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Abstract

The deleted in colorectal cancer (DCC) gene encodes the netrin-1 receptor DCC, a transmembrane 

protein required for the guidance of commissural axons. Germline DCC mutations disrupt the 

development of predominantly commissural tracts in the central nervous system (CNS) and cause 

a spectrum of neurological disorders. Monoallelic, missense and predicted loss-of-function DCC 
mutations cause congenital mirror movements, isolated agenesis of the corpus callosum, or both. 

Biallelic, predicted loss-of-function DCC mutations cause developmental split brain syndrome. 

Although the underlying molecular mechanisms leading to disease remain poorly understood, they 
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are thought to stem from reduced or perturbed Netrin-1 signaling. Here we review the 26 reported 

DCC mutations associated with abnormal CNS development in humans, including 14 missense 

and 12 predicted loss-of-function mutations, and discuss their associated clinical characteristics 

and diagnostic features. We provide an update on the observed genotype-phenotype relationships 

of congenital mirror movements, isolated agenesis of the corpus callosum and developmental split 

brain syndrome, and correlate this to our current understanding of the biological function of DCC 

in the development of the CNS. All mutations and their associated phenotypes were deposited into 

a locus specific LOVD (https://databases.lovd.nl/shared/genes/DCC).

Keywords

DCC; Netrin-1; NTN1; mirror movements; agenesis of the corpus callosum; ACC; developmental 
split brain syndrome; horizontal gaze palsy with progressive scoliosis; axon guidance; mutation

Background

DCC (MIM# 120470) encodes the DCC netrin-1 receptor protein, an evolutionarily 

conserved, single-pass transmembrane glycoprotein belonging to the immunoglobulin 

superfamily of cell adhesion molecules [Fearon, et al., 1990; Keino-Masu, et al., 1996]. 

DCC is located at 18q21.2 and spans chr18:52,340,172-53,535,903 (GRCh38/hg38) 

[Hedrick, et al., 1994]. The canonical DCC transcript consists of 29 exons that encode a 159 

kDa (1447 amino acid) protein. DCC is a putative dependence receptor originally thought to 

function as a tumor suppressor gene, although this role has not been proven in vivo and 

remains controversial [Fearon, et al., 1990; Llambi, et al., 2001; Williams, et al., 2006; Bin, 

et al., 2015]. More recently, the role of DCC in the development of the central nervous 

system (CNS) was established [Keino-Masu, et al., 1996; Fazeli, et al., 1997; Finger, et al., 

2002; Srour, et al., 2010; Jamuar, et al., 2017; Marsh, et al., 2017].

DCC is expressed by commissural axons and binds Netrin-1 (NTN1), a secreted protein 

encoded by the NTN1 gene (MIM# 601614) which functions both locally and diffusely as a 

bifunctional guidance cue [Kennedy, et al., 1994; Keino-Masu, et al., 1996; Blasiak, et al., 

2017]. Both DCC and NTN1 are expressed throughout the developing mouse and human 

brain, with distinct but complementary spatial and temporal expression patterns [Shu, et al., 

2000; Ren, et al., 2006; Harter, et al., 2010; Jamuar, et al., 2017]. DCC is required for the 

transduction of NTN1-induced attractive and long-range repulsive signaling in the 

coordinated outgrowth and guidance of commissural axons that cross the anatomical midline 

of the body [Chan, et al., 1996; Keino-Masu, et al., 1996; Hong, et al., 1999].

The development of commissural tracts is dependent on neurons forming synaptic 

connections with their target cells located on the opposite side of the CNS. To achieve this, 

neurons extend commissural axons tipped with a specialized, motile sensing device called a 

growth cone [Tessier-Lavigne and Goodman, 1996]. Growth cones express an array of axon 

guidance receptors such as DCC. The binding of a chemotactic (diffusible) or haptotactic 

(substrate-bound) guidance cue to an axon guidance receptor generates a permissive or non-

permissive axonal outgrowth signal, or an attractive or repulsive directional response 

[Tessier-Lavigne and Goodman, 1996; Raper and Mason, 2010]. The signals transduced by 
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axon guidance receptors converge to modulate the assembly of growth cone filamentous 

actin and cytoskeletal microtubules required for directing axon outgrowth and guidance 

towards or away from a guiding cell population [Luo, 2002; Kahn and Baas, 2016].

Monoallelic and biallelic germline DCC mutations disrupt commissural axon guidance 

[Srour, et al., 2010; Jamuar, et al., 2017; Marsh, et al., 2017; Welniarz, et al., 2017b]. These 

disruptions impair the normal development and function of tracts such as the corticospinal 

tract (CST) and corpus callosum (CC). Monoallelic DCC mutations cause congenital mirror 

movements (MMs, MIM# 157600) in association with abnormal midline crossing of the 

CST, isolated agenesis of the CC (iACC, MIM# 217990), or both [Srour, et al., 2010; Marsh, 

et al., 2017]. Alternatively, biallelic DCC mutations leading to predicted loss-of-function 

(LoF) cause developmental split brain syndrome (DSBS, MIM# 617542), a more complex 

syndrome associated with agenesis of the corpus callosum (ACC) as well as widespread 

failure of commissural tracts throughout the rest of the CNS, with or without MMs [Jamuar, 

et al., 2017].

Variant Database

We created a new repository for all reported disease-associated DCC sequence variants using 

the Leiden Open Variation Database (LOVD 3.0: http://databases.lovd.nl/shared/genes/

DCC) [Fokkema, et al., 2011]. The International Research Consortium for the Corpus 

Callosum and Cerebral Connectivity (IRC5, http://www.irc5.org) encourages users to 

register and submit data, including clinical and neuroimaging phenotypic data.

Variant Nomenclature

The nomenclature for DNA and protein sequence variants adheres to the guidelines of the 

Human Genome Variation Society (HGVS) [den Dunnen and Antonarakis, 2000]. Variant 

descriptions were based on the following Genbank reference sequences: NG_013341.2, 

NM_005215.3 and NP_005206.2. We utilized the Mutalyzer program (https://mutalyzer.nl/) 

to validate variant descriptions. At the time of publication, the DCC Locus Reference 

Genomic sequence (LRG_1107) was under curation and pending approval [MacArthur, et 

al., 2014].

Variants

To date, 26 unique DCC mutations have been associated with MMs, iACC and DSBS in 66 

individuals from 25 unrelated families (Figure 1]. There are 29 reported unaffected 

heterozygous mutation carriers; 11 confirmed carriers from 7 unrelated families assessed for 

MMs and brain abnormalities using magnetic resonance imaging (MRI) or computed 

tomography (CT), and 18 carriers from 9 unrelated families that appear clinically unaffected 

but have not been assessed for MMs and brain abnormalities. There are no reported 

unaffected individuals with biallelic, predicted LoF DCC mutations.

Monoallelic or biallelic missense (14 out of 24; 58%) and monoallelic, predicted LoF (10 

out of 24; 42%) DCC mutations may cause MMs, iACC, or both (Table 1]. These include 

one case each where two heterozygous missense mutations were inherited in cis p.
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(Met1217Val;p.Ala1250Thr) or in trans p.(Gly470Asp);(p.(Gly803Arg) and a biallelic p.

(Gln691Lys) mutation observed in conjunction with an interhemispheric cyst and modest 

learning difficulties [Méneret, et al., 2014a; Jamuar, et al., 2017; Marsh, et al., 2017]. 

Alternatively, biallelic, predicted LoF (2 out of 2; 100%) DCC mutations cause DSBS. 

Germline transmission of the mutant allele, except for a p.(Gly803Arg) mutation that arose 

de novo, was confirmed in all pedigrees where parental genotypes were available [Méneret, 

et al., 2014a]. DCC-MMs and DCC-iACC are both associated with reduced penetrance: 

MMs ≈42% penetrance and iACC ≈26% penetrance [Marsh, et al., 2017]. In contrast, DSBS 

appears to be fully penetrant. Monoallelic DCC mutations are also associated with variable 

expressivity and affected individuals within one family may present with MMs, iACC, or 

both [Marsh, et al., 2017]. All DCC residues altered by a missense mutation are conserved 

throughout vertebrate evolution, although it should be noted that Dcc has been lost in 

passeriformes and galliformes during bird evolution, and are either novel (8 out of 14; 57%) 

or found at a minor allele frequency of less than 0.5% (6 out of 14; 43%) in the Exome 

Aggregation Consortium (ExAC) (Supp. Table S1) [Friocourt, et al., 2017]. Predicted LoF 

DCC mutations include nine frameshift mutations, two truncating mutations and an 

intragenic deletion encompassing exons 4 and 5 (Table 1].

Structure and Function

DCC is composed of four structurally distinct, evolutionarily conserved regions: four 

extracellular immunoglobulin-like (Ig-like) domains, six extracellular fibronectin type III-

like (FN3) domains, a transmembrane domain, and an intracellular domain with three 

conserved P motifs (Supp. Figure S1) [Kolodziej, et al., 1996]. Each region of DCC appears 

to have a unique functional role required for the transduction of NTN1 signaling.

The distal N-terminal region of DCC contains four Ig-like domains and three inter-domain 

linkers that together comprise 371 amino acids (residues 46–417). These domains fold into a 

horseshoe-like configuration that appears necessary for DCC to transduce NTN1-signaling 

[Chen, et al., 2013]. The proximal N-terminal region of DCC contains six FN3 domains and 

five inter-domain linkers that together comprise 612 amino acids (residues 429–1041). 

Regions within the 4th, 5th and 6th FN3 domains bind NTN1 [Bennett, et al., 1997; 

Geisbrecht, et al., 2003; Finci, et al., 2014; Xu, et al., 2014]. This extracellular binding 

brings two DCC proteins into close proximity, enabling their intracellular domains to 

homodimerize and initiate the recruitment of multi-protein complexes required to transduce 

NTN1 signaling [Stein, et al., 2001; Mille, et al., 2009].

The DCC ligand, NTN1, is an extracellular protein belonging to the laminin superfamily and 

is composed of three structurally distinct regions: a laminin-like domain (LN), three 

laminin-type epidermal growth factor-like domains (LE) and a netrin-like domain (NTR) 

[Serafini, et al., 1994]. NTN1 has three distinct DCC-binding sites (binding site 1, 2 and 0; 

BS1, BS2 and BS0) (Figure 2]. BS1 is located on the third LE of NTN1 and interacts 

exclusively with the 5th FN3 domain of DCC. This site functions as a DCC-specific binding 

site and is stabilized by several hydrophobic interactions supported by a surrounding 

network of hydrogen bonds (Figure 3A) [Finci, et al., 2014]. BS2 is located on the first and 

second LE domains of NTN1 and interacts with a distinct region of the 5th FN3 domain as 
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well as the N-terminal region of the 6th FN3 domain of DCC. This site functions as a generic 

binding site that can interact with receptors other than DCC [Finci, et al., 2014]. BS2 is 

predominantly stabilized by a group of sulfate and chloride anions that neutralize positively 

charged patches on NTN1 and DCC residues located at the binding interface (Figure 3B) 

[Finci, et al., 2014]. The adaptable nature of BS2 allows binding to the 1st and 2nd Ig-like 

domains of members of the unc-5 netrin receptor (UNC5, MIM# 603610) family of 

repulsive axon guidance proteins, which appear to have a higher affinity for BS2 relative to 

DCC [Leonardo, et al., 1997; Hong, et al., 1999; Geisbrecht, et al., 2003; Finci, et al., 2014]. 

As a result, UNC5 are able to outcompete DCC at BS2 and switch an attractive growth cone 

response (mediated via NTN1-induced DCC homodimerization) to a repulsive response 

(mediated via NTN1-induced DCC and UNC5 heterodimerization) [Hong, et al., 1999; 

Finci, et al., 2014; Grandin, et al., 2016]. In contrast to BS1 and BS2, BS0 is located on the 

LN of NTN1 and interacts with the 4th FN3 domain of DCC [Xu, et al., 2014]. This NTN1 

protein is different to the one simultaneously engaged at BS1 and BS2, but binds the same 

DCC protein occupied at BS1 (Figure 3C]. The binding of DCC by a second NTN1 protein 

at BS0 is thought to generate a signaling cluster important for the transduction of a 

directional response towards or away from a guiding cell population [Finci, et al., 2015].

Taken together, these studies indicate that NTN1 forms two distinct binding clusters through 

BS0, BS1, and BS2 and that these clusters underpin its bifunctionality as an attractive and 

repulsive guidance cue. The first cluster involves the 4th and 5th FN3 domains of one DCC 

protein at BS0 and BS1, while the second cluster involves the 5th and 6th FN3 domains of a 

second DCC protein or the 1st and 2nd Ig-like domains of an UNC5 family member protein 

at BS2. However, it should be noted that the actual in vivo binding structure may differ as 

these studies utilized a recombinant NTN1 protein lacking its NTR domain and different 

truncated DCC fragments, both lacking the NTN1 binding region in its entirety [Finci, et al., 

2014; Xu, et al., 2014].

The importance of the 4th, 5th and 6th FN3 domains are highlighted by the significant 

enrichment of DCC missense mutations linked to MMs and/or iACC within these NTN1 

binding regions compared with missense variants located in these domains in the ExAC 

(Figure 4 A–B) [Marsh, et al., 2017]. This enrichment is most significant for monoallelic, 

missense mutations linked to iACC (5 out of 9; 56%) and suggests that missense mutations 

may cause disease through different, perhaps more complex mechanisms compared to those 

mutations leading to predicted LoF and haploinsufficiency. This may be due to reduced or 

perturbed NTN1-induced axon repulsion and/or attraction caused by dysfunction of the 

mutant DCC protein in both a mutant-mutant homodimer and wild-type-mutant homodimer 

complex. Additional studies are required to determine whether these missense alterations 

cause complete or partial LoF or perhaps gain-of-function as antimorphic, hypermorphic or 

neomorphic mutations. For instance, it remains to be determined whether mutant DCC 

proteins are stably expressed and trafficked to the plasma membrane or aberrantly 

sequestered in the cytoplasm like mutant NTN1 proteins [Méneret, et al., 2017]. However, 

absence of the DSBS phenotype in an individual with a biallelic p.(Gln691Lys) missense 

mutation suggests that these mutant proteins may retain some residual function [Jamuar, et 

al., 2017].
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The DCC transmembrane domain comprises 24 amino acids (residues 1098 to 1122). To 

bind NTN1, DCC must correctly partition its transmembrane domain within the cell plasma 

membrane. The palmitoylation and localization of the transmembrane domain to lipid rafts 

(cholesterol- and sphingolipid-enriched membrane subdomains of the plasma membrane) 

has been demonstrated to be necessary for DCC to transduce NTN1-induced axon guidance 

and outgrowth [Guirland, et al., 2004; Herincs, et al., 2005].

The intracellular, C-terminal region of DCC contains 324 amino acids (residues 1123–1447) 

and is required to transduce NTN1 signals into appropriate growth cone responses. Within 

the C-terminal region there are three conserved P motifs referred to as P1 (encoded by 

residues 1150–1167), P2 (encoded by residues 1330–1365) and P3 (encoded by residues 

1424–1447) [Kolodziej, et al., 1996]. These P motifs are involved in numerous protein-

protein interactions and phosphorylation cascades required for the intracellular transduction 

of NTN1 signaling [Hong, et al., 1999; Stein and Tessier-Lavigne, 2001; Li, et al., 2004; 

Ren, et al., 2004; Fothergill, et al., 2014]. For example, the NTN1-induced, intracellular 

homodimerization of the DCC P3 motifs initiates downstream signaling events that generate 

an attractive growth cone response [Stein, et al., 2001; Li, et al., 2002; Li, et al., 2004; Liu, 

et al., 2004; Meriane, et al., 2004; Ren, et al., 2004; Ren, et al., 2008]. Alternatively, the 

NTN1-induced, intracellular heterodimerization of the DCC P1 motif and the DCC binding 

(DB) motif of UNC5 family members initiates downstream signaling events that generate a 

long-range, repulsive growth cone response [Hong, et al., 1999; Keleman and Dickson, 

2001; Li, et al., 2006; Norris, et al., 2014].

Genotype-Phenotype Correlation

Monoallelic frameshift and nonsense DCC mutations are predicted to result in 

haploinsufficiency via nonsense mediated mRNA decay or rapid turnover of the truncated 

protein, resulting in reduced NTN1 binding [Srour, et al., 2010]. This is in contrast to DCC 
missense mutations that likely generate a full-length protein within the cell [Meriane, et al., 

2004; Finci, et al., 2014]. DCC proteins carrying a missense mutation may be non-

functional, hypomorphic or may have an altered function that imparts a dominant effect 

through perturbed NTN1 binding, receptor multimerization and/or downstream signaling 

[Meriane, et al., 2004; Finci, et al., 2014]. Monoallelic, truncating DCC mutations predicted 

to result in haploinsufficiency are frequently associated with MMs (8 out of 10; 80%) or 

MMs with iACC (2 out of 10; 20%). DCC missense mutations are less frequently associated 

with MMs (5 out of 14; 36%). Instead, the majority of these mutations are associated with 

iACC (7 out of 14; 50%) or MMs with iACC (2 out of 14; 14%). This disparity may be due 

to developmental differences between the CC and the subcerebrally projecting neurons that 

comprise the CST. The neuronal populations that comprise each of these tracts are 

molecularly distinct and uniquely employ DCC and NTN1 signaling to reach their 

contralateral targets [Molyneaux, et al., 2007; Fothergill, et al., 2014]. Therefore, a missense 

or predicated LoF DCC mutation may differentially affect commissural versus subcerebral 

axon trajectories, thus leading to iACC, MMs or both [Marsh, et al., 2017]. Although these 

observations do support the hypothesis that distinct disease mechanisms contribute to DCC-

MMs or DCC-iACC, additional functional investigations are required to confirm this 

correlation. These investigations could utilize in vivo techniques such as in utero 
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electroporation or conditional gene knockout to study the effect loss or dysfunction of Dcc 

has on the outgrowth and guidance of axons extending from specific populations of 

projection neurons during development.

Monoallelic, missense mutations located within the NTN1 binding sites of DCC appear to 

be strongly associated with iACC [Marsh, et al., 2017]. Indeed, the majority of DCC 
mutations located within the 4th and 5th FN3 domains are associated with iACC (5 out of 6; 

83%). Interestingly, the p.(Val793Gly) and p.(Gly805Glu) missense mutations located 

directly within the NTN1 binding interface are associated with a more severe phenotype that 

features both iACC and MMs [Marsh, et al., 2017]. Previous studies have shown a 

differential disruption to NTN1-induced axon attraction and repulsion dependent on the 

location of the mutated DCC residue within the NTN1 binding interface (Figure 4C) [Finci, 

et al., 2014]. Consequently, DCC mutations located within the NTN1 binding interface may 

cause more severe disruptions to commissural axon outgrowth and guidance that result in a 

phenotype that features both iACC and MMs. Overall, it appears that the majority of 

missense iACC mutations localize to the FN3 domains (7 out of 9; 78%), highlighting the 

importance of these domains to DCC function and callosal development.

The observed structure of pedigrees with monoallelic, predicted LoF DCC mutations has 

suggested a sex-bias in MMs and iACC phenotype expression [Sharafaddinzadeh, et al., 

2008; Srour, et al., 2009; Marsh, et al., 2017]. Indeed, within these pedigrees a significant 

proportion of males displayed MMs, whilst iACC was almost exclusively detected in 

females [Marsh, et al., 2017]. Sex differences in callosal morphology have previously been 

linked with testosterone levels during prenatal brain development [Moffat, et al., 1997; 

Chura, et al., 2010]. Consistent with these observations, RNAseq and RT-qPCR analyses 

have detected a significant dose-dependent increase in DCC expression in testosterone-

treated neural stem cells derived from human embryonic stem cells [Marsh, et al., 2017]. 

These findings suggest that iACC may occur when the expression of DCC falls below a 

threshold level during CC development, as would occur more commonly in females. 

However, given the incomplete penetrance observed in both sexes, the phenotype must also 

be influenced by additional genetic, epigenetic and/or environment factors [Marsh, et al., 

2017]. Furthermore, the sex-specific nature of this phenotype imbalance remains to be 

verified as reciprocal analyses utilizing estrogens have not been reported. Additional in vivo 
investigations are required to evaluate the potential impact the hormonal context during 

brain development has on DCC expression and whether it influences the expressivity of the 

MMs and iACC phenotype.

Biological Significance

Commissural axons form connections between the left and right sides of the brain that are 

required for the transfer and integration of information generated by sensory, motor and 

associative neurons. These connections are defined anatomically as either commissures or 

decussations. Whereas commissures cross the midline to form predominantly homotopic 

connections, decussations descend or ascend along the neuraxis before crossing the midline 

to form connections with different neuronal populations. For instance, axons within the CC 

arch over the lateral ventricles in a segregated, orderly manner to form predominantly 
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homotopic connections with their target cells in the contralateral cerebral hemisphere [Zhou, 

et al., 2013]. These connections function by mediating higher-order brain processes and 

facilitating the integration of sensory and motor information between the two cerebral 

hemispheres [Paul, et al., 2007]. Within the CST, axons cross the midline at the medulla to 

form the pyramidal decussation between the brainstem and the spinal cord [Nathan, et al., 

1990]. The connections formed by axons within the crossed CST facilitate the voluntary and 

unilateral movement of the contralateral distal limbs [Welniarz, et al., 2017a]. Several 

additional tracts within the brainstem are disrupted in DSBS [Jamuar, et al., 2017]. These 

appear to include the decussation of the superior cerebellar peduncles (also referred to as the 

commissure of Wernekinck) that connects the cerebellum to the midbrain, and the 

commissural tract linking the lateral abducens and medial occulomotor nerves, required for 

conjugate horizontal eye movement [Jen, 2008; Jamuar, et al., 2017].

The function of each commissural tract is underpinned by the transcriptionally distinct 

neuronal subtypes that comprise it [Molyneaux, et al., 2007; Harada, et al., 2016]. For 

instance, the CC is formed from pioneer axons extending from neurons in the cingulate 

cortex and follower axons extending from callosal projection neurons located within layers 

II/III and Va of the cerebral cortex [Fame, et al., 2011]. In comparison, the CST is comprised 

of an array of axons extending from subcerebrally projecting neurons situated within layer 

Vb of the cortex [Dum and Strick, 1991; Harwell, et al., 2012]. Notably, the tracts associated 

with the brainstem originate from diverse nuclei. For example, the transverse 

pontocerebellar projections arise from pontine nuclei while cranial nerves originate from 

nuclei located throughout the midbrain, pons and medulla. To reach their contralateral 

targets, these neuronal subtypes extend axons that express a unique repertoire of receptors, 

including DCC, on their growth cones [Dickson and Zou, 2010; Evans and Bashaw, 2010]. 

The tightly regulated, spatiotemporal expression of axon guidance receptors and their 

ligands control the development of tracts such as the CC and CST [Chedotal and Richards, 

2010]. As highlighted below, our understanding of the development of these tracts and the 

associated role of DCC and NTN1 signaling in humans has been predominantly informed by 

the study of these biological processes in mice.

The formation of the CC is complex and dependent on the execution of several 

developmental steps. Briefly, these include midline patterning and remodeling of the 

interhemispheric fissure by astroglia to create a permissible substrate for commissural axons 

to cross the midline [Silver, et al., 1982; Hayhurst, et al., 2008; Okada, et al., 2008; Gobius, 

et al., 2016); secretion of guidance cues by populations of glia and neurons situated around 

the midline [Shu and Richards, 2001; Shu, et al., 2003; Unni, et al., 2012); pioneering of the 

callosal tract by axons extending from neurons in the cingulate cortex [Rash and Richards, 

2001); and fasciculation of callosal axons with pioneer axons as they grow towards and 

across the midline [Koester and O’Leary, 1994; Rash and Richards, 2001]. Dcc and Ntn1 are 

required for the normal development of the CC and their loss or dysfunction in mice is 

associated with complete ACC [Serafini, et al., 1996; Fazeli, et al., 1997; Finger, et al., 

2002]. While both pre-crossing pioneer and callosal axons express Dcc, only the former 

axonal population appears to be attracted towards the midline by Ntn1 [Shu, et al., 2000; 

Fothergill, et al., 2014]. Instead, it has been shown that pre-crossing callosal axons utilize 

Dcc and Ntn1 signaling to attenuate the repulsive signaling of Robo1 and Slit2 (another 
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axon guidance receptor-ligand pair) to approach and cross the midline [Stein and Tessier-

Lavigne, 2001; Fothergill, et al., 2014]. The expression of Dcc in post-crossing callosal 

axons is subsequently downregulated, thereby restoring the repulsive effect of Robo1 and 

Slit2 signaling to direct axons away from the midline and towards their targets in the 

contralateral cerebral hemisphere [Shu, et al., 2000; Fothergill, et al., 2014].

The subcerebrally projecting neurons that comprise the CST mainly originate from the 

primary motor and premotor areas of the cortex and follow a stereotyped route to innervate 

their targets in the spinal cord [Dum and Strick, 1991]. During development, axons from 

these projection neurons converge and descend through the internal capsule and cerebral 

peduncles of the midbrain before entering the ventral brainstem where they form the 

medullary pyramids. Most CST projections then cross the midline in the caudal region of the 

medulla to form the pyramidal decussation, before projecting inferiorly in the spinal cord to 

synapse with lower motor neurons or interneurons in the ventral spinal cord to facilitate 

voluntary movement of the limbs [Welniarz, et al., 2017a]. Dcc is required for the normal 

development of the CST in mice and Dcc dysfunction is associated with a failure of the CST 

to cross the midline at the level of the pyramidal decussation [Finger, et al., 2002; Welniarz, 

et al., 2017b]. However, Dcc does not appear to be expressed in the brainstem CST of mice 

as it is significantly downregulated in the distal portion of the axon that grows beyond the 

internal capsule [Shu, et al., 2000; Finger, et al., 2002]. Interestingly, the role of Dcc in the 

development of the CST at the midline was reported to be non-cell autonomous as 

conditional knockout of Dcc in the cortex (and therefore the CST) caused ACC but not a 

failure of the CST to cross the midline [Welniarz, et al., 2017b].

In the brainstem and spinal cord, Dcc is present on commissural axons which are guided 

circumferentially from the dorsal roof plate towards the ventral floor plate (where midline 

crossing occurs) in response to Ntn1 [Holley, 1982; Tessier-Lavigne, et al., 1988; Yee, et al., 

1999; Dominici, et al., 2017; Varadarajan, et al., 2017]. The attractive response of these 

commissural axons to Ntn1 is regulated by Dcc in partnership with Robo3, another axon 

guidance receptor required for normal development of the hindbrain and spinal cord 

[Marillat, et al., 2004; Sabatier, et al., 2004; Chen, et al., 2008; Zelina, et al., 2014]. 

Pioneering studies utilizing embryonic chick spinal cord demonstrated that this axonal 

navigation is reliant on a ventral-dorsal gradient of Ntn1 diffused from the floor plate 

[Kennedy, et al., 1994]. Subsequent studies in mice also detected a similar graded 

distribution of Ntn1 extending from the floor plate, supporting the observation that Ntn1 

functions as a long-range diffusible chemoattractant [Serafini, et al., 1996; Kennedy, et al., 

2006]. However, recent reports have revised this model by demonstrating that Ntn1 

produced by neural progenitors in the ventral ventricular zone of hindbrain and spinal cord 

neuroepithelium are essential for commissural axon extension towards the ventral midline in 

embryonic mice [Dominici, et al., 2017; Varadarajan, et al., 2017; Yamauchi, et al., 2017]. 

These reports propose that, in mice, commissural axons are directed via Dcc-dependent 

haptotaxis towards the ventral midline by Ntn1 produced and deposited at the pial surface of 

the hindbrain and spinal cord, not via a diffusible gradient of Ntn1 emanating from the floor 

plate [Dominici, et al., 2017; Varadarajan and Butler, 2017; Varadarajan, et al., 2017; 

Yamauchi, et al., 2017]. Therefore, regardless of how Ntn1 is presented to axons, it is clear 
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that it functions to direct Dcc-expressing commissural axons towards the ventral midline of 

the hindbrain and spinal cord during development.

Clinical Relevance

MMs are involuntary movements on one side of the body that mirror voluntary movements 

made on the opposite side [Cincotta and Ziemann, 2008]. DCC-MMs commonly present in 

infancy or early childhood and persist stably into adulthood [Srour, et al., 2009; Srour, et al., 

2010; Depienne, et al., 2011; Méneret, et al., 2014a; Franz, et al., 2015; Marsh, et al., 2017]. 

DCC-MMs manifest in the fingers and hands but may also be present in the forearms, toes 

and feet in a subset of affected individuals (Supp. Table S2) [Srour, et al., 2010; Méneret, et 

al., 2014a; Marsh, et al., 2017]. With effort, some affected individuals can partly suppress 

these involuntary movements [Srour, et al., 2009]. Individuals with DCC-MMs exhibit a 

range of functional disabilities besides difficulties in fine bimanual activities. These include 

fatigue, spontaneous muscle contractions and pain in the upper limbs during extended 

manual activities such as writing, as well as general clumsiness and compensatory 

maneuvers to inhibit involuntary movements [Depienne, et al., 2011; Méneret, et al., 2014a; 

Meneret, et al., 2015; Marsh, et al., 2017]. As a result, DCC-MMs may preclude affected 

individuals from professions and social activities that demand sustained or complex 

bimanual coordination. Individuals with DCC-MMs do not appear to exhibit any additional 

clinical manifestations and have a normal developmental outcome [Sharafaddinzadeh, et al., 

2008; Srour, et al., 2009; Srour, et al., 2010; Depienne, et al., 2011; Méneret, et al., 2014a; 

Franz, et al., 2015; Meneret, et al., 2015; Marsh, et al., 2017; Welniarz, et al., 2017b]. 

However, only a subset of individuals diagnosed with DCC-MMs are reported to have 

undergone brain imaging (12 out of 42; 29%) and formal neuropsychological evaluation (2 

out 42; 5%) and therefore the phenotypic spectrum of DCC-MMs remains to be defined 

[Marsh, et al., 2017].

DCC-MMs are observed in association with midline axon guidance defects, evidenced by 

decreased crossing of descending corticospinal motor projections at the pyramidal 

decussation [Marsh, et al., 2017; Welniarz, et al., 2017b]. This reduction of crossed 

projections occurs in conjunction with a relative, reciprocal increase of uncrossed 

projections [Marsh, et al., 2017; Welniarz, et al., 2017b]. Concordantly, unilateral 

transcortical stimulation of the primary hand motor area elicits both normal, contralateral 

and abnormal, ipsilateral motor evoked potentials in individuals with DCC-MMs [Cincotta, 

et al., 1994; Srour, et al., 2010; Welniarz, et al., 2017b]. As a result, DCC-MMs are thought 

to originate from the bilateral transmission of motor commands through normally crossed 

and abnormally uncrossed, fast-conducting CST projections in the spinal cord [Srour, et al., 

2010; Welniarz, et al., 2015; Welniarz, et al., 2017b].

Individuals with monoallelic, missense DCC mutations may also present with iACC, with or 

without MMs [Marsh, et al., 2017]. ACC describes the partial or complete absence of the 

CC and is characterized by the failure of callosal axons to cross the midline. Apart from the 

abnormalities typically expected to be associated with ACC, such as the absence of the 

hippocampal commissure and cingulate gyrus and dysmorphic lateral ventricles or 

colpocephaly, individuals with iACC do not present with additional brain abnormalities 
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[Kuker, et al., 2003; Cesaretti, et al., 2016]. Individuals with DCC-iACC may present with 

complete iACC (14 out of 19; 74%) or partial iACC (5 out of 19; 26%) [Marsh, et al., 2017]. 

Approximately half of these individuals also present with MMs (9 out of 19; 47%), which 

suggests that DCC-iACC may frequently present as part of a global disorder of midline 

crossing [Parrish, et al., 1979; Paul, et al., 2007; Marsh, et al., 2017]. Other callosal 

abnormalities such as hypoplasia (a uniformly thin CC) and/or dysplasia (abnormal CC 

shape) have not been observed in individuals with DCC-iACC [Marsh, et al., 2017]. 

Individuals with DCC-iACC show no consistent additional gross brain abnormalities in the 

posterior commissure, ventricular system, cerebral cortex, white matter, hippocampi, 

brainstem, basal ganglia, cerebral and cerebellar peduncles, cerebellar vermis and 

hemispheres, optic chiasm, and pituitary gland (Figure 5) [Marsh, et al., 2017]. However, the 

anterior commissure of some DCC-iACC individuals may be enlarged [Marsh, et al., 2017]. 

Enlargement of the anterior commissure is also observed in a minority of individuals with 

ACC and has been suggested to represent a compensatory mechanism to maintain 

connectivity between the cerebral hemispheres [Barr and Corballis, 2002; Hetts, et al., 

2006].

The clinical manifestations of DCC-iACC vary, but they are generally associated with a 

favorable development outcome with no intellectual disability [Marsh, et al., 2017) (Supp. 

Table S2). Still, individuals with DCC-iACC do commonly exhibit typical neurobehavioral 

consequences associated with ACC, such as impairments in emotional and social 

functioning in addition to attention, language, visuospatial and literacy and numeracy 

deficits [Paul, et al., 2007; Sotiriadis and Makrydimas, 2012; Marsh, et al., 2017].

Biallelic, DCC mutations leading to predicted LoF are associated with DSBS, a complex 

syndrome associated with a broad disorganization of white-matter tracts throughout the CNS 

[Jamuar, et al., 2017]. The features of DSBS include absence of all commissures (including 

the CC, anterior and posterior), brainstem defects (including hypoplasia of the pons and 

midbrain), horizontal gaze palsy and progressive scoliosis with a variable age of onset 

(Figure 5].

Several features of DSBS overlap with HGPPS1 (MIM# 607313), a congenital syndrome 

caused by biallelic mutations in the axon guidance receptor ROBO3 (MIM# 608630) [Jen, et 

al., 2004; Chan, et al., 2006; Sicotte, et al., 2006]. Robo3 is a functional, intracellular 

binding partner of Dcc, expressed by commissural axons in the brainstem and spinal cord 

[Marillat, et al., 2004; Sabatier, et al., 2004; Zelina, et al., 2014]. The overlapping feature of 

horizontal gaze palsy in DSBS and HGPPS1 affected individuals appears to originate from 

hindbrain midline axon guidance defects in tracts that control conjugate horizontal eye 

movement [Jen, et al., 2004; Chan, et al., 2006; Sicotte, et al., 2006; Renier, et al., 2010; 

Jamuar, et al., 2017]. The pathogenesis of progressive scoliosis in both these disorders is 

unknown, but may stem from defective spinal commissural interneurons or abnormal 

development of extrapyramidal projections [Jen, et al., 2004; Rabe Bernhardt, et al., 2012; 

Jamuar, et al., 2017]. Diffusion MRI of one DSBS individual with a biallelic p.

(Val263Alafs*36) mutation revealed several tract defects, including absence of the 

decussation of the superior cerebellar peduncles and transverse pontocerebellar projections 

[Jamuar, et al., 2017]. These commissural defects are also observed in individuals with 
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HGPPS1 [Sicotte, et al., 2006]. Individuals with DSBS may also present with MMs, which 

are associated with the reduced midline crossing of descending CST projections at the 

pyramidal decussation [Jamuar, et al., 2017]. This is in contrast to individuals with HGPPS1 

who do not display MMs, a feature attributed to an uncrossed CST leading to reversed 

lateralization of motor control [Jen, et al., 2004]. It is currently unknown why some 

individuals with DSBS and complete loss of DCC do not present with MMs. However, like 

HGPPS1, this may be due to a complete, rather than partial, failure of the descending CST to 

cross the midline. The other major clinical manifestations of DSBS include intellectual 

disability, global developmental delay and hypotonia (Supp. Table S2) [Jamuar, et al., 2017]. 

Individuals with DSBS have a poor developmental outcome compared to individuals with 

DCC-iACC, likely attributed to additional brain abnormalities affecting the formation of 

other commissural tracts [Jamuar, et al., 2017; Marsh, et al., 2017].

Diagnostic Strategies

The clinical assessment and diagnosis of MMs is commonly based on the Woods and Teuber 

severity scale developed in 1978 [Woods and Teuber, 1978]. The assessment typically 

consists of three different hand motor tasks. The level of MMs visible in the mirror hand is 

scored on a scale between 1 - barely discernible repetitive movement and 4 - movement 

equal to that expected for the intended hand [Woods and Teuber, 1978]. The majority of 

individuals with DCC-MMs score between 2 (slight but unsustained or stronger, but briefer, 

repetitive movement) and 3 (strong and sustained repetitive movement). Recently, 

accelerometer gloves were utilized to quantitatively evaluate MMs in a multiplex MMs 

family with a monoallelic, p.(Pro551Leufs*26) DCC mutation [Franz, et al., 2015]. These 

gloves detect subtle movement, in contrast to electromyography that measures the electrical 

activity produced by skeletal muscle [Franz, et al., 2015]. Interestingly, the accelerometer 

gloves led to the diagnosis of subclinical MMs in two additional family members initially 

diagnosed as unaffected carriers following standardized neurological assessment. The 

current penetrance of DCC-MMs is approximately 42% [Marsh, et al., 2017]. In light of 

these findings, it appears likely that a proportion of clinically unaffected mutation carriers 

have subclinical MMs and that the true prevalence of DCC-MMs may be higher. It remains 

to be determined whether subclinical DCC-MMs are associated with a similar, or perhaps 

less severe, failure of the CST to cross the midline.

Brain abnormalities such as ACC can be readily identified utilizing ultrasonography, CT and 

MRI. MRI is considered the gold standard for the diagnosis of ACC because of its superior 

sensitivity and ability to differentiate iACC and complex ACC (ACC with additional brain 

abnormalities) [Rapp, et al., 2002; Wright, et al., 2010; Tercanli and Prufer, 2016]. The 

distinction of the latter is important in a prenatal setting as individuals with iACC generally 

have a favorable developmental outcome compared to those with complex ACC [Sotiriadis 

and Makrydimas, 2012; Edwards, et al., 2014; D’Antonio, et al., 2016; des Portes, et al., 

2017]. Likewise, individuals with DCC-iACC have a favorable developmental outcome 

while individuals with DSBS have a poor developmental outcome. The current penetrance of 

DCC-iACC is approximately 26% [Marsh, et al., 2017]. However, brain imaging studies 

have not been completed for the majority of affected individuals originating from DCC-

MMs-only families (29 out of 36; 81%). Given its mild clinical phenotype and concomitance 
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with DCC-MMs, it is probable that further brain imaging studies will identify DCC-iACC in 

a proportion of these mutation-positive individuals. Like DCC-MMs, the true prevalence of 

DCC-iACC is likely to be higher than current estimates.

Genetic screening for monoallelic DCC mutations is recommended for individuals 

presenting with MMs, iACC or both, in the absence of intellectual disability. Alternatively, 

screening for biallelic DCC mutations with predicted LoF is recommended for individuals 

presenting with characteristic features of DSBS, including horizontal gaze palsy, ACC, 

brainstem defects and progressive scoliosis. Direct sequencing of coding exons and flanking 

intronic regions using germline DNA is advised when screening for DCC mutations. Given 

the mild clinical phenotype and high rates of incomplete penetrance associated with DCC-

MMs and DCC-iACC, cascade testing should be considered for all extended family 

members at risk of inheriting a mutant allele. Differential genetic diagnoses for DCC-MMs 

include NTN1 and RAD51 (MIM# 179617) [Depienne, et al., 2012; Méneret, et al., 2014a; 

Méneret, et al., 2017); for DCC-iACC include CDK5RAP2 (MIM# 608201, although only 

one family has been described to date [Jouan, et al., 2016)); and for DSBS include ROBO3 
(note: individuals with HGPPS1 do not suffer from intellectual disability and have normal 

forebrain commissures, consistent with the predominant role of ROBO3 in the developing 

hindbrain and spinal cord) [Jen, et al., 2004; Chan, et al., 2006; Sicotte, et al., 2006]. 

However, the low diagnostic yield of genetic screening studies indicates that additional MMs 

and iACC disease genes remain to be identified and therefore mutations in DCC, NTN1, 

RAD51 and CDK5RAP2 will not always be identified in individuals with these phenotypes 

[Méneret, et al., 2014a; Méneret, et al., 2014b; Franz, et al., 2015; Jamuar, et al., 2017; 

Marsh, et al., 2017; Méneret, et al., 2017].

Variants of Unknown Significance

The classification and clinical interpretation of a DCC sequence variant is challenged by the 

variable expressivity of monoallelic DCC mutations and the incomplete penetrance 

associated with DCC-MMs and DCC-iACC. It may also be complicated by phenotypic 

heterogeneity and the identification of other potential pathogenic variants in an individual. In 

this context and in the absence of sufficient evidence to classify a DCC variant as pathogenic 

or not, it is recommended to report such a genetic alteration as a variant of unknown 

significance (VUS).

To illustrate these issues, we describe individual N-0083-01 with two novel, monoallelic 

VUS predicted to be damaging by most in silico tools: a maternally inherited 

NM_005215.3:c.916G>A:p.(Gly306Arg) DCC alteration and a de novo 
NM_001270399.1:c.1246G>A:p.(Gly416Ser) TUBA1A (MIM# 602529) alteration (Supp. 

Table S3) [Jamuar, et al., 2017]. The individual has complete ACC with a small pons and 

small inferior aspect of the midbrain, but no definite cortical malformation as would be 

expected to result from a pathogenic TUBA1A mutation [Keays, et al., 2007]. However, the 

individual does not exhibit the mild clinical manifestations associated with DCC-iACC. 

Instead, she has global developmental delay and severe cognitive impairments with 

significant emotional and behavioral problems in addition to spastic diplegia, strabismus and 

cortical visual impairment (Supp. Table S4). As exemplified by this case, additional disease 
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modeling and physiologically relevant functional assays are required to better inform the 

classification and clinical interpretation of DCC sequence variants, particularly for those 

causing missense alterations.

Future Prospects

Mutations in DCC disrupt the development of predominantly commissural tracts in the CNS 

and cause a spectrum of neurological disorders ranging from MMs and iACC with a normal 

or favorable developmental outcome, to DSBS with a poor developmental outcome. These 

findings are consistent with previously reported animal models and support the notion that 

DCC, in partnership with NTN1, functions as a master regulator of commissural axon 

guidance at the midline [Fazeli, et al., 1997; Finger, et al., 2002; Varadarajan, et al., 2017; 

Welniarz, et al., 2017b]. Future investigations into the underlying molecular mechanisms 

leading to these disorders will strengthen current genotype-phenotype correlations. However, 

insightful correlations will be dependent on the multidisciplinary phenotyping of affected 

individuals, employing standardized neurological assessment, formal neuropsychological 

evaluation and brain imaging studies. Utilization of advanced neuroimaging modalities, such 

as diffusion MRI-based tractography and functional MRI, will also aid our understanding of 

how the brains of these affected individuals is wired in the context of DCC dysfunction or 

LoF during development. We anticipate the DCC locus specific LOVD will function as a 

central data repository that will assist researchers to establish these important genotype-

phenotype correlations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Linear DCC gene schematic with protein domain structure depicting the location of all 

reported mutations. Square, predicted loss-of-function; circle, missense mutation; red, 

DSBS; green, MMs; blue, iACC; orange, MMs and iACC. The NTN1 binding region is 

indicated. IgC2, immunoglobulin-like type C2 domain; FN3, fibronectin type III –like 

domain; TM, transmembrane domain; P1–3, conserved P motifs. The NP_005206.2 

reference sequence is used. Image modified from Marsh et al. 2017.
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Figure 2. 
(A) Schematic drawing of DCC with protein domain structure depicting the location of the 

NTN1 binding sites (BS) 0, 1 and 2. (B) Structure of NTN1 protein depicting the location of 

its DCC binding sites BS0, BS1 and BS2. (C) NTN1 residues (colored spheres) that bind the 

4th and 5th FN3 domains of DCC (yellow and green ribbons, respectively) are conserved 

throughout evolution. Conserved residues are colored red, non-conserved residues are 

colored blue. IgC2, immunoglobulin-like type C2 domain; FN3, fibronectin type III –like 

domain; P1–3, conserved P motifs; NTR, netrin-like domain; LE, laminin-type epidermal 

growth factor-like domain; LN, laminin-like domain.
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Figure 3. 
(A) Binding site 1 (BS1) and BS2 of the NTN1/DCC complex (PDB ID: 4URT). (B) BS2 of 

the NTN1/DCC complex (PDB ID: 4URT). (C) BS0 of the NTN1/DCC complex (PDB ID: 

4PLO). Structure of NTN1 (transparent molecular surface) bound to DCC FN3 domains 

(orange ribbons). The expansion of the red dotted box region shows the NTN1 (magenta 

sticks) and DCC (gray or white sticks) involved in binding at BS1, BS2 or BS0. Hydrogen 

bonds are represented by dotted black lines. FN3, fibronectin type III –like domain; PDB ID, 

Protein Data Bank identification.
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Figure 4. 
The fibronectin type III –like (FN3) domains are required for NTN1 binding and DCC 

function. (A) Enrichment of DCC missense mutations linked to MMs and/or iACC within 

the NTN1 binding region. Structure of NTN1/DCC complex. DCC is depicted as an orange 

ribbon and NTN1 as a white solvent accessible surface. DCC missense mutations located 

within the FN3–4 and FN3–5 domains are represented as blue spheres (PDB ID: 4PLO). (B) 

Expansion of the binding interface (red dotted box in A) with NTN1 residues colored blue 

and critical DCC residues represented as purple sticks. Mutation of V793 and G805 to Gly 

and Glu, respectively, is associated with both MMs and iACC. (C) Sequence alignment of 

the DCC FN3 domains. Residues highlighted in green are predicted to be directly involved 

in NTN1 binding by Finci et al. 2014 and/or Xu et al. 2014. Residues in yellow are missense 

mutations associated with MMs and/or iACC. Residues in blue are missense mutations 

associated with MMs and/or iACC that are also predicted to be directly involved in NTN1 

binding. The NP_005206.2 reference sequence is used. PDB ID, Protein Data Bank 

identification. Image modified from Marsh et al. 2017.
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Figure 5. 
Axial MRI of control (A) and individuals with complete DCC-iACC (D), partial DCC-iACC 

(G) and DSBS (J). Midsagittal MRI of control (B) and individuals with complete DCC-

iACC (E), partial DCC-iACC with absence of the rostrum and genu (H) and DSBS (K). 

Coronal MRI of control (C) and individuals with complete DCC-iACC (F), partial DCC-

iACC (I) and DSBS (L). iACC, isolated agenesis of the corpus callosum; DSBS, 

developmental split brain syndrome. Images A-I adapted from Marsh et al. 2017. Images J-L 

adapted from Jamuar et al. 2017.
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