 𝑋[𝑎𝑖]
𝑘
𝑖=1 , for k points ∈ {𝑎𝑖|𝑌[𝑎𝑖] = 𝑦} 

• 𝐶ℎ(𝑥) =
1

𝑘
∑ 𝑌[𝑎𝑖]
𝑘
𝑖=1 , for k points ∈ {𝑎𝑖|𝑋[𝑎𝑖] = 𝑥} 

Area The area measures the number of pixels in the slices of 

the figure along the axis. It captures the distribution of the 

figure’s mass in that dimension. The area A along the vertical 

and horizontal dimensions, Av and Ah, are as follows: 

• 𝐴𝑣(𝑦) = ∑ 1𝑘
𝑖=1 , for k points ∈ {𝑎𝑖|𝑌[𝑎𝑖] = 𝑦} 

• 𝐴ℎ(𝑥) = ∑ 1𝑘
𝑖=1 , for k points ∈ {𝑎𝑖|𝑋[𝑎𝑖] = 𝑥} 

 

Spread The spread measures how the standard deviation of 

slices of the figure changes along the axis. It may correlate 

with the area in many figures but can capture shapes that 

expand outward against those with similar areas but 

concentrate around the center. The spread S along the vertical 

and horizontal dimensions, Sv and Sh, are as follows: 

• 𝑆𝑣(𝑦) = √1

𝑘
∑ (𝑋[𝑎𝑖] −

1

𝑘
∑ 𝑋[𝑎𝑖]
𝑘
𝑖=1 )

2
𝑘
𝑖=1 , 

for k points ∈ {𝑎𝑖|𝑌[𝑎𝑖] = 𝑦} 

• 𝑆ℎ(𝑥) = √1

𝑘
∑ (𝑌[𝑎𝑖] −

1

𝑘
∑ 𝑌[𝑎𝑖]
𝑘
𝑖=1 )

2
𝑘
𝑖=1 , 

for k points ∈ {𝑎𝑖|𝑋[𝑎𝑖] = 𝑥} 

Reasoning with Base Features 

The absolute differences in the base features between the 

choice and target images capture their dissimilarity. Figure 6 

shows an example of feature extraction and the calculation of 

the difference in the horizontal dimension. Our model also 

performs a similar extraction and computation in the vertical 

dimension. For each base feature, the difference is the sum in 

the vertical and horizontal dimensions. 

 

 

Reasoning with Self-Symmetry 

Reasoning over geometrical concepts requires selecting from 

a range of symmetry operations – reflection, rotation, 

Figure 6: An example of three features in the horizontal 

dimension. For each feature, the absolute difference 

between the two images is visualized with overlayed curves 

in the bottom row. The scale may vary for each plot. The 

center shift shows the most difference, which captures the 

dissimilarity in the embodied geometrical concept. 
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translation, and scaling. Our base features, along with the 

PCA transformation, account for variances of the same 

geometrical objects induced by rotation or translation. 

However, noisy attributes such as size variations or hollow 

vs. solid textures may overwhelm the base features due to 

their scale and intensity and weaken the geometrical 

concept’s signal. To re-balance observed features and 

amplify anomalies corresponding to the concept, we add self-

symmetry to the feature extraction phase that examines 

differences between the object’s vertical and horizontal 

dimensions. Figure 7 illustrates a concept of a circle’s center 

that is relatively easy for a human to detect. Unlike the base 

feature, self-symmetry can capture the off-center shift by 

suppressing the size difference between figures and 

amplifying the differences between dimensions within an 

image. Self-symmetry highlights attributes that violate 

rotation invariant properties of symmetry operations. 

 

 

Choice Selection 

For each choice image, our model sums its differences from 

the target image for a selection of the base and self-symmetry 

features. The model selects the choice with a less overall 

difference as the answer. 

Results 

The results for one base feature and the best combinations 

with two and four features in all seven categories are 

summarized in Table 1. The four-feature mixed combination 

achieves the highest overall accuracy at 84.7%, slightly better 

than the average human accuracy. The mixed combination 

with both base features and self-symmetry features tends to 

have better performance since the two variants complement 

each other. The two-feature mixed combination outperforms 

any subset of only base features or self-symmetry ones. 

 

Table 1: The overall category-wise accuracy for the top base 

feature and the best combinations of two and four features. 

 

 
 

The category-wise and concept-wise comparisons between 

the model’s performance and the average human accuracy 

adapted from Marupudi & Varma’s experiment (2021) are 

shown in Table 2 and Table 3, respectively. The concept-wise 

comparisons (Table 3) only include the four-feature model. 

 

Table 2: The category-wise differences and standard 

deviations (STD) between the model and human accuracy 

that are sorted ascendingly by the four-feature model’s STD. 

The difference data bar is centered at zero, and a positive 

difference means higher accuracy for the model. Human 

data is adapted from Marupudi & Varma (2021). 

 

 
 

The significantly better-than-chance accuracy for our 

symmetry-based model on the 2-AFC test indicates that it 

captures elements of intuitive geometry. However, the 

performance varies from category to category, surpassing 

average human accuracy by a considerable margin in chiral 

figures and metric properties while falling behind in 

topology. In general, our model performs better for the 

geometrical concepts with stronger visual similarity. For 

instance, the geometrical figures for metric properties share 

similar shapes and sizes even if arranged in random 

orientations. The same applies to the chiral figures. 

Category Center Shift (Base)
Center Shift (Base), 

Spread (Self-Symmetry)

Center Shift (Base),

Center Shift, Area, Spread 

(Self-Symmetry)

Symmetrical figures 90% 85% 87%

Chiral figures 100% 100% 100%

Euclidean geometry 88% 87% 87%

Geometrical figures 63% 83% 86%

Geometrical transformations 73% 75% 78%

Metric properties 90% 90% 91%

Topology 55% 58% 64%

Overall Accuracy 78.4% 82.8% 84.7%

Model Accuracy by Category

Difference STD Difference STD Difference STD

Symmetrical 

figures
82.0% 8.0% 8.7% 3.0% 9.9% 4.7% 11.2%

Chiral figures 96.2% 18.0% 14.1% 18.0% 14.1% 18.0% 14.1%

Euclidean 

geometry
91.2% -8.0% 12.9% -9.3% 14.4% -9.3% 14.8%

Geometrical 

figures
71.4% -28.4% 27.2% -7.9% 17.5% -5.7% 14.9%

Geometrical 

transformations
76.3% 1.1% 16.9% 3.6% 16.1% 6.8% 16.0%

Metric 

properties
82.0% 13.7% 16.8% 13.7% 17.9% 14.4% 16.7%

Topology 82.2% -27.2% 22.2% -24.7% 28.2% -18.5% 26.7%

-5.3% 20.0% -0.9% 18.4% 1.0% 17.3%Overall Difference/STD

Comparison of Model Accuracy with Human Accuracy by Category

Category
Center Shift (Base)

Center Shift (Base), 

Spread (Self-Symmetry)

Center Shift (Base),

Center Shift, Area, Spread 

(Self-Symmetry)
Human 

Accuracy

Figure 7: An example of the self-symmetry of the area 

feature. In the first two rows, the difference between the 

first two columns gives the self-symmetry. The third row in 

all three columns is the visualization that overlays the first 

two rows and highlights the difference. The fourth row is 

the corresponding curve for the difference. The scale may 

vary for each plot. Self-symmetry captures the off-center 

shift as two spikes in the middle of the bottom right plot. 
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Conversely, our model has the lowest accuracy in topology 

since the figures may have arbitrarily different shapes. 

Overall, the comparison of the performance of our four-

feature symmetry-based model with human performance 

shown in Table 2, seems to indicate fair match for six of the 

seven categories in the 2-AFC test (symmetrical figures, 

chiral figures, Euclidean geometry, geometrical figures, 

geometrical transformations, and metric properties), with the 

seventh category of topology being the exception. Table 3 

provides a more detailed comparison of our model’s accuracy 

and human accuracy on each problem within the different 

categories. 

 

Table 3: The concept accuracy difference between the best 

four-feature model and the human average. Categories are 

ordered by ascending STD, with concepts within a category 

ordered by descending difference. The difference data bar is 

produced similarly to that in Table 2. The trial concept 

numbers are the same as in Deheane et al. (2006) and the 

human data are adapted from Marupudi & Varma (2021). 

 

 

Discussion and Conclusions 

Recently research in cognitive science has advanced several 

cognitive models of geometric intelligence, especially for 

geometric problems manifested on tests of general human 

intelligence. The various models make different assumptions 

about prior knowledge. Studies in cognitive science, such as 

Dehaene et al. 2006, have conjectured that some geometric 

knowledge may be innate (the result of biological evolution) 

or intuitive (part of unconscious automatic cognition). 

However, it has been unclear what this exactly means for 

various models of geometric intelligence. Marupudi & 

Varma’s 2-AFC test of geometric intelligence provides a 

clearer test. As they have argued, it appears to rule out 

induction or generalization as a plausible model because the 

test offers only one input figure and generalization requires 

multiple figures. 

In this paper, we described the use of a symmetry model 

for the 2-AFC test of geometric intelligence. Earlier, 

Sheghava & Goel had shown the usefulness of the symmetry 

model for addressing problems on the RPM and the CG tests. 

We found that the overall performance of the symmetry 

model on the 2-AFC test of geometric intelligence is 

comparable to that of humans for six of the seven categories 

of problems in Marupudi & Varma’s study. 

Measured through the limited set of 2-AFC trials generated 

from Dehaene’s CG test, our symmetry-based model with the 

best feature combination achieves a slightly higher overall 

accuracy than the average human. At the same time, there are 

a few noticeable concepts where the symmetry model has far 

lower accuracy, such as the right-angled triangle, point 

symmetry, and two topological concepts. 

Our symmetry model raises a few interesting and 

complementary hypotheses for further exploration. First, 

human cognition in general may use multiple representations 

and reasoning strategies, including both symmetry and 

generalization. For the RPM and CG tests, both reasoning 

strategies may be available and applicable. Second, while 

problems on the RPM and CG tests may superficially appear 

to be instances of visual analogies, symmetry may offer a 

deeper explanation as it better generalizes to the 2-AFC test. 

Third, symmetry might be part of the geometric knowledge 

that Dehaene et al. (2006) consider being intuitive. Symmetry 

has the advantage of making minimal assumptions about 

prior knowledge as it assumes no knowledge about geometric 

concepts such as a circle or parallel lines: symmetry itself is 

the intuitive knowledge. 

Future work on the symmetry model itself may explore 

multiple issues. The realization that symmetry captures 

intuitive information about geometrical shapes and their 

transformations allows for formulating representations that 

can apply to various visual perception tasks and possibly 

generalizing them into more complex shapes and 

relationships. In addition, the critical aspect of realigning 

images using the PCA technique provides a foundation for an 

attention mechanism that reduces ambiguity in the presence 

of noise features, such as scaling, random axes, and spatial 

positions. Additional research on the nuances of the PCA-

based algorithm to self-adjust to the type and the complexity 

of the problem can benefit in multiple directions, for 

example, pattern detection in a sequence of images, 

reconstruction of geometrical operations, or geometry 

concept enhancement through irrelevant feature reduction. 

Concept 

Number
Concept Category Geometrical Concepts Human Accuracy Accuracy Difference

28 Vertical axis 85.8% 14.2%

30 Oblique axis 87.5% 2.5%

29 Horizontal axis 72.7% -2.7%

44 Oblique axis 65.5% 34.5%

38 Oblique axis 71.6% 28.4%

42 Vertical axis 94.3% 5.7%

41 Vertical axis 96.6% 3.4%

14 Right angle 94.3% 5.7%

11 Alignment of points in lines 94.9% 5.1%

10 Straight line 96.0% 4.0%

15 Right angle 97.7% 2.3%

7 Alignment of points in lines 98.3% 1.7%

8 Curve 96.0% -11.0%

40 Secant lines 93.2% -38.2%

37 Parallel lines 98.9% -43.9%

23 Square 85.2% 14.8%

9 Convex shape 93.8% 6.3%

26 Trapezoid 89.2% 5.8%

17 Circle 96.6% 3.4%

20 Equilateral triangle 97.2% 2.8%

24 Rectangle 94.3% -4.3%

25 Parallelogram 88.6% -18.6%

12 Quadilateral 94.9% -19.9%

13 Rightangled triangle 81.3% -41.3%

33 Horizontal symmetry 62.5% 37.5%

34 Rotation 48.3% 36.7%

35 Oblique symmetry 76.7% 23.3%

36 Homothecy (fixed orientation) 74.4% 10.6%

39 Homothecy (fixed size) 71.0% 9.0%

27 Vertical symmetry 73.1% -3.1%

31 Translation 81.3% -16.3%

32 Point symmetry 83.5% -43.5%

22 Center of quadilateral 47.7% 37.3%

19 Middle of segment 68.2% 31.8%

45 Increasing distance 74.4% 25.6%

21 Fixed proportion 72.7% 17.3%

18 Center of circle 90.3% 9.7%

16 Distance 96.6% 3.4%

43 Equidistance 84.1% -24.1%

6 Connectedness 81.3% 18.8%

5 Closure 81.3% 3.8%

4 Inside 97.7% -47.7%

3 Holes 68.8% -48.8%

Comparison of Model Accuracy with Human Accuracy by Geometrical Concept

Euclidean 

geometry

Topology

Chiral figures

Metric properties

Geometrical 

transformations

Symmetrical 

figures

Geometrical 

figures
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