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RANDOM EVENT GENERATION WITH 
PREFERRED FREQUENCY DISTRIBUTIONS 1 

Jerome H. Friedman 

. Lawrence Radiation Laboratory 
University of California 

Berkeley, California 94720 

June 1970 

ABSTRACT 

A method of random event generation is de scribed that allows wide 

choices for the frequency distribution of the generated events in Lorentz-

invariant phase spac,e. 
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I. Introduction 

The convenience and generality of Monte Carlo methods for predict-

ing the results of experiments from the<?retical models. and for simulat-

ing experiments for the measurement of efficiencies and biases. has led 

to their extensive use in particle physics~ For these applications the 

Monte Carlo method is used to evaluate phase-space 2 integrals of the 

form R == f r(p)dnp, where p is a point in the 3n-dimensional phase 
v .. n 

space. d p is a volume element, and v is,the phase-space volume over 

which the function is to be integrated. This volume could be the total 

phase space accessible to the n-particle final state or a subvolume de

limited by equipment configuration or restrictions placed on e~perimental 

measurables. 

More specifically, p == (Pi·'· Pn) and 

n 4 220. n 
= IT d p. 0 (p . - m.) 6(p .) 0 (PO -:E p.), 

i=2 1 1. 1 1 j=i .J 
(1 ) 

where Pi is the four-momentum of the ith final-state particle and Po is 

the four-momentum of the initial state. Then r(p)dnp is the transition 

rate from the initial state to the volume element dnp centered at the point 

p. and R is the total rate into the volume v. 

To evaluate R by a Monte Carlo method one could generate N ran-

dom points with constant frequency in the volume v. Then, 

R = < r)v V 
V N 

== -N:E r(p.), 
i=i 1 

where r(Pi) is the value of r(p) for the ith random point and V = fvdnp. 

The principal limitation of this Monte Carlo method is that the number 

of points needed for the required statistical accuracy may be prohibitive. 
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The fractional statistical uncertainty in the above evaluation of R is 

(oR/R) = F /N
1

/ 2 , where F is the fractional ro~t-mean-square de-
v v. v 

. 2 2. 1/2/ .. . 
viation of r(p) defined as F v = [ (r > v - (r>v ] (r>. For a gIVen 

statistical accuracy, (oR/R) , the smaller the F [i. e., the smoother - v v 

the function r(p)] , the smaller the number of random points requir~d. 

However, functions that vary rapidly or have appreciable value only for 

small regions of the volume of integration are characterized by large 

F , and many random points may be required to give reasonable statisti
v 

cal accuracy. 

Sometimes a priori knowledge of the behavior of the function r(p) can 
. . . 

be used to reduce the number of points required. Let g(p) be another 

function defined over the volume v that approximates the behavior of 

r(p). Consider a transformation of variables from those of p to a new 

set ,." such thatdn ,., = g(p)dnp. Let G =( dn ,., = (g(p)dnp, where u Ju Jv 
is the same volume as v, but expressed in the variables of '11. One could 

than express the integral for R as R = Ju [r(p)/g(p)]dn'l1 and evaluate it 

by the Monte Carlo method. One generates N random points with con-

stant frequency in the variables of ,., in the volume u. This is the same 

as generating the points with frequency g(p) in the variables of p in the 

volume v. Then 

r G N r(Pi) 
R = (. -g >u G = - ~ -' -'. 

N i=1 g(Pi) . 

The fractional statistical uncertainty in this evaluation of R is 

/ / 
1/2 2 2 1/2 

(oR R)u = Fu N , where F u = [«(rig) >u - < r/g>u ] I( r/g>u . 

If F u < < F v' which is the case if g(p) is a good approximation to r(p), 
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the nunlber of Monte Carlo points needed for a given statistical accuracy 

is greatly reduced. 

Thus, in order to use Monte Carlo techniques efficiently, one needs 

a generator that randomly generates points in Lorentz-invariant phase 

space 3 with a variety of choices for the frequency distribution of the 

points. In particle physics most transition rates, r (p), have sharp de-

pendencies on the invariant masses and four-momentum transfers 

squared of various final-state particle combinations. This report de-

scribes a method of random-event generation which allows the general 

frequency distribution 

n-i n a.t. 
g(p) = IT BW(p..) IT e J J , 

. 2 1 . 2 1= J= 

(2) 

where n is the number of fina.l-state particles, the p.. are the invariant 
1 

masses of various particle combinations, and the t. are the four-m.o
J 

mentum transfer squared to various particle combinations from either 

the beam or target particle. BW can be either a constant or a primitive 

Breit-Wigner function 

BW(p..) = i/{ [(p.._E.)2/r.]2 + i!. 
1 1 1 1 

The choices of the particle com.binations for the p.. and t. are very 
1 J 

general; the restrictions are described in Section III. The set of pa-

rameters E., r., and a. may have arbitrary values, thereby allowing 
1 1 J 

for wide choices in the phase-space frequency distribution of the gen-

erated events. 

II. Phase Space 

The starting point for this random-event generation method is the 
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reexpression of dnp from the four vectors Pi of ;Eq. (1) to invariant 

masses and angles of subsY,stems of particles. This is ,accomplished by 

application of the factorization property of Lorentz-invariant phase space 

[11. One way of expressing thisproperty.is 

n 'qk 2 2 2 k 
d p(EO' m 1 •.• m n ) = 4EO d~ dfJ-k dfJ-n _k 8(qk) d p (fJ-k , m 1 ... m k ) 

X d n-k,p ( ) fJ-n - k , m k+1 ..• mn . 

Here Eq. (3) divides the n-particle final state into two systems of k 

and n-k particles respectively, m 1 ~ .. mn are the rest masses of the 

final-state particles, EO is the total invariant mass of the final state, 

fJ-
k 

and fJ-
n

_
k 

are the invariant masses of the two final-~tate systems, 

(3 ) 

and qk and ~ are the magnitude and direction of the total three-mo

mentum of the k system in the overall center of mass. Explicitly one has 

__ [' (E~ + fJ-~ - fJ-!_k ')2 2 ] 1/2 
qk 2 EO - fJ-k 

.. k 
The factor d p(fJ-k , m 1 .•. m k ) is k-particle phase space for the system of 

particle'S m
1 

... m
k 

with invariant mass fJ-
k

; dn-kp (fJ-
n

_
k

, m
k
+1 ... m

n
) 

is the analog for the recoiling system of n-k particles; cIDkqk/4EO is 

phase space for two bodies of total invariant mass EO' having invariant 

2 4 
masses fJ-k and fJ-n _k respectively; and B(qk) expresses energy conser-

vation by allowing only physical values for fJ- k and fJ-n _k . Equation (3) ex-

n 2 2 plicitly expresses the dependence of d p on dfJ-
k

, dfJ-
n

_
k

, and clO
k

. 

k n-k ' Next d p (fJ-
k

, m 1 ..• m k ) and d p (fJ-
n

_
k

, m
k
+1 ..• m

n
) are them-

selves each factored into two subsystems in the same way. By repeated 

application of thiR factorization, the n-particle phase space can be repre-

sented as a product of n-1 two-particle phase spaces. Thus, 

." 
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n 2 2 n q. 2 2-
d p(E

O
' m 1 .•. m ) =o(jJ. -EO)II 42 djJ.. cID.O(q,) O(connected). 

or. . d 2 Slnce jJ.. = 
1 

n n . 2 jJ.. 1 1 1 
1= 1 

(4a) 

(4b) 

Each term in the product can be thought of as the decay of a parent system 

into two daughters: jJ.. is the invariantm~ss of a parent system. q. and 
1 1 

n. are the magnitude and direction. respectively. of the momentum of 
1 

one of the daughters in the parent~s, rest frame (q. and -no represent 
1 1 

the momentum of the other daughter). The delta function requires that 

the invariant mass of the whole final state be the center-of-mass energy 

The first step function. O(q1. requires that energy be conserved at 
1 

each step in the decay chain. and the second step function. 0 (connected), 

requires that the invariant masses and solid angles appearing in Eq. (4) 

correspond to subsystems that connect together to form such decay 

chains. Thus, although there is a wide choice for the n-2 invariant 

masses and n-1 decay angles appearing in Eq. (4). they are not com-· 

pletely arbitrary. Figure 1 diagrams the three possible ways to con-

nect a five-particle final state. 

III. Event Generation 

The procedure described in the preceding section for factoring n-

body phase space into n-1 connected two-body decay phase spaces is the 

basis for this random-event generation method. First the final state is 

factored into an arbitrary set of n-1 two-body" decay" vertices (like 

those diagrammed in Fig. 1 for a five-body final state). Then each 
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vertex is generated one by one. Thus, in order to generate an entire 

{i.nal state, one need only be able t() generate the t~~-body II decay" ver-

tex for the reaction p ...... Pi + P2 and connect these vertices to form the 

entire final state. One must start with the highest-mass vertex and work 

down to the next highest and so on, since energy conservation imposes 

constraints on the generation of the lower vertices. 

Consider the generation of the two-body decay P- Pi + P2. Let P 

and ti be the four-momentum and invariant mass of the parent in an ar-

bitrary Lorentz frame and Pi tit and P2 ti2 be those of the daughters. 

Here P is input to'the problem and Pi and P2are the desired answer; 

Pi or P2 (or both) may represent single particles or particle combina': 

tions. 

First c<>nsider the most general case, in which both Pi and 'P2 rep

resent multiparticle combinations. The invariant massti1 is first gen

erated in the in interval (81 , 'ti-82), where 8 1 and 8 2 are the sums of 

the rest masses of the particles cOmbining to form Pi and P2' Next ti2 

is generated in the interval (82 , ti-ti1 ). From these masses one can 

evaluate 

2] 1/2 

ti1 

Next, the direction for Pi ( = k) is generated over the full range of 

. ...... 0 2 2 1/2 0 2 2 1/2 
sohd angle, and E1 = q k, E2 = - qk, Pi = (q +ti1 ) and P2 = (q +ti2 ) 

These four vectors, Pi and P2' so evaluated, are expressed in the 

Lorentz frame p = 

Lorentz frame p = 

(2"ti). They may then be transformed to the arbitrary 

o 
(E' p ). 

If one of the daughter systems (say P2) represents a single particle 

.-
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with mas s m2' then only 1-L1 and k need to be generated, since 1-L2 = S2 

= m
2

• If both daughters are single particles then only k needs to be gen

erated, since 1-L1 = S1 = m 1 as well as 1-L2 = S2 = m2' 

The manner in which: 1-L1' 1-L2 and k are generated is dictated by the 

dependence of the frequency distribution function g(p), of Eq, (2), on 

these variables. 

If the n-2 I-L,' s in Eq. (2) correspond to the invariant masses of the 
1 

subsystems into which the final state has been factored, and if the n-1 

t,' s correspond to the four-momentum transfers squared to these sub
J 

systems, then Eq. (2) may be rewritten as 

g(p) 
n n (i) (i) r) 

= n gi (p) = II g, [I-L 1 ' 1-L2 ' t 1 ], 

i=2 i=2 1 

where each g, (p) corresponds to a particular two-body decay vertex. 
1 

(5) 

This constitutes the restrictions (referred to in the introduction) on the 

choices for the I-L.' sand t,' s (of Eq~ 2) imposed by this method, 
1 J . 

If a Breit-Wigner distribution for an invariant mass is not desired, 

then the mass is distributed randomly according to a constant frequency 

distribution within its limits. If a Breit-Wigner distribution for 1-L1 or 

1-L2 or both is contained in gi (p). then one defines a new variable 

r -1 x-E -1 S-E . x . ( ~ 1 BW(x' )dx' = Z [tan (r/2)- tan rJz)J 
where x = 1-L1 or 1-L2 and S = S1 or S2' One then distributes 1'] randomly 

with constant frequency in the interval [0, 1'](+)] , where 

(+) r -1 max . -1 S-E 
[ ( X -E ) ()~ 1'] = 2 ,tan r/2 - tan r/2' . 

(6a) 

(6b) 
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Once 1') is generated, inverting Eq. (6a) gives the corre sponding value 

for x. 
... ... 

If gi (p) contains no functional dependence on k, then k is generated 

randomly in solid angle with a constant frequencydislribution. That is, 

the polar angle e is generated so that cos e is uniformly distributed in 

the interval (-1, 1) and the azimuthal angle cp is uniformly generated in 

the interval (0, 2 'IT). Then k = (sin e cos cp, sin e sin cp, cos e). 

If k is to be given an eat frequency distribution with respect to some 

. 0 
momentum vector represented by A = (!:' A ) in the Loreptz frame 

p = (~.' Ii), then a more involved procedure must be employed. Proceeding 

as in the case of invariant masses, one defines a new variable 

t 

o =I~ 
t 

at l 

e dt l 

and randomly generates 0 with a constant frequency in the interval 

[ 
!: ("')] 0, u , where 

and 

and 

2 
m a 

= (A 0 ) _ I A I 2 • 

at 
Here, x = 1-11 or 1i2 depending upon whether Pi or P2 is to have the e 

distribution. Equation (7a) is inverted to solve for t once 0 is gen-

erated. Solving further for cos e, one has 

(7a) 

(7b) 

(7c) 



". 
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cos 8 - 1. 

A more complicated angular frequency distribution may be given to 

k~ Let I(cos 8) be some decay angular distribution desired for k with 

respect to the direction defined by~. Define a new variable 

cos 8 

(7d) 

'Y = f I(cos 8') d(cos 8') 

-1 

(8) 

and randomly distribute 'Y with uniform frequency in the interval 

(+) . . . 
[ 0, 'Y ], whe re 

1 

'Y (+) = f I(cos 8') d(cos 8') . 

-1 

Equation (8) is then inverted (if such inversion is possible in closed 

. 5 
form) to obtain cos 8 in terms of the generated 'Y' 

• A 

Once cos 8is known, a unit vector 1. is generated such that 1. = cos 8 
z 

A 

and 1. has a random azimuth angle with respect to~; an azimuthal angle 
.... 

<I> is generated in the interval (0, 2Tl'). Then 1. = (sin 8 cos <1>, sin 8 sin <1>, 

cos 8) is the representation ofk . in the coordinate system, where 

A 

~/ I ~ I = (0, 0, 1). Then 1. is rotated to the coordinate system, where 

A/ I A I = (A , A , A )/ I A I to obtain k, i. e. , k = R(~/ I ~ I ) i, where - - x y z - .__ -

R is the rotation operator. 

The vector A may be any momentum in the problem. For example, 

it could be the beam or target momentum. expressed in the Lorentz 

frame p = (£, f.L), or the helicity direction .E' at Also. the e or I(cos 8) 

frequency distribution can be given to either Pi or P20 

If Pi or P2 (or both) represents multiparticle systems then they be

come parents and are in turn factored into daughter subsystems. and the 
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four-vectors of these daughters are generated in the same D}anner as 

above. This factoring of multiparticle systems into subsystems is con-

tinued until the four-vectors of all of the final-state particles are gener-

ated. 

IV. Phase-Space Weighting 

The random-event generation method described in the preceding sec-

tion uses invariant masses and decay solid angles of particle subsystems 

as the generation variables. These particular variables were chosen be

cause the limits impo'sed upon them by momentum and energy conservation 

are easily obtained. Events diist"ributed uniformly in Lorentz -invariant 

phase space are distributed uniformly in these solid angles but not, how-

ever, in these invariant masses. Conversely if events are generated 
" . 

uniformly in these invariant mas~es [which is the prescription of this 

generation method for g(p) ::: 1] t~~y~ill not be uniformly distributed in 

Lorentz-invariant phase space. This is apparent from Eq. (4b), which 

may be rewritten as 

eo°nl ) 
n dO 

n 

n-1 
n 

i=2 

2 
dl-l.dO.8(q. )8(connected). 

1 1 1 

(4c) 

Inspection of Eq. (4c) shows that events generated uniformly in the n-2 

l'i'S will have the frequency distribution ( i~2 q/2nEO) -1 in Lorentz

invariant phase space. Thus, in order to achieve distributions that cor-

respond to Lorentz-invariant phase space', each event generated by this 

method must be weighted by the quantity 

1 n 
n q .• 

i=2 1 

(9) 
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Equation (4c) may be written as 

ri-1 
= J(p;p.,n)dnn n dn.dp.., where J(p;p.,n) 

. 2 1 1 
1= 

(10) 

represents the Jacobian of the transformation from the mass and angle 

variables to those of the phase space. Thus, the phase-space weight is 

just this Jacobian. For the general case consider, as was done in the in-

troduction. the phase-space integral R-= f n f . n r(p)d p = r(p)J(p;O')d 0', 
v w 

where J(p;O') is the Jacobian of the transforluation from the set of vari-

ables, 0', to those of phase space and w is the volume. v, expressed in 

the 0' variables. Evaluating R by a Monte Carlo method, one has 
N 

R = (WiN) ~ r(p.)J(p.; 0'), where the N Monte Carlo events are distributed 
. 1 1 1 

randomly~~th constant frequency in the variables of 0'. Here W = f dna 
w 

= Jvdnp/J(p;O'). In the introduction the special case of J(p;O') = 1/g(p) was 

considered. The equation for the evaluation of R may be rewritten as 
N 

R = (1/N) ~ r(p.)w(p.), where w(p.) =W J(p.;O') is referred to as the 
i=1 1 1 1 1 

" phase -space weight" for the ith event. Thus. wheneve r the ?asic gen-

e'ration variables are riot those which are uniformly distributed in the 

phase space, a phase-space weight must be applied. 

For the event-generation method discussed in this report we choose 

as basic generation variable s those which are uniformly distributed in a 

multidimensional cube of unit length on each side. That is, each of these 

basic generation variables is a dinlensionless random number, generated 

uniformly in the interval (0,1). Then, W = 1 and J(p) will be the Jacobian 

of the transformation from this unit cube to the phase space. This trans-' 

formation is accOluplished in two st~ps. First the phase space is ex-

pressed in terms of the masses and decay solid angles appearing in 

. i 
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Eq. (4c), and then these masses and solid angles are expressed in terms 

of the random numbers. The first transformation was accomplished by 

employing the factorization property of Lorentz-invariant phase space as 

described iIi Section II, and its Jacobian, J(p;n, p.), is given by the right-

• hand side of Eq. (9). The second transformation and its Jacobian, J(t-L, n), 

are detailed below. 'The Jacobian of the complete transformation is the 

phase':'space weight, w(p), for the Monte Carlo events, and is given by 

w(p) = J(p;n, t-L)J(n, t-L). 

Consider the generation of the two-body decay p' -- Pi + P2 discus sed 

in Section III (the notation used in the following discussion is the same as 

in Section tIl). The invariant mas s t-L1 is generated uniformly or according 

to a Breit-Wigner distribution in the interval (S1' t-L-S2) imposed by energy 

conservation~ For the case of unif'orm generation, this can be accomplished 

by setting f.L1 = (t-L - S2 - S1 )r 1 + S1' where r 1 is a random number gener

ated uniformly in the interval (0, 1). The Jacobian of this transformation 

is simply J(f.L1 ) = (t-L - S2 - S1). For the case of Breit-Wigner generation 

of t-L1 the transformation is a two-step process. First 111 is generated 

in the interval [ 0, 11i+)] , then Eq. (6a) is inverted to solve for t-L
1

• The 

(+) - (+) 
generation of 111 is accomplished by setting 111 = 111 r l' thus J(111) -111 . 

The Jacobian of the transformation involved in solving for t-L1 in terms of 

111 is 1/BW(t-L1 ) by construction. The Jacobian of the complete trans

formation for the Breit- Wigner generation of t-L1 is J(t-L1 ) = J(111 )/BW(~1 ~ 

= 11i+) /BW(t-L1 )· 

The second invariant mass t-L2 is generated in the interval (S2' t-L-f.L1 ), 

also imposed by energy conservation, in the ~ame manner as the gener-

ation oft-L1 described above. Thus, J(t-L2 ) = t-L - t-L1 - S2 for uniform 
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generation or J(1-12 ) = 11~+)/BW(1-12) for Breit-Wigner generation. Specifi

cally for Breit-Wigner generation of 1-11 or 1-12 (or both), 

(i1a) 

(11b) 

The direction k = (cos e, cp) of 2"1 (or-1'2) in the rest frame of p is 

generated in the full range of solid angle. For the case of uniform fre-

quency distribution this is accomplished by setting cos e = 2r -1 and z 

cp = 21Tr cp' where r z and r cp are random numbers generated in the interval 

(0,1). Then d(cos 8)dcp = 41Tdrz drcp' so that J(k) = 41T. 

Consider now the case in which k is given an eat frequency distri

bution. First S is uniformly generat~din the interval [0, 0 (+)] (Eq. 7). 

That is, 0 = 0 (+)r , where r is a random nu~ber generated in the inter-z z 

val (0,1). Thus J(O) = 0(+). ThenEq. (7a) is inverted to solve for t. The 

Jacobian of this transformation by construction is e -at. thus J(t) = 0 (+)e -at. 

Then Eq. (7d) is inverted to solve for cos e, so that d(cos e)/dt = 2/ (t + -t -). 

When these results are combined, J(cos e) = 20 (+)e -at/ (t+ -t -). Next the azi-

"muth angle, cp, is generated in the same manner as above, so that J(cp) =21T. 

Combining these results and inserting the explicit expres sion for 0 (+), one 

has 

"'-

J(k) = J(cos 8)J(<j» (12 ) 

at "'-
for the case of an e generation for k. 
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The final Jacobian for the decay vertex p -+ Pi +P2 is J(f.L 1 , f.L2' k) 
..... 

= J(f.L
1

)J(f.L
2

)J(k). The Jacobian for the entire final state is the product of 

the Jacobians of each of the decay vertices that combine to form the final 

state. Therefore, 

. (13) 

where the product is overall the decay vertices. 

E~~ation (13) represents the Jacobian of the transformation from the 

3n-4 random numbers to the invariant masses and decay solid angles. This 

must be combined with J(p; f.L,r.l), which is the Jacobian of the transforma

tion from the invariant masses a'nd decay angles to the phase space, in 

orde·r'to form the phase-space weightfor events generated by this method. Thus. 

w (p) = j (p ; f.L ,r.l) J (f.L ,r.l) = (14) 

Equation (14) represents the Jacobian of the transformation to the n-

particle phase space from the (3n-4) -dimensional unit cube. 

v. Applications 

This random-event generator may now be used to evaluate phase-

space integrals and simulate experiments as discussed in the introduction. 

To evaluate phase - space integrals of the form R = f r (p )dp or simulate 
v 

an experiment with the matrix element squared, r.(p), a generation fu_nc-. 

tion g(p) (Eq. 2) is first chosen that most closely approximates r(p). The 

n-particle final state is factored into the appropriate subsystems whose 

invariant masses and four-momentum transfers Slquared enter explicitly 
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into g(p}. A sample of N Monte Carlo events is generated so as to cor-

respond to a random distribution in Lorentz-invariant phase space with 

frequency g(p}. From the discussion in the introduction it is clear that 

the more closely g(p} approximates r(p} in the volume v, the fewer the num-

ber of Monte Carlo ev~nts needed for a given statistical accuracy, and thus 

the greater the efficiency of the method. 

For each event, r(p} as well as w(p} (Eq. 14) is evaluated, and then 

one has 

N 
R(v) =i r(p) d~ = (1/N}:E r(p.) w(p.} B(v-p.}. (15) 

v-:::;'V i=1 1 1 1 

The sum is over the generated events; . V is the total phase-space volume 

accessible to the system, and v -< V is the subvolume of phase space into 

which the rate is to be determined. The step function B(v-p} is zero for 

the region of phase space outside v and unity inside. This subvolume 

could be, for example, the phase-space volume included by the experi-

mental apparatus or that defined by an interval of a kinematic variable. 

The phase-space integral, R(v), as evaluated in Eq. (is), may be used 

directly to determine interaction rates. This is because w(p} is the 

Jacobian of the transformation from a unit volume to the phase space. 

If the n-particle final state results from the decay of a particle with en

ergy E in some Lorentz frame, then the decay rate (number of decays per 

particle per time) into the subvolume, v, in that Lorentz frame is 

>--(v) = 1/t(v) = R(v)/2E (21T)3n-4 . (16 ) 
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If the final state results from the collision of two partides. then the total 

collision cross section into the subvolume. v. is 

a (v) = R(v)/4m IE I (2lT)3n-4 • (17 ) 

where m is the mass of one of the incident particles and lEI is the mo-

mentum of the other particle in the rest frame of the first. 

Differential cross sections are evaluated by employing Eqs. (15) and 

(17) with appropriate definitions of the subvolume. v. Let da/da be the 

differential cross section with respect to some measurable quantity. a. 

Thenda= (da/da)da or, approximately. b..a = a(b..v ) = (da/da)b..a. Here 
a 

b.,a is a small interval in the variable. a, centered at aO' and b.. va is the 

phase-space volume subtended by the interval b..a. Combining this with 

Eqs. (15) and (17). one has 

r(p.) w(p.) e (a. -aD + b..a/2) e (a
O 

+b..a/2 - a.) 
111 . 1 

i=1 I I 3n-4 
(b..a)N 4 m E (2lT) 

(18 ) 

Here a. IS the value of a for each Monte Carlo event. The approximation 
-I 

becomes an equality in the limit that b..a -+ 0 and N -+ co. The product 

of the step functions effectively accepts only those events which lie in a 

bin of width b..a centered at aO' To obtain dol da as a function of a one 

may simply vary a
O 

in steps of b..a. According to Eq. (18) this is equiv

______________ alent to KeI!..eratil·lK_~arnpl~ _~~¥.9~te_ Carl~event~_ and histo~:r:amming 

the variable a in bins of width b..a and with weight 

/ I I 
3n-4 6-

r(p.)w(p.) (b..a)N4m p (2lT) applied to each entry. 
1 1 -

From the above discussion it is easily seen that all Monte Carlo 

efficiency calculations es sentially reduce to comparing the relative cros s 
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sections (or decay rates) into various phase-space subvolumes for the 

same model, r(p). These subvolumes need not be explicitly known. One 

generates Mont~ Carlo events in the whole phase-space volume and, ac-

cording to Eq. (15), discards those which are outside the subvolume in 

question. The decision to discard an event can be made on any basis 

whatsoever (for example, detector geometry). This ability to define phase 

space suhvolumes and also the integrand, r(p), in any set of variables, 

rather than the integration variables of some phase-space integral, as 

well as the ability to integrate any function, r(p), makes the Monte Carlo 

method a useful tool. 

The Monte Carlo event generator described in this report allows the 

generation of events with frequency distributions g(p), whose form is 

given by Eq~ (2). However, this generator may be used to generate events 

with more general frequency distributions. Let g.(p) represent a particu.-
1 

lar frequency distribution of the form in Eq. (2). Then Monte Carlo 

events with the frequency distribution 

M 
g(p) =~ N.g.(p)/G. (19) 

i= 1 1 1 1 

may be generated with this event generator. Equation. (19) represents a 

frequency distribution that is a linear combination of frequency distri-

butions of the form in Eq. (2). N. is the number of events generated \vith 
1 

frequency gi (p), and M is the number of such frequency distributions. 

Here G i = f gi (p )dp = ( gi (p )w(p), where the average is taken for the 

events generated with frequency g. (p). . 1 

First, N1 events are generated with frequency g1 (p) as prescribed. 
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in Section III. Then N
Z 

events are generated with frequency gz (p), and so 

on until NM events are generated with frequency gM(P). The total number 
. M 

of events generated is N = ~ N.. The phase-space weight applied to each 
. i=1 I 

event for this generalized frequency generation is 

W. (p) =N-
G 

. ~ N. G w(p), 
[ 

gi(P)/. M .~] 
. Ii· j=1 J . j 

where W. (p) is the generalization of w(p) (Eq. 14) for the case of more 
I 

than one shnple frequency distribution, g. (p). Note that the form of 
I 

W. (p) for an event depends upon the simple frequencydistribution,. g. (p), 
I I 

from which it came. and for the special case of, M = 1, Wi (p) = w(p). Sub

stituting this g~neralized weight, Wi(p}, for w(p) in any of the above equa

tions makes the equation valid for the generalized frequency distribution, 

g(p}ofEq. (19). 

This Monte Carlo method allows the simulation of experiments with 

tra:nsition rate r(p} by weighting each event generated by r(p)w(p), or 

r(p}W.(p). For some applications, however, unweighted events are re
I 

quired whose density in Lorentz-invariant phase space is given by r(p). 

This can be accomplished by generating along with each event a random 

number, x, in the interval (0, x ). where x is an upper bound for 
max max 

the event weights. Events are discarded whose weight is less than x, 

and those not so discarded are each given unit weight. These events are 

___ distributed randomly with a frequency r(p) in Lorentz-invariant phase 

space. The upper· bound, x ,need not be the least upper bound for max 

the event weights, but the closer it is to the least upper bound the more 

efficient the method becomes. 7 However, this method is always les s 
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efficient than using all the events with their corre sponding weights. 
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Appendix A 

More Efficient Invariant-Mass Generation 

This section discusses in more detail the generation of invariant 

masses of particle subsystems and the resultant phase-space weights in-

troduced by the generation method. As dis cus sed in Sections III. and IV, 

these invariant masses are distributed randomly with a frequency that is 

either a constant or a Breit- Wigner distribution. Associated with this 

generation method is a weight to be applied to each event which is the 

Jacobian of the transformation from the random numbers to the corre ... 

sponding invariant masses. If this Jacobian is not a constant it can in-

troduce additional statistical uncertainty to calculations using these events. 

Consider first the case in which no invariant masses are to have Breit-

Wigner generation. Then each invariant mass fJ.. is generated with con
I 

stant frequency within its limits. That is, fJ.. = R. r. + S., where R. is 
I I I I I 

the range allowed by energy conservation for fJ.., r. is a random number 
I I 

generated in the interval (0,1), and S. is the sum of the rest. masses of the 
. I 

particles combining to form the subsystem. In general R. depends upon 
1 

other invariant masses in the final state, specifically those that are 

generated before fJ... The Jacobian of the transform.ation from r. to Lt. is 
. I 1 '1 

simply J(fJ.., r.) = ofJ../ or. = R.. The total Jacobian for the transforma-
I III I 

tion from all the random numbers to all the invariant masses is then 
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n-1 
J(\-L, r) = IT R

1
, (\-Li+1"· ~fJ:n-'1). Here n is the number of final-state particles. 

i=2 . . 
For large values of n this Jacobian as a function of the 1"\' s has a very 

,rapid variation. Thus, when it is applied as part of the phase -space weight 

for the gene rated Monte Carlo events a great los s of efficiency results. A 

mea~ure of the efficiency is the value of the quantity E = (J)2 /(J2). 

This quantity has value unity for J(fl, r) equal to a constant, and becomes 

smaller as J(\-L, r) becomes more rapidly varying. 

1£ the final state is factored into cascading subsystems all of which re

coil from a single particle, then it is straightforward to show 

E(n)=[2(n-2)]! ::::: 2
n

-2. 

2n -2[ (n-2)! ]3 n >6 J (n- 2 )rr' (n-2)! 
(Ai) 

where the approximation employs Sterling's formula for (n-2)! . Thus, this 

method of invariant-mass generation becomes very inefficient for large mul-

tiplicity in the final state. Factoring the final state in a different way in-

creases the efficiency, but it still has the same general dependence on n 

as Eq. (Ai) for large multiplicity. 

It is possible to increase the efficiency by generating the invariant 

masses with a nonconstant frequency distribution such that the Jacobian of 

the transformation from the random numbers to the masses has a less rapid 

variation than for the case of constant-frequency generation. Let 

fl. = R. p. + S., where p is a dimensionless number generated in the inter-
1 1 1 1 . 

val (0,1) but with frequency h.(p.). Then J.(\-L., r.) = R.(8p./8r.) = R./h.(p.), 
11 111 111 III 

so that the total Jacobian is 

J(fl,r) = II R. / II h.(p.} . 
( 

n-1 ~ [n-1 ] 
i=2 1 i=2 1 1 

(A2) 
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If a set of functions hi (Pi) can be found so that J(\-1, r) is a slowly varying 

function then the efficiency can be increased. 

Consider the generation of a two-body decay vertex p - Pi + PZ' as 

discussed in Section III. (The notation used here is the same as in Section 

III.) Let \-1 1 = R1 Pi + S1 and \-1Z = R Z Pz + SZ' and let there be M1 and M Z 

particles in the Pi and Pz systems respectively. If 

(M1 +MZ-Z)! M 1-ZMZ-1 

= (M 1 - Z )! (M
z 

- 1 ) ! Pi ( 1 - Pi) (A3) 

and 

(A4) 

for every decay vertex in the final state, then it is shown in Appendix B 

that the total final-state Jacobian has the constant value 

J(\-1,r) = 

(E _ S )n-Z 
On .. · 
(n - Z)! 

(A5) 

Here EO is the center-of-mass energy for the final state and Sn is the sum 

of rest masses in the .final state. Thus, the efficiency due to the invariant

mass generation is unity, independent of the final-state multiplicity. 8 
; -1 

Equation (A4) implies that Pz = rZ(MZ-f) ,where r
Z 

is a random 

number generated with constant frequency in the interval (0, 1). Equation 

(A3) can be inverted only for the cases in which M Z = 1 or M1 = Z. For 
(M _1)-1 M -.1 

these cases Pi = r 1 1 or Pi = 1 - r 1 Z For all other cases 

Eq. (A3) cannot be solved explicitly for Pi as a function of r1" However, 

it is easy to show that if M1 + M Z - Z random numbers are generated with 

constant frequency in the interval (0,1), and then ordered from smallest 

to largest, the (M
1

-1)th ordered random number will have the frequency 

distribution given by Eq. (A3). 
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For Breit-Wigner generation of an invariant mass the Jacobian of the 

transformation from the random number to the invariant mass is given by 

Eq. (11). In most applications, the motivation for employing Breit-Wigner 

invariant-mass generation is to concentrate Monte Carlo events in a region 

where the matrix element squared r(p) has rapid variation approximated by 

a Breit-Wigner shape. Thus, the major inefficiency in r(p) J(f.L) will be 

caused by the variation with invariant mass of the first term contained with

in the brackets of Eq. (11); This term will have rapid variation only when 

the upper limit of the invariant mass is less than or near the central value 

of the Breit- Wigner. Therefore, it is always most efficient to generate in

variant masses with Breit-Wigner frequencies as early as possible in the 

generation of the event. The later in the ev.~nt an invariant mass is gen

erated the more restricted is its average range and the closer the upper 

limit will be to the central value of a Breit-Wigner. This will cause more 

rapid variation of ;(p) J(f.L) and a lowering of the efficiency. This effect is 

also .present for eat momentum-transfer-squared distributions, so that s~b

systems which are to be generated in this manner should also be generated 

as early as pos sible within the event for maximum efficiency. 

The result of the discussion in this appendix is, then, an alternative 

prescription to that given in Section III for the generation of invariant 

mass.es that leads to greater statistical efficiency. Consider once again 

the generation of a two-body decay vertex p ~ Pi + P2 (notation is the same 

as in Section III). If both invariant masses f.L1 and f.L2 have Breit- Wigner 

frequencies the prescription of Section III is used. If only one of them is 

to have a Breit- Wigner frequency then it is generated as in Section III and 

the other is generated with the frequency given by Eq. (A4). If neither 
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invariant mas s is to have a Breit-Wigner frequency distribution. the first 

one is given the frequency distribution of Eq. (A3) and the second that of 

Eq. (A4). 

This prescription will always result in greater statistical efficiency 

than the prescription of Section III. The increase in efficiency depends 

upon the number of non-Breit- Wigner invariant-mass generations. In the 

limit that all of the final-state invariant masses are non-Breit- Wigrier. the 

increase inefficiency resulting from this prescription is closely approxi-

mated by the inverse of Eq.(Ai) . 

. A ppendix.B 

This section will prove the as'sertionof the previous section that gen-

erating the final-state invariant mas se s with the frequency distributions of 

Eqs.(A3) and (A4) leads to the constant Jacobian given by Eq. (A5'). 

Consider first the special case in which the final state is factored in-

to a set of cascading subsystems. each.one recoiling from a single particle. 

(Notation u!?ed here is the same as in Appendix A.) For this case one has 

the recursion relation Ri :::; Rif1 PHi and R n _ i = EO - Sn' so that 
n-1 rt-1 2 n-i . 2 n- 1-

R. = (Eo - S ) n Pk and n R. = (EO - S ) n p. Also for this 
1 n k=i+1 i=2 1 n i=2 1 

. '2 n-1 . 2 
:1"".. l-ease Eq. (A3) reduces to h.(p.) = (i - i)Pi.SO that IT {1-i)p. = (n-2)! 1 1 1 

n-1 . 2 i=2 
I-n Pi and therefore from Eq. (A2) one has the result expressed by 

i=2 
Eq. (A5). 

Next consider a slightly m.ore general case in which the final state is 

factored first into two subsystems of Mi and M2 particles respectively. and 

then each of these subsystems is factored into cascading subsystems as 

above. The contribution to the total final-state Jacobian from the factoring 

of each of the cascading subsystems is 
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and 

= 

M -2 
(EO - Sn) 2 

(M - 2) I 2 . 

(B1 ) 

(B2 ) 

where fJ.1 and fJ. 2 are the invariant masses of the two recoiling subsystems. 

From Eqs. (A2) and (A3) one has 

(M 1 -2)!(M2 -i)! (EO - Sn) 

M
i

-2 M
2
-i 

Pi (i-Pi) 

(B3 ) 

and from Eq. (A4), 

(B4) 

Combining Eqs. (Bi), (B2), (B3), and (B4), one has, for the total final-

state Jacobian, 

(E _ S }n-2 
o n 
(n-2) ! (B5 ) 

Equation (B5) s-hoW's that for the purpose of calculating the Jacobian 

J(fJ.. r). each pair of recoiling particle subsystems in the final state may 

be replaced by a single set of cascading subsystems. This replacement 

can be repeated for all the multipartic1e recoiling subsystems in the final 

-. 
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state. Then the Jacobian is just given by Eq. (A5). 

Footnotes" 

1Work done under auspic~s of the U. S. Atomic Energy Commission. 

2Phase space,. as discussed here and defined by Eq. (1), is the momentum-

space factor of phase space as usually defined in statistical mechanics. 

The spatiaLintegrations of phase space are ignored in this report, since 

the results of scattering experiments are stated in terms of the momenta 

of the interacting particles. If one normalizes ina box of volume H, then 

the phase -spa~e integral contains the factor Hh for an n-particle final state. 

However, since no physical quantity measurable in a scattering experiment 

depends upon this spatial volume factor, it is ignored. For a more com-

plete discussion see reference [1] , p. 80. 

3 A point in Lorentz-invariant phase space will be referred to as an II event ll 

in this report. 

4 0 (x) is the Heavyside step function, O(x) ={~: ~ ~ g. 
5Equation (8) can always be inverted by simple numerical methods. 

6The fractional statistical uncertainty in the value of dol da for each bin 

of the histogram is /(:vlh /(N(w) 2 )', where N is the number of Monte 

2 Carlo events in the bin, (w) is the mean weight, and (w) the mean square 

weight for the events in the bin. 

7 A method of obtaining th~ least upper bound is to perform a search in the 

(3n-4)-dimensional cube for the maximum of the function 

r(p)w(p) = f(x 1 ... xi· •. x 3n_4 ), where n is the number of final-state 

particles and the x. are the random numbers in the intervals (0,1). The 
1 
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function f(x
1 
... xi' .• x

3n
_

4
) is obtained by generating an event corre

sponding to a specific set of x~ and evaluating r (p) and w(p) for the event. 
1 

The search can be performed by using anyone of many computer codes that 

optimize a function of several variables. (See, for example: S. Derenzo, 

MINF68--A General Minimizing Routine, Lawrence Radiation Laboratory 

Group A Programming Note No. P-190 July 1969.) 

8Note that this applie s only to the Jacobian of the transformation from the 

random numbers to the invariant masses (Eq. A2). The total phase'-space 

weight for the event (Eq. 14) still contains the Jacobian of the transformation 

from the invariant masses to the phase space J(p. f'fl) = C~Z qi) /Zn EO' 

which also has a dependence on the invariant masses •. The effect of this 

variation on the event efficiency is much less dramatic than that given by 

Eq. (Ai), but is still not negligible. For n:S 15 the efficiency is approxi

mated by €(n) .::: e - (n-2)jn, where the value ~f n depends' greatly upon 

the center-of-mass energy EO and the rest masses of the final-state par

ticles. The least efficient case results when all the final-state particles 

have zero rest mas s. In this case n::::: 5.5 independent of EO. However, 

when EO = 10 GeV and the final state is composed of a proton and n - 1 

pions, n::::: 9.0. For n > 15, €(n) falls more slowly with increasing n. 

For n = 25 the efficiency is 0.03 for the massless case and 0.13 for the 

later example. 

Reference 

1. R. Hagedorn, " Relativistic Kinematics ," W.A. Benjamin, Inc., New 

York (1964), p. 94. 
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Figure Legend 

Fig. 1. The three ways to connect two-body "decay" vertices to form a 

five -particle final state. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness; or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately o,wned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to,"any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor . 
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