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Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging technique that 

enables the visualization of biological samples at the molecular level by measuring the 

fluorescence decay rate of fluorescent probes. This provides critical information about 

molecular interactions, environmental changes, and localization within biological systems. 

However, creating high-resolution lifetime maps using conventional FLIM systems can be 

challenging, as it often requires extensive scanning that can significantly lengthen acquisition 

times. This issue is further compounded in three-dimensional (3D) imaging because it 

demands additional scanning along the depth axis. To tackle this challenge, we developed two 

novel computational imaging techniques. The first technique is compressed FLIM based on a 

compressed sensing scheme. By leveraging the compressibility of biological scenes in a 

specific domain, we simultaneously record the time-lapse fluorescence decay upon pulsed 
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laser excitation within a large field of view. The resultant system can acquire a widefield 

fluorescence lifetime image within a single camera exposure, eliminating the motion artifact 

and minimizing the photobleaching and phototoxicity. The imaging speed, limited only by the 

readout speed of the camera, is up to 100 Hz. We demonstrated the utility of compressed 

FLIM in imaging various transient dynamics at the microscopic scale. The second technique is 

light field tomographic FLIM (LIFT-FLIM). This approach allows for the acquisition of 

volumetric fluorescence lifetime images in a highly data-efficient manner, significantly 

reducing the number of scanning steps required compared to conventional point-scanning or 

line-scanning FLIM imagers. Moreover, LIFT-FLIM enables the measurement of high-

dimensional data using low-dimensional detectors, which are typically low-cost and feature a 

higher temporal bandwidth. We demonstrated LIFT-FLIM using a linear single-photon 

avalanche diode array on various biological systems, showcasing unparalleled single-photon 

detection sensitivity. Additionally, we expanded the functionality of our method to spectral 

FLIM and demonstrated its application in high-content multiplexed imaging of lung organoids. 

LIFT-FLIM has the potential to open up new avenues in both basic and translational 

biomedical research. 
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Chapter 1 Introduction 
1.1 Fluorescence lifetime 

 
Fluorescence of fluorophores is a light-matter interaction process and  contains three  events: 

excitation, vibration relaxation  (internal  conversion)  and  fluorescence  emission. A 

Jablonski energy diagram illustrates the process and the electronic transitions between ground 

states and excited states as is shown in Figure 1.1. Photons are absorbed by the molecules 

whose energy matches the energy difference between the discrete energy levels. These energy 

levels define the absorption and the emission band. Excitation refers to the absorption of a 

photon and can elevate an electron of a molecule from the ground state to an excited state. 

Excitation is caused by either mechanical or chemical mechanisms in nature and the energy 

source of the excitation can be a laser  or  a  mercury  lamp  in  fluorescence  or  chemical  

reactions  in  chemiluminescence.  The fluorophores  then  transit  to  the  excited  electronic  

states.  Excitation  by  a  photon  occurs  in femtoseconds. Vibrational relaxation to the lowest 

vibrational energy level in the excited state lasts for picoseconds. The initial excited state is 

partially dissipated and transits to relaxed singlet excited states from which fluorescence 

emission results. Fluorescence emission lingers over a finite time and molecules return to the 

ground state. In addition to fluorescence emission, the excited states can be depopulated by 

other processes such as collisional quenching, fluorescence resonance energy transfer (FRET) 

and intersystem crossing. The ratio of the number of photons emitted to the number of photons 

absorbed is referred to as the quantum yield of fluorescence which measures the relative extent 

among these processes. Energy dissipation originates from the initial vibrational relaxations 

and the subsequent inclined fluorescence transitions, which derive from excited-state 

reactions, complex formations and FRET [1], to higher vibrational energy levels of the ground 
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state. 

 

 
 
Figure 1.1. Jablonski energy diagram showing excitation and various possible relaxation mechanisms[6]. Each hv 

denotes the photon energy, where subscripts A, F denote absorption and fluorescence. 
 

  Due to energy dissipation, the energy of emitted photons is lower than of the excited photons 

and the energy difference represented by (hνA-hνF) defines the Stokes shift. The Stokes shift 

results in the red-shifted fluorescence emission relative to the excitation light. Emission 

wavelengths are independent of the excitation wavelength because of the vibrational relaxation 

to intermediate excited states. Fluorescence  emission is incoherent because of the uncertain 

delays in the vibrational relaxations. Fluorescence emission spectrum generally is in mirror 

symmetry to the absorption spectrum. The characteristics of these spectra can be used to 

distinguish different fluorophores when they are simultaneously detected. Intensity of the 

excitation at the fluorescence excitation spectrum can affect fluorescence emission intensity. A 

single fluorophore can produce thousands of detectable photons given that the same 
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fluorophore can be repeatedly excited. Photobleaching refers to the phenomenon that one 

fluorophore is irreversibly destroyed and is permanently unable to fluorescence [2].  

Fluorescence detection systems typically consist of four parts: 1) an excitation source, 2) filter 

sets, 3) a detector, 4) a fluorophore. These four parts should be compatible for the fluorescence 

detection fidelity. Fluorescence microscopes resolve fluorescence spatially for microscopic 

fluorescent samples. Fluorescence scanners resolve fluorescence spatially for macroscopic 

objects. Flow cytometers measure fluorescence characteristics in a large flowing particle 

stream to distinguish and isolate particles. Other fluorescence instrumentations include DNA 

sequencers and microfluidic devices. Different types of fluorescence instruments have 

different requirements on the fluorophores and measurements. For example, photobleaching 

should be avoided in fluorescence microscopy. However, it is not a significant problem in flow 

cytometry because of high flow speed and short exposure time under the excitation beam of 

the particles.  

Fluorescence intensity depends on the same parameters as the absorbance and the fluorescence 

quantum yield of the target fluorophores, namely, on the excitation intensity and fluorescence 

collection efficiency of the detection instrument. In dilute solutions, fluorescence intensity is 

almost linearly proportional to the above parameters. In dense solutions, this relationship can 

be further distorted by self-absorption and the inner-filter effect. Background signals, which 

can result from autofluorescence or reagent background, seriously distort fluorescence 

detection sensitivity. Autofluorescence can be minimized by either appropriate filter sets or 

target fluorophores that absorb the autofluorescence. Reducing the detection bandwidth can 

increase the detection resolution but compromises the overall fluorescence intensity. Using 

fluorophores with > 500 nm excitation capability can mostly minimize the autofluorescence 
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from cells and tissues and other biological samples. Moreover, longer emission wavelengths 

reduce the light scattering by the dense media as well and contribute to greater penetration of 

the excitation light. Fluorescence Lifetime is defined as the average time that an excited 

molecule spends in the excited state before returning to the ground state. Lifetime decides the 

time available for the fluorophores to interact with their environment.  

 
1.2 Fluorescence probes 

 
In order to detect biological molecules such as proteins, polypeptides, antibodies and 

DNA/RNA and intracellular biological structures such as nuclei, mitochondria and collagen, a 

fluorescent probe is attached chemically or biologically to these molecules and structures. 

Generally, fluorescent probes use the fluorophores which are highly stable and sensitive and 

selectively bind to one specific region or functional group of the target molecular. A 

fluorophore can emit fluorescence upon light excitation. It absorbs photons at a specific energy 

level andre-emit photons at a lower energy level and longer wavelength. Maximum excitation 

and emission wavelength define the peak in the excitation and emission spectra, respectively. 

During fluorescence, the fluorophore exhibits a time-resolved decay pattern that can be easily 

characterized with a decay rate of 1/τ and lifetime is τ equal to the time taken to decay to 1/e 

(≈0.368) of the original emission level and the decay process is mono-exponential in most 

cases. Lifetime of the fluorophores is independent of concentration, sample absorption, sample 

thickness, excitation intensity and photobleaching. So, it is highly robust and suitable to 

characterize a fluorophore and the correspondingly labelled protein. In the meanwhile, the 

fluorescence lifetime is relevant to environmental factors such as solution pH, ion 

concentration, molecular binding and proximity of energy acceptors. Consequently, the 

lifetime can be applied to functional imaging and reflects the interaction between labelled 
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cellular structures and the environment. 

Fluorophores  can be characterized and differentiated by the emission  spectrum and 

fluorescence lifetime practically. In order to differentiate intracellular structures, multiple 

fluorophores are used to label different subcellular structures such as nuclei and mitochondria. 

Consequently, the ability to image them simultaneously (multiplexing) and separate them has 

been critical for understanding a variety of biological processes. Generally, two methods have 

been applied to achieve multiplexing. The first is the spectrum-based method and it is 

intensity-based, conventional and widely adopted and separates fluorophores with their 

emission spectra. The second method is based on the fluorescence lifetime, an identifying 

characteristic separate from the emission spectrum, which can be used to distinguish 

fluorophores. This approach relies on the fact that fluorophores exhibit a time-resolved decay 

pattern that can be easily characterized and is very often mono-exponential with a decay rate 

of 1/τ. Lifetime contrast is independent of fluorescence intensity and emission spectrum and is 

more robust than intensity-based methods. 

1.3 Fluorescence lifetime imaging microscopy(FLIM) 

Fluorescence lifetime imaging microscopy (FLIM) [4] has been extensively employed in a 

wide spectrum of biomedical applications, ranging from single cell studies [5] to medical 

diagnosis [6]. Rather than imaging the time-integrated fluorescent signals, FLIM measures the 

time-lapse fluorescent decay. Fluorescence lifetime imaging microscopy (FLIM) produces 

animage based on the differences in the excited state decay rate from a fluorescent sample as 

illustrated in Figure 1.2. Thus, FLIM is a fluorescence imaging technique where the contrast is 

based on the lifetime of individual fluorophores rather than their emission spectra. As an 

intrinsic characteristic of a fluorophore and its state, fluorescence lifetime does not depend on 
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concentration, absorption by the sample, sample thickness, photo-bleaching and excitation 

intensity; it is more robust than intensity-based methods. At the same time, the fluorescence 

lifetime depends on numerous environmental parameters such as pH, ion or oxygen 

concentration, molecular binding or the proximity of energy acceptors, making it the technique 

of choice for functional imaging because lifetime measurements are independent of intensity 

which can be significantly altered by tissue heterogeneities and depth location. FLIM enables a 

more quantitative study of molecular effects inside living organisms compared with 

conventional intensity-based approaches and is widely applied in various fields. 

 

Figure 1.2 FLIM working principle[6]. (a) FLIM measures the time-lapse fluorescent decay. (b) FLIM produces 

an image based on the differences in the excited state decay rate from a fluorescent sample. 

There are a variety of technical implementations of FLIM. Based on the detection mechanism, 

they are generally classified into two categories: time-domain FLIM and frequency-domain 

FLIM. Time-domain FLIM illuminates the sample with pulsed laser excitation, followed by 

measuring the fluorescent decay in sequential time channels using an ultrafast detector or 

detector array. Time-domain FLIM is performed using either scanning-based systems—such 

as a time-resolved confocal microscope [7] or a streak camera [8], or widefield-based 
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systems—such as a temporally- gated 2D camera or a single photon avalanche diode (SPAD) 

array. By contrast, frequency-domain FLIM illuminates the sample with high-frequency 

pulsed or modulated continuous-wave lasers, driving the fluorescence oscillating at the same 

frequency, however, with a reduced modulation degree and aphase shift due to the 

fluorophore’s lifetime. To measure the modulation and phase of emitted fluorescence, the 

imager also modulates the gain of detector at the same frequency as the excitation light 

(homodyne methods) or a frequency slightly different from that of the excitation light 

(heterodyne methods). The measured data is then analyzed using the phasor approach. 

Time-correlated single photon counting (TCSPC) is the most widely used method in time- 

domain FLIM to acquire fluorescence lifetime. TCSPC is a statistical method and relies on a 

large number of repetitive laser excitation and delay measurement cycles to accumulate 

enough photons for the delay histogram. In the case of intensive excitation, many electrons in 

the ground state of the fluorophore molecules are excited, resulting in multiple photon 

emission. TCSPC uses extremely low excitation intensity so that one single photon is emitted 

upon every laser excitation pulse. In TCSPC, the time interval between sample excitation laser 

pulse and the arrival of the emitted single photon at the detector is repeatedly measured to 

account for the statistical estimation of the fluorophore’s emission decay profile at every laser 

excitation cycle. A large amount of data can be collected over many cycles. The delay time 

intervals are constructed into a histogram that summarizes the photon emission occurrence 

overtime upon excitation as shown in. The defined ‘start’ signal is realized by the electronics 

detecting the laser pulse which restricts the emitted photon counting rates, and the defined 

‘stop’ signal is detected by a single-photon sensitive detector such as a photomultiplier tube 

(PMT), micro channel plate (MCP), single photon avalanche diode (SPAD) or hybrid PMT. In 
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application, a high number of emitted photons and correspondingly increased pixel dwell time 

are required to reach sufficient accuracy. However, due to the repetitive measurement for 

accuracy and mechanical scanning to the sample for large field of view (FOV),current TCSPC 

is limited by the slow frame rate. 

Ultrafast biological dynamics are omniscient in life science due to the microcellular 

environment and rapid biological reaction. For example, protein folding, catalysis and ligand 

binding occur within from nanoseconds to milliseconds. Energy and charge transfer, 

isomerization and bond stretching, and twisting happen within picoseconds. Fluorescence 

probes are widely used to detect these dynamics. With a reference intensity camera, the 

intensity-based measurements infer only relative changes, and the results are easily 

confounded by variations in excitation fluence, signal decay by photobleaching, and 

background fluorescence, particularly when the imaging is performed in vivo. Compared with 

intensity-based approaches, FLIM provides a more quantitative assessment on the fluorescent 

probes because it is insensitive to the aforementioned factors. For example, FLIM has allowed 

precision detection of FRET in subcellular structures such as dendritic spines in neurons. As 

another example, confocal FLIM has been used to map the intracellular temperature 

distribution in live cells. Similarly, in endoscopy, lifetime imaging of tissue autofluorescence 

has shown great promise in demarcating malignant from normal tissue [9].  
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Chapter 2 Compressed fluorescence lifetime imaging microscopy 
This chapter talks about compressed FLIM, a high-resolution, high-speed fluorescence lifetime 

imaging microscopy (FLIM) of live cells based on a compressed sensing scheme[187]. It first 

introduces compressed ultrafast photography (CUP) and then discusses compressed FLIM 

from its principle to applications. It also discusses a deep learning method to improve the 

image reconstruction quality of CUP.  

2.1 Streak camera 

A streak camera is an ultrafast optical imaging instrument that measures a wide range of the 

light intensity variation with time from a single-shot event. It is employed to measure the pulse 

duration of laser fusion lasers, free electron lasers and other pulsed lasers and for various time-

crucial applications such as time-resolved Raman spectroscopy, fluorescence lifetime 

measurement,plasma light emission, laser ablation and LIDAR. Conventionally, a streak 

camera is a 1D ultrafast imaging device. Its narrow entrance slit (10- 50 µm wide) limits the 

imaging FOV to be a line. It operates by transforming the time profile of light pulse intensity 

into the spatial profile on a detector through the time-varying deflection of the light. Figure 2.1 

illustrates the operating principle of the streak camera. Assume there are light pulses arriving 

sequentially at the slit. First, they pass through the slit and lenses and the light image is formed 

on the photocathode. Here at the photocathode, photons are converted into electrons in the 

time order and accelerated. Then they pass the sweep electrode sequentially and are deflected 

vertically at different angles because different sweeping voltages are applied at the different 

time slots. Then they hit the phosphor screen and are converted back to light, and the image is 

readout by a digital camera. Finally, in the streak image, the vertical axis records the time 

information and the horizontal axis captures the space information. 

2.2 Compressed ultrafast photography (CUP) 
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Compressed ultrafast photography (CUP) is the worlds’ fastest passive camera [12].

 

Figure 2.1 Streak camera working principle[6] 

CUP uses conventional imaging optics and a streak camera but takes advantage of the ability 

of compressed sensing tools to recover images from sparse spatiotemporal data. The approach 

enables the information in the image to be encoded in the field of view of the streak camera, 

thereby allowing the system to read out images with full-frame capability at an extremely high 

speed (up to 100 billion fps). Figure 2.2 shows the schematic of CUP. Figure 2.3 shows 

representative images of CUP at macroscopic scales. The application of compressed sensing in 

ultrafast imaging has been demonstrated in compressed ultrafast photography (CUP) [12]. 

Compressed ultrafast photography (CUP) is a new computational ultrafast imaging technology 

that can capture transient dynamic events at 100 billion frames per second in a single camera 

exposure with a sequence depth of hundreds of frames. CUP synergistically combines two 

technologies—the streak camera and compressed sensing (CS) —and can perform 2D ultrafast 

passive imaging at 100 billion frames per second. Conventionally, a streak camera is a 1D 

ultrafast imaging device—its narrow entrance slit (10–50 µm wide) limits the imaging FOV to 
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be a line. To acquire a 2D high-speed video, one has to scan the imaging FOV along the 

direction perpendicular to the streak camera’s entrance slit. However, this requirement poses 

the severe restriction that the event must be repetitive at each scanning position. Unlike other 

streak-camera-based ultrafast imagers, CUP overcomes this limitation with a fully opened 

entrance slit onto the streak camera to collect 2D image and uses compressed sensing to 

reconstruct the 2D image by spatially encoding an image with a random binary pattern using a 

digital micromirror device (DMD), followed by temporal shearing of the resultant signals 

using a streak camera. This spatially encoded and temporally sheared image is then detected 

by a CCD within a single exposure. The image reconstruction is the solution of the inverse 

problem of the above image formation processes. Given the spatiotemporal sparsity of the 

dynamic scene, which holds in many if not most natural scenes, a CS-based reconstruction 

algorithm can successfully decode the spatiotemporal mixing in the vertical axis of the streak 

camera and retrieve spatiotemporal information. Within a single exposure, CUP can capture up 

to 350 consecutive temporal frames at 100 billion frames per second Using CUP, many 

transient light-speed phenomena have been visualized, including the propagation, reflection, 

and refraction of a short laser pulse in space, faster-than-light propagation of non-information, 

and color-resolved fluorescent excitation and emission and dynamic volumetric imaging. To 

enable multicolor CUP, a spectral separation module in front of the streak camera can be 

added. As shown in Figure 2.4 a, a dichroic filter (562 nm cut-on wavelength) is mounted on a 

mirror at a small tilt angle (~5°). The light reflected from this module is divided into two 

beams according to the wavelength: green light (wavelength < 562 nm) is directly reflected 

from the dichroic filter, while red light (wavelength > 562 nm) passes through the dichroic 

filter and bounces from the mirror. Using the multicolor CUP system, a pulsed-laser-pumped 
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fluorescence emission process is imaged. A fluorophore, Rhodamine 6G, in water solution was  

 
Figure 2.2 Optical schematics of CUP [12]. 

 

  
Figure 2.3 CUP of light propagation [12]. (a) Laser pulse reflected from a mirror. (b) Laser pulse refracted from 

an air-resin interface. (c) Laser pulses racing in air and resin. Scale bar, 10 mm.  
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excited by a single 7 ps laser pulse at 513 nm. Some representative temporal frames are shown 

in Figure 2.4 b. In addition, the time-lapse mean signal intensities within the dashed box in 

Figure 2.4 b for both the green and red channels (Figure 2.4 c) are calculated. Based on the 

measured fluorescence decay, the fluorescence lifetime was found to be 3.8 ns, closely 

matching a previously reported value. Currently, CUP relies on the unconstrained two-step 

iterative shrinkage/thresholding (TwIST) algorithm to reconstruct the event data cube. CUP is 

a two-dimensional ultrafast dynamic passive image platform and has three characteristics. 

First, it features high imaging speed and can reach picosecond time resolution. Second, it is a 

single-shot imagerand does not scan the sample, thereby minimizing the exposure to the 

sample, which is beneficial to live tissue imaging. Third, it is passive imaging and does not 

require active illumination. As a consequence, it is suitable for live cell imaging. 

 

Figure 2.4 Multicolor CUP [12]. (a) Custom-built spectral separation unit. (b) Representative temporal frames of a 
pulsed laser-pumped fluorescence emission process. The pulsed pump laser and fluorescence emission are pseudo-
colored based on their peak emission wavelengths. To explicitly indicate the spatiotemporal pattern of this event, the 
CUP-reconstructed frames are overlaid with a static background image captured by a monochromatic CCD camera. 
(c) Time-lapse pump laser and fluorescence emission intensities averaged within the dashed box in b. The temporal 
responses of pump laser excitation and fluorescence decay are fitted to a Gaussian function and an exponential 
function, respectively. Scale bar, 10mm..  
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2.3 Overview of compressed FLIM 

To detect the fast fluorescence decay in FLIM, there are generally two strategies. Time-

domain FLIM and frequency-domain FLIM as mentioned in Chapter 1. Despite being 

quantitative, the common drawback of FLIM is their dependence on scanning and/or repetitive 

measurements. For example, to acquire a two-dimensional (2D) image, a confocal FLIM 

imager must raster scan the entire field of view (FOV), resulting in a trade-off between the 

FOV and frame rate. To avoid motion artifacts, the sample must remain static during data 

acquisition. Alternatively, widefield FLIM systems acquire spatial data in parallel. 

Nonetheless, to achieve high temporal resolution, they still need to temporally scan either a 

gated window[36,37] or detection phase[38], or they must use TCSPC which requires a large 

number of repetitive measurements to construct a temporal histogram [39,40]. Limited by the 

scanning requirement, current FLIM systems operate at only a few frames per second when 

acquiring high-resolution images[41,42]. The slow frame rate thus prevents these imagers 

from capturing transient biological events, such as neural spiking[43] and calcium 

oscillation[44]. Therefore, there is an unmet need to develop new and efficient imaging 

strategies for high-speed, high-resolution FLIM.   

To overcome the above limitations, herein we introduced the paradigm of compressed sensing 

into FLIM and developed a snapshot widefield FLIM system, termed compressed FLIM, 

which can image fluorescence lifetime at an unprecedented speed. Our method is made 

possible by a unique integration of (1) compressed ultrafast photography (CUP)[12] for data 

acquisition, (2) a dual-camera detection scheme for high-resolution image reconstruction[45], 

and (3) computer cluster hardware and graphic processing unit (GPU) parallel computing 

technologies for real-time data processing. The synergistic effort enables high-resolution (500 
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× 400) widefield lifetime imaging at 100 frames per second (fps). To demonstrate compressed 

FLIM, we performed experiments sequentially on fluorescent beads and live neurons, 

measuring the dynamics of bead diffusion and firing of action potential, respectively. 

2.4 Results 

2.4.1 Operaing principle of compressed FLIM 

Compressed FLIM operates in two steps: data acquisition and image reconstruction. Briefly, 

the sample is first imaged by a high-resolution fluorescence microscope. The output image is 

then passed to the CUP camera for time-resolved measurement. Finally, we use a GPU-

accelerated compressed sensing reconstruction algorithm—two-step iterative 

shrinkage/thresholding (TwIST)—to process the image in real time [46].   

A compressed FLIM system (Fig. 2.5) consists of an epi-fluorescence microscope and a CUP 

camera.Upon excitation by a single laser pulse, the fluorescence is collected by an objective 

lens with a high numerical aperture (NA) and forms an intermediate image at the microscope’s 

side image port. A beam splitter then divides the fluorescence into two beams. The reflected 

light is directly captured by a reference complementary metal–oxide–semiconductor (CMOS) 

camera, generating a time-integrated image:   

𝐸𝐸𝐼𝐼(𝑥𝑥,𝑦𝑦) = ∫ 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡)𝑑𝑑𝑑𝑑, (1) 

where 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡) denotes the time-lapse fluorescence decay.  

The transmitted light is relayed to a digital micromirror device (DMD) through a 4𝑓𝑓 imaging 

system consisting of a tube lens, a mirror, and a stereoscope objective. A static, 

pseudorandom, binary pattern is displayed on the DMD to encode the image. Each encoding 

pixel is turned either on (tilted -12° with respect to the DMD surface norm) or off (tilted +12° 

with respect to the DMD surface norm) and reflects the incident fluorescence in one of the two 
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directions. Two reflected fluorescence beams, masked with the complementary patterns, are 

both collected by the same stereoscope objective and enter corresponding sub-pupils at the 

objective’s back focal plane. The fluorescence from these two sub-pupils are then imaged by 

two tube lenses, folded by right-angle prism mirrors (the lower right inset in Fig. 2.5), and 

form two complementary channel images at the entrance port of a streak camera. To accept the 

encoded 2D image, this entrance port is fully opened (~5 mm width) to its maximum, 

exposing the entire photocathode to the incident light. Inside the streak camera, the encoded 

fluorescence signals are temporally deflected along the vertical axis according to the time of 

arrival of incident photons. The final image is acquired by a CMOS camera—the photons are 

temporally integrated within the camera’s exposure time and spatially integrated within the 

camera’s pixel. The formation of complementary channel images can be written as:  

𝐸𝐸𝐶𝐶1(𝑥𝑥,𝑦𝑦) = 𝑇𝑇𝑇𝑇𝐶𝐶1𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) 

𝐸𝐸𝐶𝐶2(𝑥𝑥,𝑦𝑦) = 𝑇𝑇𝑇𝑇𝐶𝐶2𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡). 
(2) 

Here 𝑆𝑆 is a temporal shearing operator, and 𝑇𝑇 is a spatio-temporal integration operator. They 

describe the functions of the streak camera and CMOS camera, respectively. 𝐶𝐶1 and 𝐶𝐶2 are 

spatial encoding operators, depicting the complementary masks applied to two channel 

images, and 𝐶𝐶1 + 𝐶𝐶2 = 𝐼𝐼, where 𝐼𝐼 is a matrix of ones. This complementary-encoding setup 

features a 100% light throughput, saving every photon in low-light conditions. Also, because 

there is no information lost, our encoding scheme enriches the observation and favors the 

compressed-sensing-based image reconstruction.   

During data acquisition, we synchronize the streak camera with the reference camera in the 

transmission optical path. Therefore, each excitation event yields three images: one time-

integrated fluorescence image, 𝐸𝐸𝐼𝐼(𝑥𝑥, 𝑦𝑦) , and two spatially-encoded, temporally-sheared 
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channel images, 𝐸𝐸𝐶𝐶1(𝑥𝑥,𝑦𝑦) and 𝐸𝐸𝐶𝐶2(𝑥𝑥,𝑦𝑦).  

The image reconstruction of compressed FLIM is the solution of the inverse problem of the 

above image formation process (Eq. 1-2). Because the two complementary channel images 

 

Fig.2.5 Schematic of compressed FLIM. Lower right inset[187]: Close-up of the configuration at the streak camera’s 
entrance port. Light beams in two complementary encoding channels are folded by two right angle prisms before 
entering the fully opened entrance port of the streak camera. DMD: digital micromirror device. CMOS: 
complementary metal–oxide–semiconductor. 
 

𝐸𝐸𝐶𝐶1, 𝐸𝐸𝐶𝐶2 are essentially associated with the same scene, the original fluorescence decay event 

can be reasonably estimated by applying a compressed sensing algorithm TwIST [46] to the 

concatenated data (𝐸𝐸𝐶𝐶1, 𝐸𝐸𝐶𝐶2). Additionally, to further improve the resolution, we apply the 

time-integrated image recorded by the reference camera, 𝐸𝐸𝐼𝐼, as the spatial constraint. Finally, 

we fit a non-linear least-squares exponential curve to the reconstructed fluorescence decay at 

each spatial sampling location and produce the high-resolution fluorescence lifetime map. To 

reconstruct the image in real time, we implement our algorithm on GPU and computer cluster 

hardware.   

The synergistic integration of hardware and algorithm innovations enables acquisition of high-

quality microscopic fluorescence lifetime images. Operating in a snapshot format, the frame 

rate of compressed FLIM is limited by only the readout speed of the streak camera and up to 
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100 fps. The spatial resolution, determined by the numerical aperture of the objective lens, is 

in a submicron range, providing a resolving power to uncover the transient events inside a cell. 

 

Fig.2.6 Lifetime imaging of fluorescent beads in flow[187]. a. Reconstructed fluorescence decays of two types of 
fluorescent beads. b. Mean lifetimes. The standard errors of the mean are shown as error bars. c. Reconstructed 
snapshot lifetime image. d. Reference intensity image. e-g. Lifetime images of fluorescent beads in flow at 
representative temporal frames. Scale bar: 10 μm. 
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Fig.2.7 Lifetime imaging of neuronal cytoskeleton immunolabelled with two fluorophores. Alexa Fluor 555 
immunolabels Vimentin. Alexa Fluor 546 immunolabels Tubulin[187]. a. Reconstructed lifetime image of 
immunofluorescently-stained neurons. b. Reconstructed fluorescence decays at two fluorophore locations. c. 
Reference intensity image. d. Lifetime unmixed image. Green channel, Vimentin; Blue channel, Tubulin. e. 
Ground-truth lifetime unmixed image captured by line-scanning streak imaging. Scale bar: 10 µm.  
 

 
 
Fig.2.8 High-speed lifetime imaging of neural spiking in live neurons expressing MacQ-mOrange2. a-d. Lifetime 
imaging of FRET in phantoms. Acceptor Alexa 647 and donor Alexa 546 were mixed with varied concentration 
ratios (A:D ratio)[187]. a. Photograph of three mixed solutions with different A:D ratios (0:1, 1:1, 2:1). b. 
Reference intensity image. c. Reconstructed lifetime image. d. Comparison between measurement and ground 
truth. e-j. Lifetime imaging of FRET in live neurons. The FRET sensor MacQ-mOrange2 was expressed in a live 
neuron. e. Reconstructed lifetime images of the neuron at representative temporal frames upon potassium 
stimulation. f-g. Intensity and lifetime waveforms of neural spikes (black lines) and their mean (green line). h. 
Reconstructed time-lapse lifetime and intensity recording of neural spiking. The signals were averaged inside a 
cell. i. Scatter plot between lifetime and intensity of MacQ-mOrange2 measured at different times. The Pearson 
correlation coefficient is 0.93. j. Negative control.  Scale bar: 10 µm. 
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2.4.2 Imaging fluorescent beads in flow 

We demonstrated compressed FLIM in imaging fluorescent beads in flow. We mixed two 

types of fluorescent beads (diameters, 6 μm and 2 μm) in phosphate buffer solutions (PBS) 

and flowed them in a microtubing at a constant speed using a syringe pump. The ground-truth 

fluorescence lifetimes of these two types of fluorescent beads are 5.0 ns and 3.6 ns, 

respectively. We excited the beads at 532 nm and continuously imaged the fluorescence using 

compressed FLIM at 75 fps. As an example, the reconstructed time-lapse fluorescence decays 

at two beads’ locations are shown in Fig. 2.6a. We pseudo-colored the bead image based on 

the fitted lifetimes (Fig. 2.6c).  The result indicates that compressed FLIM can differentiate 

these two types of beads with very close lifetimes. For comparison, the corresponding time-

integrated image captured by the reference camera is shown in Fig. 2.6d.   

We further reconstructed the entire flow dynamics and show and representative temporal 

frames in Fig. 2.6e-g, respectively. Because the lifetime image was acquired in a snapshot 

format, no motion blur is observed. Moreover, we calculated the average fluorescence 

lifetimes of these two types of beads. The results 4.9 ns and 3.7 ns match well with the ground 

truth. 

2.4.3 Lifetime unmixing of neural cytoskeletal proteins   

Next, we applied compressed FLIM to cell imaging and demonstrated fluorescence lifetime 

unmixing of multiple fluorophores with highly overlapped emission spectra. Multi-target 

fluorescence labeling is commonly used to differentiate intracellular structures. Separation of 

multiple fluorophores can be accomplished by spectrally-resolved detection and multicolor 

analysis[47-49] or time-resolved detection by FLIM[50]. The spectral method fails when the 

emission spectra of the fluorophores strongly overlap. By contrast, FLIM has a unique edge in 
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this case provided a difference in fluorophores’ lifetimes.   

We imaged two protein structures in the cytoskeleton of neurons and unmixed them based on 

the lifetime. We immunolabelled Vimentin and Tubulin in the cytoskeleton with Alexa Fluor 

555 and Alexa Fluor 546, respectively. The emission spectra of two fluorophores highly 

overlap but their fluorescence lifetimes differ (1.3 ns vs. 4.1 ns). Within a single snapshot, we 

captured a high-resolution lifetime image of immunofluorescently-stained neurons (Fig. 2.7a). 

Two representative decay curves associated with Alexa Fluor 555 and 546 are shown in Fig. 

2.7b. Next, we applied a regularized unmixing algorithm to the lifetime data and separated 

Vimentin and Tubulin into two channels in Fig. 2.7d (green channel, Vimentin; blue channel, 

Tubulin). To acquire the ground-truth unmixing result, we operated our system in a slit-

scanning mode and imaged the same field of view. The resultant unmixed result (Fig. 2.7e) 

matches well with compressed FLIM measurement. To further validate the distribution pattern 

of Vimentin and Tubulin in neuron cytoskeleton structures. 

2.4.4 Imaging neural spikes in live cells     

The complex functions of the brain depend on coordinated activity of multiple neurons and 

neuronal circuits. Therefore, visualizing the spatial and temporal patterns of neuronal activity 

in single neurons is essential to understand the operating principles of neural circuits.  

Recording neuronal activity using optical methods has been a long-standing quest for 

neuroscientists as it promises a noninvasive means to probe real-time dynamic neuronal 

function. Imaging neuronal calcium transients (somatic calcium concentration changes) with 

genetically encoded calcium indicators[51,52], fluorescent calcium indicator stains[53], and 

two-photon excitation methods using galvanometric[54] and target-path scanners[55] have 

been used to resolve suprathreshold spiking (electrical) activity. 
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However, calcium imaging is an indirect method of assessing neuronal activity, and spike 

number and firing rates using fluorescence recording is error prone, especially when used in 

cell populations that contain heterogeneous spike-evoked calcium signals. Thus, using 

functional calcium imaging to detect neuronal spiking in single-cell has been limited. 

Assessing neuronal function directly is invaluable for advancing our understanding of neurons 

and of the nervous system.   

Genetically encoded voltage indicators (GEVIs) offer great promise for directly visualizing 

neural spike dynamics[56,57]. Compared with calcium imaging, GEVIs provide much faster 

kinetics that faithfully capture individual action potentials and sub-threshold voltage 

dynamics. Förster resonance energy transfer (FRET)-opsin fluorescent voltage sensors report 

neural spikes in brain tissue with superior detection fidelity compared with other GEVIs[58].  

As a molecular ruler, FRET involves the nonradiative transfer of excited state energy from a 

fluorophore, the donor, to another nearby absorbing but not necessarily fluorescent molecule, 

the acceptor. When FRET occurs, both the fluorescence intensity and lifetime of the donor 

decrease. So far, most fluorescence voltage measurements using FRET-opsin-based GEVIs 

report relative fluorescence intensity changes (∆F⁄F) and fail to reveal the absolute membrane 

voltage because of illumination intensity variations, photobleaching, and background 

autofluorescence. By contrast, because FLIM is based on absolute lifetime measurement, it is 

insensitive to the environmental factors. Therefore, FLIM enables a more quantitative study 

with FRET-opsin-based GEVIs and provides a readout of the absolute voltage[59]. 

To demonstrate compressed FLIM can be used to detect FRET, we first imaged two 

fluorescence dyes (donor, Alexa Fluor 546; acceptor, Alexa Fluor 647) in phosphate buffer 

solutions (PBS) with varied mixed concentration ratios. The emission spectrum of the donor 
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overlaps considerably with the absorption spectrum of the acceptor, meeting the requirement 

for FRET. Acceptor bleed-through (ABT) contamination, i.e., the direct excitation and 

emission of the acceptor, is minimized by properly choosing the excitation wavelength and 

emission filter. We prepared three samples (Fig. 2.8a) with different concentration ratios (1:0, 

1:1, 1:2) of donor and acceptor and imaged the fluorescence intensities and lifetimes using the 

reference time-integrated camera and compressed FLIM, respectively (Fig.2.8b-c). As 

expected, fluorescence emission intensity of the donor gradually diminishes with more 

acceptor presence and stronger fluorescence quenching. Also, as revealed by compressed 

FLIM, there is a decrease in the donor’s fluorescence lifetime along with an increase in the 

acceptor’s concentration. Furthermore, we performed the ground-truth measurement by 

switching the system to the line-scanning mode. The lifetime results acquired by compressed 

FLIM match well with the ground truth (Fig. 2.8d).  

Next, we evaluated compressed FLIM in imaging a FRET-opsin-based GEVI, MacQ-

mOrange249, to detect spiking in cultured neurons. During voltage depolarization, the optical 

readout is fluorescence quenching of the FRET donor mOrange2. We transfected neurons with 

plasmid DNA MacQ-mOrange2 and stimulated with high potassium treatment. We then used 

compressed FLIM to image the neural spikes. To determine fluorescence lifetime and intensity 

traces for individual cells, we extracted the pixels that rank in the top 50% of the SNR values, 

defined as (∆𝐹𝐹 𝐹𝐹⁄ ) × �𝐹𝐹� , where ∆F⁄F is the voltage-dependent change in fluorescence 

intensity, and 𝐹𝐹� is a pixel’s mean baseline fluorescence intensity[58]. Average fluorescence 

lifetime and fluorescence intensity were calculated from these pixels in each frame. Fig. 2.8h 

shows the fluorescence intensity and lifetime traces of MacQ-mOrange2 sensor expressed in a 

cultured hippocampal neuron within 50 mM potassium environment imaged at 100 Hz. 
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Representative snapshots at 50 ms, 60 ms, 70 ms, 80 ms, 90 ms and 100 ms shown in Fig. 2.8e 

indicate occurrence of lifetime oscillations. The observed spiking irregularity may attribute to 

ion channel stochasticity[60], recurrent activity in the neuronal network[61], or modulation of 

neuronal excitability[62]. The average relative fluorescence intensity change (∆F⁄F) and 

absolute lifetime change (∆τ) in response to one spiking event are -2.9% and -0.7 ns, 

respectively. Fig.2.8f-g present the experimentally determined fluorescence intensity and 

lifetime waveforms of single action potentials from MacQ-mOrange2 (black trace) and their 

mean (green trace, average over n=6 spikes). To further study the correlation between 

fluorescence intensities and lifetimes, we scatter plotted their relationship in Fig. 2.8i. The 

calculated Pearson coefficient is 0.93, indicating a high correlation between measured 

fluorescence intensities and lifetimes. Finally, to provide a negative control, we imaged 

MacQ-mOrange2 within a subthreshold non-activated 20µM potassium stimulation (Fig. 2.8j). 

Both the fluorescence intensities and lifetimes were stable during the entire time trace, and no 

oscillations were observed.  Because advancement in imaging speed is crucial for resolving the 

dynamics of neural activity at the single cell and across neural networks, the results presented 

here demonstrated the utility of compressed FLIM in neuroimaging. 

2.5 Discussion    

Compared with conventional scanning-based FLIM imagers, compressed FLIM features three 

predominant advantages. First, based on a compressed-sensing architecture, compressed FLIM 

can produce high-resolution 2D fluorescence lifetime maps at 100 fps, allowing quantitative 

capture of transient biological dynamics. The gain in the imaging speed is attributed to the 

compressibility of a fluorescence scene in a specific domain. To show the dependence of 

reconstructed image quality on the compression ratio (CR) of a fluorescence event, we 
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calculated the CR when imaging a biological cell stained with a typical fluorophore with a 

lifetime of 4 ns. The observation time window on the streak camera was set as 20 ns. Here we 

define CR as the ratio of the total number of voxels (𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧; 𝑁𝑁𝑥𝑥, 𝑁𝑁𝑦𝑦, 𝑁𝑁𝑡𝑡, samplings 

along spatial axes 𝑥𝑥, 𝑦𝑦 and temporal axis 𝑡𝑡, respectively) in the reconstructed event datacube 

to the total number of pixels (𝑁𝑁𝑥𝑥′ × 𝑁𝑁𝑦𝑦′; 𝑁𝑁𝑥𝑥′, 𝑁𝑁𝑦𝑦′, samplings along spatial axes 𝑥𝑥′, 𝑦𝑦′ in the 

camera coordinate, respectively) in the raw image:   

CR = 𝑁𝑁𝑥𝑥×𝑁𝑁𝑦𝑦×𝑁𝑁𝑡𝑡
𝑁𝑁𝑥𝑥′×𝑁𝑁𝑦𝑦′

. (3) 

In compressed FLIM, the spatial information 𝑦𝑦 and temporal information 𝑡𝑡 occupy the same 

axis 𝑦𝑦’ in the raw image. Therefore, their sum, 𝑁𝑁𝑦𝑦 + 𝑁𝑁𝑡𝑡 − 1, cannot exceed the total number of 

camera pixels along 𝑦𝑦’ axis. Here we consider the equality case, 𝑁𝑁𝑦𝑦′ = 𝑁𝑁𝑦𝑦 + 𝑁𝑁𝑡𝑡 − 1. Also, for 

simplicity, we assume the two complementary image channels fully occupy the entire 𝑥𝑥’ axis 

on the camera, i.e.,  𝑁𝑁𝑥𝑥′ = 2𝑁𝑁𝑥𝑥. We then rewrite CR as:  

CR =
𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑡𝑡

2�𝑁𝑁𝑦𝑦 + 𝑁𝑁𝑡𝑡 − 1�
  . (4) 

Because of using a complementary encoding scheme, compressed FLIM possesses a 100% 

light throughput (ignoring reflection losses from the optical elements).  The light throughput 

advantage can be characterized by the snapshot advantage factor, which is defined as the 

portion of datacube voxels that are continuously visible to the instrument54. When measuring a 

high-resolution image in the presented format (500 × 400 pixels), we gain a factor of  2×105 in 

light throughput compared with that in its point-scanning-based counterpart. Such a 

throughput advantage makes compressed FLIM particularly suitable for low light imaging 

applications.  

Lastly, operating in a snapshot format, compressed FLIM eliminates the motion artifacts and 
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enables fast recording of stochastic biological events. We quantitatively computed the 

maximum blur-free motion allowed by our system. Assuming we image a typical fluorophore 

using a 1.4 NA objective lens and a 20 ns observation time window on the streak camera, the 

maximum blur-free movement during a single-shot acquisition equals the system’s spatial 

resolution (~0.2 𝜇𝜇m). The correspondent speed limit is 10 m/s. A lower NA objective lens or a 

shorter observation window will increase this threshold, however, at the expense of a reduced 

resolution and temporal sequence depth. The ability to capture rapid motion at the microscopic 

scale will be valuable to studying fast cellular events, such as protein folding55 or ligand 

binding56. Moreover, compressed FLIM employs widefield illumination to excite the sample, 

presenting a condition that is favorable for live cell imaging. Cells exposed to radiant energy 

may experience physiological damages because of heating and/or the generation of reactive 

oxygen species (ROS) during extended fluorescence microscopy57. Because phototoxicity has 

a nonlinear relation with illumination radiance58, widefield compressed FLIM prevails in 

preserving cellular viability compared with its scanning-based counterpart.   

In compressed FLIM, the spatial and temporal information are multiplexed and measured by 

the same detector array. The system therefore faces two constrains. First, there is a trade-off 

between lifetime estimation accuracy and illumination intensity. Given ample photons, 

increasing the number of temporal samplings 𝑁𝑁𝑡𝑡 will improve the lifetime estimation accuracy 

approximately in the manner of �𝑁𝑁𝑡𝑡. Using a faster temporal shearing velocity in the streak 

camera will disperse the fluorescence signals to more detector array rows at the expense of a 

reduced signal-to-noise ratio. To maintain the photon budget at each temporal sampling bin, 

we must accordingly increase the illumination intensity at the sample, a fact which may 

introduce photobleaching and shorten the overall observation time. The second trade-off exists 
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between y-axis spatial sampling and t-axis temporal sampling. For a given format detector 

array, without introducing temporal shearing, the final raw image occupies 𝑁𝑁𝑦𝑦  pixel rows. 

With temporal shearing, the image is sheared to 𝑁𝑁𝑦𝑦 + 𝑁𝑁𝑡𝑡 − 1 pixel rows  with the constraint 

𝑁𝑁𝑦𝑦 + 𝑁𝑁𝑡𝑡 − 1 ≤ 𝑁𝑁𝑦𝑦′. Here 𝑁𝑁𝑦𝑦′ is the total number of detector rows. Increasing the image size 

𝑁𝑁𝑦𝑦  will decrease the 𝑁𝑁𝑡𝑡  and thereby the lifetime estimation accuracy. Therefore, the image 

FOV and lifetime estimation accuracy must be balanced for a given application.  

In summary, we have developed a high-speed, high-resolution fluorescent lifetime imaging 

method, compressed FLIM, and demonstrated its utility in imaging dynamics. Capable of 

capturing a 2D lifetime image within a snapshot, we expect compressed FLIM would have 

broad applications in blur-free observation of transient biological events, enabling new 

avenues of both basic and translational biomedical research.                         

2.5 Methods in Compressed FLIM 

2.5.1 Forward model 

We describe compressed FLIM’s image formation process using the forward model5. 

Compressed FLIM generates three projection channels: a time-unsheared channel, and two 

time-sheared channels with complementary encoding. Upon laser illumination, the 

fluorescence decay scene is first imaged by the microscope to the conjugated plane and 

𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡)  denotes the intensity distribution. A beam splitter then divides the conjugated 

dynamic scene into two beams. The reflected beam is directly captured by a reference CMOS 

camera, generating a time-integrated image. The optical energy, 𝐸𝐸𝐼𝐼(𝑚𝑚,𝑛𝑛), measured at pixel 

m, n, on the reference CMOS camera is: 
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where d is the pixel size of the reference camera.  

The transmitted beam is then relayed to an intermediate plane (DMD plane) by an optical 

imaging system. Assuming unit magnification and ideal optical imaging, the intensity 

distribution of the resultant intermediate image is identical to that of the original scene. The 

intermediate image is then spatially encoded by a pair of complementary pseudorandom binary 

patterns displayed at the DMD plane. The two reflected spatially-encoded images have the 

following intensity distribution: 
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(6) 

Here, C1,i,j and C2,i,j are elements of the matrix representing the complementary patterns with 

C1,i,j + C2,i,j =1, i, j are matrix element indices, and d' is the binned DMD pixel size. For each 

dimension, the rectangular function (rect) is defined as:        
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2
1   if,1)rect(
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. 

The two reflected light beams masked with complimentary patterns are then passed to the 

entrance port of a streak camera. By applying a voltage ramp, the streak camera acts as a 

shearing operator along the vertical axis on the input image. Assuming ideal optics with unit 

magnification again, the sheared images can be expressed as  

),'',''(),'',''(

),'',''(),'',''(

22

11

tvtyxItyxI

tvtyxItyxI

Cs

Cs

−=

−=

, 
(7) 

where v is the shearing velocity of the streak camera.   
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𝐼𝐼𝑠𝑠𝑖𝑖(𝑥𝑥′′,𝑦𝑦′′, 𝑡𝑡) (i = 1, 2) is then spatially integrated over each camera pixel and temporally 

integrated over the exposure time. The optical energy, 𝐸𝐸𝐶𝐶𝑖𝑖(𝑚𝑚,𝑛𝑛) (i = 1, 2), measured at pixel 

m, n, is: 
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Here, d'' is the camera pixel size. Accordingly, we can voxelize the input scene, 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡), into 

Ii,j,k as follows: 
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where Δt = d''/v. If the pattern elements are mapped 1:1 to the camera pixels (that is, d'=d'') 

and perfectly registered, and the reference CMOS camera and the internal CMOS camera of 

the streak camera have the same pixel size  (that is, d =d''), combining equations (5)-(9) 

yields: 
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(10) 

Here Ci,m,n-k Im,n-k,k (i = 1, 2) represents the complimentary-coded, sheared scene, and the 

inverse problem of equation (10) can be solved using existing compressed-sensing 

algorithms35,59,60.  
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2.5.2 Compressed FLIM image reconstruction algorithm 

Given prior knowledge of the binary pattern, to estimate the original scene from the 

compressed FLIM measurement, we need to solve the inverse problem of equation (10). 

Because of the sparsity in the original scene, the image reconstruction can be realized by 

solving the following optimization problem 
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where O is the linear operator, 𝛷𝛷(𝐼𝐼) is the regularization function and β is the weighing factor 

between the fidelity and sparsity. To further impose space and intensity constraint, we 

construct the new constrained solver:  
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 Here, M is a set of possible solutions confined by a spatial mask extracted from the 

reference intensity image and defines the zone of action in the reconstruction. This spatial 

constraint improves the image resolution and accelerates the reconstruction. s is the low 

intensity threshold constraint to reduce the low-intensity artifacts in the data cube. In 

compressed FLIM image reconstruction, we adopt an algorithm called two-step iterative 

shrinkage/thresholding(TwIST)35, with 𝛷𝛷(𝐼𝐼) in the form of total variation (TV):  
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Here we assume that the discretized form of I has dimensions 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑡𝑡 (𝑁𝑁𝑥𝑥, 𝑁𝑁𝑦𝑦  and 𝑁𝑁𝑡𝑡 

are respectively the numbers of voxels along x, y and t), and m, n, k are three indices. Im, In, Ik 

denote the 2D lattices along the dimensions m, n, k, respectively. 𝛥𝛥𝑖𝑖ℎand 𝛥𝛥𝑖𝑖𝑣𝑣are horizontal and 
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vertical first-order local difference operators on a 2D lattice. After the reconstruction, non-

linear least squares exponential fitting is applied to data cube along the temporal dimension at 

each spatial sampling point to extract the lifemap.  

2.5.3 Lifetime-based fluorophore un-mixing algorithm 

For simplicity, here we consider only fluorophores with single-exponential decays. Provided 

that the sample consists of n mixed fluorophores with lifetimes τ = (τ1, …, τn) and 

concentration x = (x1, …, xn), upon a delta pulse excitation, the discretized time-lapse 

fluorescence decay is: 

𝑦𝑦𝑡𝑡 = �𝐴𝐴𝑡𝑡,𝑘𝑘𝑥𝑥𝑘𝑘 .

𝑛𝑛−1

𝑘𝑘=0

 (14) 

Here, k is the fluorophore index, 𝐴𝐴𝑡𝑡,𝑘𝑘  is an element of the fluorescence decay component 

matrix 𝑨𝑨, and 𝐴𝐴𝑡𝑡,𝑘𝑘 = exp(−𝑡𝑡/𝜏𝜏𝑘𝑘). The inverse problem of equation (14) is a least squares 

problem with constraints. We choose 2-norm penalty and form the solvent for ℓ2-regularized 

least squares problem: 
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where the first term 1
2
‖𝑦𝑦 − 𝑨𝑨𝑥𝑥‖22 represents the measurement fidelity, and the regularization 

term penalizes large norm of x. The regularization parameter λ adjusts the weight ratio 

between fidelity and 2-norm penalty.  

In our experiment, to construct fluorescence decay component matrix 𝑨𝑨, we first directly 

imaged Alexa Fluorophore 555 and Alexa Fluorophore 546 in solution and captured their 

time-lapse fluorescence decay. Then we computed their lifetimes by fitting the asymptotic 

portion of the decay data with single exponential curves. Finally, we applied the regularized 
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unmixing algorithm to the lifetime data and separated the fluorophores into two channels. 

GPU assisted real-time reconstruction using computer cluster 

Based on the iterative construction, compressed FLIM is computationally extensive. For 

example, to reconstruct a 500 × 400 × 617 (x, y, t) event datacube and compute a single 

lifetime image, it takes tens of minutes on a single PC. The time of constructing a dynamic 

lifetime movie is prohibitive. To accelerate this process, we (1) implemented the 

reconstruction algorithm using a parallel programming framework on two NVIDIA Tesla K40 

GPUs and (2) performed all reconstructions simultaneously on a computer cluster (Illinois 

Campus Cluster). The synergistic effort significantly improved the reconstruction speed and 

reduced the movie reconstruction time to seconds. Table 1 illustrates the improvement in 

reconstruction time when the computation is performed on a single PC vs. the GPU-assisted 

computer cluster.  

2.5.4 Compressed FLIM: hardware  

In the compressed FLIM system, we used an epi-fluorescence microscope (Olympus IX83) as 

the front-end optics. We excited the sample using a 515 nm picosecond pulse laser (Genki-

XPC, NKT Photonics) and separated the fluorescence from excitation using a combination of a 

532 nm dichroic mirror (ZT532rdc, Chroma) and a 590/50 nm band-pass emission filter 

(ET590/50m, Chroma). Upon excitation, an intermediate fluorescence image was formed at 

the side image port of the microscope. A beam splitter (BSX16, Thorlabs) transmitted 10% of 

light to a temporal-integration camera (CS2100M-USB, Thorlabs) and reflected 90% of light 

to the temporal-shearing channels. The reflected image was then relayed to a DMD (DLP 

LightCrafter 6500, Texas Instruments) through a 4f system consisting of a tube lens (AC508-

100-A, Thorlabs) and a stereoscopic objective (MV PLAPO 2XC, Olympus; numerical 
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aperture, 0.50). At the DMD, we displayed a random, binary pattern to encode the image. The 

reflected light from both the “on” mirrors (tilted +12° with respect to the norm) and “off” 

mirrors (tilted -12 °  with respect to the norm) were collected by the same stereoscopic 

objective, forming two complementary channel images at the entrance port of a streak camera 

(C13410-01A, Hamamatsu). The streak camera deflected the image along the vertical axis 

depending on the time-of-arrival of incident photons. The resultant spatially-encoded, 

temporally-sheared images were acquired by an internal CMOS camera (ORCA-Flash 4.0 V3, 

C13440-20CU, Hamamatsu) with a sensor size of 1344(H) × 1016(V) pixels (1 × 1 binning; 

pixel size d = 6.5 µm). We synchronized the data acquisition of cameras using a digital delay 

generator (DG645, Stanford Research Systems).  

2.5.5 Filter selection for FRET-FLIM imaging 

To assure only fluorescence emission from the donor was collected during FRET-FLIM 

imaging, we chose a filter set (a 515 nm excitation filter and a 590/50 nm emission filter) to 

separate excitation and fluorescence emission. This filter combination suppressed the direct 

excitation of the acceptor to <3% and minimized the collection of the acceptor’s fluorescence, 

thereby eliminating the acceptor bleed-through (ABT) contamination.  

2.5.6 Spatial registration among three imaging channels 

Because compressed FLIM imaged a scene in three channels (one temporal-integrated channel 

and two complementary temporal-shearing channels), the resultant images must be spatially 

registered. We calibrated the system using a point-scanning-based method. We placed an 

illuminated pinhole at the microscope’s sample stage and scanned it across the FOV. At each 

point-scanning position, we operated the streak camera in the “focus” mode (i.e., without 

temporal shearing) and captured two impulse response images with all DMD’s pixels turned 
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“on” and “off”, respectively. Meanwhile, the reference CMOS camera captured another 

impulse response image in the temporal-integration channel. We then constructed a lookup 

table by extracting the pinhole locations in these three impulse response channel images. This 

lookup table was later used to register the three channel images �𝐸𝐸𝐼𝐼 ,𝐸𝐸𝐶𝐶1 ,𝐸𝐸𝐶𝐶2�for concatenated 

image reconstruction.  

2.5.7 Acquisition of encoding matrices C1 and C2 

To acquire the encoding matrices C1 and C2, we imaged a uniform scene and operated the 

streak camera in the “focus” mode. The streak camera directly captured the encoding patterns 

without temporal shearing. Additionally, we captured two background images with all DMD’s 

pixels turned “on” and “off”, respectively. To correct for the non-uniformity of illumination, 

we then divided the coded pattern images by the corresponding background images pixelwise.  

2.5.8 Slit-scanning streak camera imaging 

To form a ground-truth lifetime image, we employed the DMD as a line scanner and scanned 

the sample along the direction perpendicular to the streak camera entrance slit. We turned on 

the DMD’s (binned) mirror rows sequentially and imaged the temporally-sheared line image in 

the correspondent imaging channel. Given no spatiotemporal mixing along the vertical axis, 

the fluorescence decay data along this line direction could be directly extracted from the streak 

image. Next, we computed the fluorescence lifetimes by fitting the decay data to single 

exponential curves. The resultant line lifetime images were stacked to form a 2D 

representation.   

2.5.9 Confocal FLIM imaging  

For  confocal FLIM imaging, we used a bench-mark commercial system (ISS Alba FCS). The 

sample was excited by a Ti:Sapphire laser, and fluorescence was collected by a Nikon Eclipse 
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Ti inverted microscope. The time-lapse fluorescence decay was measured by a time-correlated 

single photon counting unit. To form a 2D lifetime image, the system raster scanned the 

sample. The typical time to capture a 2D lifetime image ( 256 × 256 pixels) was ~ 60 s.  

2.5.10 Fluorescence beads  

We used a mixture of 6 μm and 2 μm diameter fluorescence beads (C16509, Thermo Fisher; 

F8825 Thermo Fisher) in our experiment. To prepare the mixed beads solution, we first diluted 

the 6 μm and 2 μm diameter bead suspensions. After sonicating the two fluorescence bead 

suspensions, we pipetted 10 uL of the 6 μm bead suspension (~1.7 × 107 beads/mL) and 2 μm 

bead suspension (~4.5 × 109 beads/mL) into 1mL and 10mL phosphate buffer solutions (PBS), 

respectively. Next, we mixed 100 uL diluted 2 μm bead solution with 1 ml diluted 6 μm bead 

solution. The final mixed beads solution contained approximately 1.5 × 105 6 μm beads/mL 

and 4.1 × 105 2 μm beads/mL.     

2.5.11 FRET phantom 

We used Alexa Fluor 546 (A-11003, Thermo Fisher) as the donor and Alexa Fluor 647 (A-

21235, Thermo Fisher) as the acceptor. We prepared the acceptor solutions with three different 

concentrations (0 mg/mL, 1 mg/mL, 2 mg/mL) and mixed them with the same donor 

solution(1 mg/mL). We then injected them into three glass tubes (14705-010, VWR) for 

imaging.  

2.5.11 Primary cell culture:  

Primary hippocampal neurons were cultured from dissected hippocampi of Sprague-Dawley 

rat embryos. Hippocampal neurons were then plated on 29mm glass bottom petri dishes that 

are pre-coated with poly-D-lysine (0.1 mg/ml; Sigma-Aldrich).  To help the attachment of 

neurons (300 cells/mm2)  on to the glass bottom dish, neurons were initially incubated with a 
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plating medium containing 86.55% Minimum Essential Medium Eagle’s with Earle’s 

Balanced Salt Solution (MEM Eagle’s with Earle’s BSS, Lonza), 10% Fetal Bovine Serum 

(re-filtered, heat inactivated FBS; ThermoFisher), 0.45% of 20% (wt./vol.) glucose, 1× 100 

mM sodium pyruvate (100×; Sigma-Aldrich), 1× 200 mM glutamine (100×; Sigma-Aldrich), 

and 1× penicillin/streptomycin (100×; Sigma-Aldrich). After three hours of incubation in the 

incubator (37°C and 5% CO2), the plating media was aspirated and replaced with maintenance 

media containing Neurobasal growth medium supplemented with B-27 (Invitrogen), 1% 200 

mM glutamine (Invitrogen) and 1% penicillin/streptomycin (Invitrogen) at 37 °C, in the 

presence of 5% CO2. Half the media was aspirated once a week and replaced with fresh 

maintenance media. The hippocampal neurons were grown for 10 days before imaging. 

2.5.12 Immunofluorescently stained neurons:  

We immunolabelled the Vimentin (MA5-11883, Thermo Fisher) with Alexa Fluor 555 (A-

21422, Thermo Fisher) and Tubulin (PA5-16891, Thermo Fisher) with Alexa Fluor 546 (A-

11010, Thermo Fisher) in the neurons.  

2.5.13 Transfect the neurons to express MacQ-mOrange2:  

We used Mac mutant plasmid DNA Mac-mOrange2 (#48761, Addgene) to transfect 

hippocampal neurons. In DNA collection, as soon as we received the agar stab, we grew 

bacteria in Luria-Bertani (LB) broth with ampicillin in 1:1000 dilution for overnight in 37°C. 

Standard Miniprep (Qiagen) protocol was performed in order to collect DNA. DNA 

concentration was measured by Nanodrop 2000c (ThermoFisher). In neuron transfection, 

lipofectamine 2000 (Invitrogen) was used as transfecting reagent. In an Eppendorf tube, we 

stored 1mL of the conditioned culture media from 29mm petri plates neuron culture with 1mL 

of fresh media. We prepared two separate Eppendorf tubes and add 100uL of Neurobasal 
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medium to each tube. For one tube, 3ug of DNA was added while 4uL of lipofectamine 2000 

was added to the other tube. After five minutes, two tubes were mixed together and incubated 

in room temperature for 20 minutes. This mixture was added to neuron culture in dish for 4 

hours in the incubator (37°C and 5% CO2). We took out the media containing lipofectamine 

2000 reagent and added the stored conditioned and fresh culture media to neuron culture in 

dish. Hippocampal neurons were imaged 40 hours after transfection. 

2.5.14 Potassium stimulation and imaging:  

We used high potassium (50mM) treatment to stimulate neuron spike. The extracellular 

solution for cultured neurons (150 mM NaCl, 4 mM KCl, 10 mM glucose, 10 mM HEPES, 2 

mM CaCl2 and 2 mM MgCl2) was adjusted to reach the desired final K+ concentration 

(50mM) and maintain physiological osmolality at the same time. At each stimulation, we 

removed the media in the plate and pipetted high potassium extracellular solution at the same 

time.  

2.6 Deep-learning-based reconstruction for compressed ultrafast photography 

Currently, both compressed FIM and CUP relies on the two-step iterative 

shrinkage/thresholding (TwIST) algorithm to reconstruct the event datacube. The recovered 

image resolution is degraded by the temporal shearing operation of the streak camera [63]. 

Several improvements in the reconstruction algorithms have been made in the literature [63-

65]. However, the resultant image quality is still non-optimal, and the optimization-based 

reconstruction methods typically need tens to hundreds of iterations to converge and often 

require fine-tuning of the hyper-parameter to obtain high-fidelity results, both of which are 

time-consuming. Also, the memory requirement is high due to the complex computation such 

as matrix inversion. Inspired by the recent advances in applying deep learning (DL) [66] to 
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computational imaging systems for faster and more accurate reconstruction [67-70], we 

present a deep-learning-based method for the CUP image reconstruction to improve the image 

quality and accelerate the reconstruction speed towards real-time display applications[188].  

In CUP, as illustrated in Figure 2.9(a), the dynamic scene is first imaged by a lens to an 

intermediate image plane. Then a beam splitter divides the light towards two directions. The 

reflected light is directly imaged by an external CMOS camera (Thorlabs, CS2100M-USB). 

The transmitted light is passed to a DMD (Texas Instrument, LightCrafter 6500) by a 4f 

imaging system with a tube lens (Thorlabs, AC508-100-A) and a stereo objective (Olympus, 

MV PLAPO 2XC) . A static pseudorandom binary pattern is displayed onto the DMD to 

spatially encode the dynamic scene. Each encoding pixel is turned either on (tilted -12° with 

respect to the DMD surface norm) or off (tilted +12° with respect to the DMD surface norm) 

and reflects the incident light in one of the two directions. The reflected light masked with the 

pattern is collected by the same stereo objective and further relayed to the wide-open entrance 

slit of a streak camera (Hamamatsu, C13410-01A). Inside the streak camera, the incident light 

is temporally sheared by a sweeping voltage in the vertical axis according to the time of flight 

and imaged by an internal CMOS camera (Hamamatsu, ORCA-Flash 4.0) in a single 2D 

image. As discussed in 2.3, the reconstruction in CUP is a inherent large-sized 3D problem: 

the CUP captures 3D (x-y-t) data with a single 2D measurement (x-y). A key to reduce the 

complexity of applying DL for reconstruction is to recognize that, in the measurement 

operation, each 2D image slice (y-t) in the 3D datacube is independent of each other along the 

x axis: the T, S, C operator applies to the column of every instantaneous (x, y) image 

independently. As a result, the 2D image   slice (y-t) corresponds to a 1D compressed line 

image (y) in the CUP measurement data. Therefore, the 3D image reconstruction can be 
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decomposed into massively-parallel 2D image reconstruction, as illustrated in Figure 1(b) and 

Figure 2. The measurements and the mask are first decomposed into independent line images 

(y, xi) and line mask Ci with i being the column index in the 2D measurement (x, y) and 2D 

mask C. The network input is then initialized to ATy with AT being the adjoint of A and 

function as an approximate inverse operator to reduce the learning burden. Such a setting is 

reliable for computational imaging problems [67] and has been widely used in recent works 

[71,72]. The network output is the 2D image slice (y, t). Network groups are constructed for 

each specific line masks, and image slices from the network groups are finally concatenated to 

the 3D datacube (x, y, t). Compared with the 3D mapping network that directly reconstructs 

the 3D datacube, this segmentation reconstruction method benefits from a smaller network, 

enabling faster training and requiring fewer training samples. 

The deep learning network (Figure 2.10 inset) uses an encoder-decoder “U-net” architecture 

with modifications of replacing each convolution layer with a dense block (DB) to improve the 

training efficiency [73,74]. The encoder gradually condenses the spatiotemporal information 

into feature maps with increasing depths; the decoder recombines the information from the 

feature maps into the ultimate image. Specifically, first, the input goes through the “encoder” 

path, which consists of four dense blocks connected by max-pooling layers for downsampling. 

The intermediate output from the encoder encodes rich information along with the “depth” 

(1088 activation maps) with small lateral dimensions. Each dense block contains multiple 

layers, and each layer consists of batch normalization (BN), the rectified linear unit (ReLU) 

nonlinear activation, and convolution (conv) with 16 filters. Next, the low-resolution 

activation maps go through the “decoder” path, which consists of four additional dense blocks 

connected by upsampling convolutional (up conv) layers. Four skip connections are set across 
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different spatiotemporal scales along the encoder-decoder path to preserve high-frequency 

information. After the decoder path, an additional convolutional layer followed by the last 

layer produces the network output. For the loss function, we measure the 𝑙𝑙2 distance between 

the network’s prediction and the ground truth image. To provide strong restrictions on the 

forward model, we add extra constraints on the forward model as the second term in the loss 

function: the encoded streak camera image and the image captured by the reference camera. 

We denote 𝑥𝑥𝑖𝑖 as the ground truth image, 𝑥𝑥�𝑖𝑖 as the network’s prediction with 𝑖𝑖 being the image 

index in the training image batch, and N as the training batch size.  The resultant loss function 

ℓ(𝑥𝑥, 𝑥𝑥�) is: 

ℓ(𝑥𝑥, 𝑥𝑥�) =
1
𝑁𝑁
� ‖𝑥𝑥�𝑖𝑖 − 𝑥𝑥𝑖𝑖‖22

𝑁𝑁

𝑖𝑖=1
+ 𝜆𝜆‖𝑨𝑨𝑥𝑥�𝑖𝑖 − 𝑨𝑨𝑥𝑥𝑖𝑖‖22,   (16) 

where λ is the parameter that controls the relative weights of each loss component.  λ is set to 

1 in the training. After training, the reconstructed (x, y, t) datacube is predicted from the streak 

camera measurement, CMOS camera measurement, and the mask. 

To generate the dataset for training, we adopted two strategies. First, we assembled a 

collection of 3D image cube x by applying various dynamics (such as image shifting, 

reshuffling of the 2D images in the 3D cube) on the MNIST database and 1000 in-house 

experimental images of different objects. To obtain the corresponding measurement data set y, 

we applied the CUP forward operator A on the target image set x. To emulate experimental 

measurements, we encoded the dynamics by the mask captured in the real experiment and 

added the shot noises to the measurement data set y in the synthetic dataset. Second, we 

collected a small experimental dataset that contains the ground truth 3D image cube x. We 

obtained by the ground truth datacube x by a line-scanning operation in the CUP system. In 

line-scanning operation, we employed the DMD as a line scanner by turning on the DMD’s 
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(binned) mirror rows sequentially and recording the temporally-sheared (x, t) image. By 

scanning the sample along the y direction, which is perpendicular to the entrance slit of the 

streak camera, we stacked all the (x,t) images to form the ground truth 3D datacube (x, y, t). 

Furthermore, to improve the network reconstruction accuracy, we performed image 

augmentation, including crop, shift, flip, and affine transformations on the training images to 

increase the training sample size. In total, 10,000 samples were used for training, which 

consists of MNIST (~5%), the in-house experimental objects (~70%), and experimental 

dynamics (~25%).  

We trained the network using the Adam optimizer for 50: epochs.  The leaning rate was 

initialized as 10-3 and scaled down by a factor of 0.5 every 5 epochs. For each epoch, we used 

measurements of the same dynamics with different added noise realizations to improve the 

robustness of the network. A total of 50 different noise realizations at the same noise level 

were generated for the synthetic datasets in the 50 epochs of one training. The training was 

performed on a campus cluster with two GPU (NVIDIA Tesla M2090) using 

Keras/Tensorflow. Once the network was trained, image reconstruction can be achieved in real 

time. To further show the speed improvement by the DL methods, we compared the 

reconstruction time when using DL, TwIST, and other algorithmsSALSA, FISTA, and GAP 

[74-76]. The DL reconstruction speed of a (256, 256, 32) datacube is at least 60 times faster 

than that enabled by the fastest GAP algorithm. 

We first validated the deep learning (DL) method on simulated data and benchmarked it 

against the TwIST algorithm. A 256-by-256 Shepp-Logan (S-L) phantom was used as the base 

image. The simulated dynamic scene contained 9 frames, with the S-L phantom decaying 

exponentially. The intensity decay obeys 𝑰𝑰[𝑛𝑛] = exp (−0.25𝑛𝑛), where I is the intensity trace, 
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n is the frame index, and the decay rate is 0.25. The streak camera measurement was generated 

according to the forward model, and both shot noise and 1% Gaussian white noise were added. 

The dynamic scene was then reconstructed using the TwIST-based constrained reconstruction 

method and our DL reconstruction method, respectively. Figures 2.11(a-c) show temporally 

integrated images of the ground truth, the reconstructed images by TwIST, and the DL 

method, respectively. For the large bright patch in Region 1 and the small bright spot in 

Region 2, the image produced by the DL reconstruction shows better contrast and resolution 

than that of TwIST reconstruction. The boundary between the dark and bright patches in 

Region 3 is also more prominent in the DL result than that in the TwIST result. To compare 

the reconstruction quality of the two methods across frames, we plotted normalized intensity 

changes against the frame index at the same circled pixels indicated in (a)-(c) as shown in Fig. 

2.11(d). For the TwIST reconstructed intensity trace against the ground truth intensity trace is 

0.06, and the reconstructed decay rate is 0.26 with 95% confidence bounds using a nonlinear 

least squares fitting method and single exponential model. For DL reconstruction, RMSE of 

the intensity trace is 0.07, and the reconstructed decay rate is 0.28 with 95% confidence 

bounds. The DL reconstruction thus provides a comparable temporal reconstruction accuracy 

to that of the TwisT algorithm.  

We then benchmarked the DL method against the TwIST algorithm on experimental data. We 

imaged the fluorescence decay of a fluorescent tissue paper upon pulsed laser excitation. The 

515 nm picosecond pulse laser (NKT Photonics, Genki-XPC, 7 ps pulse duration) first passed 

through an engineered diffuser and excited the fluorescent tissue paper. We separated the 

fluorescence from excitation using a combination of a 532 nm dichroic mirror (ZT532rdc, 

Chroma) and a 590/50 nm band-pass emission filter (ET590/50m, Chroma). We then used 10× 
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objective (Olympus, UPLFLN 10X2) and tube lens to relay the fluorescence to the 

intermediate image plane (shown in Fig. 2.9). Next, the CUP system collected the photons.  

 We reconstructed the dynamic scene using both the constrained TwIST and the DL 

reconstruction method. Figure 2.12(a) presents the reference image captured by the external 

reference camera. Figures 2.12(b-c) show temporally integrated images of the TwIST and DL 

reconstructed datacubes, respectively. In the spatial domain, the results of the DL method 

illustrate sharper boundaries and higher spatial resolution. Figure 4(d) shows the normalized 

intensity changes across time at the same circled pixels indicated in Figs. 4(b-c). For TwIST 

reconstruction, the reconstructed fluorescence lifetime (reciprocal of the decay rate) is 6.13 ns 

with 95% confidence bounds using the nonlinear least squares fitting method and a single 

exponential model. The DL reconstructed fluorescence lifetime is 6.29 ns with 95% 

confidence bounds. Figures 2.12(e) and 2.12(f) show the reconstructed frames at t= 0 ns, 1.3 

ns, and 2.5 ns reconstructed by the TwIST and DL methods, respectively. The results indicate 

that, in the temporal domain, the reconstruction accuracy provided by DL and TwIST is 

similar.  

Despite being able to produce a high quality image with much reduced reconstruction time, 

due to the segmentation method in deep learning reconstruction, the DL reconstruction results 

may have boundary artefects (stripes in each x-y temporal frame). This boundary artefects can 

be removed in post-processing [76]. The running time for this additional step is approximately 

0.17 s, bringing the total DL reconstruction time (DL image reconstruction and image post-

processing) to 0.27 s. This speed is still ~60 times faster than that enabled by the fastest 

algorithm GAP. In addition, the DL reconstruction is inferior to the iterative TwIST algorithm 

regarding the flexibility: the pre-trained  network works only with specific mask patterns. A 
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potential solution to solve this problem is to use transfer learning, which can bypass the need 

to train the network from scratch[77]. Specifically, the pre-trained network for the old mask 

can be fine-tuned for a new mask, which can reduce training time and training sample size. 

Moreover, for larger data size in the reconstruction, deeper DL network and more training 

samples may be required for optimal performance.  

In conclusion, we developed a DL reconstruction method for CUP. Compared with the 

conventional TwisT algorithm, the DL method can recover the dynamic scene with shaper 

boundaries, higher feature contrast, and fewer artifacts while maintaining a similar temporal 

reconstruction accuracy. Moreover, the DL method increases the reconstruction speed by a 

factor of over 500, thereby enabling real-time reconstruction of large-sized event datacubes.  

 

 
Fig.2.9 Schematic of the CUP system and CUP data acquisitions[188]. (a) Schematic of the CUP system. DMD, 
digital micromirror device. (b) Schematic of CUP data acquisition. t, time; x, y, spatial coordinates of the 
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dynamic scene; x’, y’, spatial coordinates at the streak camera; x’’, y’’, spatial coordinates at the external CMOS 
camera; C, spatial encoding operator; S, temporal shearing operator; T, spatiotemporal integration operator. The 
3D image reconstruction can be decomposed into massively-parallel 2D image reconstruction.  

 
Fig. 2.10 Deep learning workflow and network architecture for CUP[188]. The measurements and the mask are 
first decomposed into independent line images (y, xi) and line mask Ci, i is the column index in the 2D 
measurement (y, x) and 2D mask C. Input to the network is then set to ATy and the network output is the 2D 
image slice (y, t). Network groups are constructed for each specific line mask, and image slices from the network 
groups are then concatenated to the 3D datacube (x, y, t). The deep learning network uses U-net structure. 
Notations: N: number of kernels, K: kernel size, S: stride, L: number of layers in the dense block, G: growth rate 
of dense block. N#K#S# denotes the number of kernels, kernel size and stride of the convolution layer, 
respectively. L#G# denotes the number of layers and growth rate inside the dense block, respectively. 

 
 
 

 
Fig. 2.11. Results of the numerical simulation[188]. (a-c) Temporally projected images of the ground truth, the 
TwIST reconstructed result, and the DL reconstructed datacubes. (d) Intensity trace against the frame index at the 
circled pixels in (a-c). 
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Fig. 2.12. Experimental results[188]. (a) Reference image captured by the external CMOS camera. (b-c) 
Temporally integrated images of TwIST and DL reconstructed datacubes. (d) Time-lapse intensity change at the 
same circled pixels in (b-c). (e-f) Reconstructed frames at t= 0 ns, 1.3 ns, 2.5 ns by the TwIST and DL methods, 
respectively. S]cale bar: 100 µm.   
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Chapter 3 Compact light field photography towards versatile three-dimensional vision 

Although compressed FLIM can achieve high speed and high resolution FLIM, it does not 

have optical sectioning capability. To acquire 3D lifetime images, it still requires scanning 

along the depth axis. Moreover, it is established on compressed sensing and the image quality 

highly depends on the compression ratio and scene complexity. To break these limitations, we 

developed a imaging framework--referred to as compact light field photography(CLIP)—that 

explores the data redundancy in the conventional light field camera and acquires the light field 

data with high efficiency. This chapter discusses CLIP from its principle to its 

applications[133].  

3.1 Overview of CLIP 

Three-dimensional (3D) imaging is vital for sensing, modeling, and understanding the physical 

world[78,79], with a broad range of applications in navigation, robotics, and medical 

imaging[80,81]. However, there is an inherent dimensionality gap between a 3D scene and the 

recording sensors, which can at most be arranged on a two-dimensional (2D) surface as in 

curved sensor arrays[82]. As a result, only a 2D projection of the scene can be captured from a 

given perspective. To recover depths, one must perform additional measurements along an 

extra axis of light: an angular axis in multi-view measurements or a temporal axis in time-of-

flight sensing. While multi-view methods, including stereo[83], structured-light[84], and light 

field cameras[85], can attain exceptional depth accuracy (<100 µm) at near distances and 

operate at a relatively high speed, their accuracies degrade quadratically with distance and 

ultimately fail at a long range[83]. Except for structured light that employs active 

illuminations, multi-view methods also rely heavily on object texture for effective depth 

extraction. On the other hand, time-of-flight techniques are agonistic of textures and can 

maintain the depth resolution over a large detection range[86-88]. However, high-speed and 
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dense depth mapping robust against stochastic motions is still challenging for time-of-flight 

cameras. The distinct strengths and limitations of multi-view methods and time-of-flight 

techniques have long divided the design of 3D imaging cameras, confining the capability and 

application scopes of incumbent 3D vision solutions. 

Performing multi-view time-of-flight measurements has potentially disruptive benefits. 

Besides bringing 3D imaging to an ultrafast time scale[89] and fuelling the development of 

new 3D vision capabilities[90,91], a dense multi-view measurement can substantially bolster 

the sensing range of a time-of-flight camera15 and make it possible to see through 

occlusions[92,93], a recurring challenge for visual tracking in computer vision[94]. However, 

current methods for acquiring multi-view time-of-flight signals suffer from either a limited 

number of views or being too time-consuming that hinders dynamic imaging. More 

problematically, such direct multi-view acquisition of time-of-flight signals exacerbates the 

“big data” issue. Even with a low spatial resolution, sensing along the extra angular or 

temporal dimension yields a large amount of data—multi-view measurements generate a 

plethora of images from different views, and a single time-of-flight (temporal) trace involves 

thousands of time points. Adding yet another dimension will increase the system complexity 

and data load so fast that makes real-time image processing and streaming impracticle16. 

Driven by the growing need of high-resolution 3D imaging with large-format detectors like the 

megapixel SPAD sensors[95], designing efficient multi-view measurements becomes 

increasingly more relevant. Moreover, sensors for infrared wavelengths, sub-picosecond 

measurements[96], and other specialized applications[97] are still limited in element counts, 

which prevent dense 2D image sampling[98] and consequently hamper 3D imaging via 

conventional multi-view methods. 
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To address these challenges, we present compact light field photography (CLIP) to sample 

dense light fields8 with a significantly improved efficiency and flexibility. Unlike previous 

compressive light field cameras[99-101] that require densely sampled 2D images for 

recovering a 4D light field, CLIP is a systematic framework to design and transform any 

imaging model that employs nonlocal data acquisition into a highly efficient light field 

imaging approach: by distributing the designed or existing nonlocal image acquisition process 

into different views and modelling the correlations inherent in 4D light fields, CLIP can 

recover the 4D light field or directly retrieve refocused images from a measurement dataset 

even smaller than a single sub-aperture image. Under the CLIP framework, sensors of 

arbitrary formats—a single pixel, a linear array, or a sparse 2D area detector—can be 

employed for efficient light field imaging by transforming the imaging models of a single 

pixel camera, x-ray computed tomography and a diffuser camera[102], to name a few. 

Additionally, CLIP is natively applicable to camera array systems, and promotes robustness 

against defective sensor measurements and severe scene occlusions. With CLIP, we 

seamlessly synergized multi-view with time-of-flight techniques, and demonstrated single-shot 

3D imaging of texture-less scenes in an extended depth range, robust 3D vision through severe 

occlusions, and real-time non-line-of-sight (NLOS) imaging with curved and disconnected 

walls, a critical task for field applications not yet fulfilled[103–108] 

3.2 Results 

3.2.1 Principle of compact light field photography 

In linear systems, the image acquisition process can be written in a general matrix formalism 

as: 

𝐟𝐟 = 𝐀𝐀𝐀𝐀 + 𝛔𝛔,              (17) 
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where 𝛔𝛔  is the measurement noise, h and f are the vectorized image and measurement, 

respectively. A is the m×N2 system matrix (for an image resolution of N×N throughout the 

manuscript), which is square (m=N2) for full-rate sampling and rectangular (m<N2) under 

compressive sensing. This formulation, though general, typically assumes all m measurements 

of the scene are obtained from a single view and hence possessing no light field capability. To 

record light fields with an angular resolution of l, the measurement procedure must be repeated 

either parallelly (via a lens array[109]) or sequentially at l different views[110], leading to a 

measurement dataset of size m×l. In CLIP, we break this convention by employing nonlocal 

acquisition for the row entries of matrix A and splitting the m measurements into l different 

views, thereby compactly recording light field data with an angular resolution of l.This 

transforms the image model into: 

𝐟𝐟 = �

𝐀𝐀𝟏𝟏 ⋯ 𝟎𝟎
⋮ 𝐀𝐀𝟐𝟐 ⋮
𝟎𝟎 ⋱ 𝟎𝟎
𝟎𝟎 ⋯ 𝐀𝐀𝑙𝑙

� �

𝐏𝐏𝟏𝟏
𝐏𝐏𝟐𝟐
⋮
𝐏𝐏𝒍𝒍

� + 𝛔𝛔 = 𝐀𝐀′ �

𝐏𝐏𝟏𝟏
𝐏𝐏𝟐𝟐
⋮
𝐏𝐏𝒍𝒍

� + 𝝈𝝈 = 𝐀𝐀′𝐏𝐏 + 𝛔𝛔,      (18) 

 

where 𝐀𝐀𝐤𝐤 is the k-th sub-matrix such that  𝐀𝐀 = [𝐀𝐀𝟏𝟏;  𝐀𝐀𝟐𝟐;   ⋯ ,𝐀𝐀𝐥𝐥],  𝐀𝐀′ is the transformed block-

diagonal matrix and 𝐏𝐏 = [𝐏𝐏𝟏𝟏;  𝐏𝐏𝟐𝟐;   ⋯ ,𝐏𝐏l] is the 4D light field. While one can exploit the 

sparisity prior to compressively recover a 4D light field at this stage, CLIP can further retrieve 

a refocused image directly by explicitly modelling the correlations in the 4D light field to 

better cope with complex scenes. 

This is inspired by the observation that images of the same scene acquired from different 

views share the same content in photographic applications. There is only a depth-dependent 

disparity between any two sub-aperture images, as illustrated in Fig. 3.1a. Therefore, one can 
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explicitly model the correlations among the sub-aperture images by digitally propagating the 

light field, which relates the sub-aperture image at view k (denoted as 𝐏𝐏𝐤𝐤) to a reference sub-

aperture image h via an invertible shearing operator 𝐁𝐁𝐤𝐤 as 𝐏𝐏𝐤𝐤 = 𝐁𝐁𝐤𝐤𝐡𝐡, and the m measurement 

data acquired from l views now becomes: 
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where 𝐟𝐟𝐤𝐤  is a vector that contains mk measurements at view k, and the total number of 

measurements in 𝐟𝐟 is 𝑚𝑚 = ∑ 𝑚𝑚𝑘𝑘
𝑙𝑙
𝑘𝑘=1 . The whole system model 𝐅𝐅(𝐝𝐝) becomes a function of the 

depth d, which is the key to recover the image h with different focal settings—by applying the 

shearing matrix 𝐁𝐁𝐤𝐤 (hence 𝐅𝐅(𝐝𝐝)) to depth d as in light field cameras, the reconstructed image 

will be correspondingly focused thereon. CLIP thus can attain light field imaging 

(conventionally of a data size m×l) with a measurement data size of only m. It is worth noting 

that further reduction of the measurement data is possible by multiplexing the measurement 

from all the views onto a single measurement vector: 𝐟𝐟𝐜𝐜 = 𝐓𝐓𝐓𝐓, with 𝐓𝐓 being the integration 

operator. 

The nonlocal acquisition strategy is pivotal to encode all scene points of the image into each 

view’s smaller sub-measurement vector 𝐟𝐟𝐤𝐤 (i.e., 𝑚𝑚𝑘𝑘 ≪ 𝑁𝑁2) for attaining an effective angular 

resolution of l. This is similar to the incoherent multiplexing requirement in compressive 

sensing, where a rich pool of nonlocal acquisition schemes has been developed for a range of 

applications during the past decades, benefiting CLIP. Such a nonlocal acquisition also 

endows CLIP with imaging robustness against defective pixels or scene occlusions. Because 

the complete scene is encoded in any subset of the measurements, image recovery is not 
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substantially affected by a fraction of defective pixel readings, despite that the conditioning of 

image reconstruction might deteriorate. Similarly, an object that is completely blocked in 

certain views by its surrounding objects, as in Fig. 3.1b, could be partially visible to the 

remaining views, which contain incomplete but complementarily global information of the 

object to enable its retrieval. Furthermore, CLIP’s nonlocal acquisition can take advantage of 

the compressibility of natural photographs for compressive imaging (m<N2) to minimize data 

load, particularly when coupled with time-of-flight imaging. As illustrated in Fig. 3.1c for a 

point-scanning-based LiDAR imaging of a crowded office scene, the camera captures only a 

thin slice of the 3D volume at each time bin under an ultrashort illumination. As a result, the 

crowded 3D scene is decomposed into a sequence of instantaneous 2D images that are far 

simpler than its continuously-wave-illuminated photograph. Such instantaneous 

compressibility also holds for NLOS imaging, albeit in a different representation basis.  

Three exemplar CLIP embodiments utilizing a single pixel element (0D), a linear array (1D), 

and a 2D area detector are illustrated in Fig. 3.1d-f, respectively. The single-pixel 

camera[111,112] (Fig. 3.1d) sequentially encrypts the scene with different random codes and 

measures light intensities with a bucket detector. To sample light fields without redundant 

data, CLIP splits the measurements by scanning the detector during code update along the u-v 

direction (u, v, angular axis behind the collection lens) into l positions. With random binary 

codes, each measurement integrates ~50% of the image pixels, and mk>=7 measurements in 

each view cover every pixel with a high probability (𝑝𝑝 = 1 − 0.57 > 99%). For CLIP with 1D 

sensors, the x-ray CT imaging model is transformed by using a cylindrical lens to cast along 

the lens’ invariant axis (the axis without optical power) a line-integral of the image onto an 

individual pixel as in Fig. 3.1e, allowing a 1D detector array to parallelly records mk=N 
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measurements to cover all image pixels. Light fields of the scene are then acquired with an 

array of cylindrical lenses, each being oriented at a distinct angle with respect to the 1D 

sensor.  

For CLIP imaging with 2D detectors (of various sparsity), one can design a complex-valued 

mask to produce a wide-field, depth-dependent point spread function (PSF) (Fig. 3.1f) to 

multiplex sub-aperture measurements (i.e., 𝐟𝐟𝐜𝐜 = 𝐓𝐓𝐓𝐓 ). Moreover, we can unify wavefront 

coding[113,114], coded-aperture[115] techniques, and diffuser cameras into the CLIP 

framework, where the full recovery of 4D light fields is unnecessary. Adaption to camera array 

systems can be readily accomplished by making each camera (of any dimension) record a few 

nonlocal coefficients of the scene and sufficiently overlapping individual cameras’ fields of 

view.  

3.2.2 3D imaging through occlusions 

Seeing through occlusions has been previously achieved by dense camera array systems16, 

which apply synthetic aperture processing to blur down the occluder while keeping the object 

of interest coherently enhanced. However, a clear separation of the object and occluder in 3D 

is difficult due to the defocused background and the limited depth sectioning capacity of 

camera array systems. We show here background-free 3D vision through severe occlusion 

with time-of-flight (ToF) CLIP imaging. For the proof-of-concept demonstration, we built a 

ToF-CLIP system with a streak camera as the 1D ultrafast sensor for snapshot acquisition of 

large scale 3D time-of-flight data. The streak camera is spatially multiplexed by seven 

customized plano-convex cylindrical lenslets (diameter of 2 mm and a focal length of 4 mm) 

along its entrance slit at distinct orientations to mimic a camera array system (Methods). The 

baseline of the camera is 15 mm, and the field of view is 30 mm at a distance of 60 mm. With 
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~1,000 pixels, CLIP implicitly recorded a 125×125×7 light field dataset and streamed a 

temporal sequence of 1,016 points (i.e., 1,000 spatial × 1,016 temporal) at a 100 Hz repetition 

rate for high-speed imaging. A femtosecond laser was modulated by a motorized assembly 

consisting of a concave lens and a diffuser for programmable illumination between a diverged 

and a collimated light. The diverged laser shines from an oblique angle to cover both the 

object and occluder.  

Background-free 3D imaging through severe occlusions for three different scenes is shown in 

Fig. 3.2a-c. In all cases, the objects that are completely blocked by their preceding items, as 

rendered in the front view images emulating what a conventional camera would capture, can 

be well retrieved by the ToF-CLIP camera with correct 3D locations and geometric shapes. 

For larger objects such as the letter V in Fig. 3.2b that remain partially visible, its occluded 

parts are recovered with a weaker intensity. This is because the occluded parts contribute less 

effective measurement signals for the image reconstruction, equivalent to imaging with a 

smaller synthetic aperture. Trackings through occlusions is demonstrated in Fig. 3.2d, where a 

2×2 grid pattern made of white foam was mounted on a translation stage behind a rectangular 

obscurer and moved back and forth across the camera field of view. Motion of the grid pattern 

varied the severity of occlusion smoothly from none to a complete obscurance as shown in the 

representative frames. Except for a weaker intensity caused by occlusion, the grid pattern is 

adequately recovered at all the time instances 

It is noteworthy that a clear separation between the objects and occluder is consistently 

achieved in all the scenes. No defocused background signals from the occluder are discernible 

on the blocked object, highlighting the benefits of merging dense multi-view measurement 

with ToF by CLIP. Because an occluder reduces the number of measurements for the blocked 
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object, and the current CLIP camera has a compression factor of ~20 (with respect to a single 

sub-aperture image), the occluded objects that can be well recovered are restricted to be 

relatively simple in geometry. Nonetheless, the imaging outcomes are still remarkable, 

considering the reduction of measurements against camera array systems of the same 

resolution is more than 100 folds, and conventional compressive imaging using the same 

amount of data shows similar imaging characteristics but lacks light field capability to see 

through occlusions. 

3.2.3 Flash LiDAR within an extended depth range 

For high-quality 3D imaging of indoor scenes, multi-view methods require an unwieldy 

system baseline apart from their dependence on object texture. By contrast, flash LiDAR 

imaging can maintain a high precision at longer distances in a compact form but suffers from a 

stringent tradeoff between the sensing range and light throughput[116]. To demonstrate that 

CLIP is well-posed to lift such a tradeoff, we tuned the camera’s field of view to 1.5 m × 1.5 

m at a nominal distance of 3.0 m by moving the lenslet array closer to the slit and aligned the 

laser to be approximately confocal with the camera while providing a diverged illumination 

after passing through the motorized assembly. 

An example of single-shot flash LiDAR imaging with an extended depth range is shown in 

Fig. 3.3a, where several texture-less letters were placed at different depths spanning a range of 

~2 meters. The extended depth of field is highlighted in Fig. 3.33b by computationally 

refocusing the camera from far to near, as indicated in the top view image. The resultant 

LiDAR projection photograph clearly renders the defocusing blur for objects that deviate from 

their actual focal settings, whereas an all-in-focus image generated by CLIP in Fig. 3.3c allows 

a sharper portrait of the entire 3D scene. The flash LiDAR imaging resolution was estimated to 



56 
 

be about 30 mm laterally and ~10 mm axially (depth direction). While this example features a 

relatively simple scene to facilitate the comparison between the reference photograph and 

LiDAR images  

We demonstrated ToF-CLIP in dynamic imaging of a 3D scene by mounting a letter V on a 

rotation stage and manually rotating it at an irregular speed against a simple and cluttered 

background, respectively. The resultant motions were filmed by the CLIP-ToF camera at a 100 

Hz frame rate and a reference video camera at 60 Hz. The two videos were then numerically 

synchronized after temporally downsampling the LiDAR results to 60 Hz for comparison. 

Representative frames of the dynamic results are shown in Fig. 3.3d and e for the simple and 

cluttered background, respectively. 

3.2.4 NLOS imaging with curved and disconnected surfaces 

 Unlike LiDAR that detects the directly scattered photons, NLOS imaging analyzes multiply 

scattered light from a diffusive surface to reveal objects hidden from direct line-of-sight. A 

key ingredient for such an analysis is the precise knowledge of the relaying surface’s 3D 

geometry, which was previously obtained via nontrivial calibrations by a stereo camera or 

scanning-based LiDAR[117] ranger, hampering applications in the field where the relay 

surface evolves with the camera’s viewpoint and 3D surroundings. The ToF-CLIP camera 

addresses this critical need for real-time mapping of the relay surface via built-in flash LiDAR 

imaging. More importantly, it can accommodate a non-planar surface geometry for NLOS 

imaging using array detectors with its light field capability. Paired with a proposed hybrid 

time-frequency domain reconstruction algorithm, which can handle general surfaces with a 

computational complexity of o(N4) (Methods), ToF-CLIP can attain real-time NLOS imaging 

with arbitrary curved surfaces. While NLOS imaging with a dynamic and curved surface has 
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been demonstrated by Manna40 et. al., its reception point was fixed at a stationary point rather 

than being on the dynamic surface, making it inapplicable for real-time imaging with array 

detectors. Similarly, the preprocessing step[118] proposed by Lindell et.al. that adapts the f-k 

migration reconstruction algorithm to deal with slightly curved surfaces in confocal NLOS 

imaging has a computational complexity of o(N5logN), which is higher than the time-domain 

phasor field method and thus inefficient for real-time reconstruction. 

To demonstrate our approach, we directed the CLIP-ToF camera towards a scattering wall 

with a fixed focus. The field of view is tuned to be approximately 0.5 m × 0.5 m at a standoff 

distance of ~1 m. The geometry of the wall was mapped by the flash LiDAR, and NLOS 

signal reception was delayed accordingly to avoid the strong reflections from the collimated 

laser spot on the wall. The hidden scene was then reconstructed in real-time by the hybrid 

time-frequency domain algorithm.      

We demonstrated NLOS imaging with planar, disconnected, and curved walls in Fig. 3.4a-c.  

For all the relay walls, the hidden scenes were placed over 1 m away from the laser spot on the 

wall and then imaged with a single laser shot at an average laser power of 700 mW. The 3D 

flash LiDAR measurement of the walls are shown in the first column, and the NLOS imaging 

results for two example objects in each category were rendered in a 2D front view (from the 

wall’s perspective) and a 3D point cloud format in the following columns. Both the 3D 

positions and morphological structures of the hidden objects were decently recovered for 

NLOS imaging with all the relay walls. The importance of an extended depth-of-field to cope 

with disconnected and curved surfaces is illustrated in Fig. 3.4d-e respectively, where the 

camera’s extended depth of field is disabled by computationally refocusing the camera onto 

different planes (from rear to the front) before reconstructing the hidden scenes. Due to 
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defocus effects that blur the spatiotemporal data on the walls, the reconstruction quality 

degrades noticeably compared with the images reconstructed with an extended depth of field 

(highlighted by the green boxes). It is worth noting that NLOS imaging with the curved 

surface suffered from secondary laser inter-reflections (i.e., laser reflections between the 

surface parts before incident onto the hidden objects) during the experiments, which caused 

the imaging artifacts in Fig. 3.4c, despite that the phasor field method is robust against 

multiple inter-reflections. This is primarily because the secondary laser reflection is much 

stronger than the inter-reflections of the weaker NLOS photons. Still, CLIP’s capability to 

handle disconnected and curved surfaces is an important step to achieve point-and-shoot 

NLOS imaging in the field. 

3.2.5 Discussion 

The angular and temporal axes are two basic elements in the plenoptic function P(spatial: x, y, 

angular: u, v, wavelength: λ, time: t), which completely characterizes the fundamental 

properties of light. With decades’ investigations and developments, current 3D imagers have 

reached the practical sensing limit about what is offered by measuring along the angular or 

temporal axis. A more complete acquisition of the plenoptic function (or the light fields), such 

as both angular and temporal dimension, towards versatile and more capable 3D vision 

remains a largely untapped area. This is mainly attributed to the lack of efficient schemes for 

sampling the resultant high-dimensional data with a 2D image sensor. However, for most 

applications, recording the entire high-dimensional light field is not the ultimate goal but an 

intermediate step to gain versatile image processing abilities, such as digital refocusing, 

extending the depth of field, or depth extraction. At the same time, expanding to the high-

dimensional space promotes data sparsity[89], making full-rate acquisition unnecessary and 
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inefficient. Previous endeavors to sample light fields in an implicit and more efficient manner 

include the coded aperture[119] and wavefront-coding techniques. Unfortunately, their 

acquisition schemes for 3D imaging[114] or depth of field extension[115] require a densely 

sampled 2D image that precludes their applications in ultrafast, infrared[111,112], or 

Terahertz[120] imaging applications, where the detector resolution is severely limited. The 

CLIP framework encompasses and goes far beyond these methods to utilize sensors of 

arbitrary formats for efficient light field imaging (compressive or not), with a flexible nonlocal 

sampling strategy that promotes imaging robustness and better exploitation of the sparsity 

characteristic of high-dimensional data. An important application of canonical light field 

camera that remains to be explored by CLIP is to measure, and consequently correct for, 

optical aberrations as it can recover the full 4D light fields. Still, even without recovering the 

4D light field, CLIP can readily correct for the Petzval field curvature owing to its refocusing 

capability, which can facilitate the coupling of planar sensors with monocentric 

systems[121,122] for wide-field or panoramic imaging. 

CLIP’s recording of a 4D light field is essentially an efficient dimensionality reduction in the 

optical domain, allowing high-dimensional information to be acquired with sensors of lower 

dimensionality such as the ubiquitous 1D or 0D (single pixel) detectors, which are still the 

dominant sensor format for imaging at the ultrafast time scale or the infrared, terahertz spectral 

regime. This feature facilitates CLIP to be deployed as a universal platform for snapshot 

multidimensional imaging[123] that samples the plenoptic function in a massively parallel 

manner. For instance, by extending the 1D ultrafast sensor in CLIP to 2D area detectors such 

as a megapixel SPAD, the extra spatial dimension could be readily used to measure the 

objects’ spectra. Quantitative polarization information can also be extracted by overlaying the 
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pixels with a layer of polarizers, similar to utilizing a color filter array for color photography. 

The polarization cues have been routinely used for depth sensing and refinement[124,125], 

which can potentially further bolster CLIP’s 3D vision performance. 

3.3 Methods in CLIP 

3.3.1 Experimental setup 

A high dynamic range streak camera (C13410-01A, Hamamatsu Photonics) is used as the 1D 

array of time-of-flight sensors, which parallelly record the temporal signal within a single 

snapshot and a temporal resolution around 60 ps (for an observation window of 10 ns). For 

CLIP implementation with 1D sensor, seven customized plano-convex cylindrical lenslets 

(diameter of 2 mm and a focal length of 4 mm) are secured on a 3D printed holder and 

mounted on 3-axis translation stage to align them with the streak camera’s entrance slit, which 

is effectively the virtual sensor plane. The cylindrical lenslets are rotated to different angles 

that are approximately uniform in the range of [-45o, 45o] to obtain incoherent measurements 

among different views. For optimal imaging through occlusions, the cylindrical lenslet angles 

are further randomly distributed along the lenslet array direction, as the effective measurement 

entries for the occluded objects are reduced to a subset of the measurement entry in the 

imaging model. Such random distribution maximizes statistically the incoherence among any 

subset of the measurements to ensure consistent image recovery performance. The imaging 

field of view is adjusted by tuning the translation stage that changes the distance between the 

lenslets and streak camera’s slit. For transient illumintion, a femtosecond laser (808 nm, 7 mJ 

per pulse, ~100 fs pulse width, Astrella-F-1K, Coherent Inc.) is synchronized with the streak 

camera and trigged at a repetition rate of 100 Hz and an average power of 700 mW. An 

assembly comprised with a concave lens (LD1464-B, Thorlabs) and a diffuser (EDC-20-
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14175-A, RPC Photonics) is switched by a step motor to diverge the laser beam for flooded 

illumination in flash LiDAR imaging. For NLOS imaging, the assembly is displaced for a 

collimated radiation. 

3.3.2 Image reconstruction 

Recovering a 4D light field or a refocused image from Eq. 18 and 19 can be inverted by 

solving a corresponding optimization problem: 

                                𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑖𝑖ℎ�  ‖𝐟𝐟 − 𝐅𝐅(𝐝𝐝)𝐡𝐡‖22 +  𝜇𝜇‖𝜑𝜑(𝐡𝐡)‖1,                                (20) 

                                    𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐏𝐏�  ‖𝐟𝐟 − 𝐀𝐀′𝐏𝐏‖22 +  𝜇𝜇‖𝜑𝜑(𝐏𝐏)‖1,                                (21) 

where ‖. ‖1 is the 𝑙𝑙1  norm and 𝜑𝜑(∙) is a domain in which the 4D light field 𝐏𝐏 (or image) is 

sparse. 𝜇𝜇 is a hyperparameter that balances the data fidelity and regularization term. In the 

framework of regularization by denoising algorithm[126], the representation domain 𝜑𝜑(∙) is 

not explicitly specified and the regularization step is implemented by a state-of-the-art image 

denoising algorithm such as BM3D or even a neural network. We adopted the BM3D and total 

variation (TV) denoisers for the regularization, owing to the existence of efficient 

algorithms[127]. Also, to minimize light field processing time that involves numerous 

refocusing steps (depth retrieval, extending depth of field), the reconstruction process at each 

step is initialized with the previous solution to exploit the proximity of the solutions.  

It is worth noting that while recovering the 4D light field is always compressive in CLIP, 

directly retrieving a refocused image is not necessarily the same. Still, a major appeal of CLIP 

is to use a small number of sensors for recording a large-scale light field, which typically falls 

into the compressive sampling regime 

3.3.3 Camera Calibration 

To obtain quantitative and absolute 3D positions for flash LiDAR imaging, the CLIP camera is 
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metric-calibrated to extract its intrinsic matrix. A calibration pattern is made of a planar 

blackboard with a grid of 3×4 diffusing plates (circular white foam with a 10 mm diameter). 

With a femtosecond laser illumination, the CLIP camera captures the calibration pattern at 

~ten different orientations, and the grid positions are automatically extracted in each image. 

The intrinsic matrix of the camera is then obtained by Zhang’s calibration method[128] 

3.3.4 Flash LiDAR and NLOS experiments 

Room light was turned on during all experiments and the gating functionality of streak camera 

was enabled to makes it robust against ambient illuminations for time-of-flight imaging. 

(1) Flash LiDAR coordinate transformation. With the camera being the origin (assuming 

roughly confocal illumination and detection), the flash LiDAR produces distance 

measurements in a polar coordinate, not the direct z components. The radial distance along 

different imaging pixels needs to be transformed into a rectilinear coordinate for correct 3D 

modelling. Given the camera’s intrinsic matrix K and the homogeneous pixel coordinate [u, v, 

1], each pixel’s projection angle with respect to the camera’s optical axis can be derived as:  

                                                     �
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where the absolute position of a point object is denoted as [x, y, z] in the rectilinear coordinate 

system.The LiDAR measurement distance r is related to the rectilinear coordinate as: 

                                𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑧𝑧�(𝑥𝑥 𝑧𝑧⁄ )2 + (𝑦𝑦 𝑧𝑧⁄ )2 + 1 .         (23) 

Combing Eq. 6 and 7, the absolute 3D position in the rectilinear coordinate is obtained as: 
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(2) Time-gain compensation of flash LiDAR signal. Unlike conventional scanning-based LiDAR that 

employs collimated laser illumination, the diverging light in flash LiDAR has a r2 intensity decay, 

which makes distant objects to receive (and reflect) much fewer photons. We employed a time-gain 

compensation (t-d)2 to partially equalize the signal intensity for objects positioned at a distance larger 

than d but shorter than d2, after which the signals are too noisy for non-reflective objects. A customized 

compensation curve could also be used for the best visualization of the 3D scene, a common practice in 

medical ultrasound imaging. 

(3) NLOS geometric calibration. The absolute 3D coordinates of the relay surface in NLOS 

imaging are measured via flash LiDAR in real-time. To extract the laser spot position on the 

wall and to cope with different walls in field applications that will modify the laser position 

thereon, the fixed propagation line of the laser is characterized in the absolute 3D space. The 

laser illumination spot on the surface is then dynamically calculated by intersecting the 

propagation line with the relay wall’s 3D point cloud. To parameterize the propagation line, 

two thin microscopic slides are placed along the collimated beam path, with the tiny Fresnel 

reflection from the slides encoding two points that the laser passed through. The absolute 

positions of the two points are then measured using the LiDAR technique.  

(4) Hybrid frequency-time domain NLOS reconstruction. Real-time NLOS imaging with 

arbitrarily-curved surfaces lacks an efficient solver. Recent developments of fast 

reconstruction algorithms[129] significantly reduced the computational cost to make real-time 

imaging feasible, but are exclusively limited to the paradigm of approximately planar surfaces. 

The pre-processing method presented by Lindell et. al. can transform the measurement data 

from a curved surface into a format suitable for fast frequency-domain solvers, but has a 

computational complexity of o(N5logN), which is slightly more expensive than the universal 
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filtered backprojection algorithm and thus less appealing. Time-domain methods are more 

flexible in accommodating arbitrary wall geometries but more time-consuming. The hybrid 

frequency-time domain reconstruction method proposed here first converts the spatiotemporal 

measurement on a curved surface 𝑦𝑦𝑟𝑟�𝒓𝒓𝒑𝒑, 𝑡𝑡� onto a virtual plane via wave propagation in time 

domain and then reconstruct the hidden scenes with existing efficient frequency-domain 

phasor field method[129]. Under the phasor-field framework, the spatiotemporal waveform on 

the virtual plane can be calculated in time-domain as:  

                                              𝑓𝑓(𝑟𝑟𝑣𝑣, 𝑡𝑡) = ∫ 𝑦𝑦𝑟𝑟�𝒓𝒓𝒑𝒑, 𝑡𝑡� ∗ 𝑝𝑝(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝒓𝒓𝒑𝒑
𝑤𝑤
−𝑤𝑤 ,           (25) 

where τ = 𝒓𝒓𝒗𝒗−𝒓𝒓𝒑𝒑
𝑐𝑐

 is the travel time from the point 𝒓𝒓𝒑𝒑 on the curved surface to a point 𝒓𝒓𝒗𝒗 on the 

virtual planar surface, and 𝑝𝑝(𝑡𝑡) is the convolutional kernel in the phase-field method. Wave 

migration in the time domain has two major advantages. First, it is more efficient than 

frequency domain migration: with both the curved and virtual plane being sampled with a 

spatial resolution of N2, time-domain migration has a computational complexity of o(N4) 

instead of o(N5logN). Second, it does not restrict the sampling pattern on either the curved 

surface or the virtual plane. While the frequency-domain method needs a spatial interpolation 

operation to deal with nonuniform sampling on a planar surface due to a 2D camera’s 

projective distortion, time-domain migration can readily achieve a regular sampling on the 

virtual plane for the subsequent frequency-domain reconstruction[129]. Combined with the 

complexity of o(N3logN) for the frequency-domain phasor field reconstruction, the total 

complexity for the hybrid time-frequency domain reconstruction is o(N4), still orders of 

magnitude faster than time domain methods. The memory complexity for the frequency-

domain phasor field and relevant f-k migration reconstruction have been analyzed in the 

literature to be o(N3) and ~o(50N3)52, respectively 
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We further accelerate the reconstruction on a GPU (Nvidia RTX3080Ti) using CUDA. For a 

128×128×128 imaging volume with a spatiotemporal data cube of 125×125×1016, the NLOS 

reconstruction time is ~0.03 seconds, which can reach a 30 Hz video rate. The actual 

bottleneck lies in the iterative CLIP reconstruction of the spatiotemporal data cube on the wall, 

which takes about 2.0 seconds. 

 
Fig. 3.1. Principle of compact light field photography[133]. a A conventional light field camera captures the 
scene from different views with a lens array and records all sub-aperture images. In contrast, CLIP records 
(operator A_k) only a few nonlocal measurements (f_k to f_n) from each sub-aperture image and exploits the 
depth-dependent disparity (modeled by B_k) to relate the sub-aperture images for gathering enough information 
to reconstruct the scene computationally. Refocusing is achieved by varying the depth-dependent disparity model 
B_k. b Seeing through severe occlusions by CLIP as a camera array, with each camera only recording partial 
nonlocal information of the scene. A obscured object (from the camera with black rays) remains partially visible 
to some other views (with green rays), whose nonlocal and complementary information enables compressive 
retrieval of the object. c Illustration of instantaneous compressibility of the time-of-flight measurements for a 3D 
scene in a flash LiDAR setup, where a transient illumination and measurement slice the crowded 3D scene along 
the depth (time) direction into a sequence of simpler instantaneous 2D images. d-f CLIP embodiments that 
directly perform nonlocal image acquisitions with a single-pixel, a linear array, and 2D area detectors, 
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respectively. A single pixel utilizes a defocused spherical lens to integrate a coded image, with u and v behind the 
lnes being the angular dimension. A cylindrical lens yields along its invariant axis a radon transformation of the 
en-face image onto a 1D sensor. The complex-valued mask such as a random lens produces a random, wide-field 
PSF that varies with object depth to allow light field imaging. PSF: point spread function; CLIP: compact light 
field photography; LiDAR: light detection and ranging. 1D,2D,3D: one, two, and three-dimensional. 
 

 
 
 

 
 
Fig. 3.2. Three-dimensional imaging (3D) through occlusions[133]. a-c Reconstructed 3D images rendered in 
different perspective for three scenes: circular plate (a) and letter V (b) behind the letter N, and letter X (c) 
blocked by a rectangular plate. The severe occlusions are evident from the front view images, with the larger 
objects in the front completely blocked the object right behind them. In contrast, CLIP is able to  unambiguously 
reconstruct the obstructed objects in 3D without any defocusing signals from the preceding occluder. d Three 
representative frames of imaging a 2×2 grid pattern moving across the CLIP camera FOV behind a rectangular 
occluder. Note that signals from the black occluders are enhanced relative to the objects for better visualization.  
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Fig. 3.3. Snapshot flash LiDAR imaging over an extended depth range[133]. a Flash LiDAR imaging of a letter 
scene. From left to right are the reference photographs, a projected two-dimensional LiDAR images along the 
depth direction, and the 3D (three-dimensional) point-cloud representation of the scene. b flash LiDAR of the 
same 3D scene without extending the imaging depth of field, obtained by refocusing the camera onto a single 
focal plane. Note the defocus blur in the near and far objects. c Computational all-in-focus image. d-e Two 
representative frames for the dynamic imaging of a manually rotated letter V in a simple and cluttered scene, 
respectivel
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Fig. 3.4. NLOS imaging by CLIP-ToF.[133] a-c Imaging with planar, disconnected, and curved surfaces, 
respectively. From left to right are the flash LiDAR imaging of the relay surfaces, and two example hidden 
objects rendered as a projection image in the front view, and a 3D (three-dimensional) point cloud. Ground truth 
photographs of the object are shown in the inset of the front view image. d-e Reconstructed NLOS images for the 
disconnected and curved surfaces, respectively, with defocus errors on the relay wall, and those recovered with 
extended depth of field (highlighted by the green box). The quality of reconstruction degrades when the camera’s 
extended depth of field is disabled.    



69 
 

Chapter 4 Light-field tomographic fluorescence lifetime imaging microscopy 
Based on CLIP, light-field tomographic fluorescence lifetime imaging microscopy(LIFT-

FLIM) is developed to solve the problems of compressed FLIM: lack of 3D imaging capability 

and high compression ratio. This approach allows for the acquisition of volumetric 

fluorescence lifetime images in a highly data-efficient manner, significantly reducing the 

number of scanning steps required compared to conventional point-scanning or line-scanning 

FLIM imagers. Moreover, LIFT-FLIM enables the measurement of high-dimensional data 

using low-dimensional detectors, which are typically low-cost and feature a higher temporal 

bandwidth. We demonstrated LIFT-FLIM using a linear single-photon avalanche diode array 

on various biological systems, showcasing unparalleled single-photon detection sensitivity. 

Additionally, we expanded the functionality of our method to spectral FLIM and demonstrated 

its application in high-content multiplexed imaging of lung organoids. LIFT-FLIM has the 

potential to open up new avenues in both basic and translational biomedical research. 

4.1 Overview of LIFT-FLIM 

The use of single-photon avalanche diode (SPAD) arrays in time-domain FLIM provides a 

solution to this long-standing problem by enabling parallel measurement of fluorescence 

decays at multiple image pixels. Moreover, SPAD arrays offer considerably greater sensitivity 

than conventional gated cameras, making them an excellent choice for low-light imaging 

applications. A SPAD imager can operate in either time gate or time-correlated single photon 

counting (TCSPC) mode, with TCSPC being the preferred detection method for its higher 

precision, faster speed, and greater sensitivity. However, the native fill factor of 2D SPAD 

arrays operating in the TCSPC mode is generally low (<10%) [130] due to the physical 

limitations posed by the inclusion of intricate timing electronics for each pixel. Although the 

addition of microlenses can recover some of the fill factor loss, this method is effective only 
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for collimated impinging light. In contrast, a linear SPAD array offers a significantly higher 

fill factor close to 50% [131], which results in a substantially increased light throughput. 

Moreover, the fabrication cost of a linear SPAD array is much lower than its 2D counterpart, 

making it more accessible for general labs. Nonetheless, when it comes to high-resolution 

imaging of a 2D or 3D scene using a linear SPAD array system, the challenge is much like that 

of point-scanning FLIM—the conventional approach involves scanning the entire field of view 

or volume using a vast number of steps, which can result in a protracted imaging duration. 

To tackle the aforementioned challenges and streamline the acquisition of 3D FLIM data using 

a linear SPAD array, we devised a novel computational imaging technique called LIght-Field 

Tomographic Fluorescence Lifetime Imaging Microscopy (LIFT-FLIM). Our approach has 

been only recently made possible by an emerging technique, light field tomography (LIFT) 

[132,133], which is highly efficient in acquiring light field data for 3D imaging. Sharing its 

roots with light field photography [134-136], LIFT acquires multiple views of a 3D object and 

determines depth information through disparity analysis. However, rather than directly 

capturing a 2D perspective image, LIFT measures only the en-face projections of the image, 

thereby transforming 2D perspective images into lines. This allows us to map high-

dimensional optical information to a low-dimensional space through pure optical operations. 

In LIFT-FLIM, we take advantage of this transformation by directly capturing 1D projection 

images using a linear SPAD array, allowing for 3D fluorescence lifetime imaging with 

exceptional single-photon sensitivity.   

Aside from its impressive 3D imaging capability, LIFT also possesses inherent compatibility 

with spectral imaging [137]. Capitalizing on this feature, we showcased the system’s 

versatility by extending its functionality to include spectral FLIM (sFLIM). We achieved this 
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by dispersing the 1D projection images utilizing a diffraction grating, and then feeding the 

resulting image into a time-gated camera for precise lifetime measurement. This allows for the 

simultaneous acquisition of 3D FLIM images at multiple wavelengths, making our system a 

versatile tool for analyzing both lifetime and spectral information. We demonstrated LIFT-

FLIM and LIFT-sFLIM on various biological systems and showed their potential for high-

content multiplexed imaging. 

 
Fig.4.1. Optical setup and image formation models. a. System schematics. b. Image formation model of LIFT-
FLIM. c. Image formation model of LIFT-sFLIM. SPAD, single-photon avalanche diode; TCSPC, time-
correlated single photon counting.  

 
4.2 Results 

4.2.1 Operating principle and characterization  

Based on computational imaging, LIFT-FLIM operates in two steps: data acquisition and 

image reconstruction. We show a LIFT-FLIM system in Fig. 4.1a. Upon pulsed laser 

excitation, the fluorescence is collected by a microscope objective lens with a high numerical 

aperture (NA) and forms an intermediate image at the microscope’s side image port. A beam 
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splitter then divides the fluorescence into two beams. The transmitted light is recorded directly 

by a complementary metal-oxide-semiconductor (CMOS) camera, resulting in a reference 

intensity image. On the other hand, the reflected light creates an intermediate image on a 

scanning mirror. As the mirror tilts, it imparts twice its angle of tilt onto the outgoing rays. The 

reflected light from the scanning mirror is then collimated by a lens and forms a pupil image at 

a plane, where we position a dove prism. By adjusting the tilt angle of the mirror, we can shift 

the position of the pupil image on this plane. This enables us to selectively direct the light rays 

corresponding to a specific view angle through the dove prism, which will rotate the light rays 

and produce a rotated perspective image. Next, we use a cylindrical lens to compress the 

rotated perspective image into a line, which is essentially an en-face projection of the original 

perspective image along an orientation twice the rotation angle of the dove prism. This 

transformed line image can be either directly measured by a linear SPAD camera (Fig. 4.1b) 

or further spectrally dispersed and measured by a time-gated camera (Fig. 4.1c).   

To compute a 3D image, conventional light field cameras require the acquisition of a 

comprehensive set of spatial and angular information of a light field, resulting in a significant 

data load. However, our previous work demonstrated that this acquisition method is inefficient 

and generates a substantial amount of redundant data [133], which can be reduced by 

distributing a nonlocal image acquisition process, such as en-face projection measurement, 

into different views. Moreover, this allows for the measurement of a high-dimensional light 

field using low-dimensional detectors, which are typically low-cost and feature a higher 

temporal bandwidth. In LIFT-FLIM, we leverage this advantage and capture only en-face 1D 

projection images at each scanned sub-pupil location. Furthermore, we can create an arbitrarily 

shaped off-focus point spread function (PSF) by strategically shuffling the orientation angles 
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of our projection measurements across various views in a programmed manner  

 

 
 

Fig. 4.2. Deep-learning-based image enhancement neural network. The network consists of two down- and up-
sampling streams. Each stream has five ResNet blocks in both down-sampling and up-sampling paths. Each 
ResNet block contains four ResNet layers, and each ResNet layer has two 3×3 convolutional layers and one 1×1 
convolutional layer, as indicated in the bottom right panel. Strided convolutional layers were added between the 
two adjacent ResNet blocks to halve the spatial dimensions in the down-sampling path, and conversely 
transposed strided convolutional layers were utilized to implement up-sampling in the up-sampling path. The 
spatial dimensions of the ResNet blocks in the sampling streams from left to right are 256×256, 128×128, 64×64, 
32×32, 16×16, 32×32, 64×64, 128×128, 256×256. The central 16×16 ResNet blocks are shared by the down- and 
up-sampling streams. Skip connections connect each ResNet block in the down-sampling path with its 
counterpart block in the up-sampling path. The inputs to the network include LIFT refocused depth image stack 
using filtered back projection from depth −𝑧𝑧0 to depth 𝑧𝑧0, reference image captured at depth zero, and a DPM 
stack. The output is a high-resolution image stack at the corresponding depths. DPM: digital propagation matrix. 
𝜎𝜎1,𝜎𝜎2: activation functions. Conv2d: convolution 2D. 
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We formulate the image formation of LIFT-FLIM using a linear model. For a given 

perspective image P𝑘𝑘 at view 𝑘𝑘 (𝑘𝑘 = 1, 2, … ,𝐾𝐾), the projection measurement along angle 𝜃𝜃 is    

                        

f𝑘𝑘𝜃𝜃 = 𝑻𝑻𝑹𝑹𝜽𝜽P𝑘𝑘, (26) 

where P𝑘𝑘  has a dimension of 𝑁𝑁2  (𝑁𝑁  is the image dimension in pixels), 𝑻𝑻  is the en-face 

projection operator, and 𝑹𝑹𝜽𝜽 is the image rotation operator, which describes the function of the 

dove prism rotated at 𝜃𝜃 2⁄ .  

Rather than capturing a complete set of 𝑁𝑁𝜃𝜃 = 𝑁𝑁 projection angles at each view, we acquire 

only a subset of 𝑛𝑛𝑘𝑘 projection angles at view 𝑘𝑘. This process can be explicitly written as: 

 
 
Fig. 4.3. LIFT-FLIM of mixed fluorescent beads. a. Reference intensity images at depths of -8µm, -4µm, 0µm, 
4µm, and 8µm. b. Time-integrated LIFT-FLIM images at the corresponding depths. c. Lifetime images at the 
corresponding depths. d. Fluorescence decay curves at representative beads’ locations. e. Histogram of pixel 
lifetimes at depth zero. Scale bar: 20µm.  
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Here f is a stack of projection measurements (also referred to as a sinogram), and it has a 

dimension of 𝑁𝑁 × 𝑁𝑁𝜃𝜃 . 𝑠𝑠𝑘𝑘−1 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖=𝑘𝑘−1
𝑖𝑖=1 , and 𝑠𝑠𝐾𝐾−1 + 𝑛𝑛𝐾𝐾 = 𝑁𝑁𝜃𝜃 .𝜎𝜎  denotes the measurement 

noise. 𝑨𝑨𝒌𝒌  is a combined function of en-face projection and image rotation operators on 

perspective image P𝑘𝑘. Because the images from different views capture the same scene, they 

share a common underlying content with only a depth-dependent disparity between any two 

sub-aperture images. Therefore, the correlation between sub-aperture images can be modeled 

by digitally propagating the light field, i.e. the sub-aperture image P𝑘𝑘  at view 𝑘𝑘 can be related 

to a depth-dependent image feature kernel ℎ(𝑑𝑑) through an invertible shearing operator 𝑩𝑩𝒌𝒌 as 

P𝑘𝑘 = 𝑩𝑩𝒌𝒌(𝑑𝑑)ℎ(𝑑𝑑), where 𝑩𝑩𝒌𝒌 is also a function of depth 𝑑𝑑 Accordingly, we transform Eq. 27 

to: 
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 (28) 

 

The overall image forward operator 𝑭𝑭(𝑑𝑑) becomes a function of depth 𝑑𝑑, which is essential for 

recovering image ℎ(𝑑𝑑) with various focal settings. Noteworthily, although individual P𝑘𝑘  is 

measured at only a subset of projection angles, the underlying image feature kernel ℎ(𝑑𝑑) is 

measured on a complete angular basis, as 𝑭𝑭(𝑑𝑑) concatenates image rotation operators across 

all views.   

For direct fluorescence lifetime measurement using a linear SPAD array with TCSPC (Fig. 

4.1b), the image formation model is a time-lapse version of Eq. 28, which can be expressed 
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as:    

f(𝑡𝑡) = 𝑭𝑭(𝑑𝑑)ℎ(𝑑𝑑, 𝑡𝑡) + σ(𝑡𝑡),    (29) 

where f(𝑡𝑡) is a time-lapse sinogram constructed by the projection measurements at the time 

bin 𝑡𝑡 of a TCSPC temporal histogram.  

For spectral FLIM measurement using a gated ultrafast camera (Fig. 4.1c), the image forward 

model is a function of both time 𝑡𝑡 and wavelength 𝜆𝜆:  

f(𝑡𝑡, 𝜆𝜆) = 𝑭𝑭(𝑑𝑑)ℎ(𝑑𝑑, 𝑡𝑡, 𝜆𝜆) + σ(𝑡𝑡, 𝜆𝜆),    (30) 

where f(𝑡𝑡, 𝜆𝜆)  is a spectrally resolved, time-lapse sinogram constructed by the projection 

measurements at the gated time 𝑡𝑡 and wavelength 𝜆𝜆.  

The image reconstruction of LIFT-FLIM and -sFLIM involves solving the inverse problems of 

Eq. 29 and 30, respectively. Like standard computed tomography, this can be accomplished 

through simple inverse Radon transform or more advanced optimization algorithms like a Fast 

Iterative Shrinkage-Thresholding Algorithm (FISTA) [138,139]. We depict the workflow for 

processing the light field data, such as image refocusing, extending the depth of field, and 

rendering a 3D image in Methods.  

Akin to conventional light field cameras, LIFT-FLIM and -sFLIM divide the aperture to 

extract the depth information. Therefore, they have a reduced lateral resolution (~1.8 μm) 

compared with the native diffraction-limited resolution of the objective lens. To improve the 

quality of the reconstructed images, we developed a deep-learning-based image enhancement 

neural network [140-142] (Fig. 4.2). The input to the neural network consists of reconstructed 

LIFT depth images, a diffraction-limited reference image captured at the depth zero, and 

digital propagation matrices (DPMs), which represent the axial distance from the reference 

image plane to the target plane on a per-pixel basis [143]. The neural network then uses a 
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PixelCNN++ architecture [144] to generate high-resolution outputs at corresponding depths. 

The axial resolution, determined by the NA of the objective lens and the number of views 

acquired, was measured to be ~3.0 μm for point objects. The temporal resolutions of LIFT-

FLIM and -sFLIM depend on the characteristics of the image sensor. For example, using a 

linear SPAD array provides a temporal resolution of 50 ps with TCSPC [145], whereas using a 

gated ultrafast camera yields a temporal resolution of 70 ps [146].    

4.2.2 LIFT-FLIM of mixed fluorescent beads  

We validated the 3D lifetime imaging performance of LIFT-FLIM on fluorescent beads. We 

mixed three types of fluorescent beads with lifetimes of 1.5 ns, 3.4 ns, and 4.0 ns, respectively, 

in an agarose gel. We simultaneously excited the beads using a filtered supercontinuum laser 

and imaged the fluorescence using LIFT-FLIM with a linear SPAD array. Moreover, we 

captured the ground-truth intensity images (Fig. 4.3a) at depths from -8 µm to 8 µm using a 

reference camera by mechanically scanning the microscope’s focus. 

To compare LIFT-FLIM images with the ground-truth images obtained, we summed the 

signals at all time bins in the TCSPC temporal histogram and reconstructed the time-integrated 

images at the corresponding depths (Fig. 4.3b). The resulting images exhibit a high degree of 

similarity to the ground-truth images, demonstrating the system’s numerical refocusing ability. 

We further generated the time-lapse LIFT-FLIM images and computed the average lifetime at 

each image pixel using mono-exponential curve fitting (Fig. 4.3c). Three representative 

fluorescence decays reconstructed at beads’ locations are shown in Fig. 4.3d. The derived 

fluorescence lifetimes are consistent with the beads’ specifications. Furthermore, we generated 

a histogram of the lifetimes of all pixels at depth zero (Fig. 4.3e). This histogram displays 

three distinct peaks that correspond to the lifetimes of three different types of fluorescence 
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beads. This observation reinforces the reliability and accuracy of our lifetime measurement.  

 

Fig. 4.4. LIFT-FLIM of a mouse kidney tissue section. a. Reference intensity image at depth zero. b. 
Reconstructed lifetime images at depths of -8µm, -4µm, 0µm, 4µm, and 8µm. The refocusing to continuous 
depths is visualized in Movie 2. c. Fluorescence decay curves at two representative fluorophore locations. d. 
Histogram of pixel lifetimes at depth zero. e. Phasor plot. The data points were pseudocolored based on its 
probability belonging to a specific cluster (Red, Phalloidin; Green, WGA). The probability contour lines ranging 
from outer to inner space correspond to values of 0.1, 0.3, 0.5, 0.7, and 0.9. f. Unmixed fluorophore image at 
depth zero. Red channel, Phalloidin. Green channel, WGA. g. 3D visualization of unmixed fluorophores’ 
distribution. Scale bars in all figures: 20 µm.  

 

4.2.3 LIFT-FLIM of a mouse kidney tissue section 

We tested LIFT-FLIM on a standard biological sample (a mouse kidney section, FluoCells™ 

Prepared Slide from ThermoFisher) and demonstrated its ability in lifetime unmixing. The 

sample was stained with Alexa Fluor 488 wheat germ agglutinin (WGA) for labeling cell 

membrane and Alexa Fluor 568 phalloidin for labeling filamentous actin (F-actin). These two 

fluorophores have distinct but close fluorescence lifetimes (Alexa Fluor 488, 2.6 ns vs. Alexa 
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Fluor 568, 2.9 ns). The fluorescence intensity image captured at the focal plane by the 

reference camera is shown in Fig. 4.4a. The refocused LIFT-FLIM fluorescence lifetime 

images at representative depths are displayed in Fig. 4.4b. Figure 4.4c shows the fluorescence 

decay curves measured at two fluorophore locations, and Fig. 4.4d shows the histogram of all 

pixels’ lifetimes at depth zero, where the two peaks indicate the two underlying lifetime 

components.  

Next, we applied an unsupervised phasor approach [147,148] to the fluorescence lifetime data 

and calculated the probability of each pixel belonging to a specific lifetime component cluster. 

Figure 4.4e displays the phasor plot for the fluorescence lifetime image at depth zero, with 

each data point color-coded to represent its corresponding probability and overlaid with 

probability contour lines. We then classified the image pixels in the time-integrated LIFT-

FLIM image based on this probability and unmixed the fluorophores into pseudo-colored 

channels. Figure 4.4f shows a representative unmixed image at depth zero (red channel, 

phalloidin; green channel, WGA). Repeating this procedure for all depths yields a 3D unmixed 

image, as shown in Fig. 4.4g.  

4.2.4 LIFT-FLIM of a human lung cancer pathology slide  

We demonstrated LIFT-FLIM in autofluorescence imaging of an unstained human lung cancer 

pathology slide. Previous studies show that FLIM can access tumor metabolism by imaging 

endogenous chromophores such as NAD(P)H and FAD, enabling its application in cancer 

diagnosis and intraoperative surgical guidance [149,150]. Particularly in pathological imaging, 

FLIM holds great promise as an alternative approach for label-free detection of tissue lesions 

[151,152]. However, conventional FLIM microscopes with a high collecting NA suffer from a 

shallow depth of field. When imaging a panoramic FOV through multiple captures and 
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stitching, the system must mechanically adjust its focus at each position to correct for potential 

focal drift that can occur during extensive scanning, complicating the imaging procedure. Here 

we show that, by using numerical refocusing, LIFT-FLIM enables an extended depth of field 

and allows for capturing an all-in-focus image without the need for accounting for the focal 

drift.  

We excited the sample at 450nm and collected the autofluorescence in the range of 490-700 

nm. The primary endogenous fluorophore that accounts for the fluorescence emission at this 

wavelength is flavin adenine dinucleotide (FAD). To image a large FOV, we scanned the 

sample and stitched the images. The resultant fluorescence intensity image captured by the 

reference camera is shown in Fig. 4.5a, where certain parts of the FOV are blurred due to the 

focal drift. In contrast, LIFT-FLIM can numerically correct for this defocus error in post-

processing and form an all-in-focus image, as shown in Fig. 4.5b. For quantitative 

comparison, we plotted signal intensities along a dashed line in Fig. 4.5a-b and show the 

results in Fig. 4.5c. The image features appear to have much sharper edges in LIFT-FLIM 

compared to those captured by the reference camera (~36% reduction in full-width at half 

maximum). Next, we computed the lifetimes for the stitched all-in-focus LIFT image and 

presented a lifetime map in Fig. 4.5d. A zoom-in area (Fig. 4.5e) shows a significant level of 

lifetime heterogeneity. To correlate this observation to the tissue state, we stained an adjacent 

slide from the same tissue sample using standard hematoxylin and eosin (H&E) and imaged it 

under a widefield microscope. After the histological image was obtained, a pathologist  
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Fig. 4.5.  LIFT-FLIM of a human lung cancer pathology slide. a. Left panel: stitched reference intensity image. 
Right panel: zoom-in image of the circled area in the left panel. The image is blurred due to focal drift during 
extensive scanning. b. Left panel: stitched all-in-focus time-integrated LIFT-FLIm image. Right panel: zoom-in 
image of the circled area in the left panel. c. Intensity profiles of dashed lines in a and b. d. Stitched all-in-focus 
lifetime image. The lifetime image is masked with an intensity threshold e. Zoom-in image of the circled area in 
d. f. Hematoxylin and eosin (H&E) stained image from an adjacent tissue slice. The tumor/normal tissue 
boundary was identified by a pathologist and annotated with a white dashed line. g. Average pixel lifetimes in the 
tumor and normal tissues areas in e. The standard deviation (SD) is shown as error bars. h. Phasor plot. The data 
points were pseudocolored based on its probability belonging to a specific cluster (Red, tumor; Green, normal). 
The probability contour lines ranging from outer to inner space correspond to values of 0.1, 0.3, 0.5, 0.7, and 0.9. 
i. Classified tissue map. Red channel, tumor; Green channel, normal. Scale bars in all figures: 100 µm.   
 

reviewed it to identify the boundary between the tumor and normal tissue, as illustrated in Fig. 

4.5f. Comparing the average pixel lifetimes above (1.9±0.3 ns) and below (2.6±0.4 ns) the 

annotated boundary (Fig. 4.5f) reveals a significant difference (Fig. 4.5g). The observed 

reduction in autofluorescence lifetimes in the tumor areas compared to that in the normal 

tissue is consistent with previous reports [153-155] and may indicate a shift towards glycolysis 

and cancer metabolism [156]. To classify the tissue based on the lifetime, we again applied an 

unsupervised phasor approach to the fluorescence lifetime data. The resultant phasor plot and 
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classified tissue map are shown in Fig. 4.5h and 4.5i, respectively (red channel, tumor; green 

channel, normal tissue).  

 

 

 
Fig. 4.6.  LIFT-FLIM of lung organoids. a. Fluorescence decay curves (left panel) and emission spectra (right 
panel) of the fluorophores used. b-d. Reconstructed LIFT-sFLIM (b) intensity image, (c) wavelength-integrated 
lifetime image, and (d) time-integrated wavelength image at depth zero. e. Lifetime phasor plot. The data points 
were pseudocolored based on its probability belonging to a specific cluster (Red, sma, collagen, p16; Green: 
smad3). The probability contour lines ranging from outer to inner space correspond to values of 0.2, 0.35, 0.65, 
and 0.95. f. Spectral phasor plot. The data points were pseudocolored based on its probability belonging to a 
specific cluster (Magenta: collagen, smad3; Yellow: sma; Green, p16). The probability contour lines ranging 
from outer to inner space in the magenta and yellow clusters correspond to values of 0.45, 0.65, and 0.85, while 
the contour lines in the green cluster correspond to values of 0.25, 0.45, 0.65, and 0.85. g. Unmixed component 
images at depth zero. h. 3D visualization of unmixed fluorophores’ distribution in the organoid.. Scale bar: 
100µm in all figures.  

  



84 
 

4.2.4 LIFT-sFLIM of lung organoids 

We demonstrated LIFT-sFLIM in 3D multiplex imaging of lung organoids. Organoids, 3D 

multicellular stem-cell-derived constructs that mimic in vivo tissue, have gained growing 

interest for modeling tissue development and disease [157-159]. Particularly, organoids hold 

great promise for high-content phenotypic screening because they recapitulate many aspects of 

parent tissues and can be derived from patient material, rendering them ideal model systems 

for personalized medicine and drug discovery [160-164].  

One primary challenge for high-content phenotypic screening of organoids is extraction of 

multivariate information from organoids labeled with multiple biomarkers [165-167]. Here we 

show that, by acquiring both the spectral and lifetime information, LIFT-sFLIM provides a 

powerful solution to overcome this challenge. We cultured lung alveolar organoids with 

different combinations of primary healthy human lung fibroblasts and epithelial cells grown on 

alginate scaffolds that mimic the alveolar micro-architecture [168]. We used the antibodies 

and labeled epithelial-mesenchymal transition by α smooth muscle actin (α-sma) expression, 

ECM deposition by collagen (collagen I) expression, cell apoptosis by SMAD signaling 

pathway (smad3), and cellular senescence by P16INK4A (p16) expression.  

Figure 4.6a depicts the fluorescence emission decay curves and spectra of the four 

fluorophores that were utilized in the secondary antibodies. While the fluorophores AF 532, 

546, and 568 have close fluorescence lifetimes, their spectral emission peaks are well 

separated. On the other hand, AF 546 and AF 555 exhibit significant spectral overlaps but 

differ in fluorescence lifetimes. The combination of four fluorophores used in this study 

presents a challenge for conventional imaging techniques. Specifically, neither FLIM nor 

spectral imaging alone can simultaneously capture and distinguish all four fluorophores. This 
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limitation underscores the need for innovative imaging approaches, such as LIFT-sFLIM, 

which can integrate both spectral and temporal information to enable reliable separation and 

quantification of multiple fluorophores in complex biological samples. 

Using LIFT-sFLIM, we acquired a five-dimensional (5D) dataset (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡, 𝜆𝜆) (𝑥𝑥,𝑦𝑦, 𝑧𝑧, spatial 

coordinates; 𝑡𝑡, fluorescence decay time; 𝜆𝜆, wavelength). Figure 4.6b shows the LIFT-sFLIM 

reconstructed intensity image at depth zero. The wavelength-integrated lifetime image and 

time-integrated wavelength image at depth zero are shown in Fig. 4.6c-d, respectively. To 

unmix the fluorophores, we applied a spectral-lifetime phasor approach to the 5D dataset. The 

resultant color-coded phasor plots in the lifetime and spectral domains are shown in Fig. 4.6e-

f, respectively. Consistent with the spectral and lifetime data presented in Fig. 4.6a, our 

analysis revealed two distinct clusters in the lifetime phasor plot and three distinct clusters in 

the spectral phasor plot.  By combining spectral and temporal information, we separated the 

fluorophores into four color-coded channels. Representative images at depth zero are shown in 

Fig. 4.6g. By repeating this procedure at all depths, we generated a 3D color-coded image that 

depicts the distribution of each fluorophore in the organoid, as shown in Fig. 4.6h.  

 
 

4.3 Discussion 

Using LIFT-FLIM for 3D lifetime imaging offers a crucial benefit of reducing the number of 

scanning steps required compared to traditional point- or line-scanning time-domain FLIM 

techniques. To produce a 3D image of 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 voxels, a FLIM system that uses point- 

or line-scanning requires a total of 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 or 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 (if line scans are done along the 

y axis) scanning steps, respectively. Here, 𝑁𝑁𝑥𝑥 , 𝑁𝑁𝑦𝑦 , and 𝑁𝑁𝑧𝑧  denote the number of spatial 

samplings in a 3D space. For simplicity, we consider 𝑁𝑁𝑥𝑥 = 𝑁𝑁𝑦𝑦 = 𝑁𝑁. In contrast, because  
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Fig.4.7. LIFT reconstruction under different compression ratio values. a-e. Reconstructions of various objects 
under different number of projections (i.e., compression ratio). f. Structure similarity index measure (SSIM) vs. 
number of projections. g. Peak signal-to-noise ratio (PSNR) vs. number of projections.  

 

LIFT-FLIM distributes projection measurements into different views, it demands only 𝑁𝑁𝜃𝜃 

scanning steps, where 𝑁𝑁𝜃𝜃  is a total number of projection angles. Therefore, LIFT-FLIM 

reduces the scanning steps required by a factor of 𝑁𝑁2 × 𝑁𝑁𝑧𝑧/𝑁𝑁𝜃𝜃 or 𝑁𝑁 × 𝑁𝑁𝑧𝑧/𝑁𝑁𝜃𝜃  compared to 

point- or line-scanning systems.  

For non-compressive measurement, we set 𝑁𝑁𝜃𝜃 equal to 𝑁𝑁. Our findings indicate that, in the 

light field imaging, the effective number of depth samplings, 𝑁𝑁𝑧𝑧, equals the number of angular 

samplings, 𝐾𝐾. As a result, the scanning reduction factor is either 𝑁𝑁 × 𝐾𝐾 or 𝐾𝐾 when compared 

to point- or line-scanning systems. With our current 𝑁𝑁  and 𝐾𝐾  values set at 180 and 15, 

respectively, the resulting scanning reduction factors are 2,700 and 15 in comparison to point- 

or line-scanning systems.  

Alternatively, like sparse-view computed tomography [169], we can choose an 𝑁𝑁𝜃𝜃 less than 𝑁𝑁 

for compressive measurement. We define a compression ratio (CR) as 
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CR =  𝑁𝑁/𝑁𝑁𝜃𝜃. (31) 

 

To quantify the dependence of the reconstructed image quality on the CR, we adopted the peak 

signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) as evaluation 

metrics. We varied the CR by increasing 𝑁𝑁𝜃𝜃  and calculated the corresponding PSNRs and 

SSIMs. Figure 4.7 illustrates reconstructions of sparse and complex objects at different CR 

values. In general, reducing the CR improves both PSNR and SSIM in the reconstructed 

image. Additionally, our findings suggest that the quality of the reconstructed image is highly 

dependent on the CR for complex objects, like the lung tumor image displayed in Fig. 4.7c. In 

such cases, a lower CR value, less than 4.5, is necessary to achieve high-quality image 

reconstruction (SSIM≥0.9). Conversely, when imaging a sparse object, such as an USAF 

resolution target, a CR of 9 is sufficient to recover a high-quality image. Therefore, by 

adjusting 𝑁𝑁𝜃𝜃 , LIFT-FLIM can tailor the CR to the complexity of a sample, resulting in 

effective measurements for a given object. 

The imaging speed of LIFT-FLIM is determined by the total number of projections 𝑁𝑁𝜃𝜃 

acquired and the time duration at each projection. For LIFT-FLIM using a linear SPAD array, 

the duration at each projection includes both the pixel exposure time and temporal histogram 

readout time. For LIFT-sFLIM using a gated ultrafast camera, the duration at each projection 

equals the product of the number of time gates and the camera frame time. Importantly, when 

imaging simple objects,  the system can be operated in the compressive measurement mode, 

where a reduced 𝑁𝑁𝜃𝜃 can be acquired to accelerate the imaging speed without compromising 

the image quality.  

The spatial resolution of LIFT-FLIM is fundamentally limited by optical diffraction when 
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performing non-compressive measurements. Due to the division of the aperture, LIFT-FLIM 

has a lateral resolution of 𝜆𝜆𝜆𝜆/𝐷𝐷 , where 𝜆𝜆  is the wavelength, 𝑓𝑓  is the focal length of the 

objective lens, and 𝐷𝐷 is the sub-aperture diameter associated with a perspective image. Given 

𝐾𝐾 views, 𝐷𝐷 =  𝐷𝐷0/√𝐾𝐾, where 𝐷𝐷0 is the original aperture of the objective lens. Therefore, the 

lateral resolution is √𝐾𝐾 times greater than the native resolution of the objective lens.  Although 

this is a common issue encountered by all light field cameras, we can mitigate it by acquiring 

fewer views and increasing the sub-aperture size to enhance the resolution at the expense of 

reduced depth accuracy. On the other hand, when performing compressive measurements, the 

spatial resolution of LIFT-FLIM is practically limited by the CR. While a higher CR is favored 

in terms of imaging speed, it deteriorates the reconstructed image quality and resolution for 

complex objects. Hence, selecting an appropriate CR value for a given object involves striking 

a balance between imaging speed and resolution.    

LIFT-FLIM images can be reconstructed and analyzed in real-time. For instance, when 

processing uncompressed measurement data, a simple inverse Radon transform takes about 

0.13 seconds per time bin on an Nvidia RTX3080Ti GPU with CUDA. Subsequently, deep 

learning enhancement and phasor analysis require 0.079 and 0.024 seconds, respectively. 

Parallel computing reduces the total post-processing time to less than 0.3 seconds. 

The light throughout of LIFT-FLIM depends on the sub-aperture size of a perspective image, 

the ratio of projection line image width to the detector pixel’s size, and the fill factor of the 

image sensor. LIFT-FLIM is built on an unfocused light field imaging configuration, where 

the projection line width at the image sensor equals to the sub-aperture diameter, 𝐷𝐷 , 

multiplying with a pupil demagnification ratio, 𝑟𝑟. Given the pixel pitch, 𝑝𝑝, and fill factor, 𝜅𝜅, 

the percentage of light measured by the image sensor pixel is  
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𝜁𝜁FILM =
𝐷𝐷
𝐷𝐷0

× 
𝑝𝑝𝑝𝑝
𝐷𝐷𝐷𝐷

=
𝑝𝑝𝑝𝑝
𝐷𝐷0𝑟𝑟

. (32) 

Here 𝐷𝐷/𝐷𝐷0 describes the light loss due to the view selection during pupil scanning, where 𝐷𝐷0 

is the original aperture of the objective lens. Therefore, a lower pupil demagnification ratio 

(i.e., a shorter focal length of the cylindrical lens in Fig. 4.1a) can lead to a higher system light 

throughput. In our current system, due to use of only off-the-shelf optics and a SPAD array, 

we have 𝑟𝑟 equal to 0.1, resulting in an overall light throughput of 0.01. To further enhance the 

system performance, one possible approach is to utilize custom optics that feature a lower 

pupil demagnification ratio, 𝑟𝑟, together with a rectangularly shaped SPAD pixel that has a 

longer pixel pitch, 𝑝𝑝, in the direction of the projection line width. Alternatively, instead of 

scanning the pupil to choose the views, it is possible to simultaneously capture all perspective 

images by employing an array of dove prisms with different orientations, as we have 

previously demonstrated. However, this setup necessitates the use of multiple linear SPAD 

arrays, each of which measures a projection line image in a synchronized fashion. 

On the other hand, for LIFT-sFLIM using a gated ultrafast camera, the light throughput is 

determined by the sub-aperture size of a perspective image, the diffraction efficiency of the 

grating, 𝜒𝜒, and quantum efficiency of the gated ultrafast camera, 𝜂𝜂.  

𝜁𝜁sFILM = 𝐷𝐷
𝐷𝐷0

× 𝜒𝜒 × 𝜂𝜂. (33) 

Since 𝐷𝐷/𝐷𝐷0 = 1/√𝐾𝐾, where 𝐾𝐾 is the total number of views acquired, Eq. 33 can be rewritten 

as 𝜁𝜁sFILM = 𝜒𝜒𝜒𝜒/√𝐾𝐾. Hence, reducing the number of angular samplings can boost the light 

throughput, but this comes at the cost of decreased depth accuracy. Noteworthily, here the 

pupil magnification ratio, 𝑟𝑟 , has no effect on the light throughput. Rather, it governs the 
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spectral resolution of the system like in a conventional pushbroom imaging spectrometer 

[170,171].  

To investigate how the number of photons received at a pixel affects the quality of the 

reconstructed image, we conducted simulations under a shot-noise-limited condition. Provided 

that the pixel with the maximum count in the image collects 𝑀𝑀 photons, the corresponding 

shot noise is √𝑀𝑀 photons. We introduced photon noise to all pixels in the projection images 

and reconstructed the images with various values of 𝑀𝑀, while maintaining a constant number 

of projections across all data points in the plot. Figure 4.8 presents the reconstruction results 

of a Shepp-Logan phantom under different 𝑀𝑀 values. The results indicate that a larger 𝑀𝑀 (i.e., 

more photons) can lead to a higher PSNR. For high-quality image reconstruction (PSNR≥20 

dB), 𝑀𝑀 must be greater than 64 photons.  

To sum up, we have created a highly data-efficient 3D FLIM technique that relies on light 

field tomography and extended its capabilities to 3D sFLIM. We believe that LIFT-FLIM and 

-sFLIM will find broad applications in high-throughput and high-content imaging of biological 

cells and tissues, opening up new avenues for both fundamental and translational biomedical 

research.  
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Fig.4.8. Reconstruction under different noise levels. a. Reconstructions of a Shepp-Logan phantom with different 
photons numbers. b. Peak signal-to-noise ratio (PSNR) vs. number of photons. 

 

4.4 Methods in LIFT-FLIM 

4.4.1 Experimental setup  

In a LIFT-FLIM and -sFLIM system, we used an epi-fluorescence microscope (IX83, 

Olympus) as the front-end optics and excited the sample with a pulsed laser source (SuperK 

FIANIUM, FIU-15, NKT Photonics, for LIFT-FLIM; SIRIUS GR-2, Spark Laser, for LIFT-

sFLIM). The emitted fluorescence is collected by a microscope objective lens 

(UPLXAPO60XO, Olympus; UPLXAPO20X, Olympus), and an intermediate fluorescence 

image is formed at the side image port of the microscope.  

To split the light, we employed a beam splitter (BSX16, Thorlabs), which transmits 10% of the 

light to a reference camera (CS2100M-USB, Thorlabs) and reflects 90% of the light to the 

LIFT-FLIM camera. We placed a scanning mirror (MR-10-30, Optotune) at the intermediate 

image plane to shift the pupil image.  



92 
 

The fluorescence is then directed through a 4f system, which consists of two lenses (ACT508-

250-A and AC254-150-A, Thorlabs) with a focal length of 250 mm and 150 mm, respectively. 

To rotate the perspective image, we mounted a Dove prism (PS990M, Thorlabs) on a 

motorized rotation stage (PRM1Z8, Thorlabs) and positioned the assembly at the Fourier plane 

of the 4f system. We also positioned a cylindrical lens (LJ1095L1-A, Thorlabs, invariant axis 

along the y-axis) 131mm after the second lens in the 4f system, which generates a 1D en-face 

projection of a perspective image along the y-axis. To locate the projection line image, we 

identified the line with the smallest width. Additionally, we compensated for the focal shift 

and spherical aberration introduced by the cylindrical lens by defocusing.   

The subsequent system is split into two arms, namely the LIFT-FLIM and LIFT-sFLIM arms. 

The former employs a linear SPAD array [34], while the latter utilizes a 2D ultrafast time-

gated camera (High rate image intensifier, LaVision). To switch the light path between the two 

arms, we placed a flip mirror (TRF90, Thorlabs; PF10-03-G01, Thorlabs) at the line image 

plane.  

When the mirror is positioned at 1, the fluorescence is directed towards the LIFT-FLIM sub-

system through a camera lens (YN100mm F2, YONGNUO) and directly measured by the 

linear SPAD camera. The linear SPAD camera comprises 256 effective CMOS SPAD pixels 

with a pitch of 26.2µm. Operating in the TCPSC mode, the SPAD camera provides a temporal 

resolution of 50 picoseconds [34]. It is connected to a FPGA (Spartan 6, Xilinx) with 64 time-

to-digital converters (TDCs) and histogram engines, enabling it to process up to 8.5 giga-

photons per second. By rotating the dove prisms in a set of angles at assigned views, we 

sequentially acquired the 1D en-face projections and constructed a sinogram.  

In position 2 of the flip mirror, the emitted fluorescence is directed to the LIFT-sFLIM sub-
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system. The line image is relayed to the image sensor plane by a pair of camera lenses 

(YN100mm F2, YONGNUO). To disperse the line image along the x-axis, we positioned a 

transmission diffraction grating (GT50-03, Thorlabs) at the Fourier plane of the relay system. 

The resultant dispersed projection image is then sampled in time by an ultrafast time gate and 

further relayed to a 2D camera (CS2100M-USB, Thorlabs) by a camera lens (YN100mm F2, 

YONGNUO). By varying the delay between the time gate and the laser reference signal, we 

acquired a series of time-resolved dispersed projection images. To synchronize the scanning 

mirror, the dove prism rotation stage, the camera, and the laser, we employed a digital delay 

generator (DG645, Stanford Research Systems). To maximize information content for image 

reconstruction, we chose the dove prism rotation angles from a set of angles that are evenly 

spaced in the range of [0, 90°]. 

To tune the illumination wavelength from the supercontinuum laser, we built a wavelength-

selecting module using a digital micromirror device (DMD). The collimated white laser beam 

is first dispersed by a transmission diffraction grating (GT50-03, Thorlabs) and line focused 

onto the surface of the DMD (DLP LightCrafter 6500, Texas Instruments) through a 

cylindrical lens (LJ1125L1-A, Thorlabs). The broadband illumination has a line dispersion of 

54.4 nm/mm on the DMD surface. The DMD has 1920×1080 micromirrors, each of which can 

be individually tilted ±12o relative to the norm. Each column of the DMD corresponds to a 

different wavelength with a 0.4nm/column wavelength resolution. By adjusting the mirror 

pattern, we can select any desired illumination wavelengths. The laser light of selected 

wavelengths is then spatially recombined by another identical set of cylindrical lens and 

diffraction grating and directed towards the LIFT-FLIM sub-system.  

When imaging the mixed fluorescence beads and mouse kidney tissue section, we used 
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multiband excitation with two different wavelengths (488 nm and 561 nm) and separated 

fluorescence from excitation using the combination of a multiband dichroic mirror 

(ZT405/488/551/647rpc, Chroma) and a multiband emission filter (ZET405/488/561/647m, 

Chroma). For imaging the human lung cancer pathology slide, we used 450 nm laser 

excitation, a 495 nm dichroic mirror (T495lpxr, Chroma), and a long-pass emission filter 

(ET500lp, Chroma). In the case of lung organoids, we used 532 nm laser excitation, a 532 nm 

dichroic mirror (ZT532rdc, Chroma), and a long pass emission filter (ET542lp, Chroma). The 

laser fluence at the sample focal plane was approximately 9.9 x10-7 J/cm2, 1.1x10-7 J/cm2, and 

2.9 x10-3 J/cm2 for the mouse kidney section, lung cancer pathology slide, and lung organoid 

imaging experiments, respectively. These laser fluences were well below the cell damage 

threshold of 4 J/cm2 [172,173]. 

4.4.2 Image reconstruction 

To obtain an image of a monochromatic scene at a specific time point and depth from the 

measurement described by Eq. 3, we iteratively solve an optimization problem:  

 

argmin ‖f − 𝑭𝑭(𝑑𝑑)ℎ(𝑑𝑑)‖2
2 + 𝜇𝜇‖𝜑𝜑(ℎ(𝑑𝑑)‖1 , (9) 

 

where ‖. ‖2  denotes the 𝑙𝑙2  norm, ‖. ‖1  denotes the 𝑙𝑙1  norm, and 𝜑𝜑(∙) is a data regularization 

term. 𝜇𝜇  is a hyperparameter that balances the data fidelity and regularization term. In the 

framework of regularization by denoising [174], 𝜑𝜑(∙)  is not explicitly specified, and the 

regularization can be implemented by a state-of-the-art image denoising algorithm such as 

BM3D or a neural network. We adopted the BM3D and total variation (TV) denoisers for the 

regularization due to the availability of efficient algorithms [175]. Besides the iterative 
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method, inverse Radon transformation is an alternative approach that could have been used for 

image reconstruction with lower computational cost.  

4.4.3 Refocusing and extending the depth of field 

A light field acquired by conventional light field cameras can be parameterized by the aperture 

plane (𝑢𝑢, 𝑣𝑣)  and the image plane (𝑥𝑥,𝑦𝑦) . Indexing view 𝑘𝑘  as (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) , the image P𝑘𝑘(𝑥𝑥,𝑦𝑦) 

observed from view 𝑘𝑘 can be related to a reference image feature kernel ℎ(𝑥𝑥,𝑦𝑦) by 

 

𝑝𝑝𝑘𝑘(𝑥𝑥,𝑦𝑦) = ℎ(𝑥𝑥 − 𝑠𝑠𝑢𝑢𝑘𝑘 ,𝑦𝑦 − 𝑠𝑠𝑣𝑣𝑘𝑘), (10) 

 

where 𝑠𝑠 is a depth-dependent shearing parameter. In conventional light field imaging, 

refocusing is performed by shifting and adding the sub-aperture images [176]. Unlike 

conventional light field cameras, LIFT-FLIM first rotates a perspective image, followed by 

transforming the rotated image into a line. Therefore, the depth-dependent shearing must be 

performed parallel to the projection axis.  

For sub-aperture (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘)  at the projection angle of 𝜃𝜃 , the shearing of 1D sub-aperture 

projection is given by 

 

𝑠𝑠 ∙ 𝑢𝑢𝑘𝑘 ∙ sin𝜃𝜃 −  𝑠𝑠 ∙ 𝑣𝑣𝑘𝑘 ∙ cos 𝜃𝜃. (11) 

 

For numerical refocusing, we applied the correspondent shearing factor to each projection 

image and updated sinogram for reconstructing the depth image.  

  Extending the depth of field can be achieved through a similar approach to conventional light 

field imaging, which involves refocusing onto different depths, extracting the sharpest feature 
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for each pixel, and assembling an all-in-focus image [177]. 

4.4.4 System calibration and resolution  

Scanning mirror calibration 

To ensure that the scanning range of sub-apertures fully utilizes the entire aperture of the 

objective lens, we calibrated the scanning mirror’s horizontal and vertical tilt angles. 

Additionally, to optimize the light throughput of each sub-aperture, we employed a rectangular 

iris instead of a round one at the aperture stop. The rectangular shape reduces the gaps 

between adjacent scanned pupil positions and allows more light to pass through a sub-aperture.  

Projection center calibration  

To calibrate the central position of each projection line image at the sensor plane, we imaged a 

pinhole (P10D, Thorlabs) positioned at the center of the FOV on the sample stage. We 

captured images of the pinhole at every projection angle 𝜃𝜃 and view 𝑘𝑘 and directly localized 

the center of each line image as 𝑦𝑦𝑝𝑝0
(𝜃𝜃,𝑘𝑘). Subsequently, we extracted the projection data based 

on the center location to form a sinogram. 

Spectrum calibration and resolution 

To calibrate the spectral response, we positioned a pinhole (P10D, Thorlabs) at the sample 

stage and illuminated it with monochromatic light at varied wavelengths. The resulting pixel 

locations of the projections were recorded and fitted with a linear polynomial, as illustrated in 

Fig. 4.9a. The slope of the line determines the spectral sampling of the system, which was 

calculated to be 0.14 nm. The spectral resolution is defined as the full-width at half maximum 

(FWHM) of the spectral response. A 1 nm bandpass filter (FL532-1, Thorlabs) was used to 
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limit the source wavelength for this measurement, and the raw spectral response is displayed 

in Fig. 4.9b, where the FWHM was approximately 9.2 nm. However, this width was a 

convolution of the geometrical image of the pinhole on the camera (approximately 7 pixels), 

the bandwidth of the light source (approximately 7 pixels), and the system spectral resolution. 

The width of a convoluted function (in pixels) can be computed as [178]:  

 

𝑤𝑤(𝑓𝑓1 ∗ 𝑓𝑓2 ∗ 𝑓𝑓3) = 𝑤𝑤(𝑓𝑓1) + 𝑤𝑤(𝑓𝑓2) + 𝑤𝑤(𝑓𝑓3) − 2, (12) 

 

where 𝑤𝑤 denotes the width of the function, ∗ denotes the convolution operator, and 𝑓𝑓𝑖𝑖  (𝑖𝑖 =

1, 2, 3) denotes the individual function in a discrete form. Based on this equation, the width of 

the spectral resolution on the camera was estimated to be 48 pixels. Given a 0.14 nm spectral 

sampling, the spectral resolution is 6.6 nm. 

Fig.4.9 Spectral calibration. a. Spectral response locations in the pixels of different wavelengths on the camera. b. 
Raw spectral response under monochromatic 532 nm illumination (bandwidth = 1 nm). 
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Spatial resolution and field-of-view(FOV) 

To quantify the spatial resolution, we imaged a fluorescence bead with a diameter of 4 μm 

(F8858, Thermo Fisher), where the lateral and axial full-width at half maximum (FWHM) are 

approximately 4.6 μm and 5.7 μm, respectively. However, the lateral FWHM width was a 

convolution of the geometric image of the bead on the camera (around 4 pixels) and the 

system lateral resolution. The width of a convoluted function can be calculated as [178]: 

 

𝑤𝑤(𝑓𝑓1 ∗ 𝑓𝑓2) = 𝑤𝑤(𝑓𝑓1) + 𝑤𝑤(𝑓𝑓2) − 1 (13) 

 

where 𝑤𝑤 denotes the width of the function, ∗ denotes the convolution operator, and 𝑓𝑓𝑖𝑖  (𝑖𝑖 =

1, 2) denotes the individual function in a discrete form. Using this formula, the width of the 

lateral resolution on the camera was calculated to be 2 pixels. Given a 0.9 μm spatial sampling 

(camera pixel pitch of 26.2 μm divided by system magnification ratio of 29), the lateral 

resolution was estimated to be 1.8 μm. Similarly, for axial FWHM, the width was a 

convolution of the bead size and the system lateral resolution. As a result, the axial resolution 

was estimated to be 3 μm. 

We also imaged a group of bars from a USAF resolution target (Group 7 element 3-6) along 

both horizontal and vertical directions and plotted the intensities along the dashed line. The 

image visibility, defined as (𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚) (𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚)⁄ , where 𝐼𝐼  is the intensity, was 

calculated for each group of bars using the peaks and valleys of the intensity. With a visibility 

threshold of 0.2, the spatial resolution of the bars was determined to be 2.2 µm along both 

vertical and horizontal directions, indicating an isotropic resolution. The FOV of our system 

was measured to be 227 µm x 143 µm when using a 60x microscope objective lens 
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(UPLXAPO60XO, Olympus). 

Depth calibration 

To calibrate the depth, we utilized a fluorescence bead (C16509, Thermo Fisher) and 

translated it along the depth axis from -16 μm to 16 μm with a 2 μm step. At each depth, we 

captured an image and then performed digital refocusing by adjusting the shearing parameter, 

as described in Methods: Refocusing and extending the depth of field. The goal was to 

identify the shearing parameter that would bring each image into the sharpest focus, which 

was determined by maximizing a focus measure (e.g., sum of modified Laplacian) for each 

pixel in the image. The best focus shearing parameter at each physical depth was then 

recorded. The resultant shearing parameter to depth curve was fitted with linear models. With 

this calibration curve, we can digitally refocus a 3D object to a specific depth using the 

correspondent shearing parameter. To validate the accuracy of our shearing parameters, we 

imaged 3D fluorescence beads in an agarose gel and compared LIFT refocusing against the 

ground-truth depth images captured by a reference camera, as shown in Fig. 4.3.  

Camera registration 

To register the LIFT-FLIM and -sFLIM image with the reference camera, we imaged a 7 by 

13 grid pattern. We then extracted the point locations from the reconstructed LIFT-FLIM and -

sFLIM images and the reference image and calculated the homography matrix to establish a 

pixel-to-pixel correspondence between the two cameras. The reprojection error using the 

homography is less than one pixel, ensuring an accurate registration. This homography matrix 

is then used to register the LIFT-FLIM and -sFLIM images with reference images for deep 

learning reconstruction. 
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4.4.5 Preparation of training data for deep learning  

To generate the ground truth depth image stack, we translated the sample stage along the depth 

axis while capturing images using the reference camera. The resulting image stack was then 

transformed to the LIFT-FLIM and -sFLIM camera coordinates using a homography matrix 

obtained through camera registration. We subtracted a background image from the warped 

image stack.  

The LIFT-FLIM and -sFLIM images were captured at depth = 0, and a depth image stack was 

computed by numerical refocusing. We calculated a uniform DPM at each depth and appended 

them to the reconstructed image stack. We created a mask by setting a threshold to the 

reconstructed image to identify regions with sample fluorescence signals above the 

background. This mask was then applied to both the ground truth image stack and the LIFT-

FLIM and -sFLIM image stack. For training, we constructed a total of 200 image stack pairs 

per task in the training dataset, each comprising an input image collection (LIFT-FLIM/sFLIM 

reconstruction stack, DPM stack, and a wide-field image at depth=0) and a ground-truth image 

stack.  

4.4.6 Deep learning network architecture and training 

The PixelCNN++ architecture[144] was adopted for LIFT-FLIM and -sFLIM refocusing. As 

illustrated in Fig. 4.2, our model consists of the down- and up-sampling streams and the lower 

down- and up-sampling streams. Each stream has 5 ResNet blocks [179] in both the down-

sampling and up-sampling paths. Each ResNet block contains 4 ResNet layers, and each 

ResNet layer has two 3×3 convolutional layers and one 1×1 convolutional layer. The ResNet 

layer utilized two activation functions 𝜎𝜎1,𝜎𝜎2 defined below: 

𝜎𝜎1(𝑥𝑥) = 𝐸𝐸𝐸𝐸𝑈𝑈(𝑥𝑥⨁(−𝑥𝑥)) 
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𝜎𝜎2(𝑥𝑥1⨁𝑥𝑥2) = 𝑥𝑥1⨀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥2). 

Here ⨁ means concatenation along the channel axis and ⨀ is element-wise multiplication. 

Exponential Linear Unit (ELU) [69] and Sigmoid function are defined as 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) = �
𝑥𝑥, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 > 0

𝛼𝛼(exp(𝑥𝑥) − 1), 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 ≤ 0  , 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥) =
1

1 + exp(−𝑥𝑥)  , 

where 𝛼𝛼 is a hyperparameter that controls the value to which an ELU saturates for negative net 

inputs. Strided convolutional layers were added between two sequential ResNet blocks to 

halve the spatial dimensions in the down-sampling path, and conversely transposed strided 

convolutional layers were utilized to implement up-sampling in the up-sampling path. Skip 

connections connect each ResNet block in the down-sampling path with its counterpart block 

in the up-sampling path such that relatively higher-frequency image features can flow through 

the model. 

The training loss of our model is a linear combination of Fourier domain mean absolute error 

(FDMAE) [180,181], mean square error (MSE) and the perceptual loss: 

 

𝐿𝐿(𝑦𝑦, 𝑦𝑦�) = 𝛼𝛼𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑦𝑦,𝑦𝑦�) + 𝛽𝛽𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦,𝑦𝑦�) + 𝛾𝛾𝐿𝐿𝑝𝑝(𝑦𝑦,𝑦𝑦�). (14) 

 

Here 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 are weights of each loss term, and were empirically set as 0.1, 0.1 and 1.0, 

respectively. 𝑦𝑦,𝑦𝑦�  ∈ 𝑅𝑅𝑁𝑁2are the vectorized ground truth and predicted images, respectively. 

The FDMAE loss is defined as 

 

𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑦𝑦,𝑦𝑦�) = ‖𝐹𝐹𝐹𝐹 − 𝐹𝐹𝑦𝑦�‖1, (15) 
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where 𝐹𝐹 ∈ 𝑅𝑅𝑁𝑁2 is the Fourier transform matrix. The MSE loss is defined as 

 

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦,𝑦𝑦�) = ‖𝑦𝑦 − 𝑦𝑦�‖2. (16) 

 

The perceptual loss is defined as the sum of MSE losses between the feature maps of 𝑦𝑦 and 𝑦𝑦� 

generated by a Visual Geometry Group 16 (VGG16) network [183]: 

 

𝐿𝐿𝑝𝑝(𝑦𝑦,𝑦𝑦�) = ∑ 𝑤𝑤𝑘𝑘 ⋅ ‖𝑉𝑉𝑉𝑉𝐺𝐺𝑘𝑘(𝑦𝑦) − 𝑉𝑉𝑉𝑉𝐺𝐺𝑘𝑘(𝑦𝑦�)‖2𝐾𝐾
𝑘𝑘=1 , (17) 

 

where 𝑉𝑉𝑉𝑉𝑉𝑉𝑘𝑘(∙) represent the feature map of the input image after the 𝑘𝑘𝑡𝑡ℎ block of VGG16, 

and 𝑤𝑤𝑘𝑘 is the weight for the corresponding feature maps. In this work we used the first three 

blocks of VGG16 for image feature extraction, i.e., 𝐾𝐾 = 3, and empirically set 𝑤𝑤1 = 0.5, 𝑤𝑤2 = 

0.15, 𝑤𝑤3 = 0.1. An Adam optimizer with exponentially decaying learning rate was utilized for 

parameter optimization. The initial learning rate was set as 10-4 and the decay rate was 

0.999995 per epoch. 

Our models were implemented using PyTorch framework [184] on a machine with Intel Xeon 

W-2195 processor and four RTX 2080Ti graphic cards. All models converged after around 

5000 epochs, which took approximately 2 to 3 days. 

4.4.7 Image stitching 

We used a feature-based image stitching algorithm to create a panorama view of the human 

lung cancer pathology slide from multiple scanned FOVs with overlapping regions. This 

process involved detecting and matching image features, estimating the geometric 
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transformation between images, and computing the transformation mapped each image onto 

the panorama. Moreover, to correct the artifacts in the stitched image caused by connecting the 

individual images, we applied an intensity averaging technique to the neighboring pixels at the 

artifact's coordinates. 

4.4.8 Phasor Analysis 

To facilitate fast and accurate analysis of LIFT-FLIM and LIFT-sFLIM data, we utilized a 

phasor approach to unmix the underlying chromophores. In our experiments involving mouse 

kidney tissue sections and human lung cancer pathology slides, we reconstructed a 

multidimensional array 𝑋𝑋𝑋𝑋𝑋𝑋 at each depth 𝑍𝑍, where 𝑋𝑋, 𝑌𝑌 and 𝑍𝑍 are the spatial dimensions, and 

𝑇𝑇 represents fluorescence decay time. After phasor transformation, we fed the resulting phasor 

coordinates into an unsupervised unmixing algorithm [147,148] to determine the probability of 

each pixel belonging to a specific cluster. It is important to note that the number of clusters 

present was assumed to be known a prior, which is generally the case as we label our samples 

with fluorescence probes or make assumptions regarding the sample composition [148]. For 

instance, we modeled our data using two clusters for the mouse kidney tissue sections (Alexa 

Fluor 488 WGA and Alexa Fluor 568 phalloidin) and human lung cancer pathology slide 

(normal and tumor). Using the probabilities obtained from the unmixing algorithm, we 

assigned colors to the unmixed image pixels: each cluster was assigned a unique color, and the 

RGB coordinates of the colors were combined using the probabilities as coefficients. This 

process results in a color code for each pixel, as shown in Fig. 4.4f.and Fig. 4.5i. 

In LIFT-sFLIM, the image is represented by a multidimensional array 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 at each depth 𝑍𝑍, 

where 𝑆𝑆  denotes the spectral dimension. To simplify the analysis, we focus on the 𝑇𝑇 × 𝑆𝑆 

matrix 𝐼𝐼(𝑡𝑡, 𝜆𝜆) at one pixel location, where fluorescence decay is sampled at m points (𝑡𝑡 =
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 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚), and the spectrum is sampled at n points (𝜆𝜆 =  𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) . We also consider 

wavelength-integrated time decay 𝐼𝐼Λ(𝑡𝑡) =  ∑ 𝐼𝐼(𝑡𝑡, 𝜆𝜆)𝑛𝑛
𝜆𝜆=1  and time-integrated emission 

spectrum 𝐼𝐼𝑇𝑇(𝜆𝜆) =  ∑ 𝐼𝐼(𝑡𝑡, 𝜆𝜆)𝑚𝑚
𝑡𝑡=1  to streamline the process. In our lung organoid experiment, 

𝐼𝐼Λ(𝑡𝑡) and 𝐼𝐼𝑇𝑇(𝜆𝜆) can be expressed as linear combinations of four components: 

 

𝐼𝐼Λ(𝑡𝑡) =  𝑓𝑓1𝐼𝐼1Λ(𝑡𝑡) +  𝑓𝑓2𝐼𝐼2Λ(𝑡𝑡) +  𝑓𝑓3𝐼𝐼3Λ(𝑡𝑡) +  𝑓𝑓4𝐼𝐼4Λ(𝑡𝑡)  

(18) 𝐼𝐼T(𝑡𝑡) =  𝑓𝑓1𝐼𝐼1T(𝑡𝑡) +  𝑓𝑓2𝐼𝐼2T(𝑡𝑡) +  𝑓𝑓3𝐼𝐼3𝑇𝑇(𝑡𝑡) +  𝑓𝑓4𝐼𝐼4𝑇𝑇(𝑡𝑡), 

 

where 𝑓𝑓𝑖𝑖  (𝑖𝑖 = 1,2,3,4) are the amplitude fractions of each component with the constraint that 

their sum equals unity (∑ 𝑓𝑓𝑖𝑖4
𝑖𝑖=1 = 1). Once transformed into the phasor space, 𝐼𝐼Λ(𝑡𝑡) and  𝐼𝐼T(𝑡𝑡) 

are represented by points constituted by the linear combinations of phasors of its pure 

components 𝐼𝐼𝑖𝑖Λ(𝑡𝑡)  (𝑖𝑖 = 1, 2, 3, 4)  and 𝐼𝐼𝑖𝑖T(𝑡𝑡)  (𝑖𝑖 = 1, 2, 3, 4) . Based on the temporal and 

spectral profiles of the pure fluorophores in Fig. 4.6a, the optimal number of clusters to model 

the data was set to be two and three for temporal and spectral unmixing, respectively. Similar 

to the experiments conducted on mouse kidney tissue sections and lung cancer pathology 

slides, we computed the probability estimate of pixels belonging to a particular cluster as 

𝑝𝑝𝑖𝑖Λ (𝑖𝑖 = 𝑎𝑎, 𝑏𝑏) and 𝑝𝑝𝑖𝑖T (𝑖𝑖 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐), such that ∑ 𝑝𝑝𝑖𝑖Λ𝑖𝑖 = 1 and ∑ 𝑝𝑝𝑖𝑖T𝑖𝑖 = 1, where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are indices 

of classified clusters. Note that the following assumptions are made regarding probability 

estimates for clusters: 𝑝𝑝𝑎𝑎Λ for smad3, 𝑝𝑝𝑏𝑏Λ for sma, collagen and p16, 𝑝𝑝𝑎𝑎T for sma, 𝑝𝑝𝑏𝑏T for collagen 

and smad3, and 𝑝𝑝𝑐𝑐T for p16. By combining the probability estimate with Eq. 18, we can obtain:  

 

𝑝𝑝𝑎𝑎Λ =  𝑓𝑓3  

𝑝𝑝𝑏𝑏Λ =  𝑓𝑓1 + 𝑓𝑓2 +  𝑓𝑓4 



105 
 

𝑝𝑝𝑎𝑎T =  𝑓𝑓1  

 

(19) 

𝑝𝑝𝑏𝑏T =  𝑓𝑓2 + 𝑓𝑓3 

𝑝𝑝𝑐𝑐𝑇𝑇 =  𝑓𝑓4. 

 

Using this equation, we can calculate the amplitude fractions of the components in the 

mixture.  

4.4.9 SPAD histograms post-processing 

Processing the raw histograms from SPAD involves three steps: background subtraction, delay 

correction, and nonlinear correction (Fig. 4.10a). First, in the background subtraction step, we 

collected the background signal under the same condition as experiments, which results from 

the dark count of the SPAD camera and stray light from the environment. The resulting 

background histogram was then subtracted from the raw histogram. Figure 4.10b shows the 

histograms after subtraction at two representative pixel locations, indicating that the zero 

references of histograms of the pixels are not aligned due to the delays in the FPGA from the 

input to the delay line not being matched [185]. Delay calibration was then performed to 

correct for the misalignment of histograms. In the delay calibration step, to measure the zero-

reference bins of each pixel, we shined a picosecond laser beam onto the pixels and registered 

the start of the event at each pixel as the zero-reference bin location. Figure 4.10c presents the 

histograms at the pixels in Fig. 4.10b, indicating the zero reference at the maximum bins. The 

aligned histograms are shown in Fig. 4.10d after shifting by the zero reference bin values. 

After the delay correction, a nonlinear correction was conducted to smooth the non-linearities 

inherent in the delay chains [186]. Using non-time-correlated uniform illumination to the 

linear SPAD array, we collected a sufficient amount of histograms (~100) and processed the 
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resultant averaged histogram using histogram equalization to create a uniform histogram 

[186]. A correction matrix was computed and stored for each pixel during the histogram 

equalization. Multiplying the correction matrix with raw histograms yields smoothed 

histograms. Figure 4.10e shows the raw histogram and smoothed histogram for a 2.5 ns period 

under uniform illumination, and Fig. 4.10f shows the smoothed histogram after multiplication 

with the correction matrix.  

4.4.10 Ground truth lung organoid imaging using a confocal fluorescence microscope 

To show the ground truth locations of individual biomarkers in our lung organoid experiment, 

we cultured another four sets of lung organoids under the same condition and labeled them 

with individual fluorophores. We then imaged the organoids using a standard confocal 

fluorescence microscope (Zeiss LSM 880 Confocal). Figure 4.11 presents the color-coded 

images, which display a similar appearance to our LIFT-sFLIM results.  

4.4.11 Sample preparation 

Mixed fluorescent beads 

To create a mixed fluorescent bead sample, we embedded three types of fluorescent beads 

(F8858, C16509, F8831, Thermo Fisher) into agarose gels. First, we diluted the bead 

suspensions and sonicated them. Then, we pipetted 10uL of the 4um bead suspension 

(∼5.7×107 beads/mL), 10μL of the 6μm bead suspension (∼1.7×107 beads/mL), and 10uL of 

the 10μm bead suspension (∼3.6×106 beads/mL) into 10 mL of PBS (10010023, Thermo 

Fisher) for each type of bead. We mixed 100 µL of the diluted 4 µm bead solution, 100 µL of 

the diluted 6 µm bead solution, and 100 µL of the diluted 10 µm bead solution to create the 

final mixed beads solution, which contained approximately 1.9×104 4 µm beads/mL, 5.6×103 6 

µm beads/mL, and 1.2×103 10 µm beads/mL.  
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We prepared the agarose gel by making a 1% [weight/volume] solution of low melting point 

agarose (A6013, Sigma-Aldrich) in PBS, heating it until it completely dissolved, and cooling it 

down to approximately 40°C. We added 2.5 µL of the mixed beads solution to 400 µL of the 

agarose solution. After sonication, we added a 50 µL drop of the mixture onto a glass bottom 

dish (P35G-1.5-14-C, Mattek) and allowed it to solidify for a few minutes. Finally, we imaged 

the ~1 mm thick gel, which contained immobilized fluorescent beads, using the methods 

described in the main text.  

Distal lung organoid preparation 
We used a hydrostatic droplet generator to fabricate alginate microbead scaffolds with an 

average diameter of 100 µm, which mimics the size of pulmonary alveoli. After generating the 

microbeads, we coated them with collagen I (354249, Corning) and dopamine (H8502, Sigma) 

in a two-step process to functionalize them for cell culture. The detailed protocol for alginate 

bead generation and functionalization can be found in [57].  

Human primary adult normal lung fibroblasts were isolated from distal lung tissue from a de-

identified healthy donor (65-year-old, male, Caucasian, non-smoker, non-alcoholic) procured 

from the International Institute for the Advancement of Medicine (IIAM). Human lung tissue 

was procured under the UCLA-approved IRB protocol #16-000742. The fibroblast (crawled 

out population) and epithelial (MACS sorted EpCAM+ population) were isolated from the 

distal tissue and used in this study.  

To develop the 3D model, we used a high aspect ratio vessel (HARV) bioreactor vessel 

(model: RCCS-4H; Synthecon, Houston, Texas) of 2 mL volume and added 0.5 mL of 

functionalized microbeads and 1.5 mL of media containing a total of 1 million cells 

(epithelial:fibroblast=1:1). The vessel was screwed into the bioreactor base and rotated for 48h 
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to allow optimum cell-bead adherence. After 48h, the cell-coated bead solution was aliquoted 

100µL per well in a glass-bottom 96-well plate (P96-1.5H-N, Cellvis) and the plate was 

briefly centrifuged (1000g X 2 min) to settle the cells/ beads at the bottom of the plate. An 

additional 150µL media was added to each well. The plate was then kept inside an incubator 

(37°C,5%CO2,95%RH) and monitored for the formation of self-organized 3D structures. 

Within the next 72h, the fully-formed 3D co-culture organoids with micro-alveolar structures 

were observed in each well.  

 

 

 
Fig.4.10 SPAD histogram post-processing. a. SPAD data post-processing pipeline. b. Histograms after 
subtraction at two representative pixel locations. c. Histograms of the pixels when measuring the same laser 
pulse. d. Aligned histograms after shifting b by the zero reference bin values. e. Raw histogram and smoothed 
histogram for a 2.5 ns period under uniform illumination. f. Smoothed histograms after multiplication with the 
correction matrix. SPAD: single-photon avalanche diode.  
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Fig.4.11. Ground-truth imaging of individually labeled lung organoids using a confocal fluorescence microscope. 
Scale bars in all figures: 100µm. 
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