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. RANDOM EVENT GENERATION-WITH
. PREFERRED FREQUENCY DISTRIBUTIONS?

Jerome H. F.riedrnah
, Lawrence Radiation Laboratory

University of California
Berkeley, California 94720

June 1970

ABSTRACT

A method of random event generation is described that allows wide
choices for the frequency distribution of the generated events in Lorentz-

invariant phase space.
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I. Introduction

The clor,we_ﬁienc’e and generality of Mbﬁte Carlo methods for prédict-
ing the results of expefirﬁenté from theéretical rhodels,' and for simuiat—
ing expefi?nents for the measurement of efficiencies and biases, has led
to their exténsive use in };article physics. For these applications the
Monte Carlo method is us.ed to evaluate i)hase-spacez integr.als of the
form R = [ _r(p).dnp,v where p is a point in thé 3n-dimensional phasé
Sp'éée, a®p 1Vs a volume element, énd v is'the phase—spacé volumé over
which the fﬁhction is to be integrated. This volume could be the fotal
phase space accessible to the'n-particle final state or a subvolume de-
limited by ekquipmen't configuration or restrictions placed ofl experimental
measurables.

More specificaliy, p = (p1 ‘oo pn‘) and

) o _ |
4 2 2 -
Po=1 d%, 6(p%-m%) o)) 6(P, - p,), )
i=2 i i 1 i 0 j=1 7

d

where p, is the four-momentum of the ith final—stafe particle and PO is
the four-momentum of the initial state. Then r(p)dnp is the traﬁsition
rate from the initial state to the volume element dnp centered at the point
p, and R is .the total _rate into fhe volume wv.
To evaluate R by a Monte Carlo method one ;ould_ generate N ran-
dom points .with constant frequency in the volume v. Then,
: V N

R = (), V= § = r(p,)s

2

where r(pi) is the value of r(p) for the ith random point and V = fvdnp.
The principal limitation of this Monte Carlo method is that the number

of points needed for the required statistical accuracy may be prohibitive.
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The fractional statistical uncerta1nty in the above evaluat10n of R is

(6R/R) = F /N1/2, where F_ is the fractional root-mean-square de-
viation of r(p) deflued as F_ = [ (r Y - (T > ‘ 1/2/< r). For a given
statistical accuracy, (6R/R) , the smaller the F [i. e., the smoother
the function r(p)], the smaller the number of random points requ1red
Howevef, fuucfions that vary ra.pidly or have apbref:iable value oﬁly for
small 'regi’ous of the .voiu_me of integration afe characterizedvby large

Fv’ and fnany random poiuts may be required to givc rcasonable statisti-
cal accui'é.c?., )

Scmétimeé a priori knowledge of the behauior of the function r(p) ca.n

A’.be used to reduce the number of points required. Let g(p) be another
function defined over the vclume v that cppr.o;iimate_s_ the behavior of -
r(p). Consider a transformation of vafiables from those of p to a new
set 1, such thét"'dnn = g(p)dnp. .Lé‘tva = ju dnn =: fvg(P)dnp, where u

is the same volume as v, but expressed in the variables of 1. One could
than expre.ssL thc %integral for R as R :ju [r(p)/g(p)]dnn and evaluate it
by the Monte Carlo method. One generatec N randcrh points with con-
stant frequency in the variables of 1 in the volume u. This is the safne
as generating the points with frequency g(p) in the variables of p in the
volume‘vv. Then
N rfp) | - .
21 g(pl)

R (), -

1=

- ZIQ

The fractional statistical uncertainty in this evaluation of R is

6R/R), = F/NY2, where F_ = ((x/e)), - ( +/02 1Y% /(x/0),

If Fu' << FV, which is the case if g(p) is a good approximation to r(p),
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the number of Monte Carlo points needed for a given statistical accuracy
is greatly reduced.
‘Thus, in _oi'der to use Monte Carlo techniques efficiently, one needs
a generator that randomly geherates points in Lorenté-_—invariant phase
spa.ce3 with a variety of choices for the'frequency distribution of the
points. In pérticle physics most transition ;-ates, r(p), have sharp de~
pendencies on the invariant mass.es a}id,four—ﬁlomenturn transfers‘
squared of various final-state particle combinations. This report de-
scribes a method of random-event b,gene_‘ration which allows the general
frequency distribution
| n-1 n a.t, :
glp) =1 BW() I e 7, (2)
i=2 j=2
where n is the number of final-state particles, the b, are the invariant
masses of various particle combinatiops, and the 1:j are the four-mo-
mentum transfer squared to various particle combinations from either
the beam or target particle. BW can be either a constant or a primitive

Breit-Wigner function
2

The choices of the particle combinations for the }J;i and tj are very
general; the restrictions are described in Section III. The set of pa-
rameters Ei’ I‘i, and a,j may have arbitrary values, thereby allowing
for wide choices in the phase-space frequency distribution of the gen-
erated events. |

| II. Phase Space

The starting point for this random-event generation method is the

“
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reexpression of dnp from the four .'v.ect‘ors Py of Eq. (1) to invariant
masses an‘dv.a'ngles;of subsystems of particles. This is accomplished by
application of the factorization property of Lorentz-invariant phase si)ace

[1]. Of_le way of expressing this property.is .

2 , 2 2, .k |

v , a _
n _ 'k co
dpEg my rermy) = iE, din dpy dby Ol ) dp (b oy w00 my)
n-k
X d o) (‘Hn-k’ my oyttt mn). : (3)

He—'re Eq (3) divides the h-ﬁarficle final state into two systems of k
and n-k partlcles respectlvely, m1 ;?_Q mn are'the rest masses of the

final-state particles, EO is the total 1nvar1ant mass of the final state,

pfk and }.L _k are the invariant masses of the two final-sta.te systems,

and q and &'Zk are the ma.gmtude and d1rect10n of the total three-mo-

mentum of the k system in the overall center of mas/s Explicitly one" has
\2 1/2

-/ 2 2 2
N s " N
U = 2E, Fy

The factor d p(p.k, m, mk) is k—partic—le.phase space for the syétem of

partlcles rn1 sy with invariant mass My dn_kp(pi1 K’ m#+1 ce mn)
is the analog for the recoiling system of n-k particles; qu/4E is
phase space for two bodies of total invariant mass EO’ having invariant -~
masses HILk and Bk respectively; and 'G(qi) expresses4 energy conser-
vation by é.llowing only physical values for by and p__, . Equation (3) ex-
plicitly‘expresses the dependence of d"p on dp.i, dplzl_k, and ko.

. ﬁlk) and dn_k

Next dkp(l-kk, m o mn) are them-

17" Py o0 Mpyq

selves each factored into two subsystems in the same way. By repeated .
application of this factorization, the n-particle phase space can be repre-

sented as a product of n-1 two-part.icle phase spaces. Thus,
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dh E. m coom ) =8@P-EOT 2 au?aa.0(q)) blconnected), (42)
pllug, My cermy) = ‘J‘n'oi=2 ZI by G4 90q; CV ected), ,
. 2
or, since dpi = 2|JLi dpi,
n o N 2 2 noq 2) ' ‘
d p(Eo,_ my o« mn) = S(Hn-»EO) 1l‘_IZ —-dp, A2, G(qi f(connected). (4b)

Each term in the product can be thought of as the decay of a parent system

into twd.daﬁghters: p.l is the invariant mass of avpafent system, q; and
Qi are the magnitude énd'direvctidn, re‘spéctiVély, of the momentum of
one of the :d.’.é..ughtevr's in the pareﬁﬂé: rést frarhe (qi and —Qi fépresent
th’e'nﬁomentum of the other daughter). The delta function requires that_:
_the invariant mass of the whole final state be the center-of-mass energy
_each s>t'e‘p'ir>1 the decay chain, and the second step function, 6 (connected),
requires that the invariant masses and solid anglles.. appearing in Eq. (4)
coi'reéﬂp'ond to subsystems that cénnect together fo forfn Such decay ‘v
chains. Thus, although there is a widbe choice for the n-2 i‘n;rariant
masses an& n-1 decay angles appearing in Eq>° (4), they are not com--
pletely arbitrary. Figure 1 diagrams the thre:e possible ways to con-
nect a five-particle final staté. |

III. Event Generation

The procedure deééribed in the preceding section for factoring n-
body phase space into n-1 connected two-body decay phase spaces is the
basis for t;his random-évent generation method. First the final state is
factored into an arbitrary set of n-1 two-body ""decay' vertices (like

those diagrammed in Fig. 1 for a five-body final state). Then each

The first step funct'iori, B(qiz'), requires that energy be conserved at
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- vertex is 'gen'éra;"ce'd. one b}'r one. Thus, in order to ge’nefra.te an entire
final stateb,' one need only be able to ge“nevrat‘e thé t\%@-body H decay”‘ ver-
tex for_the reaction p— p,t P, and.connec.:t i:hese vertices to form the
entire final state. Onernqust étarf with the highest-mass vertex and work
down to the hext highest a;'id So 6n, since eneféy conservation imposes
constraints on the genefaﬁon éf the lower vertices.

- Consider the generation of the two;body decay p — py t Pp- Let )
and p be 'the four—momentufn and invariant mass of the parent in an ar-
bitrary Lorentz frame and Py by and P, My be those of the daughter.’so
Here p is input to the problem ‘and p1 and p,-are the desired answer;
py or pé (or b‘oth) may represent single vparticl'es or pa'rﬁcle combina -
tions. o

Fifst ’.c'cl).nsi'dér the most g'é’néra.lv ‘cabs'e*, in which both Py .and 'Ibz ‘rep'-‘
resent mulfiparticle covmbinvatiions., Thé invaiiant mas.s "|.L1 is firsj; gen-
erated in the in interval (Si’ ;H'SZ)’ where S1 and S2 é.ré'the éumé of
the rest ‘ma"’sse:é of the particles combining to form Py and py- Next By
is genei':a'ted in' thé interval .(SZ’ p.-}L,l)_. From these-‘rnasses one can
evaluate . '
2 2 2 o 1/2.

2
bod by -k 2
CIpl=lp,l=q= i - u?

Next, the direction for Py ( = k) is generated over the full range of
. | s . o 2 21/2 o, 2, 212
§ol1d angle, and By =4 k, By = - qk, Py = (q +p.1) , and p2=(q +|~L2)
These four vectors, Py and p,: SO evaluated, are expressed in the

(0,u). They may then be transformed to the arbitrary

Lorentz frame p

il

(p po).

Lorentz frame p

If one of the daughter systems (say pz) represents a single particle
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with mas's.'. m,, then only My and K need to be generated, since Moy —_—.SZ
= m,. If both daughters are single particies then only k needs to be gen-
veruated, 'sin.ce by = S1 =m, as well as By = S2 =m,.

. rifhe manner in which {p.i, pzb and k are genérated is dictated by the
deﬁendenée vbf the “freqvuency distribution function g(p), of Eq.v '(2), on
these v"ariavb.les. | ..

If the:vrr1—2 pi' s in Eq. (2) 'édrfeépond to the invariant masses bof Ithe
subsystems into wilich the final state has been fa;cfored; and if the n-1
t.'s 'co‘lﬁ'.rbé.’s‘pzorid to th'e.ffdur-momezitufn transfers squared to these sub-

systems, then Eq. (2) may be rewritten as

(=]

glp) = M gilp)= T g i), Wi, ¢y, (5

i=2 i=2
where e'é.ch gi(p) corresponds to a particular two-body decay vertex.
This constitutes the restrictions (referred to in the introduction) on the
choices forv the |~Li's and tj's »(of Eq. 2.) i_mp;osed by this method.
If a Breit-Wigner distribution for an invariant mass ié'gﬁ~ desired,
then the mass is distributed randomly éccording to a constant frequency
distribution within its limits. If a Breit-Wigner distribution for b, or

by, or both is contained in»gi(p), then one defines a new variable

| N |
" =f BW(x' )dx' = g{tan'1<’%:7f'—2: )- tan-1(§,7-%)],. (62)
S |

where x =py or i, and S = S1 or SZ‘ One then distributes m randomly
' (+);

with constant frequency in the interval [0, 7 , where

‘ : X -E '
) - éll{tan-‘(_r%%.— },—tah_i -51:7%} (6b)
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Once 1 isv‘g.enerated, in-veﬂ'rting. Eq. (6a) givevs fhe corre sponding value

for x. | |
L If gi(p) contains no funqtibnal dependence on ﬁ, then k is generated .

randomly in solid angle with a constant frequency distribution. That is,
the i)élar angle 9 is geﬁeratéd so that cos 0 is tu;iiformly distriButed in
thé’ interval (-1, 1) and the azimuthal angle ¢ is uhif_ormly generated in
the interv‘al:(O, 2m). Then k = (sin 6 cos ¢, siné sin ¢, cos 6).

If k is to be given an eat frequency distribution with respect to some
ﬁomenfum vector represented by A = (A, AO) in fhé Lorentz frame
p = (0,p), thena more involved procedure must be employed. Proceeding

as in the case of invariant masses, one defines a new variable

: | |
L

5_:[__ 2t g . (73

’ t- . o .

“and randomly generates & with a constant frequency in the interval -

P 6(#)‘]_, where
A e S |
st L (ea’t - et ) (7b)
and

2)1/2

+ .
t =m§+.:x2-2A0,(q2+x +21Alg  (7c)

and

mi=a%-1a12,
: ‘ .
Here, x = by o B,y depending upon whether Py OF P, is to have the ¢
distribution. Equation (7a) is inverted to solve for t once & is gen-

erated. Solving further for cos 6, one has
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cosf=2 Lt 4 (7d)

e
A fj;iore complicated angular frequency distribution may be given to
k. Let I(cos 6) be some decay angular distribution desired for k with

respect to the direction defined by A.  Define a new variable
’ cos 6 '
Yy = . I(cos 8')d(cos 8') . (8)
and randomly distribute Yy with uniform frequency' in the interval
[o, y,(+)]v, where
. Ty _ :
vt =[ I{cos 6') d(cos 6') .

__ -1
Equation (8)’is then inverted (if such inversion is pessihle in closed
form) to obtain cos 0 in terms of the generated y.

Ohée cos'§'is known, a unit vector 1 is generated such that EZ =cos 0
and £ has a random azimuth ehgle with respect to A; an azimuthal angle
¢ is Vgenei"ated in the :intervv'al. (0}, 2m). Then £ = (sin O cos ¢, sin 6 sin ¢,
cos 8) is the representation of k in the coordinate system, where
. é/ li\ | = (0, 0, 1). Then ! is rotated to the coordinate system, where
A/1Al=(a, A, A)/ Al toobtaink, ie., k=R(a/ |A| )L, where
R is the rotation operator.

The vector A may be any momentum in the problem. For example,
it could be the beam or target momentum, expressed in the Lorentz
frame p = (0, 1), or the helicity direction p. Also, the 2t or I(cos 0)
vfrequency d15tr1but1on can be glven to either p,l or Py-

If Py Or P, (or both) represents rnultlpartlcle systems then’ they be -

come parents and are in turn factored into daughter subsystems, and the
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four-vectors of these daughters are generated in the sarne manner as
above. This factoring of multiparticle systerns into subsystems is con-
tinned until the fqur—{rectors._ of all of the final-state particles are.gener—
at‘ed. | v | |
IV ‘Pha-s.e-SApaeeWei‘ghvt':ing

The randern-event generefi'on nrethod de s'cribed in the preeedingv sec-
tion uses invariant masses and decay solid angles of particle subsystems
as the generation Yariable‘s. These particular variableé were chosen be-
causewthe limits impo{'sed upon them by momentnm and energy conservation
are easily obtained. Events distributed uniformly in Lorentz-invariant
phase space are d1str1buted umformly in these solid angles but not, how-
ever, in these invariant masses. Conversely if events are generated
umformly in these invariant masses [Wthh is the prescrlptlon of this |
generation mej:hod for glp) = 1] tney_wil_l 39_1: be uniformly distributed in
Le'rentz—in\"'rariant pha‘se s'pa.ce,‘ This is epparent from Eq. (4b), which

may be rewritten as

- - ‘ n . n-1
PoE., m, +oom) ={—+— 1 gldo n dp,de, e(q )6(connected).
0 1 _p 1 n

n N . -
2 EO i i=2
(4c)
Inspection of Eq. (4c) shows that events generated uniformly in the n-2
pi's will have the frequency distribution ( I q, /2 EO -1 in Lorentz-
i=2

invariant phase space. Thus, in order to achieve distributions that cor-
respond to Lorentz-invariant phase space, each event generated by this
method must be weighted by the quantity

n
W z —— II q. . ' (9)
P 2Pg, i=2
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Equatipn (4c) may be written as

n n-1
dp = J(p;k, 2)d0n I
Coi=2

dg,dp,, where T(p;p,Q)  (10)
represents the .Tac'obia.n of the transformationvfrom the mass and angle
variables to those of the phase space. Thus, the phase-space weight is
just this Jacobian. For the general case consider, as was done in the in-
tfoducfion, the phase-space integral R= fvr(p)dnp = fwr(p)J(p;a')dnoz,v
where ‘J(p;a) is the Jacobian of the transformation frofh the set of vari-
ables, a, to those of phase space and w is the volﬁr’ne, v, expressed in
the «a variébles. EValuatihg R by a Monte Carlo method, one has
R = (W/N) .g1r(pi)J(pi§ a).,' where the N Monte Carlo events are distributed
randomly'vlv_ith constant frequency in‘the variables of a. Here W = fwdnd
= fvan/J(P;a’)- In the introduction the special case of J(p;a) = 1/g(p) was
considered. vThe equation for the evaluation of R may be rewritten as
R = (1/N)§ r(pi)w(pi), where W(pi) =W J(pi;a) is referred to asb the
" phase—s;;}:e weigh’c-” for the ith event. Thus, whenever the basic gen-
eration variables are not those which are uniformly distributed in the
phase space, a phase-space weight must be applied.’

For the event—generation method discussed in this report we choose
as basic generation variables those which are uniformly distributed in a,
multidimensional cube of unit length on each side. That.'is, eech of thevse
basic generation variables is a dihleneionleSS random number, generated g
uniformly in the interval (0,1). Then, W =1 and J(p) will be the Jacobian
of the tre,n.sformation from this unit cube to the phase space. This trans-

formation is accomplished in two steps. First the phase space is ex-

pressed in terms of the masses and decay solid angles appearing in
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Eq. (4c), and then these masses and soiid angles are expressed in .terms

‘of the random numbers. The first transformation was accomplished by

embloying the factorization pi‘operty of Loz;entz-invariant phase space as

described 1n Section II, and its Jacobian, J(p;S2, 1), is given by the r‘igh’c—

havr.ld side 'of.Eq. ('9), " The sécond tr'an.‘sformation and'its; Jacobian, J(i, ),

are detailed below. ' The Jacobian of the éorﬁélete trénsforﬁlétion'is the

phase-'si)ace weight, w(p),l for the Monte Carlo events, and is given by

wip) = T(pi WIT (R ). - |
Consider the generation of the two-body decay P~ ptp, discussed

in Section III (the notation used in the following discussion is the same as

ip .Section. 111). The invariant mas s. By is generated uniformly or according

to a Breit-Wigner distribution in the interval ‘(Si, - p—SZ) im?os ed by .energy

conservation; For the case of uniform genervati'on,' this can be accomplished

by _s'ettin'g“ My = (e - S'2 - S1 )r1 + Si, where ry is a random number gener-

ated uniforfnly iﬁ the iﬁté'rfral (0,1). "Thve Jacobiaﬁ of this transformation

is simply J(p1) = (}l - S2 - Si). Fof the case éf Breit-Wigner generation

of p, the transformation is a two-steﬁ proéess, First m, is generated

(+)] , then Eq. (6a) is inverted to solve for My The

1
on : - . = () _(+)
generation of ny is accomplished by setting My TNy Ty thus J(n1) =Ny

in the interval [ 0,7

The Jac»c.)b.ian of the transformation involved in solving for By in terms of
ny is 1/BW(}.L1) by construction. The Jacobién of the complete trans-
formation for the Breit-Wigner vgeneration of Moy is J(pu1) = J(ni)/B.W(p,i)' |
= n{"/BW (). | o |
The second invariant mass By is generated in the interyal (SZ’ .vpL-|.L1).,
also imposed by energy conservation, in the same manner as the gener-

ation of_|.:u1 described above. Thus, J»(p.z) =Ho- ey - ‘S2 er,.uniform ' ;
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generation or J(uz) = n(2+)/BW(pz) for Breit-Wigner generatién. Specifi-

cally for.Bl.'feit—Wigner _generation of Wy or vpzh (or b'oth),

[(p1-E1)2/1"1] +1_; , (11a)

O frSenEy 151 7Ey
Tep==|ter 172 |2 T2
Y \ 71

o, r M-, -E S,-E | y
2 172 -1 P2 %2 2
J(HZ)-—T [tan_ _ (-—I..27-2—-—') ~-tan (-f??)] [(}LZ-EZ)Z/FZJ +1 } . (11b)
" The direction k = v(cos 9, $) of pn,1 (or—pé) in the rest frame of P is
generated in the full range of solid angle. For the case of uniform fre-
quency distribution this is accomplished by setting cos 6 = Zi"z—1 and

» where r, and r¢ are random numbers generated in the interval

¢
(0,1). Then d(cos 6)d¢ = 4w dr_ d'r¢, so that J(k) = 4m.

b = 2nr

Consider now the case in which k is given an eat frequency distri-
bution. Fifst 6 is uniforinly génerated.in the interval [ O, 6(+)] (Eq; 7).
That is, & = 5(+)rz, where r_ is a random number generated in the inter-
val (0,1). Thus J(ﬁ).r S(+). Then Eq. (72) is inverted to solve for t. The
Jacobian of this transformation by construction is e_at, thus J(t) = 6(+)e-at.
Then Eq. (7d) is inverted to solve for cos 8, so that d(cos 0)/dt = 2/(t+-t—).
When these results are combined, J(cos @) = 2/6 (-I._)e_at/(t*-t_). Next the azi-
‘. muth angie, $, is generated in the same manner as above, so that J(d) = 2w,

) .

C‘ombinihg these results and inserting the explicit expression for 6(+., one

haé

+ -
41r(ea't -eati - (12)

T(k) = J(cos 8)T(¢) =
att-t7) &2t

for the case of an e’ generation for k.
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The final Jacobian for the decay vertex p — p1+p2 is J(pi, B s k)
= J(pi)J(pz)J(k) The Jacoblan for the ent1re f1na1 state is the product of
the Jacobians of =ach of the decay vertices that _ combme to form the final .

state. Therefore,

- (), - () I
J(,Q) =T J(y )J(H )J(R) (13)
i=2 :

where the product 1s over all the decay vertices.

Equatmn (..1'3) reptesents the_ Jacobian of the transformaticn frorhthe
3n-4 random numbers to the i.nvariant masses and decay solid ahgles. This
must be comb1ned with J(p;, ), which is the Jacohian of the-transforma—

tion from the invariant masses and decay angles to the phase space, in

order:to form the phase-space w.elght for events generated by th1s method. Thus,

oty o AR )6
wip) = J(p;p2) T (1K) = —— 11 J(rL )J(u JI(k,).  (14)
o 2 EO"izz _

Equatlon (14) represents the Jacob1an of the transforrhatmn to the n-

particle phase space from the (3n-4)- d1mens1ona1 unit cube
| V. Applications

This random—event generator may now be used to evaluate phase-
space integrals and simulate experiments as discussed in the introduction.
To evaluate’phase—space integrals of the forrh R = [ r(p)dxg or simulate
an experiment with the matrix element squared, r(p), a generation func-
tion g(p)v_(Eq. 2) is first chosen that most closely approximates r(p). rI‘_he
n-particle final state is factored into the appropriate subsystems whose |

invariant masses and four-momentum transfers squared enter explicitly
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into g(p). A sample of N Monte Carjlo events is génerafed so a',vs‘to cor-
respond to é. random distribution in Lorentz-invariant phase space with
frequeﬁcy ’g(p‘). Frorri the discussion in the. i'ntvroduc’:tion if is ciear thét
the more closely g(p) approximafes r(p) in the volume v, the fewer the num-
ber of Ménte' Carlo e.vents need‘ed for a>given statistical accuracy, and thus
the greater the efficiency of the method. | |

For each event, f(p) as well as w(p) (Eq.,' 14) is e\}aluated, and then
oné has |
N.
z

RO = re) aB = (4/N) 2 xlog) wip) 00vpy)- (1)
V= : :

i=1
The sum is kc‘)v‘e:r the genefatéd evénté; 'V is the total phase-space volume
accessible to the s'y.s.tvern," and v = V is the subvol.ume of pha;se space into
which the f_ate is t(o be determined. The step function 6(v-p) is zero for
the regioi; of phase space outside v and unity inside. This subvolume
could be, for example, the phase—space vblume included by the experi-
mental apparatus or that defined by an interval of a kinematic variable.
The phase-space integral, R(v), as evaluated in Eq. (15), may be used
directly to detei‘mine interaction rates. This is because ‘W(p) is the
Jacobian véf the transformation from a unit volume to the phase space.
If the n-particle final state results from the decay of a particle with en-
ergy E in some Lorentz frame, then the decay rate (number of decays per

particle pér time) into the_ subvolume, v, in that Lorentz frame is

M) = 1/E(v) = R(w)/2E (2m)°P 7%, (16)
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If the final state results from the collision of two particles, then the total

collision cross section into the subvolume, v, is

1

o (v) = R(v)/4m !BI (21'r)3n_4 , _ (17)

where m i‘s‘ fhe mass of one of the incident particles and ” |§| is the mo-
mentuni of thé other particle in tHe rest frame of- the first.

Differential cross section; are evaluated by employing Egs. (15) and
(17) with appropriate definitions of the subvolume, v. Let dg/de be .the'
differential cross section with respect to‘si)me measurable qﬁantity, a.
Thendo = (dd’/da)da dr, approximately, A¢ = ¢ (A‘va) = (do/da) Aa. Here
Ao is a small interval in the variable, o, centered at @y and Ava is the
phase-space volume subtended by the interval Ae. Combining this with

Eqgs. (15) and (17), one has

r(pi) w(pi) 6 (ai—ao + Aa/2) 9 (ozO +';Aa/2 - ai)
3n-4

- (18)
(Aa)N4m Ipl (2m) ‘

Here a, is the value of @ for each Monte Carlo event. - The approximation
becomes an equality in the limit that Ao -0 and N - » . The product
of the step functions effectively accepts only those events which lie in a

bin of width Ao centered at @y To obtain do/da as a function of « one

may simply vary a, in steps of Aa. According to Eq. (18) this is equiv-

0.

alent to generating a sample of N Monte Carlo events and histogramming

the variable a in bins of width Aa and with weight
r(pi)w(pi)/(Aoz)Nllm Ipl (21'r)3n_4 applied to each entry. 6
From the above discussion it is easily seen that all Monte Carlo

efficiency calculations essentially reduce to comparing the relative cross
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sections (or decay rates) into various phase-space subvolumes for the
same modei., r{p). These st_lbvolu_rnes need not be explicitly known. One

‘ generatés Monte‘ Carlo events in:the whole phase-space volume and, ac-
cording té Eq (_15), discards those which are outside the subvolume in
question. The decision to discard an event can be madg. on any basis
whatsoever (for e?carnple, detector geometry). This ability to define phase
Spac.:e subvoiﬁmes and also the integrand, .r(p), in any set of variables,
rather than the integration variables of some phase-space integral, as
well .asv the ability to integrate any fuf;ction, r(p), makes the Monte Carlo
method a useful tool.

The Monté Carlo event generator 'described in this report allows the
generation of events with frequency distributions g(p), whose form is
giv;an by Eq. (2). However, this generator may be used to generate events
with more ‘ge‘n_eral frequency distribu’cions. Let gi(p) represent a particu-
l.ar frequency distribution of thve form in Eq. (2). Then Monte Carlo

events with the frequency distribution

M
glp) =2

3 Ng;()/G; | L)
may be ‘genéfated with this event generator. Equation (19) represents a
frequencjr_ distribution thavt is a linear combination of fflequency dist.ri— _
butions of the form in Eq. (2). Ni is the number of evenfs generated with
frequéncy gi(p), and M is thek number of such freqﬁency distributions; |
I_—iere Ci = fgi(p)df)1 = (gi(p)w(p», where the average is taken for the
events gepefated with frequency gi(p).

First, N1 events are generated with frequency gi(p) as pre‘svcribéd.
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in Section III. Then N, events are generated with frequency gz(p), and so

2
on until NM events are generated with frequency gM(p). The total number
of events generated is N=2 N. The phase-space weight applied to each
i=1 v :

event for th1s generahzed frequency generation is

‘ g.lpy / M g.(p)
W.(p) =| N ](L} / Z N, —-J-— w(p),
: i i=1 i ,J

where W. v(p) ie the generalization of w(p) (Eq. 14) for the case of more-
than one 51mp1e frequency dlstributlon, g; (p). Note that 'che form of
Ww. (p) for an event depends upon the S1mp1e frequency distribution, g (p)
from which it came, and for the special case of M‘ =1, Wi(p) = w(p). Sub-
stituting this generalized weight, Wi-('p), for w(p) in any of the above equa-
_’tions makes the equafion valid for Ehe generalized fréquency distribution,
gle) of Ba. (19). |

Th1s Monte Carlo method allows the 51mu1at1on of experlments with
transition rate r{p) by Weighting each event generated by r(p)w(p), or
r(p)Wi(f;). For some applicaﬁons, }Viowever,b nnvireighted evente are re-
quired whose density in Lorentz-invariant phase space is given b$r r(p).
This can be accomplished by generating along with each event a random
number, x, in the interval (o’xmax)’ where X ax is an upper bound for
the e\rent weights. Events are discarded whose weight is less than x,

and those not so discarded are each given unit weight. These events are

distributed randomly with a frequency r(p) in Lorentz-invariant phase -

space. The upper bound, X ax’ need not be the least upper bound for
the event weights, but the closer it is to the least upper bound the more

efficient the method becomes. 7 However, this method is always less
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efficient than using all the events with their corresponding weights.
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Appendix A

Moi‘ev Efficient Invariant-Mass Genération

This section discusses in more detail the generation of invari'a.nt
masses of paf,ticle subsfstems and the resultant phase-space 'weighté in-
troduced by the genératibn fnethod. As discussed in Sections‘ IIT and IV,
‘these invariant masses are distributed randomly with a freque'ncy. that is
either a constant or ‘a., Breit—Wigner distribution. Associated with this
geﬁération method i's‘ a Weight to be éppliéd to each event which is the
Jacobian of the transformation frorﬁ the: random numbers to the corres
Sponding in\}al'ia;nt masses. If this Jacobian is not é constant it can in-
troducé addi’cional stétistical ﬁncertainty_ to'calculations uéing these evénts.

C‘onéid'efﬂfirst the case in \;&hich no invariant masses are to have Breit-
Wigner generation. Then each invariant mass by is genérated with con-
stant frequency within its limits. That is, by = Ri T, + Si’ where Ri is
the range allowed by energy conservation for My i'i is a random number
generated in the interval (0,1), and Si is the sum of the rest masées of the
particles combining to form the subsystem. In general Ri depends upon
other invariant masses in the final state, specifically thosé that afe
génveratéd bevfore M The Jacobian of the transfprmation from riv to B is.
simply J(pbi, ri) = 8}.ti/8ri = Ri' The total Jacobian for the transforma -

tion from all the random numbers to all the invariant rhasses is then
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n1
or) =1 R (b, oo i),
i=2

For large values of n this Jacoblan as a function of the p s has a very 5

Here n is the number of final-state particles.

N rapld variation. Thus, when it is apphed as part of the phase-space weight
for the geh.e'rated Monte Carlo event.s';a great loss of efficiency result;. A
m’eaé.uvzv"e 6f the effiéié_ncy is the value of the quantity € =<J_>2/(J Y.
This qﬁantity has vlalue.: unity for J(p, r) eqﬁél to a constant, and becomes
smaller as J(p, r) becomés vmore rapidly varying.. | |

If the fin_'a_l state is factdféd into cascading subsystems all of which re- .

coil from a single particle, then it is straightforwé,rd to show

[2-2)]! ' ot (A1)

b

22 Z[(m-2)1 P n>6 J(n 2 (n-2)! |

' €(n) =

~where the approximation 'empldys Stéi‘ling's forrhula for (n-2)!. Thué, this 3
method .6f .invafiant-masé géne ration becomes very inefficient for large mul- «
tiplicity in'the"ﬁnal state. Factoring the final state in a different way in-
creases the efficiency, but it .‘still" has the same general depehdence on n
as Eq (A1) for large multiplicity,

It is possible to increase the efficiency by generating the invariant ;

masses with a nonconstant frequency distribution such that the Jacobian of

the transformation from the random numbers to the masses has a less rapid
variation than for the case of constant-frequency generation. Let

M. = Ri P; + Si’ where p is a dimensionless number generated in the inter-

1
val (0,1) but with frequency hi(p;). Then J,(u, ;) = R,(3p;/0r,) = Ri/h(p;) |
so that the total Jacobian is |

v n-1 n-1 B !
J(, 1) =< R, /[n hi(pi)J . (A2)

i=2 i=2
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If a set dffunc_:tions hi(pi) can be found so that J(p, r) is a slowly varying
function then the efficiency can be increased.
) Cdnsider the generation of a two-body decay vef_tex P~ Py + p,» 2as

discussed in Section III. (The notation used here is the same as in Section

1P1.7 >
particles in the Py and P, systems respectively. If

IL) Letp, =R, p, +S, and b, = R,p, +S,, and let there be M, and M,

v v (M1+M2—2)!‘ M'].-Z ‘MZ_i
hi(P1) = (Mi_z)! (M.z-i-)! pi (1'9,1) (A3)
and o
- MZ-Z _
hZ(PZ)‘ =M, -1)p, o (A4)

for every decay vertex in the final state, then it is shown in Appendix B
that the total final-state Jacobian has the constant value

n-2
B -5

T(r) = 2o (A5)

Here VEO is the center-of-mass energy for the final state and Sﬁ is the sum

of rest masses in the final state. Thus, the effiéiency due to the invariant-

mass ge‘ne'ration is unity, independent of the final-state multiplicity.

-1
Equation (A4) implies that p, = rZ(MZ'i) , where r, is a random
number generated with constant frequency in the interval (0, 1). Equation

(A3) can be inverted onlyfor the cases in which M2 =1 or M,1 = 2. For

. . g _v1 _1 .
. A _ . o
these cases Py = r1(N[1 ) or p, = 1 - riM’2 . For all other cases

Eq. (A3) cannot be solved explicitly for pyasa function of r1 However,
it is easy to show that if M1 + M, - 2 random numbers are generated with -
constant frequency in the interval (0,1), and then ordered from smallest

to largest, the (Mi—i)th ordered random number will have the frequency

 distribution given by Eq. (A3).
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For Breit-Wigner generation of an invariant mass the Jacobian ef the
transformation from the randqm numbeTr to the invariant mass is given by
Eq. (11‘). In most applications, the motivation fer employing Breit-Wigner
inva.ria;nt—rnas..s generation is to concentrate Monte Carlo events in a region
Where the matrix element squared r(p) has rapid variation approximated by
a ‘B'reit'--Wi'gner shape. Thus, the major inefficiency in r(p) J(1) will be
caused by the.’.'variation w1th invariant fnass of the first term contained with-
in the bracbket‘s of Eq (1>1)’;,L This ferm will have ranid variation only wh.en‘ _
the upper limit of the inVa.'riant mass is less than or near the central velue

of the Breit-Wigner.. Therefore, it ie al\&ays most efficient to gene.rate in-
varie,nt masses with Breit-'Wigner frequevncies as eariy as pessible in the
generation of the event. The later in the event an invariant mass is gen—
erated the fnore ‘restr”icted is itsl avere,.ge range and the closer fhe npper |
limit will be to the central value of a Breit-Wigner. This wili cause more
rap'id‘ var'ietion of fv(p') J(li')"andv a lowefing of the efficiency. This effecf is
also'.p"resent fef eatl'rnor_ne‘ntum—trans'fer'-squared distributions, so that sub-
v syétems Which are to be generated in this manner ehould. also be '.ge-ner.ated
as early as possible within the event for maximurn efficiency.

The result ef the discussion in this appendix is, thenb, an alternative
prescripﬁon to that given in Section III for the generation of invariant |
masses that leads to greater statistical efficiency. Consider once again
the generation of a two-body decay vertex p —» py pé (notation is the same
‘as in Section III). If both invariant masses Hi and by have Breit-Wigner
frequencie.s the prescription of Section III is used. If .only one of them is
to have a Breit-Wigner fre.quency then it is generated as in Section III and

" the other is generated with the frequency given by Eq. (A4). If neither
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invariant mass is to have a Breit-Wigner frequency distribution, the first.
oﬁe is given the frequency distribution of Eq. (A3) and the second that of
Eq. (A4). |

This prescription will always result in greater statistical effif:iency
than the pres ci‘ip’cion of Section III. The increase in efficiency depends
upon the number of non-Breit-Wigner invariant-mass generations. Inthe
limit that 5,1'1 of the final_—sté,te invariant masses are non-Breit-Wigner, the
increase in efficiency resulting from.this prescription is closély approxi-

mated by the inve_,r‘s'e of Eg. v'(Ai)’.

Appendix B
This 'section will prove the assertionof the previous section that gen-
eratihg_the final-state invariant masses with the frequency distributions. of
Eqgs. (A3) ahd.(A4_)_1‘eads to the constant Jacobian given by Eq. (A5)..
Consider first the special case in which the final _statev is factored in-
to a set of cascading subsystems, each one recoiling from a single particle.
(Notation u_sed here is the same as in A}Spendix A.) For this case one has .

the recursion relation Ri = Rjtq pjpq and Rn-1= EO - Sn, so that
n-t n-1 n-2 Bl 2
Ri=(E0-Sn) nn Pk and II R.=(E0-S) mp
- Pk=itt 0 i=2 Y n i=2
- ‘ N v 52 n-1 L2
case Eq. (A3) reduces to hi(pi): (i-1)pi “,so that I (’i-i)pi_ = (n-2)!
n-1 . . : - - i=2
I p;_z, and therefore from Eq. (A2) one has the result expressed by
i=2 ' . ' :
Eq. (A5).-

; Also for this

Nexf consider a vv‘slightly m.ofe general case in v'vhich. the final st‘ate is |
factored first into two subsystems of Mi and M, particles respectively, and
then each of these subsystems is factored into cascading subsYstefns as
‘above, Thé, contri‘bution to the fotial final-state Jécobian fl."om the factoring

of each of the cascading subsystems is
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M,-2

1 M, -2
T, 0 = —m 12)' - ?M n2)- P1.1 (B1)
1 R T My -er |
and
M., -2 -
2 M,-2
T, e 7) 2 . = — S (ep) 2o eyt . (B2)
M, (o) ey vy s F U

where By and b, are the invariant masses of the two recoiling subsystems.

From Egs. (AZ) and (A3) one has

B R (M, -2)! (M, -1)! (E,-S) X
Er hi(pi): M, -2 M,-1 (B3)
{n - 2)! 04 (1-p1)

and from Eq. (A4),

3|~L2 ) RZ (EO - Sn) (1 - 91)

oy _ | 54)
or h,(p,) M, -2
2T M, -1y, 2

Combining Eqs. (B1), (B2), (B3), and (B4), one has, for the total final-
state Jacobian,

. n-2
O, O, _ (Ey-8)

J ’r =J 9rs.T ,1‘ =
(1) = Ty () (03) 3 5 = —G,

(B5)

Equation (B5) shows that for the purpdse of calculating the Jacobian
J(&, r), each pair of recoiling particle subsystems in the final state may
be replaced by a single set of cascading subsystems. This replacement

can be repeated for all the multiparticle recoiling subsystems in the final



25.  UCRL-19206 (Rev.)

staté.' Then the Jacobian is just given by'Eq. (A5).
» ,Fo.otnotes y

1Work done under auspicés of the U. S. Atomic Energy Commission.

ZPhase' spéc'e,- as discussed here and defined by Eq. (1), is the momentum-
space factor of phase space as usually defined in statistical mechanics. |
The spatial integrations of phase space are ignored in this report, since
the résulté of scattering e};perimgﬁts‘are state& in terfns of the momenta
of the inte_ré.;:ti;g particles. If o_né normalizes ina Box of volume H, then
thé fihaSé-ISpaée i;lt;egral _c'ontavins" the vfaét;)vi»' Hn for a"n n-particlé f1na1 sféte.
.However,"vsvince no physical qua’htity.méasurable' in a s‘caittering experiment
depends upon this spatial volume factor, it'i'FStignc;red., For a more édm-
piete discussion see reference {1], p. 80.

A point in Lorentz-invariant phase space will be referred to as an ' event"

" in this report.
_46(x) is the‘ Héavyside step function, 6(x) ={2’ ;‘: 8

SEquatién (8) can always be inverted by simple numerical methods.

6'I‘he fractional statistical uncertainty in the value of dg/da for each bin

of the histogram is \/<w2> /(N(w}z-;, where N is the number of Monte
Carlo events in the bin, (W) is the mean weight, and (w2> the mean square.

weight for the events in the bin.

7A method of obtaining the least upper bound is to perform a search inthe
(3n-4)-dimensional cube for the maximum of the function
r(p)w(p) = f(x1 e X e X3n-4)’ where n is the number of final-state

particles and the X, are the random numbei's in the intervals (0, 1). vThe -
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function f(x1 oo x1 X3n-—4) is obtained by generating an event corre-
sponding to a specific set of xlS and evaluating r(p) and w(p) for the event.
The search can be performed by using any one of many computer codes that
optimize a function of several variébles. I(See, for example: S. Derenzo,
MINF68--A General Minirnizing Routine, Lawrence Radiation Laboratgry
Group A Programming Note No. P-190 July 1969.)

8Note'that—fhis applies only to the Jacobian of the transformation from the

random numbers to the invariant masses (Eq A2). Thé total phase-space
weight for tl.'xve ev'ent (Eq. 14) ‘s.till contains thé 'Jé,cobian of the transformation
frdm the invariant masses to lthé phase space J;(p; Q) = (ﬁz qi) /2" EO’

which alsé has a dependence on the invariant masses. . TllrL; effect of this
variation on the event efficiency is much less dramatic than that given by

Eq. (A1), but is still not negligible. - For n < 15 the efficiency is approxi-
mated b.y' €(n) = e_(n_zl)/g, where the value ;f n d:e‘péndé“:greatly upon
the center—of~ma$é energy EO and the rest masses of the final-state par-
ticles. The least efficient case results when all the final-state particles
have zero rest mass. In this case _H ~ 5.5 independent of EO' However,
when E0 = 10 GeV and the final state is éomposed of a proton and n-1

n

pions, n = 9.0. For n > 15, €(n) falls more slowly with incréasing n.

For n = 25 the efficiency is 0.03 for the massless case and 0.13 for the v
later example.

Reference

‘1. R. Hagedorn, ""Relativistic Kinematics," W.A. Benjamin, Inc., New

York (1964), p. 94.
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Figure Legend

Fig. 1. The three ways to connect two-body " decay"' vertices to form a

five-particle final state.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commzsszon nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or )

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”

“includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to,-any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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