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This paper addresses the viscous flow developing about an array of equally spaced9

identical circular cylinders aligned with an incompressible fluid stream whose velocity10

oscillates periodically in time. The focus of the analysis is on harmonically oscillating11

flows with stroke lengths that are comparable to or smaller than the cylinder radius,12

such that the flow remains two-dimensional, time periodic, and symmetric with respect13

to the centerline. Specific consideration is given to the limit of asymptotically small14

stroke lengths, in which the flow is harmonic at leading order, with the first-order15

corrections exhibiting a steady-streaming component, which is computed here along16

with the accompanying Stokes drift. As in the familiar case of oscillating flow over17

a single cylinder, for small stroke lengths the associated time-averaged Lagrangian18

velocity field, given by the sum of the steady-streaming and Stokes-drift components,19

displays recirculating vortices, which are quantified for different values of the two relevant20

controlling parameters, namely, the Womersley number and the ratio of the inter-cylinder21

distance to the cylinder radius. Comparisons with results of direct numerical simulations22

indicate that the description of the Lagrangian mean flow for infinitesimally small23

values of the stroke length remains reasonably accurate even when the stroke length is24

comparable to the cylinder radius. The numerical integrations are also used to quantify25

the streamwise flow rate induced by the presence of the cylinder array in cases where the26

periodic surrounding motion is driven by an anharmonic pressure gradient, a problem27

of interest in connection with the oscillating flow of cerebrospinal fluid around the nerve28

roots located along the spinal canal.29

Key words:30

1. Introduction31

The interaction of an oscillating stream with velocity U∞ cos(ωt′) with a fixed solid32

body is known to result in a time-averaged steady-streaming motion (Riley 2001). The33

solution that appears depends on the velocity amplitude U∞, the typical size of the object34

a, the oscillation frequency ω, and the kinematic viscosity of the fluid ν, which can be35

used to define two controlling parameters, namely, a dimensionless stroke length36

ε =
U∞/ω

a
(1.1)

† Email address for correspondence: als@ucsd.edu
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and a Womersley number37

M =

(

a2ω

ν

)1/2

, (1.2)

related to the Reynolds number according to Re = U∞a/ν = εM2. For small values of38

ε the problem is amenable to a theoretical description, wherein the velocity components39

are expressed as an asymptotic expansion involving powers of ε. The leading-order40

terms, satisfying convection-free linear equations, are harmonic functions with zero41

time-averaged values, while the first-order corrections have a non-zero steady-streaming42

component (Riley 2001). The resulting motion involves fundamentally two different time43

scales, a short time scale ω−1, associated with the fast oscillations of small amplitude εa44

occurring at leading order, and a slow-drift long-time scale a/(εU∞) = ε−2ω−1, required45

for the steady-streaming velocity, of order ∼ εU∞, to produce displacements of order a.46

For the canonical case of two-dimensional flow over a circular cylinder of radius a,47

an analytical description of the Eulerian velocity for ε ≪ 1 was found by Holtsmark48

et al. (1954), with expressions given for the leading-order harmonic velocity and for the49

first-order velocity corrections (errors in the latter were subsequently corrected by Chong50

et al. (2013)). In the distinguished regime M ∼ 1 considered by Holtsmark et al. (1954),51

the magnitude of the resulting steady-streaming velocity is comparable to that of the52

so-called Stokes drift, as demonstrated by Raney et al. (1954), so that the description53

of the drift experienced by the fluid particles requires consideration of both effects.54

Owing to the symmetry of the problem, the resulting Lagrangian mean motion displays55

identical recirculatory patterns in all four quadrants. For M below a critical value, a56

single vortex appears in each quadrant, with the motion directed towards the cylinder57

along the oscillation axis. A second vortex, external to the original vortex, appears for58

sufficiently large values of M , an interesting feature of the analytical solution verified59

by accompanying experiments (Holtsmark et al. 1954). This outer vortex increases in60

strength as M increases, while the inner vortex shrinks in size, such that for M ≫ 1 the61

latter is confined to a thin near-surface Stokes layer. The theoretical description of the62

flow arising for ε ≪ 1 and M ≫ 1 uses the distinguished limit of order-unity streaming63

Reynolds numbers Res = ε2M2 ∼ 1 (Stuart 1963, 1966; Riley 1965, 1967). The steady-64

streaming flow is seen to be determined in that case from the full equations of motion for65

steady viscous flow at Reynolds number Res, with limiting solutions arising for Res ≪ 166

and Res ≫ 1 (Riley 1967).67

While the oscillating flow for ε ≪ 1 remains periodic and symmetric about the68

oscillation axis, the solution encountered when ε takes values that are not sufficiently69

small is known to be more complicated. The periodic viscous flow becomes unstable70

to axially periodic vortices above a critical value of ε that depends on M (Hall 1984),71

leading to an asymmetrical flow with vortex shedding †. This symmetry breaking is72

apparent in the experiments of Tatsuno & Bearman (1990). The emerging flow exhibits73

a three-dimensional structure (Honji 1981), with turbulent motion arising as the Reynolds74

number Re = εM2 exceeds a critical value (Tatsuno & Bearman 1990).75

Although the circular cylinder has attracted considerable attention, analyses of os-76

cillating flows involving obstacles of differing shape are also available, including non-77

circular cylinders (Bearman et al. 1985), spheres (Lane 1955; Riley 1966), cylindrical78

posts confined between parallel walls (Rallabandi et al. 2015), three-dimensional multi-79

† Note that most of the literature investigating velocity amplitudes that are not small use the
oscillation period 2π/ω and the cylinder diameter 2a as characteristic scales of time and length,
so that the Keulen-Carpenter number KC = U∞(2π/ω)/(2a) = πε and the Stokes number
β = (2a)2/(ν2π/ω) = (2/π)M2 replace ε and M in the parametric description of the solution.
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Figure 1. Schematic illustration of the cylinder array for ℓ = L/a = 2, including the
streamlines corresponding to the potential-flow solution.

curvature bodies (Chan et al. 2022; Bhosale et al. 2022), cylinder pairs with either80

equal (Williamson 1985; Coenen & Riley 2008; Coenen 2016; Chong et al. 2016) or81

unequal radii (Coenen 2013), and three-cylinder arrays in different arrangements (Chong82

et al. 2016). Multiple circular cylinders arranged in periodic, regular lattices have also83

been investigated, including square arrays of identical cylinders (House et al. 2014) and84

square arrays involving cylinders with two different radii (Bhosale et al. 2020). A linear85

array of equally spaced identical circular cylinders performing harmonic oscillations in the86

transverse direction in a fluid that is otherwise at rest was considered in the numerical and87

experimental work of Yan et al. (1993, 1994). The resulting steady streaming, identical88

to that found when a fixed cylinder array is placed perpendicular to a harmonically89

oscillating stream, was evaluated in the limit ε≪ 1 with Res ∼ 1.90

To the best of our knowledge, situations in which the obstacle array is aligned with91

the oscillating stream have not yet been considered. As a first step to elucidate the92

associated dynamics, the present study considers the canonical configuration schemat-93

ically represented in figure 1, involving a row of uniformly spaced circular cylinders94

aligned with the oscillating stream. This flow configuration can be seen as a variant95

of the problem considered by Yan et al. (1993, 1994), in which the cylinder array was96

oscillating perpendicular to the array axis. Attention is directed to configurations with97

Womersley numbers M >
∼ 1 and values of the stroke length that are either ε ≪ 1 or98

ε ∼ 1. This parametric range corresponds to a regime of moderate Reynolds numbers99

Re = U∞a/ν = εM2 where the solution is free from asymmetric vortex shedding100

(Tatsuno & Bearman 1990; Yan et al. 1993, 1994), so that the associated two-dimensional101

time-periodic flow displays symmetry with respect to the oscillation axis.102

The analysis of steady streaming in the array configuration analyzed here is relevant103

in connection with microscale fluid devices, including applications targeting particle104

manipulation (Lutz et al. 2005, 2006; Huang et al. 2013; Chong et al. 2013; House105

et al. 2014). Oscillating flows featuring interactions with streamwise obstacle arrays are106

found in other problems, an example being the flow of cerebrospinal fluid (CSF) in the107

spinal subarachnoid space, a slender annular canal that surrounds the spinal cord. The108
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pulsating motion of CSF, driven by the pressure oscillations induced by the cardiac and109

respiratory cycles (Linninger et al. 2016), exhibits velocities that vary along the canal. For110

example, for the cardiac-driven flow, the peak velocity decays from values of order of a few111

centimeters per second in the cervical region to values of order of a few millimeters per112

second in the lumbar region (Coenen et al. 2019, Fig. 2). This pulsatile motion is affected113

by the presence of nerve roots, which has been found to enhance steady streaming (Khani114

et al. 2018) and local mixing (Pahlavian et al. 2014), thereby promoting the transport of115

solutes along the canal (Stockman 2006, 2007). These nerve roots, which branch off the116

spinal cord to deliver nerve signals to the rest of the body (Sass et al. 2017), are arranged117

in quasi-periodic rows aligned along the canal, with the axial distance between subsequent118

nerve roots determined by the inter-vertebra spacing. Each nerve root consists of multiple119

rootlets arranged in bundles, forming a structure whose streamwise length varies from120

about 1 mm near the external dura membrane, where the nerve root is more round, to121

about 1 cm at the root base near the spinal cord (Mendez et al. 2021, Figs. 1 and 2). The122

resulting pulsatile flow about the nerve root is characterized by moderately large values123

of the Womersley number in the range 6 < M < 15, as can be seen by evaluating (1.2)124

with the cardiac angular frequency ω = 2π s−1 and the CSF kinematic viscosity ν = 0.7125

mm2/s for an obstacle of size a = 2−5 mm. The value of the dimensionless stroke length126

ε evaluated from (1.1) is of order unity in the cervical region (e.g. ε ≃ 1.6 for U∞ = 2127

cm/s and a = 2 mm) and small in the lumbar region (e.g. ε ≃ 0.16 for U∞ = 2 mm/s128

and a = 2 mm).129

The rest of the paper is organized as follows. After formulating the problem in § 2, we130

address in § 3 the limit of small stroke lengths ε≪ 1. Following the standard asymptotic131

treatment of steady-streaming problems (Riley 2001), the solution uses expansions for132

the different variables in powers of ε, leading to a hierarchy of problems that can be133

solved sequentially, with the steady-streaming velocity obtained by time-averaging the134

first-order velocity corrections. Unlike the case of a single cylinder, for which closed-135

form analytic solutions are available (Holtsmark et al. 1954; Chong et al. 2013), for the136

cylinder array numerical computation is needed to solve the problems that emerge at the137

different orders. For the case M ∼ 1 considered here, it will be shown that the resulting138

steady-streaming velocity is comparable to the Stokes drift, in agreement with previous139

results (Raney et al. 1954; Chong et al. 2013). Direct numerical simulations will be used140

in § 4 to investigate the mean Lagrangian motion arising for ε ∼ 1 and test the range of141

validity of the ε ≪ 1 description. Besides harmonically oscillating streams, resulting in142

steady-streaming patterns with closed recirculating streamlines, similar to those found143

earlier (Holtsmark et al. 1954), consideration will be given in § 5 to configurations with144

periodic anharmonic flow, that being the case of the oscillating motion in the spinal145

canal. An important related question addressed below is whether the interactions of an146

obstacle row with an anharmonic oscillating stream of zero mean velocity may produce147

a nonzero streamwise net flow rate, which might explain previous observations regarding148

transport-rate enhancement along the canal (Stockman 2006, 2007). Finally, concluding149

remarks are given in § 6.150

2. Formulation151

Let us consider the flow configuration depicted in figure 1, emerging when an incom-152

pressible fluid stream with harmonic velocity U∞ cos(ωt′) flows past an infinite array153

of equally spaced identical cylinders aligned with the unperturbed flow. The semi-154

distance between the centers of contiguous cylinders L is assumed to be comparable155

to the cylinders radius a, their ratio defining the geometrical parameter ℓ = L/a > 1.156
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As previously anticipated, the two controlling flow parameters are the dimensionless157

stroke length ε, defined in (1.1), and the Womersley number M , defined in (1.2). Direct158

numerical simulations corresponding to order-unity values of the three parameters ℓ,159

M , and ε are to be presented below along with results corresponding to the small-160

stroke-length asymptotic limit ε ≪ 1, when the velocity displays a harmonic temporal161

dependence at leading order, while the first-order corrections, of order εU∞, contain a162

steady contribution.163

The problem is scaled with use of a, ω−1, U∞, ρωaU∞ as characteristic values of
length, time, velocity, and spatial pressure difference, with ρ denoting the fluid density.
Correspondingly, the unperturbed flow velocity of the external oscillating stream becomes
u∞ = cos t with t = ωt′. Since the resulting velocity v is periodic in the streamwise
direction, the solution can be described by considering the flow about an individual
cylinder, with the origin of the coordinate system placed at the cylinder center. The
description employs cartesian coordinates x = (x, y) and cartesian velocity components
v = (u, v), with x aligned in the direction of the unperturbed flow and r = (x2 + y2)1/2

denoting the distance to the cylinder center, as indicated in figure 1. Since in the regime
ε <∼ 1 and M ∼ 1 investigated below the flow can be anticipated to remain symmetric
about the y = 0 plane, in the computations it suffices to consider the integration domain
extending for x2 + y2 > 1 with y > 0 and −ℓ < x < ℓ. The velocity must satisfy the
continuity and momentum equations

∇ · v = 0, (2.1)

∂v

∂t
+ εv ·∇v = −∇p+

1

M2
∇

2v, (2.2)

subject to the nonslip condition164

v = 0 at r = 1, (2.3)

the far-field condition165

v = (cos t, 0) as y → ∞ for − ℓ 6 x 6 ℓ, (2.4)

the center-line symmetry condition166

∂u

∂y
= v = 0 at y = 0 for 1 6 |x| 6 ℓ, (2.5)

and the condition of 2ℓ spatial periodicity in the x direction. The free-stream velocity167

condition (2.4) is consistent with a far-field pressure distribution approaching p = x sin t168

as y → ∞.169

The above problem was integrated numerically using the immersed boundary method170

with the projection approach given by Taira & Colonius (2007) in a cartesian nonuniform171

staggered mesh extending up to y = 30. The value of the associated grid spacing ∆,172

smaller near the cylinder surface, was reduced for increasing values of the Womersley173

number as needed to resolve the associated near-wall Stokes layer with sufficient accuracy,174

yielding for instance ∆ = 0.04 forM = 1 and ∆ = 0.01 for M = 16. The spatial width of175

the cylinder nodes employed in the implementation of the immersed boundary method176

was selected to be equal to the smallest spacing of the cartesian mesh. The time step177

δt was correspondingly adjusted to give a Courant number δt/∆ below 0.25. Following178

standard practice (see e.g. Alaminos-Quesada (2021)), the implementation of the far-field179

condition (2.4) was facilitated in the simulations by rewriting the problem in terms of180

the axial velocity perturbation u′ = u − cos t, which satisfies u′ = − cos t at r = 1 and181

u′ → 0 as y → ∞ along with the symmetry and periodicity conditions stated above. As182
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explained in appendix A, the numerical method was validated through comparisons with183

previously reported results corresponding to a single cylinder.184

3. The limit of small stroke lengths185

Following standard practice, the flow description in the limit ε≪ 1 utilizes expansions186

for the different flow variables in powers of ε, i.e. v = v0+εv1+· · · and p = p0+εp1+· · · .187

As seen below, the leading-order solution has a zero time average, i.e. 〈v0〉 = 0, with188

〈·〉 = 1
2π

∫ t+2π

t · dt, whereas the first-order correction v1, accounting for the effects of189

convective acceleration, includes a nonzero steady-streaming component vSS = 〈v1〉.190

3.1. Leading-order oscillatory flow191

At leading order in the limit ε ≪ 1, convective acceleration does not enter in the192

momentum balance equation (2.2). The resulting linear problem can be conveniently193

solved by introducing v0 = Re
(

eitV
)

and p0 = Re
(

eitP
)

with V(x, y) = (U, V ) and194

P (x, y) representing complex functions satisfying195

∇ ·V = 0, iV = −∇P +
1

M2
∇

2V (3.1)

with boundary conditions196







V = 0 at r = 1,
V = (1, 0) as y → ∞ for − ℓ 6 x 6 ℓ,
∂U/∂y = V = 0 at y = 0 for 1 6 |x| 6 ℓ,

(3.2)

as follows from (2.1)–(2.5), along with the condition of 2ℓ spatial periodicity in the x197

direction.198

Except for the the limiting case ℓ ≫ 1, which reduces to that of flow over a single199

cylinder (Holtsmark et al. 1954; Chong et al. 2013), no analytic solution is available, and200

the above problem must be solved numerically. To that aim, equations (3.1) were written201

in weak form and implemented in the finite element solver COMSOL Multiphysics.202

Solutions were computed on an unstructured triangular mesh that extended laterally203

to y = 30. Mesh elements were clustered near the cylinder surface, the typical element204

size ranging from 0.01 at that surface to 0.2 near the far field boundary. It was checked205

that further increases in lateral domain extension as well as in mesh refinement did not206

alter the results.207

For a general value ofM , the resulting complex velocityV(x, y) has real and imaginary208

parts. Note, however, that in the inviscid limitM ≫ 1 the solution contains an imaginary209

part only in the thin Stokes layer of thickness 1/M that develops on the cylinder surface,210

outside of which, the flow is irrotational, such that V(x, y) = ∇Φ. The associated velocity211

potential Φ, a real function, satisfies ∇2Φ = 0 subject to ideal-flow boundary conditions212

stemming from (3.2), including for instance the no-penetration condition ∂Φ/∂r = 0 at213

r = 1. The problem was considered recently by Crowdy (2016), who provided a quasi-214

analytical solution for the corresponding complex potential. For illustrative purposes, the215

streamlines of the potential flow corresponding to the specific case ℓ = 2 are included in216

the schematic of figure 1.217

3.2. Steady streaming218

The steady-streaming velocity vSS = 〈v1〉 = (uSS, vSS) is determined from the problem219

that arises at the following order. Collecting terms of order ε in (2.1) and (2.2) and taking220
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Figure 2. Streamlines and color contours of vorticity Ω corresponding to the steady-streaming
motion with different inter-cylinder distance ℓ for M = 2 (a) and M = 16 (b). Streamlines are
represented using a constant spacing δψ, with δψ = 0.002 for ℓ = 1, δψ = 0.005 for ℓ = 1.5, 3,
and δψ = 0.01 for ℓ = ∞. Corresponding vorticity levels indicated in the color bar on the right.

the time average leads to221

∇ · vSS = 0,
1

2
Re (V ·∇V∗) = −∇〈p1〉+

1

M2
∇

2vSS, (3.3)

after writing 〈v0 ·∇v0〉 =
1
2Re (V ·∇V∗), which follows from the identity222

〈Re(eitA)Re(eitB)〉 = Re(AB∗)/2, (3.4)

applying to any generic time-independent complex functions A and B, with the asterisk223

∗ denoting complex conjugates. The resulting recirculating cells, symmetric about the224

x = 0 plane, can be correspondingly obtained by integrating (3.3) in the first quadrant225

subject to the boundary conditions226







vSS = 0 at r = 1,
vSS → 0 as y → ∞ for 0 6 x 6 ℓ,
∂uSS/∂y = vSS = 0 at y = 0 for 1 6 x 6 ℓ,

(3.5)

consistent with (2.3)–(2.5), and the condition of 2ℓ spatial periodicity in the x direction.227

At this order, the steady-streaming pressure 〈p1〉 vanishes in the far field, as is consistent228

with the velocity condition vSS → 0 as y → ∞.229

Equations (3.3) were integrated using the same numerical method employed for the230

leading-order problem. Representative results are shown in figure 2 for four values of231

the inter-cylinder spacing ℓ, including as extreme cases the configuration with touching232
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cylinders (ℓ = 1) and the familiar single-cylinder case, recovered in the present array233

configuration when ℓ = ∞. Because of the condition of flow periodicity and the symmetry234

of the cylinder array, the vertical lines x = 0, 1 6 y < ∞ and x = ℓ, 0 6 y < ∞ are235

streamlines of the steady-streaming flow. Only the first quadrant is shown in figure 2,236

since the flow structure is identical in all four quadrants. Streamlines are plotted using237

a fixed increment δψ of the stream function ψSS computed from ∂ψSS/∂y = uSS and238

∂ψSS/∂x = −vSS with ψSS = 0 on the domain boundary. The spacing is δψ = 0.005239

for ℓ = 1.5 and ℓ = 3.0, with a smaller spacing δψ = 0.002 used for ℓ = 1, as needed240

to represent the associated weak motion, and a larger spacing δψ = 0.01 for ℓ = ∞,241

in accordance with the associated vigorous motion. In addition to streamlines, color242

contours are used to represent the vorticity Ω = ∂v/∂x−∂u/∂y, with the level indicated243

in the color bar on the far right.244

As seen in figure 2, the streaming structure arising for finite values of ℓ is qualitatively245

similar to that of a single cylinder (Holtsmark et al. 1954). For M = 2 the flow displays246

one vortex in each quadrant, with the clockwise circulation (negative vorticity) exhibited247

by the vortex in the first quadrant corresponding to fluid approaching the cylinder along248

the oscillation axis y = 0. This vortex is known to progressively approach the cylinder249

wall on increasing M (Holtsmark et al. 1954) and, for the case M = 16 shown in the250

bottom row of figure 2, is seen to be embedded in the high-vorticity Stokes layer that251

develops near the cylinder surface. A second vortex with opposite circulation, clearly252

visible in the results for M = 16, appears outside in configurations with M exceeding a253

critical valueMc. For the case of a single cylinder, the valueMc ≃ 6.08 can be determined254

from the exact solution (Holtsmark et al. 1954) as the value of M for which the stream255

function ψSS vanishes in the far field. From our numerical computations, it was seen that256

the value of Mc is somewhat larger for the cylinder array (e.g. Mc ≃ 7 for ℓ = 2).257

The presence of the neighboring cylinders has a noticeable effect on the shape of the258

resulting vortices, as can be seen by comparing the results for ℓ = (1, 1.5, 3) with the259

canonical case of a single cylinder (ℓ = ∞) shown in the last column. For M = 2 the260

core of the vortex, which for ℓ = ∞ is located along the π/4 ray, is displaced towards the261

vertical axis x = 0 on decreasing the cylinder inter-spacing, producing vortices that are262

much more slender, with the case ℓ = 1 displaying the largest distortion. For M = 16,263

the outer vortex, which for the single cylinder exhibits open streamlines with no vortex264

core, displays for ℓ 6= ∞ a well defined core surrounded by closed streamlines. This265

qualitative change, also observed in the flow about an oscillating cylinder when enclosed266

by a concentric cylindrical surface (Holtsmark et al. 1954), is attributable to the effect of267

confinement, which also produces a drastic reduction in the magnitude of the streaming268

motion. The extent of the reduction can be quantified by comparing the peak value of the269

stream function, given by ψSS,peak = −0.1602 for M = 2 and ψSS,peak = (−0.0493/0.243)270

(inner/outer vortex) for M = 16 in the case of the isolated cylinder (ℓ = ∞) and271

ψSS,peak = −0.0041 for M = 2 and ψSS,peak = (−0.0438/0.0022) (inner/outer vortex) for272

M = 16 in the case of an array of touching cylinders (ℓ = 1).273

3.3. Mean Eulerian velocity for finite stroke lengths274

The steady-streaming velocity vSS = 〈v1〉 provides the leading-order description for275

the mean Eulerian velocity 〈v〉 = εvSS in the asymptotic limit ε ≪ 1. In principle,276

the description can be improved by computing higher-order terms in the asymptotic277

expansion for 〈v〉 = ε〈v1〉 + ε2〈v2〉 + ε3〈v3〉 + · · · . The development must begin by278

computing the unsteady component of the first-order velocity correction v1, which can279

be shown to be of the form v1−〈v1〉 = Re
(

e2itV1

)

, where V1(x, r) is a complex function,280

the expression of which was obtained by Chong et al. (2013) for the case of a single isolated281
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Figure 3. Streamlines and color contours of vorticity Ω for ℓ = 2 and M = 2. Besides results
corresponding to the steady-streaming velocity vSS, shown in the leftmost panel, results are given
for the rescaled time-averaged Eulerian velocity 〈v〉/ε determined in the DNS computations
for ε = (0.1, 0.5, 1.0, 2.0). Streamlines are represented using a constant spacing δψ = 0.005.
Corresponding vorticity levels are indicated in the color bar on the right.

cylinder. The equations that determine 〈v2〉, analogous to (3.3), with the convective term282

in the momentum equation replaced by 〈v0 ·∇v1〉+ 〈v1 ·∇v0〉, are to be integrated with283

the homogeneous boundary conditions stated in (3.5), with 〈v2〉 replacing vSS. Since284

v0 = Re
(

eitV
)

and v1 = 〈v1〉+Re
(

e2itV1

)

, it follows that 〈v0 ·∇v1〉+ 〈v1 ·∇v0〉 = 0,285

with the consequence that integration of the steady-streaming problem that arises at286

order ε2 yields 〈v2〉 = 0. Therefore, the corrections to the mean Eulerian velocity would287

enter only at the following order, i.e. 〈v〉 = ε〈v1〉 + ε3〈v3〉 + · · · , indicating that the288

leading-order expression 〈v〉 = εvSS = ε〈v1〉 computed here contains small relative errors289

of order ε2.290

The accuracy of the asymptotic description 〈v〉 = εvSS was tested through comparisons291

with the mean Eulerian velocity 〈v〉 = 1
2π

∫ t+2π

t v dt determined in direct integrations of292

the complete problem (2.1)–(2.5). Selected numerical results corresponding to ℓ = 2 and293

M = 2 are shown in figure (3) for ε = (0.1, 0.5, 1.0, 2.0). Since the time-averaged velocity294

can be anticipated to be of order ε, as suggested by the asymptotic analysis for ε≪ 1, the295

rescaled velocity 〈v〉/ε is used in computing the streamlines and vorticity contours shown296

in the figure. The results are to be compared with those of the steady-streaming velocity297

vSS, shown in the leftmost panel. Close agreement is found between the DNS results for298

ε = 0.1 and the ε ≪ 1 predictions, with associated velocity fields being nearly identical,299

as seen in the figure. A quantitative measure of the existing differences, on the order of300

1% for ε = 0.1, consistent with the relative errors of order ε2 anticipated in the discussion301

of the preceding paragraph, is provided by the peak values of the corresponding stream302

functions at the vortex center, given by ψSS = −0.0419 for ε ≪ 1 and 〈ψ〉/ε = −0.0416303

for ε = 0.1. It is remarkable that, although larger differences are found as the oscillation304

amplitude becomes comparable to the cylinder radius, the ε ≪ 1 description remains305

reasonably accurate even for ε = 0.5, for which 〈ψ〉/ε = −0.0390 at the vortex center.306

For completeness, a figure showing the spatial distribution of |ψSS −〈ψ〉/ε| is included in307

appendix B.308
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3.4. Stokes drift309

As pointed out by Raney et al. (1954) when addressing oscillating flow over a cylinder,310

the Lagrangian mean motion of the fluid particles comes partly from the Eulerian mean311

motion (i.e. 〈v〉 = εvSS) and partly from the so-called Stokes drift (Stokes 1847), a purely312

kinematic effect arising in nonuniform oscillating flows. As a result, streamlines visualized313

in experiments by tracing the motion of dyed fluid do not coincide in general with those314

determined from the steady-streaming velocity (Raney et al. 1954; Larrieu et al. 2009;315

Chong et al. 2013). Since the velocity of the Lagrangian mean motion vSS + vSD, where316

vSD =

〈
∫

v0dt ·∇v0

〉

(3.6)

represents the contribution of the Stokes drift, determines the convective transport of317

solutes, there is interest in quantifying numerically vSD for the cylinder array, thereby318

complementing the analytical results developed previously for the single cylinder (Holts-319

mark et al. 1954; Raney et al. 1954; Chong et al. 2013).320

The expression (3.6) for the Stokes-drift velocity, which can be systematically derived321

using a two-time scale analysis, as shown in appendix C, can be written in the form322

vSD =
1

2
Im (V ·∇V∗) , (3.7)

by using v0 = Re
(

eitV
)

along with the identity 〈Re(ieitA)Re(eitB)〉 = −Im(AB∗)/2.323

It is of interest that the real part of the complex function 1
2V · ∇V∗ determines the324

steady streaming, as revealed by (3.3), whereas its imaginary part is the Stokes-drift325

velocity (3.7). Note that, as mentioned before, for large values of M viscous forces are326

confined to a thin Stokes layer, outside of which the flow is potential and the function327

V is real, so that the associated Stokes drift can be expected to vanish for M ≫ 1, as328

follows from (3.7).329

3.5. Evaluation of the Lagrangian mean velocity330

The expression (3.7) was used to evaluate the Stokes-drift velocity vSD for a cylinder331

array with ℓ = 2, with associated streamlines and vorticity contours given in the middle332

column of figure 4. The first two columns of the figure show the corresponding steady-333

streaming velocity vSS (second column from the left) along with the rescaled time-334

averaged Eulerian velocity 〈v〉/ε determined in DNS computations with ε = 0.1 (leftmost335

column), the two sets of results being nearly indistinguishable. Besides the twoWomersley336

numbersM = 2 andM = 16 considered earlier in the computations of figure 2, the figure337

includes results for M = 1, a case for which the Stokes drift is stronger than the steady-338

streaming motion. To facilitate comparisons, in plotting the streamlines for each value of339

M the spacing of the Stokes-drift stream function ψSD is that used for the corresponding340

steady-streaming plot.341

As can be seen, the Stokes-drift results forM = 1 display a primary clockwise-rotating342

vortex occupying most of the quadrant along with a much weaker counter-rotating vortex343

of negligibly small circulation near the oscillation axis y = 0. For this value of M ,344

this primary vortex is significantly stronger than the corresponding steady-streaming345

vortex. This can be verified by comparing the magnitude |ψpeak| of the peak values of346

the associated stream functions at the vortex center. Since ψ is defined to be zero on the347

cylinder surface, the value of |ψpeak|, whose variation with M is represented in figure 5,348

gives a measure of the volume flow rate driven by the recirculating vortex motion. As349

can be seen, forM = 1 the peak value of ψSD is significantly larger than that of ψSS, with350

the result that the Lagrangian velocity vSS +vSD is largely determined by its Stokes drift351
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Figure 4. Streamlines and color contours of vorticity Ω corresponding to the steady-streaming
velocity vSS, Stokes-drift velocity vSD and steady mean Lagrangian velocity vL = vSS + vSD for
ℓ = 2 and M = 1 (a), M = 2 (b), and M = 16 (c). Corresponding DNS results for ε = 0.1
are also shown, including the rescaled time-averaged Eulerian velocity field 〈v〉/ε (first column)
and the rescaled Lagrangian velocity vL/ε (fifth column). For each value of M , streamlines are
represented using a constant spacing δψ = 0.002 (M = 1) and δψ = 0.005 (M = 2 and M = 16)
with the corresponding vorticity levels indicated in the color bar on the right.

component, as reflected in the shape of the corresponding Lagrangian vortex, shown in352

the fourth column of figure 4(a).353

The Stokes-drift motion develops an additional vortex, external to the primary vortex,354

when the Womersley number is increased to values exceeding a critical value (e.g.M ≃ 1.5355

for ℓ = 2). As seen in the plots of peak stream function in figure 5, this external Stokes-356

drift vortex, clearly visible in figure 4(b), increases in strength for increasingM to prevail357

over the inner vortex for M >
∼ 2.5. Figure 5 also reveals that, for the cases M = 2 and358

M = 16 of figure 4(b) and 4(c), the Stokes drift is significantly weaker that the steady359

streaming, so that the Lagrangian motion is largely determined by the latter.360
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Figure 5. The variation with M of the magnitude |ψpeak| of the local peak values of the stream
function ψSS (dashed curves), ψSD (dotted curves) and ψSS +ψSD (solid curves) at the center of
the outer (o) and inner (i) vortices for the ℓ = 2 configuration.

Figure 5 also shows the peak value of the stream function ψSS + ψSD associated with361

the Lagrangian motion. Regarding the resulting curve, it is of interest that, since the362

inner and outer vortices have opposite circulation, leading to peak values of the stream363

function with different sign, there is an intermediate range of values of M for which the364

strength of the Lagrangian vortex is smaller than that of the steady-streaming vortex.365

The comparison of the different curves in figure 5 reveals that the Stokes drift prevails for366

sufficiently small values of the Womersley numberM ≪ 1, for which ψSS ≪ ψSD, whereas367

in the opposite limit M ≫ 1 the Stokes-drift motion fades away, as anticipated above368

below (3.7), so that ψSS ≫ ψSD. The trends identified in the figure therefore confirm369

that the Stokes drift can be neglected only if M ≫ 1, whereas for M <
∼ 1 it must be370

necessarily accounted for when seeking an accurate description of the Lagrangian motion,371

in agreement with previous findings (Raney et al. 1954; Chong et al. 2013).372

To validate the asymptotic prediction vSS + vSD, the Lagrangian velocity vL was373

evaluated from the DNS velocity field for ε = 0.1. The value of vL(x, y) at each374

location (x, y) was determined by computing the displacement (δx, δy) of a tracer particle,375

located initially at (x, y), over a cycle (i.e. from t to t + 2π) and the resulting velocity376

vL(x, y) = (δx, δy)/(2π), appropriately rescaled according to vL/ε, was then used to377

compute the streamlines and vorticity distributions shown in the last column of figure 4,378

to be compared with the asymptotic predictions shown in the adjacent column. As can379

be seen, the results are practically indistinguishable, especially for the cases M = 1380

and M = 2, thereby giving additional confidence in the mathematical development. The381

somewhat larger departures found with M = 16, characterized by relative differences382

in peak stream function in the inner and outer vortices on the order of 5%, are to383

be expected, since for these values of ε = 0.1 and M = 16 the relative ordering of384

the asymptotic development breaks down, in that the viscous term in (2.2) becomes385

smaller than the convective term. The quantification of these large-Womersley-number386

configurations can benefit from consideration of the double distinguished limit ε≪ 1 and387
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Figure 6. The black curves represent the oscillatory trajectories determined numerically by
integration of (4.1) with initial condition xi = (−0.55, 2.95) (marked with a red star) at ti = π/2
for M = 2, ℓ = 2 and ε = 1.0. The blue star denotes the particle location at t = 3π/2. The
squares mark the fluid particle location xp(π/2+ 2πn) (red squares) and xp(3π/2 + 2πn) (blue
squares) for n = 1, 2, · · · , while the dots are the time averaged evaluated with use of (4.2) for
ti = π/2 (red dots) and ti = 3π/2 (blue dots).

M ≫ 1 with Res = ε2M2 ∼ 1 proposed in the seminal analyses of Stuart (1963, 1966)388

and Riley (1965, 1967).389

4. Fluid-particle drift for finite stroke lengths390

The above velocity description, in which the Lagrangian mean motion is the result of391

the superposition of the steady-streaming and Stokes-drift velocity fields, is rigorously392

valid only in configurations with small stroke lengths ε ≪ 1, with representative results393

presented earlier for ε = 0.1 in figure 4. There is interest in testing the accuracy with394

which the asymptotic prediction vSS + vSD describes the fluid-particle drift as the stroke395

length ε increases to larger values. To that end, we computed numerically the trajectories396

of fluid particles undergoing multiple oscillatory cycles by integrating397

dxp

dt
= εv(xp, t), (4.1)

subject to the initial condition xp = xi at t = ti, where xp(t) represents the fluid-particle398

location scaled with a. The integrations employed the periodic Eulerian velocity v(x, t)399

obtained in DNS computations of pulsating flows with moderate stroke lengths ε ∼ 1.400

Clearly, for a given initial location xi, the resulting trajectory xp(t) depends on the401

specific selection of initial time t = ti, so that some care must be taken when defining the402

mean Lagrangian drift when ε is not small, as explained below. For a general discussion403

of Lagrangian-mean flow pertaining to non-linear waves the reader is referred to the404

seminal paper of Andrews & McIntyre (1978).405

To illustrate the complications arising in defining the mean Lagrangian drift when406

ε ∼ 1, we plot in figure 6 results of a representative trajectory calculation, corresponding407

to oscillatory flow with M = 2 and ε = 1 about a cylinder array with ℓ = 2. The figure408

shows the path followed by a fluid particle located at xi = (−0.55, 2.95) at t = ti = π/2,409

corresponding to the instant of time when the outer velocity u∞ = cos t, decreasing,410
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reaches a zero velocity u∞ = 0. For illustrative purposes, stars are used to mark the411

initial location xi (red star) as well as the location x = (−2.62, 2.87) (blue star) occupied412

by the fluid particle at time t = 3π/2, when the outer velocity, now increasing from413

negative values, becomes zero again. The drift motion follows a recirculatory pattern,414

so that after a large number of cycles, which would be proportional to ε−1 for ε ≪ 1,415

the fluid particle returns to occupy a location close to (but not necessarily equal to) the416

initial location xi.417

Different options are available regarding the characterization of the Lagrangian drift.418

One could for instance consider the series of locations xn = xp(ti + 2πn) occupied by419

the fluid particle at the end of subsequent cycles n = 1, 2, · · · . This series, marked in the420

figure by red squares, serves to delineate the long-time drifting motion of the particle421

as it circles back towards its initial location following a large number of cycles. One can422

readily see a problem with this definition, in that if we had considered instead the fluid423

particle located at xi = (−2.62, 2.87) (marked by the blue star) at ti = 3π/2, the path424

followed would be identical, but the Lagrangian drift described by the corresponding425

sequence of locations xn = xp(ti + 2πn), indicated by blue squares, would be radically426

different, as seen in the figure.427

In trying to characterize the particle drift in a non-ambiguous way, it is therefore better428

to use instead the average location of the fluid particle during a given cycle n, computed429

according to430

xn =
1

2π

∫ ti+2πn

ti+2π(n−1)

xpdt. (4.2)

As can be seen in figure 6, the values of xn corresponding to xi = (−0.55, 2.95) and431

ti = π/2, marked by red circles, and those obtained for xi = (−2.62, 2.87) and ti = 3π/2,432

marked by blue circles, describe the same path, thereby removing the above mentioned433

arbitrariness.434

As shown in the fourth column of figure 4, for ε ≪ 1 the Lagrangian mean motion435

features recirculating vortices, whose center xc can be determined by computing the436

location where the Lagrangian stream function ψSS+ψSD shows a local extremum. Similar437

recirculating patterns are found for ε ∼ 1. In that case, the corresponding vortex center438

can be obtained numerically by identifying the location xc that satisfies xn = xc, so that439

the fluid particle describes the exact same trajectory over subsequent cycles, with zero440

net drift.441

The location of the vortex center xc of the Lagrangian mean flow is shown in figure 7442

for oscillatory motion with infinitesimally small values of the stroke length ε ≪ 1 and443

also with finite values ε = (0.5, 1.0, 1.5). For the Womersley number M = 2 considered444

in the figure, there exists a single vortex, whose center occupies a location that depends445

on the inter-cylinder spacing ℓ. As can be seen, the results are in general agreement446

with those displayed in figure 2 for the steady-streaming motion, in that as ℓ is reduced447

the vortex center migrates from a location near the π/4 ray towards the vertical axis448

x = 0. As expected, the DNS results for increasing stroke lengths ε progressively depart449

from the ε≪ 1 predictions, with the vortex center moving downward while maintaining450

approximately the same horizontal location.451

The increasing downward displacement of the vortex center for increasing ε shown452

in figure 7 is accompanied by a progressive distortion of the Lagrangian vortex. This453

is illustrated in figure 8 for ℓ = 2, with the vortex shape characterized by plotting the454

time-averaged path of fluid-particle trajectories initiated at points located at increasing455

vertical distances from the vortex center, indicated in the figure caption. For each fluid456

particle, the plot shows a sequence of 80 cycles. Since the Lagrangian velocity is larger457
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Figure 7. The variation with the intercylinder distance ℓ of the location of the Lagrangian
vortex center xc for M = 2 as determined in the limit ε ≪ 1 and as determined from the
DNS computations with ε = (0.5, 1.0, 1.5). The symbols represent the results corresponding to
ℓ = (1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 6, 8, 10, 15,∞).
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Figure 8. Lagrangian mean motion for ℓ = 2 and M = 2, including streamlines
ψSS + ψSD = constant with δψ = 0.004 for ε ≪ 1 and time-averaged fluid particle locations xn

for ε = (0.5, 1.0.1.5) computed using (4.2) for the trajectories determined by integrating (4.1)
with initial condition x = xi at t = 0. In computing the trajectories, the initial locations xi

were selected at fixed vertical distances δy above the Lagrangian-vortex center xc, the latter
indicated with an asterisk. Five different trajectories corresponding to δy = (0.2, 0.4, 0.6, 0.8, 1.0)
are plotted for ε = 0.5 and ε = 1.0, whereas, to avoid cluttering, only three trajectories
corresponding to δy = (0.2, 0.6, 1.0) are shown in the case ε = 1.5.

for larger ε (i.e. vL ∝ ε for ε ≪ 1, as demonstrated in figure 4), for the same number458

of cycles the Lagrangian displacement increases with increasing ε, so that, for instance,459

the fluid particle closer to the vortex center describes two laps for ε = 0.5 and about ten460

laps for ε = 1.5.461

The numerical results for ε = (0.5, 1.0, 1.5) are to be compared with the Lagrangian462



16 J. Alaminos-Quesada et al.

streamlines computed in the limit ε ≪ 1 with use of ψSS + ψSD = constant. As can463

be seen, the Lagrangian vortex for ε = 0.5 is almost indistinguishable from its ε ≪ 1464

counterpart and, even for the case ε = 1.0, the asymptotic predictions provide a fairly465

good description of the circular drift motion. Departures are more pronounced for ε = 1.5466

as a result of the increasing nonlinearity. Contrary to the cases ε = 0.5 and ε = 1.0, for467

which all time-averaged locations corresponding to a given fluid particle closely lie along468

a well-defined closed path, for ε = 1.5 the locations xn are scattered within a band469

surrounding the vortex center.470

The comparisons presented in figures 7 and 8 indicate that the simple velocity descrip-471

tion arising for ε ≪ 1, in which the Lagrangian mean velocity is given by the sum of472

distinct steady-streaming and Stokes-drift components, can be used with unexpectedly473

good accuracy to quantify the fluid-particle drift in situations in which the stroke length is474

as large as the cylinder radius (i.e. order-unity values of ε) provided that the flow remains475

symmetric and periodic. In view of previous results pertaining to the single cylinder476

(Tatsuno & Bearman 1990), increasing nonlinear effects can be expected to modify477

significantly the flow pattern depicted in figure 8 as the Reynolds number Re = εM2
478

increases to sufficiently large values, with the associated Lagrangian motion eventually479

becoming chaotic, as the flow becomes turbulent; these additional nonlinear effects were480

not further investigated here.481

5. Steady streaming in anharmonically oscillating flows482

Most investigations of pulsating flows over cylinders consider outer streams with483

harmonically varying velocities, resulting in symmetric streaming flows with closed484

streamlines that are identical in all four quadrants. As shown by Davidson & Riley485

(1972), the classical analysis can be extended to anharmonic flow by expressing the486

periodic outer velocity as a Fourier series u∞ =
∑

∞

n=1 Re
(

Ane
int

)

involving the complex487

coefficients An. Correspondingly, the linear problem that arises at leading order in the488

limit ε ≪ 1 can be solved by introducing Fourier series expansions for the velocity489

v0 =
∑

∞

n=1 Re
(

Ane
intVn

)

. For the cylinder array, the complex function Vn correspond-490

ing to a given mode n would be obtained by integrating (3.1) subject to (3.2) for a491

Womersley number Mn = (a2nω/ν)1/2. In carrying the analysis to the following order,492

it is important to note that the forcing term 〈v0 · ∇v0〉 that determines the steady493

streaming through (3.3) and the Stokes drift vSD = 〈
∫

v0dt ·∇v0〉 are obtained by time494

averaging the product of two Fourier series. Since the time average of the product of any495

two modes of different frequency is identically zero, the resulting functions become496

〈v0 ·∇v0〉 =
1

2

∞
∑

n=1

|An|
2Re (Vn ·∇V∗

n) and vSD =
1

2

∞
∑

n=1

|An|
2

n
Im (Vn ·∇V∗

n) ,

(5.1)
involving the sum of the separate contributions of each mode, with no inter-mode497

interactions. As a consequence, the steady streaming and Stokes drift generated by an498

anharmonic flow can be obtained simply as the sum of the corresponding steady streaming499

and Stokes drift velocities of each separate mode. Since each mode gives closed streamlines500

that are identical in all four quadrants, as those represented in figures 2 and 4, their linear501

superposition also gives symmetrical recirculatory patterns that are qualitatively similar502

to those obtained in the harmonic case, thereby maintaining the fore-and-aft symmetry503

of the flow. It can be therefore concluded that the description of the expected symmetry504

breaking arising in the presence of anharmonic flow requires consideration of the inter-505

mode interactions occurring at order ε2. These higher-order terms in the asymptotic506
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expansion, which describe the flow asymmetries induced by anharmonic flow, have been507

computed for circular cylinders and spheres undergoing oscillations with ε ≪ 1 and508

Res = ε2M2 ∼ 1 (Miyagi & Nakahasi 1975; Tatsuno 1981; Higa & Takahashi 1987).509

Many oscillatory flow phenomena of physiological interest display an anharmonic time510

dependence, that being for example the case of CSF flow along the spinal canal (Linninger511

et al. 2016). As revealed by magnetic resonance measurements of cardiac-driven motion512

(Coenen et al. 2019; Sincomb et al. 2022), the flow rate exhibits a non-sinusoidal variation513

induced by the intracranial pressure, including a short period of fast caudal flow followed514

by a longer period of slow flow in the cranial direction. Since this pulsating stream515

interacts with nerve roots and ligaments that are aligned with the flow, a relevant question516

is whether such interactions can lead to the appearance of a longitudinal streaming517

motion, which could explain the enhanced transport rate previously observed (Stockman518

2006, 2007).519

To try to shed light on this matter, effects of anharmonicity were investigated in520

connection with pulsating flow over the streamwise cylinder array considered here. In521

view of the previous comments pertaining to flow over a cylinder, it can be expected522

that for ε≪ 1 the velocity corrections associated with the symmetry breaking are small,523

of order ε2 (Miyagi & Nakahasi 1975; Tatsuno 1981; Higa & Takahashi 1987), so that524

the appearance of significant asymmetry, possibly leading to a nonzero streamwise flow525

rate, requires values of the stroke length comparable to the cylinder radius (i.e. ε ∼ 1),526

a problem addressed here with use of DNS simulations. The integrations correspond527

to a cylinder array with ℓ = 2 for a simple two-term periodic ambient velocity u∞ =528

3 cos(t)/4 + cos(2t)/4, whose anharmonic temporal variation is shown in an inset in529

figure 9.530

The time-averaged Eulerian velocity 〈v〉 computed for ε = 1 was used to determine531

the streamlines and vorticity shown for four different values of M in the bottom panels532

of figure 9. The plots include the first two quadrants, as needed to illustrate the lack of533

fore-and-aft symmetry, which is less pronounced for M = 1. For larger values of M , the534

time-averaged flow comprises two highly distorted vortices in the vicinity of the cylinder535

surrounded by a region of nearly horizontal flow with velocities that decay slowly with536

distance. The comparison of the streaming results for M = 1 and M = 16 with those537

shown earlier in the second column of figures 4(a) and 4(c) for the harmonic case clearly538

indicate that effects of anharmonicity are much more important for larger values of M ,539

for which the outer vortex is replaced by a streamwise current, which is absent in the540

case M = 1.541

The streamline pattern shown in the plots for M 6= 1 is consistent with the existence542

of a non-zero streamwise flow rate Q =
∫

∞

0 〈u〉(ℓ, y)dy (or Q =
∫

∞

1 〈u〉(0, y)dy). The543

variation of Q with ε, determined in the DNS integration from the value of the time-544

averaged stream function 〈ψ〉 in the far field, is shown in figure 9 for different values545

of M . The plot reveals that the proportionality Q ∝ ε2, to be expected for ε ≪ 1,546

continues to apply over the whole range of ε considered in the DNS, for which the ratio547

Q/ε2 remains approximately constant. The negative value of Q/ε2, negligibly small for548

M = 1, increases in magnitude for increasing M , reaching Q/ε2 ≃ −0.58 for M = 16.549

6. Concluding remarks550

The interaction of an oscillating stream with a streamwise linear array of cylinders551

gives rise to a stationary motion that has been quantified here for configurations with552

Womersley numbers M of order unity and dimensionless stroke lengths ε that are either553

ε ≪ 1 or ε ∼ 1, thereby yielding moderately small values of the Reynolds number554



18 J. Alaminos-Quesada et al.

Figure 9. Time-averaged DNS results corresponding to a cylinder array with ℓ = 2 and
M = (1, 4, 8, 16) for the ambient periodic velocity u∞ = 3 cos(t)/4 + cos(2t)/4 represented
in the inset. The main figure shows the variation with ε of the rescaled streamwise flow rate
Q/ε2 while the bottom panels represent streamlines (with spacing δ〈ψ〉 = 0.001 for M = 1 and
δ〈ψ〉 = 0.006 for M = 4, 8 and 16) and vorticity contours for ε = 1.0.

Re = εM2 = U∞a/ν, for which the flow remains two-dimensional, time periodic,555

and symmetric with respect to the centerline. For infinitesimally small values of ε the556

Lagrangian mean motion is obtained as the sum of the steady-streaming and Stokes-drift557

components, which have been computed for different values ofM and of the inter-cylinder558

spacing ℓ. The description has been validated by comparisons with results of direct559

numerical simulations involving finite values of ε. The comparisons revealed, perhaps560

unexpectedly, that the simplified description for ε ≪ 1 continues to give reasonably561

accurate predictions for the time-averaged Eulerian velocity and for the Lagrangian mean562

motion as the stroke length increases to values of order unity (see, in particular, the results563

shown for ε = 0.5 in figures 3 and 8). While most of the analysis focuses on oscillating564

streams with harmonic velocity, consideration is also given to effects of anharmonicity, an565

analysis motivated by oscillatory flow phenomena of physiological interest. An important566

conclusion of our study is that the interaction of an anharmonic stream with a streamwise567

obstacle array can have a profound effect on the convective transport rate, especially in568

configurations with ε ∼ 1 and large values of M , for which the presence of the array569

can be expected to induce a streamwise flow rate of order U∞a, corresponding to order-570

unity values of the dimensionless flow rate Q shown in figure 9. Further investigation571
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is warranted to assess the importance of these effects in connection with the motion of572

CSF in the spinal canal, as needed to improve predictive capabilities of current flow and573

transport models (Sánchez et al. 2018; Lawrence et al. 2019; Sincomb et al. 2022). To574

enable quantitative predictions, these future investigations should consider more realistic575

geometrical configurations, including annular models of the spinal canal with obstacles576

arranged longitudinally to represent the ventral and dorsal nerve roots (Stockman 2006,577

2007). The results in § 5 suggest that the contribution of the induced Lagrangian motion578

to the streamwise transport rate is likely to be more prominent in the cervical region,579

where we find larger values of ε, while associated contributions in the lumbar region will580

be necessarily more limited.581
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Appendix A. Validation of the numerical scheme592

The results of the numerical integrations were validated by comparing the temporal593

variation of the resulting cylinder drag coefficient CD for ℓ → ∞ with previous exper-594

imental and numerical values reported in the literature for flow over a single cylinder595

(Dütsch et al. 1998; Kim & Choi 2006). As can be seen in figure 10, the resulting596

curves are virtually indistinguishable. In addition to results corresponding to ℓ→ ∞, for597

completeness the figure includes values of CD obtained numerically for different values598

of ℓ. As expected, the presence of the nearby cylinders reduces the flow velocity in the599

vicinity of the wall when ℓ 6= ∞, producing a sheltering effect that reduces the drag as600

ℓ decreases. For instance, the peak values of CD for ℓ = 1.5 are seen in figure 10 to be601

about half of those of the single cylinder.602

Appendix B. Quantification of error603

To facilitate the quantitative comparison between the mean Eulerian velocity de-604

termined numerically for finite values of ε and the asymptotic prediction for ε ≪605

1 the results shown in figure 3 are represented in figure 11 using the relative error606

|(ψSS − 〈ψ〉/ε)/ψSS,peak|, where ψSS,peak = −0.0419 is the peak value of ψSS. As expected,607

the relative errors, smaller than 1 % for ε = 0.1, increase with increasing ε, reaching608

values exceeding 25 % for ε = 1.609
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Figure 10. The comparison of the temporal evolution of the cylinder drag coefficient CD for
M = 5.6 and ε = 1.59 reported by Dütsch et al. (1998) and Kim & Choi (2006) with results of
numerical integrations of (2.1)–(2.5) for ℓ = (1.5, 2.5, 5,∞).
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Figure 11. The relative error |(ψSS − 〈ψ〉/ε)/ψSS,peak| corresponding to ℓ = 2 and M = 2 for
different values of the stroke length ε.

Appendix C. Two-time scale derivation of the Stokes-drift velocity610

The familiar expression (3.6) can be systematically derived by considering the dis-611

placement of a fluid particle undergoing pulsatile motion with ε≪ 1, computed from the612

corresponding trajectory equations613

dxp

dt
= εv(xp, t), (C 1)

where xp represents the fluid-particle location, scaled with a, and v = v0 + εv1 + · · · is614

the Eulerian velocity, which includes a harmonic leading-order term v0 = Re
(

eitV
)

with615

zero mean 〈v0〉 = 0 and a first-order correction v1 having a nonzero steady-streaming616

component vSS = 〈v1〉.617

The existence of two different time scales in the problem, identified above in the618

introductory paragraph of § 1, motivates the use of a two-time-scale description in619

solving (C 1), with the fluid-particle location assumed to be a function xp(t, τ) of the two620
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time variables t and τ = ε2t. Following the classical two-time-scale formalism (Bender &621

Orszag 1978), we use the chain rule of partial differentiation to write (C 1) in the form622

∂xp

∂t
+ ε2

∂xp

∂τ
= εv(xp, t) (C 2)

and introduce the expansion xp = x0(t, τ) + εx1(t, τ) + · · · , with each term assumed623

to be 2π-periodic in t. The known Eulerian velocity v(xp, t) appearing on the right-624

hand side must be correspondingly expanded in the form v = v0(x0, t) + ε[v1(x0, t) +625

x1 · ∇v0(x0, t)] + · · · , leading upon substitution to a hierarchy of problems that can be626

solved sequentially.627

Collecting terms in increasing powers of ε yields at leading order ∂x0/∂t = 0, indicating628

that x0 = x̂0(τ) is only a function of the slow time scale τ . At the following order (ε)629

one obtains ∂x1/∂t = v0(x̂0, t), which can be readily integrated to give630

x1 =

∫ t

v0(x̂0, t̃)dt̃+ x̂1(τ), (C 3)

where t̃ is a dummy integration variable. The Lagrangian mean motion is determined by631

considering the equation that emerges at order ε2, given by632

dx̂0

dτ
+
∂x2

∂t
= v1(x̂0, t) +

∫ t

v0(x̂0, t̃)dt̃ · ∇v0(x̂0, t) + x̂1(τ) · ∇v0(x̂0, t). (C 4)

Taking the time average and accounting for the fact that x2 is periodic in t and that633

〈v0〉 = 0 finally provides634

dx̂0

dτ
= 〈v1〉(x̂0) +

〈
∫ t

v0(x̂0, t̃)dt̃ · ∇v0(x̂0, t)

〉

(C 5)

for the Lagrangian mean velocity, which displays the two contributions previously an-635

ticipated, namely, the steady-streaming velocity vSS = 〈v1〉 and the Stokes-drift veloc-636

ity (3.6).637
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