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Abstract: We modified and combined an open-source spatial frequency domain imaging 

(openSFDI) build with laser speckle imaging (LSI) into a widefield rodent cortical hemodynamic 

imaging system. Here, we present system specifications and in-vitro phantom measurement results.  

Introduction 
Spatial frequency domain imaging (SFDI) is a diffuse optical imaging technique that utilizes structured illumination 

to quantify tissue’s optical properties, specifically absorption (μa) and reduced scattering (μs’) coefficients. In 

comparison to point-based diffuse optical methods (e.g., near-infrared spectroscopy), SFDI offers mapping of optical 

properties, and subsequently concentrations of hemoglobin (HbR) and deoxy-hemoglobin (HbO2) and physiologically 

relevant parameters such as oxygen saturation (StO2). Recent studies have employed SFDI to image wounds and 

wound healing processes such as burns, skin graft, and diabetic foot ulcers [1,2].  

However, SFDI utilization in neuroimaging has been limited. A few notable studies used SFDI to measure in-

vivo optical properties and cortical hemodynamics of rodents, often through a cranial window prep. These studies 

mainly aimed to quantify changes in optical properties and hemodynamic responses to specific brain-related diseases 

such as epilepsy, migraine, ischemic stroke, and Alzheimer’s disease [3-6]. More information regarding these studies 

can be found in a recent review paper on SFDI by Gioux et al. [7].  

Previously, we reported on a multimodal mesoscopic imaging system combining SFDI and laser speckle imaging 

(LSI) for rodents [8]. This system enabled fast (14 Hz for SFDI, 60 Hz for LSI) imaging of cerebral hemodynamics 

during cardiac arrest and resuscitation. Here, we describe a small-animal wide-field optical neuroimager build based 

on the openSFDI platform described by Applegate et al. [9]. This system incorporates LSI as a second modality with 

a co-registered FOV (10mm x 10mm) with the SFDI images, facilitating the quantitative mapping of the cortical 

hemodynamics with measurements of HbR, HbO2, StO2, and cerebral blood flow. Below, we describe system 

specifications and performance characterization measurements using silicone phantoms. 

Methods and Results 
1) System design specifications:

The SFDI design (Fig. 1A) is adapted from the openSFDI build guide with a few modifications. The illumination

setup includes mounted LED modules from Thorlabs at 660, 780, and 850 nm (M660L4, M780LP1, M850L3, and

LEDD1B, Thorlabs, NJ, USA) and appropriate dichroic mirrors. In addition, we utilized a long-coherence-length 633

nm laser (SureLock RO, Coherent, CA, USA) for LSI illumination, with laser light expanded using an aspheric lens

and homogenized using a diffuser. To achieve similar FOVs for both modalities, we used the same CMOS cameras

(BFS-U3-32S4M-C, FLIR, OR, USA) and lens (50mm VIS-NIR #67-717, Edmund Optics, NJ, USA) combinations

for both SFDI and LSI. Here, a dichroic mirror, lens spacers, and notch and line filters were also used to ensure that

both cameras have similar FOVs of ~10 mm x 10 mm with 1200 x 1200 pixel resolution, which is a typical size of a

mouse cranial window preparation.

We used an Arduino UNO (Rev3, Arduino, MA, USA) to trigger the DMD (LC4500-NIR-EKT, Keynote 

Photonics, TX, USA) and LED light sources. The output signal from the DMD is then used to trigger the camera’s 

acquisition. The computer is the master controller that starts and stops the Arduino’s triggering sequence using 

LabVIEW (LabVIEW 2020 64-bit, NI, TX, USA) through serial communication. We chose a 10 ms exposure time 

for both the DMD and the cameras with a delay of 10 ms to avoid dropping frames. The detailed triggering schematic 
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can be found below in Fig 1B. The system can currently achieve a 50 Hz total frame rate with minimal dropped frames 

(1 in 15000 frames), resulting in an effective ~2.78 Hz for SFDI (at two spatial frequencies with 3 phases: 0 and 0.3 

mm-1) and 50Hz for LSI. 

 
Fig 1. A) Design of the system and B) its triggering scheme. 

2) Phantom measurements: 

We performed a comparison study with a commercial SFDI (Reflect RS, Modulim, CA, USA) device using four 

silicone phantoms made in-house, imaged at 0 and 0.3 mm-1 spatial frequencies. Results for 660 and 850 nm are shown 

below in Fig 2. The neuroimaging system in its current state can achieve a high correlation with a commercial device 

(R2 = 0.99). The percentage error for μa ranges from -20.0 to -1.4% (or -0.0061 to -0.00032 mm-1), while that of μs’ 

ranges from 0.8 to 7.0% (or 0.019 to 0.12 mm-1). Note that for μa, the percent error is largest at low μa values. 

 

 
Fig 2. Phantom measurements comparison with a commercial SFDI device at 660 and 850 nm. Correlation and 

Bland-Altman plots are displayed from left to right, respectively. 
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