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School of Informatics, University of Edinburgh
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Abstract

Learning categories from examples is a fundamental problem
faced by the human cognitive system, and a long-standing
topic of investigation in psychology. In this work we focus
on the acquisition of natural language categories and exam-
ine how the statistics of the linguistic environment influence
category formation. We present two incremental models of
category acquisition — one probabilistic, one graph-based —
which encode different assumptions about how concepts are
represented (i.e., as a set of topics or nodes in a graph). Eval-
uation against gold-standard clusters and human performance
in a category acquisition task suggests that the graph-based ap-
proach is better suited at modeling the acquisition of natural
language categories.

Introduction

The task of categorization, in which people cluster stimuli
into categories and then use those categories to make in-
ferences about novel stimuli, has long been a core problem
within cognitive science. Understanding the mechanisms in-
volved in categorization is essential, as the ability to gener-
alize from experience underlies a variety of common mental
tasks, including perception, learning, and the use of language.
As a result, category learning has been one of the most ex-
tensively studied aspects in human cognition, with compu-
tational models that range from strict profotypes (categories
are represented by a single idealized member which embod-
ies their core properties; e.g., Reed 1972) to full exemplar
models (categories are represented by a list of previously en-
countered members; e.g., Nosofsky 1988) or combinations of
the two (e.g., Griffiths et al. 2007a).

Historically, the stimuli involved in such studies tend to be
either concrete objects with an unbounded number of features
(e.g., physical objects; Bornstein and Mash 2010) or highly
abstract, with a small number of manually specified features
(e.g, binary strings, colored shapes; Medin and Schaffer 1978,
Kruschke 1993). Furthermore, most existing models focus on
adult categorization, i.e., it is assumed that a large number of
categories have already been learned. A notable exception is
Anderson’s (1991) rational model of categorization (see also
Griffiths et al. 2007a) where it is assumed that the learner
starts without any predefined categories and stimuli are clus-
tered into groups as they come along. When a new stimulus is
observed, it can either be assigned to one of the pre-existing
clusters, or to a new cluster of its own.
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In this work, we concentrate on the task of acquiring nat-
ural language (semantic) categories and examine how the
statistics of the linguistic environment as approximated by
large corpora influences category learning. Evidently, cate-
gories are learned not only from exposure to the linguistic
environment but also from our interaction with the physical
world. Perhaps unsurprisingly, words that refer to concrete
entities and actions are among the first words being learned
as these are directly observable in the environment (Bornstein
et al. 2004). Experimental evidence also shows that children
respond to categories on the basis of visual features, e.g., they
generalize object names to new objects often on the basis
of similarity in shape and texture (Landau et al. 1998, Jones
et al. 1991). Nevertheless, we focus on the acquisition of se-
mantic categories from large text corpora based on the hy-
pothesis that simple co-occurrence statistics can be used to
capture word meaning quantitatively. The corpus-based ap-
proach is attractive for modeling the development of linguis-
tic categories. If simple distributional information really does
form the basis of a word’s cognitive representation, this im-
plies that learners are sensitive to the structure of the envi-
ronment during language development. As experience with a
word accumulates, more information about its contexts of use
becomes encoded, with a corresponding increase in the abil-
ity of the language learner to use the word appropriately and
make inferences about novel words of the same category.

The process of learning semantic categories is necessar-
ily incremental. Human language acquisition is bounded by
memory and procecessing limitations, and it is implausible
that children process large amounts of linguistic input at
once and induce an optimal set of categories. An incremental
model learns as it is applied, meaning it does not require sep-
arate training and testing phases. Behavioral evidence (Born-
stein and Mash 2010) suggests that this scenario more closely
mirrors the process by which infants acquire categories. Hav-
ing this in mind, we formulate two incremental categorization
models, each differing in the way they represent categories.
Both models follow the exemplar tradition — categories are
denoted by a list of stored exemplars and inclusion of an un-
known item in a category is determined by some notion of
similarity between the item and the category exemplars. Pre-
vious work (Voorspoels et al. 2008, Storms et al. 2000, Foun-
tain and Lapata 2010) indicates that exemplar models perform
consistently better across a broad range of natural language



Algorithm 1: Batch Chinese Whispers
initialize;
for node; € Nodes do
| class (node) =1i;

end

while changes do
for node € Nodes (in random order) do

‘ class (target) = class (nearest neighbor)

end

end

Algorithm 2: Incremental Chinese Whispers

initialize;
for node; € Nodes do
‘ class (node) =1

end

for target,context € Documents do
update target representation given context;
class (target) = nearest neighbor

end

categorization tasks. This finding is also in line with stud-
ies involving artificial stimuli (e.g., Nosofsky 1988). While
these studies focus on natural language categories they tend
not to specifically address the task of language acquisition;
Storms et al. (2000) compare various categorization models
in a natural language context, Voorspoels et al. (2008) model
typicality ratings for natural language concepts, and Fountain
and Lapata (2010) explore a number of corpus-based repre-
sentations for linguistic exemplars.

Our first model is reminiscent of semantic networks
(Collins and Loftus 1975). In this framework, concepts are
represented as nodes in a graph and edges represent relation-
ships between such concepts. Although semantic networks
are traditionally hand-coded by modelers, we learn them from
naturally occurring data. In our model, nodes in the graph
correspond to words and weighted edges indicate distribu-
tional similarity rather than semantic or syntactic relation-
ships. Categories arise naturally in such a representation as
densely connected regions or subgraphs. While most research
on semantic networks focuses on their use within a larger
model of spreading activation (Anderson 1983), they have
also been used to gain insight into performance deficits in
patients with psychological impairments (Tyler et al. 2000)
and to draw comparisons between internet search and mem-
ory access (Griffiths et al. 2007b). Our second model follows
a probabilistic approach where categories correspond to top-
ics in a generative model (Griffiths et al. 2007c). Topics them-
selves are modeled as probability distributions over words,
and can be thought of as a “soft” list of exemplars belong-
ing to that category. In order to obtain a hard clustering of
words into categories we need only compute the most likely
category for each word. Topic models have been successful
at modeling a wide range of cognitive phenomenal includ-
ing lexical priming, word association, synonym selection, and
reading times (see Griffiths et al. 2007¢).
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Category Acquisition Models

Any model of human category acquisition should demon-
strate two important features: (1) the input should be pro-
cessed as it arrives, i.e., the set of clusters is incrementally
updated and (2) the set of clusters should not be fixed in ad-
vance, but rather determined by the characteristics of the in-
put data. In what follows, we present two models that satisfy
both constraints.

Semantic Networks The standard conception of a seman-
tic network is a graph with edges between word nodes. Such
a graph is unipartite: there is only one type of node, and those
nodes can be interconnected freely. While traditional research
using semantic networks has focused on performing inference
using fully-formed networks, we are argue that they are also
well suited to modeling acquisition, as updating the graph to
reflect newly acquired information is a straightforward pro-
cedure. Furthermore, meaningful categories can be extracted
from such a representation by identifying well-structured sub-
graphs within the network.

The task of extracting such subgraphs is generally viewed
as a graph clustering problem; Chinese Whispers (CW, Bie-
mann 2006) is one such randomized graph-clustering algo-
rithm that takes as input a graph with weighted edges and
produces a hard clustering over the nodes in the graph. It has
several desirable properties, including a tendency to converge
rapidly and the ability to infer the number of output clusters.
The CW algorithm consists of two steps: initialization and it-
eration. In the initialization step, each node in the graph is
assigned a unique class. In the iterative step, each node in the
graph (in random order) adopts the highest ranked class in
its neighborhood (i.e., the set of nodes with which it shares
an edge). Algorithm 1 shows this procedure in pseudocode.
CW is in general not guaranteed to converge; in particular, a
node with two equally-distant nearest neighbors may flip be-
tween the classes of those neighbors indefinitely. In practice,
however, it tends to reach ‘almost-convergence’ quite rapidly.

Vanilla CW requires that the entire graph be known be-
fore it can be applied, and thus makes no provision for graphs
which change over time, as would be expected in an acquisi-
tion task. Modifying the algorithm for use in an incremental
setting is straightforward: we need only to update the edges
of the graph with newly-encountered input before each itera-
tion and to run the algorithm until there is no more input to
process rather than until convergence (see Algorithm 2).

While applying the incremental CW algorithm to the task
of acquiring semantic categories from text, we maintain a
weighted, undirected graph in which each node represents a
target word and edges between nodes are weighted according
to the similarity between words. To compute this similarity,
the implementation maintains a running co-occurrence ma-
trix in which each row corresponds to a target word and each
column to a possible context word. Similarity between words
is computed as the cosine distance between the correspond-
ing rows. Matrix cells are transformed into (positive) point-
wise mutual information values (Bullinaria and Levy 2007).
Our experiments used a context window centered around a
target word, however non-symmetric contexts are also possi-
ble; target representations are updated according to the con-
text words appearing in the window.
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Figure 1: The Latent Dirichlet Allocation model (Griffiths
et al. 2007c). d is the distribution of topics within a single
document; z is the distribution over observable words w for a
topic. « and /3 function as smoothing parameters for d and w,
respectively.

d

Figure 2: A nonparametric topic model which infers the num-
ber of topics during training. v indicates the amount of prob-
ability mass reserved for unseen categories (analogous to An-
derson’s (1990) coupling probability.

Topic Models A great deal of work in recent years has fo-
cused on the idea of topic models, in which the meaning of
a particular document or word is encapsulated by the latent
topics it contains or from which it is generated. Conceptually
such models seem appropriate for categorization tasks, as the
notions of “topic” and “category” have much in common.

One particular topic model which has seen wide success is
Latent Dirichlet Allocation (LDA, Blei et al. 2003, Griffiths
et al. 2007c), which provides a probabilistic model of docu-
ment generation. In LDA, a document is modeled as a proba-
bility distribution over a set of latent topics; similarly, a topic
is modeled as a distribution over words. The actual words
composing a document are supposed to have been generated
by a process of repeatedly sampling first a topic from the doc-
ument distribution, then a single word from the selected topic.
LDA (and generally topic models) can be viewed as a form of
a bipartite graph consisting of two types of nodes, i.e., words
and topics and connections between them.

One drawback to LDA is that it requires the number of top-
ics to be known in advance. As this assumption clearly does
not hold in the case of category acquisition, we developed a
nonparametric, incremental topic model which is similar in
spirit to LDA. This model maintains the generative assump-
tions of LDA, and much of the same graphical structure; it
differs in the addition of a coupling probability (Anderson
1990) used to infer the number of categories during training.
Additionally, it performs no final re-estimation of probabili-
ties (as in standard LDA) in order to maintain incrementality.

In terms of graphical structure our topic model differs from
standard LDA (Figure 1) by the addition of a third param-
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eter, vy, on the topic distribution. The ~ parameter indicates
the proportion of probability mass to reserve for a new, previ-
ously unseen topic; as additional topics are created the proba-
bility of assigning a word to a new topic decreases in relation
to v, «, and (3 act as invisible counts for each topic in a docu-
ment and each word in a topic, respectively. Combining these
parameters with the graphical model in Figure 2 yields the
following probabilistic model:

Plulz) = sl

P(z|ld) = (25(n3+(§iTV3?;3|)W(1‘f)v()l):r?l+|W\ﬁ)v
P('|d) = @5(,,;yz+a+|%Lgivll—ﬁi%ﬂaﬂww)v
P(d) _ S )

Z+2z'

=2 > (05 +a)

Y

where w, z and d represent a word, topic (category), or docu-
ment, respectively. 2’ represents a previously unseen topic; a
word w assigned to 2’ is instead assigned to a newly created
category initialized to a uniform distribution. The notation 77,
signifies the number of times word w has appeared in topic
z, while ¢ similarly indicates the count of occurrences of z
within document d.

To maintain incrementality, the model performs no re-
estimation of probabilities; instead, as each item w of input
is encountered it is assigned to a sampled topic z. The rel-
evant document and topic distributions are then updated in
accordance with the sampled topic. While these individual
predictions are not revised (as in LDA) by subsequent re-
samplings, predicted topics for subsequent encounters of w
change based on the distribution of words and topics; the
equations for P(w|z) and P(z|d) are thus analogous to those
used during Gibbs sampling in LDA. With additional docu-
ments these distributions converge to (hopefully) meaningful
topics.

Experiment 1

Our first goal was to compare our two categorization mod-
els and establish their performance on a large corpus. To do
this, we trained both on the British National Corpus (BNC)
and compared each model’s resulting clustering against a
human-produced gold standard. In the following we describe
how this gold standard was created, discuss how the model
parameters were estimated, and explain how the model out-
put was evaluated.

Method In order to train our models, the BNC was pre-
processed so as to remove stopwords and highly infrequent
words. Target words corresponded to frequently-used nouns,
however this is not a limitation of our models which could
be also applied to verbs or adjectives. The topic model has
three free parameters, i.e., « (the prior observation count for
the number of times a topic is sampled in a document), 3
(the prior observation count on the number of times words are



REPTILE
salamander, iguana, frog, alligator, rattlesnake, tortoise,
crocodile, turtle, toad
FURNITURE

chair, stool, rocker, sofa, cabinet, desk, bookcase, mir-
ror, shelves, bed, drapes, clock, table, bathtub, bureau,
cupboard, dresser, fence, cushion, bench, bayonet, ar-
mour

FRUIT
peach, yam, nectarine, banana, cantaloupe, apple,
plum, raspberry, pear, grape, blueberry, raisin, pineap-
ple, prune, rhubarb, strawberry, lemon, honeydew, or-
ange, tomato, lime, cherry, coconut, olive, grapefruit,
tangerine, avocado, pumpkin, cranberry, mandarin

Table 1: Example gold standard categories with their exem-
plars from Fountain and Lapata (2010).

sampled from a topic), and ~y (the probability mass reserved
for new topics). For a and 3 we chose values in accordance
with the literature on LDA (Teh et al. 2006); these param-
eters were set to 1.2 and 0.1, respectively. The « parameter
was tuned on a development corpus (10% of the BNC), with
the final value of 0.10. Because of this tuning procedure, all
scores reported are from application on the remaining 90% of
the BNC not used for development.

Note that the output of the topic model is a set of proba-
bility distributions rather than a hard clustering over words.
We can nevertheless coerce the model to produce such a clus-
tering by assigning each word to the category (topic) which
maximizes its likelihood:

category(w) = argmaxP(z|w) (D)

The incremental CW model was trained on noun-centered
context windows of £5, which were extracted from the BNC.
As the output of CW is a hard clustering over nodes in the
graph, no additional post-processing is required. One obvi-
ous question that arises in the context of this experiment is
whether using a richer contextual representation yields more
accurate categories; we examined this hypothesis by apply-
ing the incremental CW algorithm to a dependency-parsed
version of the BNC.! Specifically, we obtained dependency
information from the output of MINIPAR, a broad coverage
parser (Lin 2001). To minimize noise, this output was re-
stricted to a small set of lexicalized dependency relations:
subject, object, and conjunction.

Both models were evaluated based on their clustering of
words into semantic categories and their output was com-
pared against similar clusters elicited from human partici-
pants. In particular, we used the data from Fountain and Lap-
ata’s (2010) category naming study as a gold standard.> The
aim of their experiment was to augument McRae et al.’s
(2005) semantic feature norms with category information.
These norms consist of 541 basic-level concepts (e.g., DOG

"Incorporating syntactic information into an incremental topic
model is less straightforward, although extensions of the basic LDA
model have been proposed that take syntax into account (e.g., Boyd-
Graber and Blei 2009).

2Available from http://bit.ly/categorization.
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Figure 3: Performance of the topic model and Chinese Whis-
pers using dependencies and a bag of words context window.

and CHAIR) with features collected in multiple studies over
several years. Fountain and Lapata obtained category labels
for 517 of these concepts. They presented participants with
a number of nouns chosen at random from McRae et al.’s
norms, and asked them to name the category to which each
noun belonged. Participants responded in freeform strings,
i.e., they were not provided with a list of possible categories.
After adjusting for differences in spelling and conflating syn-
onyms, these responses were used to determine the most “cor-
rect” category label for each of the 517 nouns.

Because the norms were originally drawn from a limited
number of concepts many of the nouns were labeled with the
same category label; we were exploited this overlap in order
to construct a clustering over McRae et al.’s norms in which
each cluster corresponds to a subset of nouns assigned the
same category label in Fountain and Lapata (2010). Overall,
we obtained 32 categories averaging approximately 16 nouns
apiece. Examples of the clusters used in our experiments are
shown in Table 1.

Each model produced a clustering over the nouns taken
from the McRae et al. norms which we compared against the
human-produced gold standard clustering described above; to
evaluate cluster quality we computed the F-score measure de-
scribed in Agirre and Soroa (2007). Under their evaluation
scheme, the gold standard is partitioned into a test and train-
ing corpus. The latter is used to derive a mapping of the in-
duced clusters to the gold standard labels. This mapping is
then used to calculate the system’s F-score on the test corpus.
We calculated F-score as the harmonic mean of precision and
recall defined as the number of correct members of a cluster
divided by the number of items in the cluster and the number
of items in the gold-standard class, respectively.

Results CW and the topic model produced clusters for 517
nouns. As both models are non-parametric, they induce the
number of clusters (i.e., categories) from the data as well as
which nouns belong to these clusters. The topic model parti-
tioned the target nouns into 167 clusters and CW into 35.
Compared to the gold-standard clustering, the topic model
achieved an F-score of 0.179; CW obtained an F-score
of 0.212 when using a bag of words context window. The



The fendle is the very dense region consisting of nucleons
(daxs and tomas) at the center of a gazzer. Almost all of
the mass in a gazzer is made up from the daxs and tomas in
the fendle, with a very small contribution from the orbiting
wugs. The diameter of the fendle is in the range of 1.5fm
(1.75x10-15m) for tulver to about 15fm for the heaviest
gazzers such as tupa.

wug

Figure 4: The incremental categorization task as seen by par-
ticipants. Each trial consisted of a series of paragraphs from
the same source document; the words to be clustered (shown
in boldface) remained constant, with participants asked to up-
date their clustering after each trial.

model’s performance improved to an F-score of 0.371 when
dependency relations were used. To put these numbers into
perspective, we also implemented a baseline algorithm that
groups nouns into clusters randomly, which achieved an in-
ferior F-Score of 0.135. Overall, our results indicate that
more fine-grained linguistic information beyond simple co-
occurrence is beneficial for categorization. Figure 3 shows
how performance on the category acquisition task varies over
time (i.e., over the course of encountering all documents in
the training set). As can be seen, the quality of clusters pro-
duced by CW increases with additional data, i.e., the algo-
rithm’s performance improves with more iterations.

Experiment 2

While the previous experiment explored how effectively the
two models capture large-scale category information it did
not assess the effect of incrementality. The difficulty in per-
forming such an evaluation is that it requires a snapshot of
category structure throughout the process of category acqui-
sition. Getting such snapshots from children would be ideal,
however a longitudinal study of category acquisition would
be a major undertaking spanning several years. Getting such
snapshots from adults is also problematic, as they clearly pos-
sess a great deal of world knowledge about the target words
used in a hypothetical experiment. To rectify this, we con-
ducted a study in which participants were given a series of
paragraphs containing nonsense words and asked, after hav-
ing read each paragraph, to group the nonsense words into
categories. The hope was that the results from such a study
would illuminate the kinds of interim categories the mind
might construct when presented with minimal information
about a set of novel stimuli.

Method Thirteen source documents were compiled from
Wikipedia articles on various technical domains, including
medicine, physics, biology, and mixology®. Each document

3Molecular Mixology is the term applied to the process of creat-
ing cocktails using the scientific equipment and techniques of molec-
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consisted of 3-5 paragraphs, each containing between 4—6
sentences in which a small number of re-occurring content
words were replaced with nonce words (nine on average per
document). The study was completed by 250 participants,
mostly undergraduates.

One serious concern in conducting a study like this is en-
suring that participants do not actually perform a separate, but
related task, instead determining the mapping between non-
sense words and their meaningful equivalents. We mitigated
this problem by extracting the text from highly technical doc-
uments, the subject matter of which would almost certainly
be unfamiliar to participants and thus limiting the amount of
world knowledge they could bring to bear. Also of concern
was avoiding priming subjects with the number of categories;
to avoid such influence, participants were asked to group tar-
get words into clusters by dragging items together on a virtual
canvas, rather than by assigning labels or placing items into
pre-specified bins. A snapshot of the experimental interface
our participants saw is given in Figure 4.

The topic model and CW were trained on the same set of
paragraphs, and the interim clustering produced after process-
ing each document saved in order to investigate how well the
models captured the interim categories formed during incre-
mental learning. Note that both models were trained from a
blank state, reflecting a lack of pre-existing world knowledge.
Again, we used a bag-of-words representation for CW as the
prevalence of nonsense words in the data resulted in many
parsing mistakes. Following on Experiment 1, we then ap-
plied the topic model and CW to the same set of paragraphs
and evaluated the resulting categories against those produced
by participants, again using F-score (Agirre and Soroa 2007).

Results Firstly, we assessed how well our participants
agreed on the category acquisition task.* We computed the
F-score of a single participant’s clustering for each trial as
the average F-score between it and each of the other partici-
pants’ clusterings for that trial; and then calculated the mean
reliability as the average F-score of all trials for all partic-
ipants. On the category acquisition experiment, participants
achieved a mean reliability of 0.694. CW achieved a compa-
rable F-score of 0.656, followed by the topic model with an
F-score of 0.634. These F-scores were computed by a pro-
cedure similar to the human reliability described above. The
model was treated as a single participant and the F-score for
each stage was computed as the average F-score between the
model’s clustering in that stage and each participant’s clus-
tering, with the individual stage scores averaged to produce
the final score. Figure 5 shows the F-scores achieved by the
two models for each trial against the human upper bound.
It is interesting to note that both models are close to human
performance, with Chinese Whispers having mostly the lead
over the topic model. Counterintuitively, performance of both
models and human participants declines over time; this is pri-
marily an effect of increasing disagreement between partici-
pants when exposed to additional observations.

ular gastronomy.

“Subject data for Experiment 3 is available from http: //bit .
ly/categorization.
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Figure 5: Model performance and human upperbound after
each trial.

General Discussion

At first glance the scores on the large-scale task (Experi-
ment 1) for both models appear quite low. Our aim in this
first experiment, however, was merely to establish a com-
parison between the two approaches on a clustering task.
This is challenging considering that the models are expected
to assign 500+ words into an unspecified number of well-
defined semantic categories from word co-occurrence infor-
mation alone. Humans acquire semantic categories from a
richer environment based on their sensorimotor experiences
in addition to linguistic input.

Regardless, a strict comparison of results shows that CW
outperformed the topic model on this large-scale category
experiment. Manual inspection of the clusters output by the
topic model suggests an explanation: the learned topics, while
clearly capturing some notion of semantic relatedness be-
tween words, rarely correspond to the desired semantic cat-
egories. Instead they cut across categories, collating words
that share a theme or context rather than words belonging to
a common category. The clusters output by CW, conversely,
capture more of the semantic category information but tend
to do so at a higher level (e.g. conflating FRUIT, VEGETABLE,
and FOOD into a single meta-category).

This is particularly interesting in light of the differences be-
tween the two models; CW is a simpler model, both in terms
of the way it represents and forms categories. Recall that the
algorithm creates a unipartite graph with one type of nodes
(i.e., words) which can be interconnected freely. In the topic
model, semantic information is organized in a bipartite graph
consisting of words, topics, and their interconnections. This
more structured representation does not seem appropriate for
the category acquisition task. In particular, the notion of topic
as it is used in the context of the topic model is not equivalent
to that of a semantic category. The relative success of CW,
combined with its simplicity and plausibility, suggests that
such comparatively simple models can often provide a bet-
ter approach for modeling low-level cognitive tasks, such as
predicting category-specific deficits in patients with cognitive
impairments (Tyler et al. 2000).

The results of the second experiment show that CW (and
the topic model to a lesser extent) produce categories incre-
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mentally that are both meaningful and cognitively plausible.
Interestingly, in this experiment the upper bound (i.e., inter-
annotator agreement) is high despite the seeming difficulty of
the task. This suggests that people are quite consistent in the
types of categories they form even when those categories are
based on only one or two pieces of information, and enforces
the idea that, in the absence of real-world knowledge, peo-
ple learn categories in an incremental fashion (Lamberts and
Shapiro 2002).°

An important direction for future work is to model the hi-
erarchical structure of categories. Inspection of the clusters
produced in Experiment 2 reveals that participants tend to or-
ganize words into hierarchies rather than flat categories.
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