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Abstract

Animals such as raccoon dogs, mink and muskrats are farmed for fur and are sometimes used
as food or medicinal products!-2, yet they are also potential reservoirs of emerging pathogens3.
Here we performed single-sample metatranscriptomic sequencing of internal tissues from 461
individual fur animals that were found dead due to disease. We characterized 125 virus species,
including 36 that were novel and 39 at potentially high risk of cross-species transmission,
including zoonotic spillover. Notably, we identified seven species of coronaviruses, expanding
their known host range, and documented the cross-species transmission of a novel canine
respiratory coronavirus to raccoon dogs and of bat HKU5-like coronaviruses to mink, present
at a high abundance in lung tissues. Three subtypes of influenza A virus — HIN2, H5N6 and
H6N2 — were detected in the lungs of guinea pig, mink and muskrat, respectively. Multiple
known zoonotic viruses, such as Japanese encephalitis virus and Mammalian orthoreovirus*®,
were detected in guinea pigs. Raccoon dogs and mink carried the highest number of potentially
high-risk viruses, while viruses from the Coronaviridae, Paramyxoviridae and Sedoreoviridae
families commonly infected multiple hosts. These data also reveal potential virus transmission
between farmed animals and wild animals, and from humans to farmed animals, indicating that fur
farming represents an important transmission hub for viral zoonoses.

Keywords

fur animals; virome; meta-transcriptomics; cross-species transmission; coronavirus; influenza A
virus

Introduction

The cross-species transmission of viruses from animals to humans drives infectious disease
emergence, occasionally resulting in global pandemics®=°. Mammalian wildlife and farmed
animals carry a wide diversity of potentially zoonotic viruses'9-14, acting as hubs for the
onward transmission of emerging pathogens. However, there has been a lack of surveillance
to determine which animal species are most likely to carry zoonotic viruses and which
viruses are of greatest risk of emerging in humans!1:13.15.16 Ag there is often limited overlap
between wildlife and humans, secondary contact with farmed animals may constitute a
probable route through which zoonotic viruses are transmitted to humans!7-1°. Virological
surveillance of farmed animals therefore provides an opportunity to address these potentially
public health issues10-11,

Current virus-related research on farmed mammals focuses disproportionately on
conventional livestock, such as swine. In addition to conventional farmed animals, farmed
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fur animals have special economic and modern fashion cultural importance in many
countries. Common farmed fur animals include a wide range of species and taxonomic
groups, ranging from rodents (such as muskrats, nutria and guinea pigs), carnivores (such
as mink and foxes) to even-toed ungulates (such as deer). Many countries farm particular
fur animals for national and international fur trade exchanges. Importantly, fur animals such
as foxes, civets and mink have been suggested to be the potential hosts for a variety of
human viruses, including influenza A virus (IAV), SARS-CoV, and SARS-CoV-220-23 and
outbreaks of H5N1 1AV have recently been reported in farmed European mink!4. As humans
regularly come into contact with farmed animals, it is critical to improve our knowledge

of the viruses that circulate among farmed fur animals and their potential for zoonotic
transmission.

Most metagenomic studies of animal viruses generally pool individual animal samples,
organized by species or sampling location. Although pooling is an efficient way to examine
virus diversity and evolution4, it hinders the investigation of viral prevalence, co-infection
and the detection of low-abundance viruses within individual animals. Moreover, most
metagenomic studies of wildlife and farmed special economic animals are based on faecal
sampling, such that viruses may have originated from the consumption of other animals

or from hosts present in the same environment 2>-27. Fewer studies have considered other
tissue types, particularly those sampled from diseased animals. Here we address these issues
by sequencing individual organs of animals that probably died as a result of infectious
disease.

Asia is one of the most active regions for fur animal farming and trading?829. Despite this,
little is known about the viruses that circulate in fur animals in this region. To fill this

gap, we sampled farmed and wild fur animals across China, including species that were
previously ignored in virological studies. Our analyses provide resources for research into
the diversity of viruses that circulate among farmed fur animals, as well as a means to assess
whether particular animal species are at heightened risk of carrying potentially zoonotic
viruses.

Sampling and sequencing of fur animals for virome analyses

All animal samples were categorized into two groups on the basis of species breeding
intensity and distribution in China: (i) the “main” farmed fur animals, and (ii) multipurpose
(other) farmed animals. The main farmed fur animals comprised four species (order
Carnivora) that can be farmed only for fur and not for food consumption: Neogale vison
(mink), Wulpes vulpes (red fox), WVulpes lagopus (Arctic fox), and Nyctereutes procyonoides
(raccoon dog). We sampled 164 individuals from these four species, 116 of which came
from four provinces, of which official statistics show that they have intensive breeding
programs (Hebei, Shandong, Heilongjiang and Liaoning). The remaining 48 animals were
sampled from six other Chinese provinces. For the multipurpose animals bred for food
consumption, traditional medicine and fur purposes, we sampled 297 animals comprising
24 species from 5 mammalian orders and covering 25 provinces/municipalities: Carnivora
(n = 34, 7 species), Artiodactyla (n = 34, 7 species), Rodentia (n = 157, 6 species),
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Diprotodontia (n = 3, 3 species), and Lagomorpha (n = 69, 1 species) (Fig. 1a and
Supplementary Fig. 1a). Of the total of 461 fur animals sampled, 412 (158 main fur animals,
254 multipurpose animals) originated from breeding environments, and 49 (6 main fur
animals, 43 multipurpose animals) came from wild sources (Fig. 1b (left)). Here, “wild”
refers to animals that live in natural or artificially created wild environments, such as
wildlife sanctuaries.

On the basis of clinical signs predominantly manifested as respiratory and gastrointestinal
disease, we collected lung and intestinal tissues for single-tissue library construction. In
total, 697 tissue samples were collected, comprising 441 intestine samples, 255 lung samples
and 1 liver sample from one wild Cervus nippon (sika deer) (Fig. 1b (right)). Most libraries
had good sequencing quality (mean quality score of 20 = 95.2%). Among libraries that
contained viruses, more than half had more than 3,398 viral reads (Fig. 1c).

Viromes of farmed and wild fur animals

To focus on vertebrate-associated viruses (that is, those that display close

phylogenetic relationships to viruses that are known to infect vertebrates),

we excluded non-vertebrate-associated viruses from our analysis. Accordingly,

we identified and PCR-validated 125 probable vertebrate-associated viruses,
encompassing 101 species of RNA virus from 16 families (Arteriviridae,

Astrovirigae, Caliciviridae, Coronaviriaae, Dicistroviridae, Flaviviridae, Hepeviridae,
Orthomyxoviridae, Paramyxoviridae, Phenuiviridae, Picornaviridae, Pneumoviridae,
Sedoreoviridae, Spinareoviridae, Togaviridaeand Tobaniviridae) and 24 species of DNA
virus from four families (Anelloviridae, Adenoviridae, Circoviridae and Parvoviridag), some
of which were present in high abundance (Fig. 2a, Extended Data Fig. 1). Members of the
Paramyxoviridae, Coronaviridae and Caliciviridae families were the most abundant in lung
samples, while members of the Coronaviridae, Sedoreoviridae and Astroviridae families
were most abundant in the intestines (Fig. 2a).

These data greatly increased the diversity of virus families in multiple animal species:
among the 125 viruses detected, over 60% led to an expansion in virus host range
(Supplementary Fig. 1b). Most of the fur animal species sampled here contained between

2 and 23 vertebrate-associated virus species. Notably, mink carried 23 vertebrate-associated
virus species from 11 viral families, raccoon dogs carried 19 virus species from 14 viral
families, Cavia porcellus (guinea pig) carried 20 virus species from 11 viral families and
Acrctic foxes carried 13 virus species from six viral families (Fig.2b and Extended Data
Figs. 1 and 2a). In the case of guinea pigs, we identified members of the Flaviviridae,
Circovirigae, Orthomyxoviridae, Pneumoviridae, Spinareoviridae and Parvoviridae families
for the first time, to our knowledge, in these animals (Extended Data Fig. 2b). Of the
libraries that contained vertebrate-associated viruses, nearly half (n=166; 47.4%) contained
2—7 virus species (Fig. 2c (left)). Co-infections were most common in guinea pigs, mink,
raccoon dogs and Oryctolagus cuniculus (the rex rabbit) (Fig.2c (right four panels)),
including Alphacoronavirus 1 and Amdoparvovirus carnivoran 3, as well as Aichivirus A
with several Guinea pig astroviruses (Extended Data Fig. 2¢). Two co-infection events
involving Rabbit coronavirus HKUI4 (RbCoV HKU14) and rabbit coronavirus 1 were
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observed in rabbits (Extended Data Fig. 2c¢). Approximately one-quarter of the genome
sequences generated here were near complete and half were more than 93% complete,
indicating a good coverage of viral genomes (Fig. 2d). Finally, no vertebrate-associated
viruses were detected in 126 animals.

Evolutionary history and cross-species transmission of vertebrate-associated viruses

Phylogenetic analyses of the viruses identified here revealed a substantial diversity of
vertebrate-associated viruses, some of evolutionary importance (Extended Data Figs. 3—

6). The majority of viruses identified had relatively close evolutionary relationships to
currently circulating viruses. However, more divergent lineages were also identified, such as
a distinct member of the Phenuiviridae family in Mustela sibirica (Siberian weasel; weasel
phenui-like virus), and a divergent member of the Arteriviridae family in Sciurus vulgaris
(Eurasian red squirrel; squirrel arterivirus 1). In total, 36 virus species from 12 families were
considered to be novel according to current species demarcation criteria by the International
Committee on Taxonomy of Viruses (ICTV). These novel viruses mainly originated from
the Picornaviridae (n=8), Caliciviridae (n=4) and Circoviridae (n=6), although novel viruses
were also identified in virus families containing a high frequency of zoonotic viruses,

such as the Flaviviridae and Paramyxoviridae, as well as in less common families such as
Adenoviridae, Anelloviridae, Phenuiviridae and Arteriviridae.

We identified multiple viruses associated with human infection. For example, Paslahepevirus
balayani (that is, hepatitis E virus (HEV); Hepeviridae) was detected in intestine samples
from two rabbits and three raccoon dogs (two of which were wild) with 86.7%-94.0%
genome identity, and belonging to the genotypes G3 and G4, which contain human-derived
virus sequences. Notably, we identified Japanese encephalitis virus (JEV; Flaviviridae) in a
rodent (guinea pig), with a sequence most closely related to swine and human-derived JEV
in genotype G1 (98.6% and 96.4% genome identity, respectively; Extended Data Figs. 4a
and 7). Mammalian orthoreovirus (mammalian reoviruses (MRV)) from the Spinareoviridae
family was detected in Eurasian red squirrel (MRV2), raccoon dogs (MRV1 and MRV2),
guinea pigs (MRV1) and mink (MRV3), with MRV2 and MRV3 associated with human
infection. Several common human diarrhoeal pathogens were also documented, including
four genotypes of norovirus (NV) in mink (Gll, GIV and GVI), raccoon dogs (GVI) and
foxes (GVII), among which Gl and GIV are directly associated with human infection.
Multiple genotypes of rotavirus A (RVA) were identified in 13 animal species, with the

G3 genotype found in nine animal species (Extended Data Fig. 7). Moreover, rotavirus C
(RVC), which mainly infects humans, pigs and cattle, was identified in an Arctic fox.

These data also revealed frequent cross-species transmission among animal viruses,
involving transmission between wild and farmed animals. For example, Getah virus
(GETV), which is mainly associated with livestock, including domestic pigs and horses,

was identified in a raccoon dog (Extended Data Fig. 3). Similarly, murine pneumonia viruses
(MPVs; Pneumoviridae) were identified in wild guinea pig and farmed raccoon dog, and
were found to be closely related (98.7% and 95.6% genome identity, respectively) to viruses
previously associated with hosts such as mice, dogs and pangolins. Many of these viruses
also had a broad host spectrum, such as Morbillivirus canis (canine distemper virus (CDV);
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Paramyxoviridae), which was identified in seven animal species from different regions of
China, two of which were of wild origin. Potential cross-species transmission events of
coronaviruses and 1AVs were also frequently observed between farmed and wild animals
(Extended Data Figs. 4b and 5).

Coronaviruses and IAVs in fur animals

Our metagenomic data provided evidence for seven coronavirus species in 66 farmed

fur animals, greatly expanding the host range of these important emerging viruses. This
included 20 Alphacoronavirus 1 viruses (specifically, canine coronavirus (CCoV)) in two
host species: raccoon dogs and red foxes. Moreover, we identified Mink coronavirus 1
viruses in 18 mink, one Betacoronavirus 1 virus (that is, canine respiratory coronavirus) in
a raccoon dog, 20 RbCoV HKU14-like viruses in guinea pigs and rabbits, and three China
Rattus coronavirus HKU24-like viruses in Myocastor coypus (nutria) (Extended Data Fig.
5).

Of particular concern was the identification of Pipistrellus bat coronavirus HKU5-like
viruses (subgenus Merbecovirus) in the lungs and intestines of two farmed mink. The mink
HKU5-like CoVs form a lineage that is relatively closely related to viruses that were thus
far reported only in bats, in which they have a history of recombination (Extended Data
Fig. 8). Also of note was the identification of a novel CoV with a deletion in the HE
protein (Supplementary Fig. 1c), tentatively named rabbit coronavirus 1, that fell within the
subgenus Embecovirus alongside Pika coronavirus and Betacoronavirus 1. Finally, the very
high frequency of divergent and abundant CoVs in the organs of these dead animals (for
example, in 21 samples, CoVs reached abundance levels of 1.2x10% — 4.9x10° reads per
million (RPM)) raises the question of whether they are directly responsible for the disease
observed.

With respect to 1AV, we identified two H5N6 viruses in two mink, one HIN2 virus in a
guinea pig and a H6N2 virus in a muskrat. Time-scaled phylogenetic analysis indicated
that, for most segments, the HIN2 virus descended from human H1N1/09 or closely related
swine viruses (Extended Data Fig. 9), although, in four segments (PB1, NP, M and NS), it
was most closely related to viruses found in swine (Extended Data Fig. 9). This suggests
that the guinea pig HIN2 virus resulted from a reassortment event in swine after a reverse
zoonosis event from humans. In addition to inheriting an N2 NA segment from swine
H3NZ2 viruses through reassortment, the NS segment in the guinea pig HINZ is related to

a swine virus that is a sister swine lineage to human H1N1/09 (Extended Data Fig. 9).

The two mink-derived H5N6 sequences were of the highly pathogenic (HPAI) phenotype,
with high sequence similarity to viruses in avian or human hosts (Extended Data Fig.

10). The very recent ancestry (that is, 1 to 2 years before the sampling time of mink

H5N6) was also apparent in the molecular clock analysis of all segments except for PB1.
Phylogenetic analysis of the HA gene showed that it was a member of clade 2.3.4.4b
(Extended Data Fig. 10) that has spread globally causing considerable concern. The mink
virus also contained the D701N mutation in PB2 that has been associated with mammalian
adaptation30. Finally, the HEN2 subtype in a muskrat (that is, rodent) represents, to our
knowledge, the first identification of this subtype of avian influenza virus in mammals, with
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the HA and NA segments exhibiting 96.8% and 97.0% nucleotide identity to viruses of avian
origin (Eurasian lineage, ST/339-like subtype), respectively (Supplementary Fig. 1d).

Characteristics of viruses with high emergence potential

To identify viruses with an increased or high risk of cross-species transmission, we classified
the viruses identified here according to whether they likely have the potential to jump
species barriers between humans and animals or among animals. Accordingly, we identified
39 potentially high-risk viruses that had seemingly experienced frequent host jumping,
including 11 zoonotic viruses (that is, previously found in humans), 15 cross-order viruses
(not yet found in humans, but observed in two or more animal orders), and 13 potentially
high-risk novel viruses (that is, the novel virus comes from a genus found in at least three
mammalian orders) (Fig. 3a, Extended Data Fig. 11a). At the level of host order, the greatest
number of risk viruses (n=21) were found in the Carnivora. RVA was identified in 13 species
from four orders of fur animals, while 1AV, MRV, and HEV were present in at least two
mammalian orders (Figure 3a). Note that we detected Pipistrellus bat coronavirus HKU5
and RbCoV HKU14 in Carnivoraand Rodentia, respectively, for the first time. Thus, these
represent two cross-order viruses that may present a relatively high risk of emergence.

In total, 16 potentially high-risk viruses were detected in the intestines, 8 were detected

in the lungs and 14 were detected in both tissues (Fig. 3a). After excluding animals with
small sample sizes (that is, <5), we calculated the Gini-Simpson and Shannon richness
indices for different animals. Eurasian red squirrels exhibited a higher diversity and richness
of potentially high-risk viruses (Fig. 3b), while raccoon dogs carried up to ten potentially
high-risk virus species, exceeding that of other animals. On the basis of the number of
potentially high-risk virus species they carried, raccoon dogs (n=10, Carnivora), mink (n=10,
Carnivora), guinea pigs (n=9, Rodentia), rabbits (=6, Lagomorpha) and Arctic foxes (n=6,
Carnivora), constituted potentially high-risk hosts for the transmission of viruses to humans
and other animals.

Most (n=29) potentially high-risk viruses were sampled from east China, with a detection
rate of 40.5%. Notably, 19 potentially high-risk viruses were detected in Shandong province,
which contains many fur animal farms3L. Several viruses showed both a wide geographical
distribution and a broad host range. For example, RVA was detected in 13 species of fur
animals in 14 provinces across seven regions of China, while CDV was detected in seven
host species sampled in Hebei (North China), Henan (Central China), Jiangsu and Shandong
(East China), Liaoning (Northeast China). By contrast, GETV, rabbit coronavirus 1 and JEV
were detected only in Heilongjiang, Jiangsu and Guangxi provinces, respectively (Fig. 3c
and Extended Data Fig. 11b).

Discussion

Farmed fur animals can act as reservoirs for zoonotic viruses®:23:32. We characterized the
tissue-based vertebrate-associated virome of individual dead fur animals, some for the first
time, to our knowledge, and many not previously studied at depth33:34. From this analysis,
we identified 125 vertebrate-associated virus species from 20 virus families, and found that
co-infection is commonplace. Importantly, this included 11 zoonotic viruses and 15 viruses
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that exhibit transmission among mammalian orders. These viruses may be at heightened risk
of emergence and should therefore be monitored closely. Overall, 13 novel virus species
identified in this study belong to potentially high-risk viral genera. The order Carnivora
carried the highest number of potentially high-risk viruses in this study, while guinea pigs
(Rodentia) also carried a high diversity of viruses, including the first reports of JEV and IAV.
Guinea pigs may therefore act as intermediate host in virus transmission chains and warrant
more intensive surveillance.

The intensive breeding environment of farmed animals serves as a possible bridge for

virus spillover. Indeed, we identified multiple viruses related to those that cause disease in
humans and/or domestic animals, such as zoonotic MRV, 1AV, HEV, NV, Betacoronavirus 1,
Alphacoronavirus 1, RVA and RVC. The identification of NV in wild Hydropotes inermis
(Chinese water deer) could indicate transmission from farmed animals. We detected viruses
that were previously thought to be specific to particular host groups, such as MRV and MPV
in guinea pigs, while RVA was found in the broadest set of hosts in this study, including
Capreolus pygargus (Eastern roe deer), Vicugna vicugna (vicuna) and Chinese water deer,
that were monitored for the first time. Our data also expanded the host range of zoonotic
viruses, such as documenting JEV in guinea pigs, NV in mink, MRV in Eurasian red
squirrels and multi-host pathogens such as GETV in a raccoon dog. These viruses have clear
cross-species transmission potential. Moreover, we identified a variety of novel viruses, such
as Guinea pig astroviruses. More regular surveillance of these animals—especially mink,
raccoon dogs and guinea pigs, which had particularly rich viromes—is required to evaluate
the potential risks to public health that stem from fur animal farming. There are a number of
challenges in undertaking such expanded surveillance, especially in the case of multipurpose
animals for which there is often a lack of reliable data on the size and distribution of
breeding operations.

The high prevalence and diversity of coronaviruses and influenza viruses was of particular
note, implying that farmed fur animals are important intermediate hosts or reservoirs for
these viruses. We identified a MERS-like coronavirus—Pipistrellus bat coronavirus HKU5
—in two mink from a single farm associated with an outbreak of pneumonia, as well as

the first report, to our knowledge, of a coronavirus in nutria. This illustrates a cross-order
transmission event from wildlife to farmed fur animals that are in close contact with humans.
The high abundance of HKU5-like viruses in lung samples from dead mink (RPM =
7.8x10%) with symptoms of pneumonia suggests that it may be the causative disease agent.
Similarly, we detected both CCoV-1 and CCoV-2 in raccoon dogs in eight cities with a high
(37%; 19/52) positivity rate. CCoV-2 has also been identified in human cases from Haiti

and Malaysial2-35:36  indicating that the raccoon dog CCoV identified may have zoonotic
potential. Our study highlights the potential of these species to act as sentinels to monitor the
emergence of novel CoVs, particularly owing to their relatively high densities and frequent
interactions with humans.

Influenza viruses are a common cause of epidemics and pandemics in humans and other
animal species. We identified novel HGN2 and H5N6 avian influenza viruses in farmed
muskrats and mink, as well as a novel HIN2 IAV in lung samples of a captive wild guinea
pig that were probably generated by a reassortment event in swine. There have been more
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than 50 cases of human infection with HLN2 1AV worldwide, with a reassortment pattern
similar to that observed here3”. Similarly, there have been more than 80 reports of human
infection with H5N6, of which 87.5% have a history of contact with animals, attesting to
the possibility of transmission from animals to humans3®. Finally, the detection of HEN2 in
muskrat is the first report, to our knowledge, of this AIV subtype in mammals, underscoring
the importance of monitoring this virus in diverse animal species.

In summary, this study provides important reference data for a deeper understanding of the
viruses and fur animal hosts that may eventually cause infectious disease outbreaks, and that
should therefore be subject to greater surveillance.

Limitations of this study

Although this is one of the largest virome study of fur animals undertaken thus far, it was
necessarily based on opportunistic sampling at specific geographical locations and therefore
cannot be considered to be a form of nationwide surveillance. Despite our sampling efforts,
sample sizes were small in some cases, and the focus on dead animals necessarily means
that we cannot provide information on the viruses that circulate in healthy farmed fur
animals. Similarly, the concentration on respiratory and gastrointestinal symptoms, and
therefore lung and intestine sampling, means that we cannot identify viruses that are present
only in other tissues.

Materials and Methods

Sample collection and processing

China is one of the world’s largest producers and consumers of fur. In 2016, its mink fur
output was 26.16 million pieces, second only to Europe’s total of 39.05 million pieces,
while the production of fox and raccoon dog fur greatly exceeded that in other localities,
reaching 12.65 million and 14.69 million pieces, respectively (https://www.actasia.org/).
Four animal species are specifically farmed for the fur trade in China: silver foxes, Arctic
foxes, mink and raccoon dogs (which can be considered to be the main fur animals). Some
fur trading data for these species are publicly available (https://www.chinaleather.org/front/
article/126301/), and their farming is largely concentrated in Hebei, Shandong, Heilongjiang
and Liaoning provinces. Moreover, scattered, yet sometimes nationwide, breeding of other
animal species also takes place (the “other” fur animals). The species that fall into this
category include rabbit (specifically the rex rabbit strain), sika deer, roe deer, badger and
muskrat, among others. These animals are not only bred for fur, but also for food and
medicinal products, although systematic data on the scale and distribution of breeding is
unavailable. In many cases, there is a lack of systematic record-keeping and supervision,
with very little pathogen monitoring.

To study the virome of fur animals, we sampled diseased dead animals between 2021

and 2024 on the basis of three criteria: (i) the four main species of farmed fur animals
were primarily sampled in their densely farmed provinces (that is, Hebei, Shandong,
Heilongjiang and Liaoning), with sporadic collections in other provinces (Fig. 1); (ii)

for the scattered, widely geographically distributed multiple-use animals, we performed a
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nationwide sample collection; (iii) we collected wild-sourced samples from animal species
that can sometimes be used for fur. In total, 461 animals were sampled, comprising 28
species from 5 mammalian orders. All dead animal sample collection was conducted by
professional veterinary collaborators. The sampling and sample-processing procedures were
approved by the ethics committee of Changchun Veterinary Research Institute, Chinese
Academy of Agricultural Sciences (No. IACUC of AMMS-11-2020-012).

The collectors placed samples labelled with animal information onto dry ice for cryogenic
transportation. After arrival at the laboratory, lung and intestinal samples were selected

for further processing and research based on animal clinical records, concentrating on
respiratory and gastrointestinal signs, while the remainder was stored long-term in a -80°C
freezer. To confirm the identity of the host animal species sampled, the mitochondrial
cytochrome B (CytB) gene was amplified and sequenced3®.

RNA extraction, library construction and sequencing

According to overall clinical symptoms and sample acquisition, we constructed single-tissue
sample libraries from the lungs and intestines of animals sampled. In the case of the

rare wild sika deer, for which only liver samples were preserved, a single liver sample

was constructed. Total RNA extraction was conducted according to the manufacturer’s
instructions using the RNA Clean & Concentrator -5 kit (Zymo Research). After depleting
ribosomal RNA (rRNA) using the Ribo-Zero Plus rRNA Depletion Kit (Illumina) and
TIANSeq rRNA Depletion Kit (TIANGEN Biotech), read libraries were constructed using
the TruSeq Stranded mRNA Total Library Prep kit (Illumina) and sequenced on the Illumina
Novaseq 6000 platform (150 bp paired-end).

Data processing and virus identification

Adapter and quality-trimming for all sequencing reads were performed using Trimmomatic
(v0.39)40. Bowtie2 (v2.2.5) was used to map quality-controlled reads to the SILVA database
(www.arb-silva.de, v132.1) with end-to-end parameters to remove reads related to rRNA*L,
We performed a de novo assembly of rRNA-free reads using MEGAHIT (v1.2.8) with the
parameter --min-contig-len set to 300 bp*2. For the assembled contigs, we used Diamond
blastx to align them against the non-redundant protein database (accessed, 5 May 2023)
with an e-value threshold of 1x 107643, Contigs with the top blast hit classified under the
kingdom "Viruses" were preliminarily identified as viral sequences.

As our focus was on vertebrate-associated viruses, we filtered the data on the basis of
annotated family and genus classification information to obtain viral contigs that are most
likely associated with vertebrates (excluding the Retroviridae). Moreover, we focused on
highly abundant viral genomes with relatively high similarity to known viruses and did not
mine beyond this. The species assignment of the viral sequences obtained was performed
using species demarcation criteria established by the International Committee on Taxonomy
of Viruses for each virus genus. For genera that lacked clear species demarcation criteria,

a relatively conservative threshold of 80% amino acid identity in the RNA-dependent RNA
polymerase (RdRp) or replicase to known virus species was applied. Detailed information
on the species demarcation criteria used is provided in Supplementary Table 1. For the
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sequences of the vertebrate-associated viruses obtained, we designed a series of specific
primers and used PCR or RT-PCR for validation and filling gaps in incomplete virus
genome. Furthermore, we used RACE Kits to obtain the terminal ends of the viral genomes.

Viral abundance based on transcriptome data

To quantify the abundance of vertebrate-associated viruses, we mapped the rRNA-free reads
to the putative virus genomes identified above implemented in Bowtie2 (v2.2.5), resulting
in read count calculations for each virus. Virus abundance was represented as the number

of reads mapped per million (RPM). To reduce false-positive virus discovery, only viruses
with a threshold of RPM = 1 and verified by PCR were included. Data processing and
visualization was implemented in R (v 4.2.1), using multiple packages (Pheatmap, ggplot2,
tidyverse, PieGlyph, svglite, vegan, picante, ggalt, sankeywheel, ggalluvialy***>.

Sequence alignment, phylogenetic analyses and recombination detection

To estimate phylogenetic trees for each of the vertebrate-associated viruses documented
here, we used amino acid sequences of hallmark viral proteins, namely RdRp for RNA
viruses and the DNA polymerase for DNA viruses (some viral sequences were not

included in the phylogenetic analysis due to a lack of RdRp sequences). We individually
aligned the amino acid sequences of each virus family using the L-INS-i algorithm

in MAFFT (v7.402)*6 and trimmed ambiguously aligned regions with trimAl (v1.2)47.
Finally, we manually inspected the sequences in MEGA1148. Recombination analysis was
performed using Simplot and Splitstree54%:50, We estimated maximum likelihood (ML)
trees for each virus family using 1Q-TREE (v2.1.4)%1. Similarly, we used IQ-TREE to

infer ML trees for some representative virus species. IQ-TREE’s built-in ModelFinder

was used to select the optimal model of amino acid/nucleotide substitution in each case.
For particular coronaviruses (CoVs) and influenza viruses, we estimated time-calibrated
trees using BEAST (v1.10.5)%2 and summarized them as maximum clade credibility trees.
These analyses were performed using codon-position partitioning, a general time-reversible
nucleotide substitution model with gamma-distributed rate variation among sites (GTR+T")
for each position®3>4, an uncorrelated relaxed clock model and a flexible Skygrid coalescent
tree prior>®. For each genome segment, a sufficient number of iterations was used to ensure
that effective sample sizes were >200.

Definition and identification of viruses with high emergence potential

The host ranges of viruses from the NCBI/GenBank were collected and organized (on

the basis of data available in November 2023). We categorized three types of potentially
high-risk viruses: (i) a zoonotic virus was defined as a virus that has been found at least once
in humans; (ii) a cross-ordervirus was defined as a virus that has not yet been reported to
infect humans, but which has been found in two or more animal orders; (iii) a novel potential
risk virus was defined as a virus with >60% amino acid similarity to known viruses, where
the genus in question has been found in more than three mammalian orders (that is, as there
are necessarily no previous reports for the novel viruses identified in this study, we made
judgments on the basis of the virus genus to which these viruses belong).
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Extended Data Figure 1. Abundance of vertebrate-associated virusesin fur animalsat the
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reads per million total reads (RPM) and presented on the Log-10 scale. Different colour
blocks represent different types of viruses and source organs. Source data are provided in the
Source Data file.
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Extended Data Figure 2. Newly discovered viruses, the infection spectrum of the animals studied

and the extent of coinfection.

(a) The infection spectrum of the studied animals, with animals represented by images.
Viruses are shown at the nodes, with the node colour specifying the viral family. The size
of the nodes represents the number of animals infected by the virus, and the width of

the edges indicates the number of libraries of the host infected by the connected virus.

(b) The viral families newly identified in the specific host. Each segment of the pie chart
corresponds to a distinct animal species, depicted with unique colour, and the donuts with
similar lighter colour, signify the newly discovered viral families. (c) Virus co-infection.
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Viruses are shown at the nodes, with the node colour specifying the viral family. The size of
the nodes represents the frequency of co-infections with any other virus, while edge width
represents the frequency of co-infections between the two viruses.
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Extended Data Figure 3. Inter-specific phylogenetic trees of 12 major families of vertebrate-
associated RNA viruses.

Phylogenetic trees were inferred for each family of RNA viruses based on amino acid
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clarity and display bootstrap values for major branches. Coloured dots represent viruses with
different host origins. The scale bar represents the number of amino acid substitutions per

site.
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a Flaviviridae
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b Orthomyxoviridae 03
’ A/Neogale vison/China/FD-NV-SD-L3/2021/H5N6 h

A/Neogale vison/China/FD-NV-SD-L4/2021/H5N6
A/Guangdong/1/2021/H5N6
Afcanine/China/GX30/2023/H5N6
A/Guangdong/gf/2021/H5N6
Algoose/China/21FU008/2020/H5N8

Afdairy cow/North Carolina/24 010327-005/2024/H5N1
Aldairy cow/New Mexico/24-009306-003-original/2024/H5N1
Afdairy cow/South Dakota/24 010354-019-300/2024/H5N1
A/mink/Northern China/110/2018/H5N6
Algoose/Zhejiang/727110/2014/H5N6

Abblack swan/Akita/2/2016/H5SN6

Aturkey/South Dakota/15-012511-2/2015/H5N2
Afswine/Guangdong/G3/2015/H5N6
Afcat/Sichuan/SC18/2014/H5N6
A/duck/HuBei/03/2010/HSN5S
Alchicken/Yuhang/2/2013/H5N9
Affalcon/Bavaria/15/2006/H5N1
A/goose/Egypt/0910sm-NLQP/2009/HSN1
Algoose/Guangdong/1/1996/H5N1

Afruddy turnstone/Delaware Bay/153/199/H1N4
Afruddy turnstone/Delaware/650593/2002/H1NS
Afruddy turnstone/Delaware/Al09-960/2009/H1N7
A/murre/Alaska/305/1976/H1N6

Adpintail duck/ALB/631/1981/H1NS

A/mallard duck/Wisconsin/160S4004/2016/H1N7
Afswine/Liaoning/LY3468/2020/H1N1

A/Anas platyrhynchos/Belgium/3950/2015/H1N6
Afwild waterbird/Tasmania/20-2052-11/2020/H1N6
Afduck/Tsukuba/271/2009/H1N6
Afduck/Hokkaido/111/2009/H1NS

Afwild duck/Guangdong/520/2001/H1NS
Afduck/Zhejiang/0607-13/2011/H1N2
A/duck/Zhejiang/0611-24/2011/H1N3

AfCavia porcellus/China/F D-CPo-HUN-L7/2023/H1N2 é@
A/swine/Cambodia/PFC66/2022/H1N1

A/Aalborg/INS282/2009/H1N1
’—é A/Ontario/222656/2009/H1N1

L—  APuerto Rico/8/1934/H1IN1

Afduck/iangxi/4981/2007/HEN2
A/swine/Yangzhou/080/2009/HEN6
Afduck/Hubei/5/2010/HEN6
Alduck/Yangzhou/013/2008/HENS
A/duck/Hunan/4056/2006/HEN8
Afduck/Shantou/5480/2005/H6N2
Afduck/Shantou/1984/2007/H6N6
Afswine/Guangdong/K6/2010/HEN6
Aturkey/Canada/63/HEN2
Alswine/Chile/CPN3853/2023/HEN8
A/mallard/San Jiang/275/2007/H6N1
A/mallard/iangxi/413/2004/HENE

@ A/Ondatra zibethicus/China/F D-OZ-HLJ-L1/2024/H6N2 (’D
Algoose/Guangdong/10.21SZBJ001-C/2016/HEN2
A/duck/Shantou/339/2000/HEN2
A/pheasant/Hong Kong/SSP44/2002/H6N1

—: A/duck/Yangzhou/02/2005/H8N4
Alchicken/Henan/01/2006/HON2

Alchicken/Rizhao/713/2013/H7NS
A/duck/Mongolia/742/2015/H10N7
A/duck/Hubei/ZYSYF9/2015/H3N6
A/Anas platyrhynchos/Belgium/3950-8/2015/H3N8

Extended Data Figure 4. Phylogenetic trees of vertebrate-associated RNA viruses from the
Flaviviridae and Orthomyxoviridaein fur animals.

Phylogenetic trees of viruses in the (a) Flaviviridae and (b) Orthomyxoviridae were

inferred from the amino acid sequences of the RNA-dependent RNA polymerase and
hemagglutinin proteins (Orthomyxoviridae). All trees are midpoint-rooted for clarity and
display bootstrap values for major branches. Different coloured dots represent viruses with
different geographic origins. Colour shading represents different animal orders, and specific
species are depicted with animal pictures. The scale bar represents the number of amino acid
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Order
Artiodactyla
Il Carmivora
Lagomorpha
W Rodentia

Bootstrap values
® >90%
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Province
Guangxi
Hebei
@ Heilongjiang
@ Henan
Inner Mongolia
@ Jiangsu
Jiangxi
Jilin
@ Liaoning
Shandong
@ Zhejiang

@

Coronaviridae

FDINP/SD/I2 (N.procyonoides)
FDINPISDILZ (N procyonoides)
IP/SD/I1 (N.procyonoides)
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Fi
Fi

S
3
3
g8
22
S
g
S
9
§

[
. IPIHeNIL1 (N procyonoides)
/ NPIHLJILS (N.procyonoides)

33
3z
2
S
g
3
g

ou

.FD/NP/HeN/M (N.procyonoides)
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Extended Data Figure 5. Phylogenetic tree of the Coronaviridae in farmed animals.
Phylogenetic tree of viruses in the Coronaviridae inferred from the amino acid sequences of

the RNA-dependent RNA polymerase. The tree is midpoint-rooted for clarity and displays
bootstrap values at the major branches. Different coloured dots represent viruses with
different geographic origins. Colour shading represents different animal orders, and specific
species are depicted with animal pictures. The scale bar represents the number of amino acid

substitutions per site.
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Extended Data Figure 6. I nter-specific phylogenetic trees of four vertebrate-associated DNA
virus families.

Phylogenetic trees were inferred for each DNA virus family based on the amino

acid sequences of conserved viral proteins (DNA viruses = replication related protein,

i.e., Anelloviridae. ORF1, Parvoviridae. NS1, Adenoviridae.: DNA polymerase, and
Circoviridae: Rep protein). All trees are midpoint-rooted for clarity and display bootstrap
values for major branches. Coloured dots represent viruses with different host origins. The
scale bar represents the number of amino acid substitutions per site.
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Extended Data Figure 7. I ntra-specific phylogenetic diversity of multi-host infecting viruses
identified in fur animals.

Phylogenetic trees were inferred for each virus species based on the nucleotide sequences of
the key gene (i.e., Coronavirus: S1 gene, Paslahepevirus balayani. full genome, Japanese

encephalitis virus: E gene, Mammalian orthoreovirus: S1 gene, Norwalk virus: VP1,
Rotavirus A: VP7). All trees are midpoint-rooted for clarity and display bootstrap values
for the major branches. Coloured dots represent different host sources.
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Extended Data Figure 8. Recombination and phylogenetic analysis of mink-derived Pipistrellus

bat coronavirus HK U5.

(a) Maximum clade credibility (MCC) tree based on genome of mink-derived HKU5-like
viruses. (b) Simplot was used to perform recombination scanning on the mink-derived
HKU5-like sequences and related reference sequences. (c) Neighbor-Net reconstruction
based on the complete genome sequences of mink HKU5 and Bat CoVs using Splitstree5,
employing the HKY85 substitution model and 1000 bootstraps. (d) IQ-TREE (v2.1.4)
was used to estimate maximum likelihood trees based on RdRp and S gene nucleotides,

respectively.
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Extended Data Figure 9. Phylogenetic analysis of guinea pig-derived Influenza A virus HIN2.
Maximum clade credibility (MCC) trees based on the HA, MP, NA, NP, NS, PA, PB1, and

PB2 gene sequences of HIN2 influenza virus. MCC trees were summarized from Bayesian
phylodynamic inferences using BEAST (v1.10.5). Coloured lines and dots represent the
host: human (red), rodent (green), and swine (light-blue).
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Figure 1. Geographical distribution of animal sampling, fur animal composition, tissue type,
library characteristicsand viral read countsin this study.
(a) The geographical distribution of 461 deceased animals sampled from multiple Chinese

provinces, as well as the main provinces engaged in fur animal husbandry. The fur animals
sampled were divided into two categories: (i) the main farmed fur animals that are primarily
used for fur production, including mink, foxes, and raccoon dogs; and (ii) the other
multipurpose farmed animals, such as rabbits and nutria, that are used for fur production,
food consumption, etc. The pie charts show the fur animals sampled. Each main fur animal
was assigned a unique colour; the colour of the circle denotes the main or other farmed

fur groups. The size of the pie represents the sampling quantity. (b) The distribution of fur
animal samples by living condition (left) and sampling organ (right). This study involved
dead animals from both captive breeding and wild environments. Sequencing libraries were
derived from individual tissues, mostly either the lungs or the intestines, or both the lungs
and intestines were used simultaneously. (c) The viral read counts in each library from
different species. The box plot shows the median (grey centre line), quartiles (box limits),
and the maximum and minimum values (whiskers).
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(a) The composition of viruses is displayed at the family level in intestine and lung tissues
on the basis of the number of reads with vertebrate-associated viruses. The area of the

pie chart represents the total number of virus reads in the
of 1 million and 2 million virus reads are shown. (b) The
in different tissues of various hosts at the family level. (c)

intestines or lungs; scale guides
relative abundance of viruses
The number of virus species

identified in each library. Left, the number of libraries in which 1-7 virus species have
been identified. Right, the five boxes list the number of libraries in different animal species

in which 1, 2, 3, 4, and =5 virus species have been identif

ied. (d) The genome coverage

of viral sequences obtained in this study for each sample (left). The violin plot shows

the genome coverage of viral sequences for each sample,
representing the distribution probability. Right, density pl
assembly completeness. The black dashed lines indicate tl
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Figure 3. Potentially high-risk virus species and their epidemiological characteristics.

(@) The host range of the potentially high-risk viruses, sourced from NCBI GenBank
(right). The stars, squares and triangles represent zoonotic viruses, cross-order viruses and
potentially high-risk novel viruses, respectively, denoting identification in this study from
the relevant tissue samples, along with the taxonomic order of the identified host. (b) The
alpha diversity of potentially high-risk viruses from different species. The Chaol index

was used to determine the variation in viral diversity across diverse animal species, and

the Gini-Simpson and Shannon indexes were used to demonstrate the disparities in viral
abundance among different animals. The bold black vertical line represents the median,

the hollow diamond represents the mean, and the box limits represent the quartiles. The
solid black dots indicate values that exceed the lower threshold (25th percentile — 1.5x
interquartile range) and upper threshold (75th percentile + 1.5x interquartile range). (c) The
distribution of potentially high-risk viruses at the family level detected in various Chinese
provinces and the total log-transformed RPM of potentially high-risk viruses belonging to
the same family. Total logig [RPM] represents the sum of the logig [RPM] of all potentially
high-risk viruses within the same province and the same family.
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