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ABSTRACT OF THE DISSERTATION

Electronic Properties of Misoriented Two-Dimensional Materials

by

Supeng Ge

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, March 2017

Dr. Roger Lake, Chairperson

Van der Waals (vdW) heterostructures assembled from graphene and hexagonal

boron nitride (h-BN) provide a platform for investigating fundamental physics and

also novel electronic properties that could be exploited for devices. Graphene/h-BN

heterostructures have higher carrier mobility and better device performance when

compared with traditional graphene-based devices on SiO2/Si substrate. Vertical

interlayer tunneling in graphene/h-BN/graphene structures also exhibit negative dif-

ferential resistance (NDR). These electrical properties have attracted considerable

attention for energy band engineering and device performance optimization.

Due to the intrinsic vdW forces between the layers, graphene stacked on h-BN

tends to be misoriented relative to the h-BN layer. Interlayer electron transport

through a graphene / rotated h-BN / graphene heterostructure is strongly affected

by the misorientation angle θ of the h-BN with respect to the graphene layers with

different physical mechanisms governing the transport in different regimes of angle,

Fermi level, and bias. The different mechanisms and their resulting signatures in
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resistance and current are analyzed using two different models, a tight-binding, non-

equilibrium Green’s function model and an effective continuum model. The qualita-

tive features resulting from the two different models compare well. In the large-angle

regime (θ > 4◦), the change in the effective h-BN bandgap seen by an electron at the

K point of the graphene causes the resistance to monotonically increase with angle

by several orders of magnitude reaching a maximum at θ = 30◦. It does not affect the

peak-to-valley current ratios in devices that exhibit negative differential resistance.

In the small-angle regime (θ < 4◦), Umklapp processes open up new conductance

channels that manifest themselves as non-monotonic features in a plot of resistance

versus Fermi level that can serve as experimental signatures of this effect. For small

angles and high bias, the Umklapp processes give rise to two new current peaks on

either side of the direct tunneling peak.

Electronic properties of a bilayer graphene/h-BN heterostructure are studied using

a continuum model. The simulation results show that the resistance at the secondary

Dirac cone as function of vertical electric field exhibits strong electron-hole asym-

metry. First principles simulations were used to understand the effect of a rotated

h-BN substrate on the electronic properties of trilayer graphene. Finally, tetra-layer

graphene’s transport properties are studied using a tight-binding model and Boltz-

mann transport theory. The interband and intraband scattering mechanisms give a

good explanation of the experimental results.
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Chapter 1

Rationale

1.1 Introduction

Moore’s law states that the number of transistors in integrated circuits doubles ap-

proximately every two years. The continued down scaling of the conventional silicon

metal-oxide-semiconductor-field transistor (MOSFET) is limited by short channel ef-

fects. One of the solutions is to find the alternative channel materials, which can scale

beyond the limitation of silicon. Two dimensional (2D) van der Waal (vdW) mate-

rials such as graphene, hexagonal boron nitride(h-BN) and layered transition metal

dichalcogenides (TMDC) are promising candidates for future electronic devices.

In the bulk and multilayer 2D vdW materials, the layers are attached by a weak

van der Waals force. Strong in-plane bonding and weak out-of-plane interactions allow

them to be exfoliated into atomically thin 2D sheets. The 2D materials can be treated

as Lego blocks [2] allowing us to build different multi-layer 2D heterostructures with

a variety of properties [3–5].

However, the weak out-of-plane interactions make 2D vdW layers susceptible to

interlayer misorientation. In current research and industry practice, the most com-
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mon methods for fabricating 2D vdW material devices are chemical vapor deposition

(CVD) [6] and mechanical transfer [7]. During these growth or assembly processes,

the layers can be misoriented, especially when assembled by mechanical transfer. Un-

derstanding how the misorientation affects the inter-layer and intra-layer resistance

is essential for engineering the performance of 2D vdW heterostructure devices.

1.2 Background and Motivation

Graphene, the most famous 2D material, is made out of carbon atoms arranged on a

honeycomb structure. It has many attractive properties, such as negligible spin-orbit

coupling, high carrier mobility, a long mean free path, high thermal stability and the

ability to sustain extremely high densities of electric current (a million times higher

than copper) [8–10]. These exceptional electronic and mechanical properties make

graphene a promising candidate for future electronic devices. However, a low device

ON/OFF current ratio caused by the lack of a bandgap is the drawback for graphene

in field effect transistor (FET) applications.

Hexagonal boron nitride has a similar structure as graphene, but the carbon atoms

are replaced with boron and nitrogen atoms. It has a lattice constant nearly the same

as graphene (only 1.8% lattice mismatch), but with a large electric band gap and

high thermal and chemical stability [11]. These properties make h-BN an excellent

insulating material for graphene based devices.

Van der Waals heterostructures which are produced by stacking different 2D ma-

terials have recently attracted much attention. 2D material heterostructures have

potential applications in nano-scale devices, such as logic transistors and FETs [3,12].

Graphene on h-BN has mobilities and carrier inhomogeneities that are an order of

magnitude better than graphene on SiO2 [4, 13].
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The effect of misorientation on the interlayer conductance of bilayer graphene was

first analyzed by Bistritzer and Macdonald [14]. They found the interlayer conduc-

tance varied over 10 orders of magnitude for different rotation angles. Perebeinos

et al. considered phonon scattering in the rotated bilayer system [15]. The phonon

mediated conductance only varied by two orders of magnitude for different rotation

angles and the conductance decreased monotonically with increased rotation angle.

Habib et al. studied the effect of interlayer rotation on graphite’s conductance and

found that, at room temperature, with the Fermi level a few hundred meV away from

the charge neutral point, the phonon mediated path would likely be the dominant

path for most rotation angles above 5◦ [16].

Following the rotated bilayer graphene system, the graphene/insulator/graphene

system has been studied both theoretically and experimentally. Britnell et al. pro-

posed and demonstrated a field-effect tunneling transistor based on the graphene/h-

BN /graphene system [3]. Feenstra et al. theoretically investigated the aligned

graphene/insulator/graphene system and predicted current-voltage characteristics ex-

hibiting negative differential resistance (NDR) [17]. Then, A. Mishchenko et al. built

the graphene/h-BN /graphene system with small rotation angle between two graphene

layers and showed the resonant tunneling with conservation of electron energy and

momentum [18]. Taking advantage of twist controlled graphene/h-BN /graphene

system’s NDR, J. Gaskell et al. demonstrated its application for high-frequency os-

cillators [19].

Hence, it is timely and critical to understand the effect of rotation on the transport

across the graphene/h-BN interface for future device applications. In this work,

we calculate the vertical transmission as a function of interface rotation angles. In

addition, we will provide insight into the mechanism governing the rotation-induced

transport across the graphene/h-BN interface.
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1.3 Objective

The graphene/ h-BN heterostructure has exceptional electrical properties. However,

several open questions need to be answered before this heterosructure can be consid-

ered for device applications. Although a lot of work on twisted 2D materials has been

done, the mechanisms governing the interlayer resistance of the rotated graphene/h-

BN interface was not previously investigated.

The objective of this dissertation is to analyze the cross-plane and in-plane elec-

tronic transport of several h-BN/graphene or multi-layer graphene heterostructures.

The electronic properties of rotated graphene/h-BN heterostructure are modeled us-

ing an empirical tight binding(TB) model, density functional theory (DFT), and the

effective continuum model. Transport is calculated using the non equilibrium Greens

functional formalism (NEGF) and the Boltzmann transport equation(BTE).

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 presents the theoretical

methods and models, such as tight binding model, the commensurate structure, and

the continuum model. In Chapter 3, the coherent interlayer resistance of a graphene/

rotated h-BN/ graphene heterostructure is determined for a variety of rotation angles.

In Chapter 4, we focus on the bilayer graphene/h-BN heterostructure with a small

rotation angle. In Chapter 5, properties of multilayer graphene and the effect of

rotated h-BN layers are studied. Finally, in Chapter 6 we summarize the key findings

of this thesis.
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Chapter 2

Theoretical Methods

2.1 Tight binding model

Mono layer graphene(MLG) consists of carbon atoms arranged in a two dimensional

hexagonal structure as shown in FIG 2.1(a). When we consider the symmetry prop-

erties of MLG, the carbon atoms are not identical with each other and can be divided

into two types: A atom and B atom. From FIG 2.1(a) we see that each A atom has

3 nearest neighbors, consisting of B atoms. Also, each B atom is surround by 3 A

atoms.

The lattice vectors of graphene are

a1 = a(
√

3, 0), and a2 = a(

√
3

2
,
1

2
), (2.1)

where a ≈ 1.42Å is the carbon-carbon bond length. The reciprocal lattice vectors are

b1 =
2π√
3a

(1,
−1√

3
), and b2 =

2π√
3a

(0,
2√
3

). (2.2)
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a
1
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2

δ
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δ
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δ
3
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1

K

K’

(a) (b)

Figure 2.1: Honeycomb lattice of graphene and its first Brillouin zone

The first Brillouin zone (BZ) is the hexagon shown in FIG 2.1(b). The positions of

high symmetry points K and K′ are

K =
2

3
b1 +

1

3
b2 =

2π√
3a

(
2

3
, 0);

K′ =
1

3
b1 +

2

3
b2 =

2π√
3a

(
1

3
,

1√
3

).

(2.3)

The three nearest-neighbor vectors in real space are

δδδ1 = a(0, 1), δδδ2 = a(
−
√

3

2
,−1

2
), δδδ3 = a(

√
3

2
− 1

2
). (2.4)

The nearest-neighbor Hamiltonian for electrons in graphene is

H = −t
∑

<i,j>,σ

a†σ,ibσ,j +H.c. (2.5)

where aσ,i(bσ,i) represent the creation operator of an electron on sublattice A(B). The

hopping energy between in-plane nearest-neighbor carbon atoms is t = 2.85eV .

In the low-energy dispersion around the Dirac cone, we can write the effective
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Hamiltonian as

H = −~νFkσξ = νF

0 π†

π 0

 , (2.6)

where σξ = (ξσx, σy) and π = ξpx + ipy is the momentum operator. ξ = +1(−1)

indicates Dirac point K(K′). The eigenstates are

|φ(k)〉 =
1√
2

 1

ξseiξθk

 eikr (2.7)

where s = ±1 is the band index.

For the interlayer interaction, we adapted the model from Ref. [15] for the inter-

action between atom i and atom j between adjacent layers,

tij = t⊥ exp

(
−rij − d⊥

λz

)
exp

[(
ξij
λxy

)α]
(2.8)

where d⊥ is the interlayer disatnce, rij is the distance between two atoms i and j, and

ξij =
[
(xi − xj)2 + (yi − yj)2

]1/2
is the projected in-plane distance between the two

atoms. Since the interaction decreases rapidly with distance, we usually set a cut-off

distance for the interaction in Eq. (2.8). We consider the interaction between two

atoms only when their distance rij < 6a.

2.2 Generation of commensurate structure

For rotated structures, we need to construct a commensurate unit cell. As FIG 2.2

shows, the layer with green color atoms is rotated with respect to the layer with black

color atoms. Here we assume these two layers have the same lattice constant. The
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Figure 2.2: Illustration of the commensurate unit cell for the case of a misorientation
angle of θ = 21.78◦ [1]

commensurate condition is

r1 = R̂(θ)r2, (2.9)

where r1 = m1a1 + m2a2 and r2 = n1a1 + n2a2 are the lattice vectors of the rotated

and unrotated layers, respectively. R̂(θ) is the rotation operator,

R̂(θ) =

cos θ − sin θ

sin θ cos θ

 . (2.10)

The commensurate condition Eq.(2.9) becomes

m1

m2

 =

cos θ − 1√
3

sin θ − 2√
3

sin θ

2√
3

sin θ cos θ + 1√
3

sin θ


n1

n2

 . (2.11)

Since m1, m2, n1 and n2 are integers, θ has the following constraint. The commen-

surate angle should make 1√
3

sin θ and cos θ rational fractions expressed as ratios of
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integers. We introduce two integers p and q, with the relation q ≥ p > 0. The differ-

ent commensurate angles can be expressed as different combinations of p and q using

the following equation,

θ = cos−1(
3q2 − p2

3q2 + p2
). (2.12)

The lattice vectors of the commensurate unit cell can be expressed as

t1 =
1

γ

−p+ 3q

2p

 , t2 =
1

γ

 −2p

p+ 3q

 (2.13)

for δ = 3/gcd(p, 3) = 1, and

t1 =
1

γ

−p− q
2p

 , t2 =
1

γ

 −2p

−p+ q

 (2.14)

for δ = 3/gcd(p, 3) = 3, where γ = gcd(3q + p, 3qp). The number of atoms per

commensurate unit cell for each layer is

N =
6

δγ2
(3q2 + p2). (2.15)

2.3 Continuum model

The continuum model assumes the rotation angle is small and morié pattern is very

large, so that the interaction between the two graphene layers is dominated by long-

wavelength components and the coupling between different valleys can be ignored. In

momentum space, the first Brillouin zone of the commensurate unit cell is shown in
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Figure 2.3: Generation of first Brillouin zone of the commensurate unit cell for the
case of a misorientation angle of θ = 3.89◦. The red(blue) hexagon represent the
first Brillouin zone of the unrotated(rotated) layer and the green hexagon is the first
Brillouin zone of the commensurate unit cell. Three green vectors qj, j = 1, 2, 3
represent how rotation shifts the K point in momentum space. G1 and G2 are the
reciprocal lattice vectors of the commensurate unit cell.
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FIG. 2.3. Because of the rotation, K points in the rotated layer can be written as

Kθ
j = R̂(θ)Kj, (2.16)

where index j labels the three equivalent corners of the Brillouin zone corresponding

to the three K points. Vectors qj = Kθ
j − Kj (j = 1, 2, 3) in FIG. 2.3 are the

vectors connecting K points of the rotated and the unrotated Brillouin zone. The

combination of connecting vectors for K and K′ points generates the Brillouin zone

of the commensurate unit cell. The reciprocal lattice vectors of the commensurate

unit cell are G1 and G2, which are the connecting vectors between different q.

For any small region of the morié pattern in real space, we can treat it as a

structure with the top layer shifted with respect to its equilibrium position by a

certain displacement δδδ [20]. The most important assumption is that the displacement

varies slowly as a function of the position R. The Bloch wave basis of a single layer

can be written as

|k, Xl〉 =
1√
N

∑
RXl

eik·RXl |RXl
〉, (2.17)

where k is the Bloch wave vector, and X=A,B is the sublattice index, l=1,2 for

the layer index. N represents the number of monolayer graphene unit cells in the

commensurate unit cell.

We can treat the rotated bilayer structure at a certain position R as AB stacked

bilayer graphene with a relative horizontal displacement δδδ(R) of the top layer. The

relative horizontal displacements between different combination of atoms in two layers
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are,

δδδA2,A1(R) = δδδ1 + δδδ(R);

δδδB2,B1(R) = δδδ1 + δδδ(R);

δδδB2,A1(R) = −δδδ1 + δδδ(R);

δδδA2,B1(R) = δδδ(R),

(2.18)

where δδδ1 is the vector connecting the nearest neighbor atoms shown in FIG 2.1(a).

The interaction between atoms X1 in layer 1 and X2 in layer 2 can be written as,

UX1,X2 = 〈k1, X1|H|k2, X2〉 =
1

N

∑
RX1

,RX2

〈RX1|H|RX2〉e−ik1·RX1eik2·RX2

=
1

N

∑
R

t[δδδX1,X2(R) + dz]e
−i(k1−k2)·Re−ik1·δδδX1,X2 (R).

(2.19)

where dz is the interlayer distance. Since 1
N
t[δδδX1,X2(R) + dz]e

−ik1·δδδX1,X2 (R) is periodic

and has nonzero Fourier components only at reciprocal vector G = n1G1 + n2G2,

t̃(G) =
1

N

∫
vc

d2R t[δδδX1,X2(R) + dz]e
−ik1·δδδX1,X2 (R)e−iG·R (2.20)

The Eq.(2.19) becomes

UX1,X2 =
∑
G

t̃(G)δk1−k2,G. (2.21)

The values of t̃(G) are equal and real, by symmetry, for G = 0, G = −G1, G =

−G1 − G2. For other G values, t̃(G) are much smaller and we can ignore their

contributions.
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The interlayer matrix elements becomes,

UA2,A1 = UB2,B1 = t̃⊥[1 + ωeiG1·r + ω−1ei(G1+G2)·r]

UB2,A1 = t̃⊥[1 + ω−1eiG1·r + ωei(G1+G2)·r]

UA2,B1 = t̃⊥[1 + eiG1·r + ei(G1+G2)·r]

(2.22)

where the ω = ei2π/3 and t̃⊥ = t̃(0) .

The interaction Hamiltonian is

Hint = t̃⊥

1 1

1 1

+ t̃⊥e
iG1·r

 ω 1

ω−1 ω

+ t̃⊥e
i(G1+G2)·r

ω−1 1

ω ω−1

 . (2.23)

2.4 Comparison between continuum models in dif-

ferent theoretical articles

2.4.1 J. M. B. Lopes dos Santos et al.’s model

Equation (2.24) is the continuum model used by J. M. B. Lopes dos Santos et al. in

Ref [21, 22].

Hint = t̃⊥

1 1

1 1

+ t̃⊥e
iG1·r

ω ω−1

1 ω

+ t̃⊥e
i(G1+G2)·r

ω−1 ω

1 ω−1

 , (2.24)

At origin point (r = 0), the phase terms are

eiG1·r = ei(G1+G2)·r = 1. (2.25)
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The Eq.(2.24) becomes

Hint = t̃⊥

1 1

1 1

+ t̃⊥

ω ω−1

1 ω

+ t̃⊥

ω−1 ω

1 ω−1

 = t̃⊥

0 0

3 0

 . (2.26)

This indicates that the stacking order at the origin is BA stacking.

At the position r = 1/3(t1 + t2), the phase terms are

eiG1·r = ei2π/3 = ω; ei(G1+G2)·r = ei4π/3 = ω−1. (2.27)

The interaction matrix Eq.(2.24) becomes

Hint = t̃⊥

1 1

1 1

+ t̃⊥ω

ω ω−1

1 ω

+ t̃⊥ω
−1

ω−1 ω

1 ω−1

 = t̃⊥

0 3

0 0

 . (2.28)

We find the stacking order at the region around r = 1/3(t1 + t2) is AB stacking.

At the position r = 2/3(t1 + t2), the phase terms are

eiG1·r = ei4π/3 = ω−1; ei(G1+G2)·r = ei8π/3 = ω. (2.29)

The interaction matrix Eq.(2.24) becomes

Hint = t̃⊥

1 1

1 1

+ t̃⊥ω
−1

ω ω−1

1 ω

+ t̃⊥ω

ω−1 ω

1 ω−1

 = t̃⊥

3 0

0 3

 . (2.30)

The stacking order at the region around r = 2/3(t1 + t2) is AA stacking.
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2.4.2 E. J. Mele’s equation

E. J. Mele built the continuum model in Ref [23] for twisted AB stacked graphene.

Hint =

caa cab

cba cbb

+eiG1·r

 ωcaa cab

ω−1caa ωcbb

+ei(G1+G2)·r

ω−1caa cab

ωcaa ω−1cbb

 , (2.31)

where the cij is the interaction between atom i and atom j.

At origin point (r = 0), the phase terms are

eiG1·r = ei(G1+G2)·r = 1. (2.32)

The Eq.(2.31) becomes

Hint =

caa cab

cba cbb

+

 ωcaa cab

ω−1caa ωcbb

+

ω−1caa cab

ωcaa ω−1cbb

 =

0 3cab

0 0

 . (2.33)

The stacking order of the origin region is AB stacking, which confirm that the struc-

ture is AB stacked before rotation.

At the position r = 1/3(t1 + t2), the phase terms are

eiG1·r = ei2π/3 = ω; ei(G1+G2)·r = ei4π/3 = ω−1. (2.34)

The interaction matrix becomes

Hint =

caa cab

cba cbb

+ ω

 ωcaa cab

ω−1caa ωcbb

+ ω−1

ω−1caa cab

ωcaa ω−1cbb

 =

 0 0

3cba 0

 .

(2.35)

The stacking order at the region around r = 1/3(t1 + t2) is BA stacking.
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At the position r = 2/3(t1 + t2), the phase terms are

eiG1·r = ei4π/3 = ω−1; ei(G1+G2)·r = ei8π/3 = ω. (2.36)

The interaction matrix becomes

Hint =

caa cab

cba cbb

+ ω−1

 ωcaa cab

ω−1caa ωcbb

+ ω

ω−1caa cab

ωcaa ω−1cbb

 =

3caa 0

0 3cbb

 .

(2.37)

The stacking order at the region around r = 2/3(t1 + t2) is AA stacking.

2.4.3 M. Kindermann’s equation

M. Kindermann et al. first built the continuum model to describe the interaction

between graphene on h-BN with small rotation angle in Ref [24]. The interaction

Hamiltonian is

Hint =
γ

3

∑
n=0,1,2

eiτzδKn·r

 1 ζeiτzφn

ζe−iτzφn 1

 , (2.38)

where τz = ±1 stand for the Dirac point K and K′. φn = 2πn/3. The ζ stands for

the sublattice asymmetry.

At K point, the interaction can be written in the following form

Hint =
γ

3
eiδK0·r

1 ζ

ζ 1

+
γ

3
eiδK1·r

 1 ζω

ζω−1 1

+
γ

3
eiδK2·r

 1 ζω−1

ζω 1

 . (2.39)

We set γ
3
eiδK0·r = t̃⊥. Since δK1 − δK0 = G1, δK2 − δK0 = G1 + G2, Eq.(2.39)
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becomes

Hint = t̃⊥

1 ζ

ζ 1

+ t̃⊥e
iG1·r

 1 ζω

ζω−1 1

+ t̃⊥e
i(G1+G2)·r

 1 ζω−1

ζω 1

 , (2.40)

At origin point r = 0, the phase terms are

eiG1·r = ei(G1+G2)·r = 1. (2.41)

The interaction matrix at origin point is

Hint = t̃⊥

1 ζ

ζ 1

+ t̃⊥

 1 ζω

ζω−1 1

+ t̃⊥

 1 ζω−1

ζω 1

 = t̃⊥

3 0

0 3

 (2.42)

The stacking order at the origin region of this structure is AA stacking.

At the position r = 1/3(t1 + t2), the phase terms are

eiG1·r = ei2π/3 = ω; ei(G1+G2)·r = ei4π/3 = ω−1. (2.43)

The interaction matrix at r = 1/3(t1 + t2) is

Hint = t̃⊥

1 ζ

ζ 1

+ t̃⊥ω

 1 ζω

ζω−1 1

+ t̃⊥ω
−1

 1 ζω−1

ζω 1

 = t̃⊥

 0 0

3ζ 0

 , (2.44)

This Hamiltonian indicates the stacking order at r = 1/3(t1 + t2) is BA stacking.

At the position r = 2/3(t1 + t2),

eiG1·r = ei4π/3 = ω−1; ei(G1+G2)·r = ei8π/3 = ω. (2.45)
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The interaction matrix is

Hint = t̃⊥

1 ζ

ζ 1

+ t̃⊥ω
−1

 1 ζω

ζω−1 1

+ t̃⊥ω

 1 ζω−1

ζω 1

 = t̃⊥

0 3ζ

0 0

 (2.46)

The stacking order around r = 2/3(t1 + t2) is AB stacking.
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Chapter 3

Interlayer transport through a

graphene/ rotated-boron-nitride/

graphene heterostructure

3.1 Overview

Interlayer electron transport through a graphene / hexagonal boron-nitride (h-BN)

/ graphene heterostructure is strongly affected by the misorientation angle θ of the

h-BN with respect to the graphene layers with different physical mechanisms govern-

ing the transport in different regimes of angle, Fermi level, and bias. The different

mechanisms and their resulting signatures in resistance and current are analyzed us-

ing two different models, a tight-binding, non-equilibrium Green function model and

an effective continuum model, and the qualitative features resulting from the two

different models compare well. In the large-angle regime (θ > 4◦), the change in the

effective h-BN bandgap seen by an electron at the K point of the graphene causes

the resistance to monotonically increase with angle by several orders of magnitude
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reaching a maximum at θ = 30◦. It does not affect the peak-to-valley current ra-

tios in devices that exhibit negative differential resistance. In the small-angle regime

(θ < 4◦), Umklapp processes open up new conductance channels that manifest them-

selves as non-monotonic features in a plot of resistance versus Fermi level that can

serve as experimental signatures of this effect. For small angles and high bias, the

Umklapp processes give rise to two new current peaks on either side of the direct

tunneling peak.

3.2 Introduction

Graphene (Gr), a two-dimensional (2D) material made of carbon atoms arranged in

a honeycomb structure, has excellent electronic, thermal, and mechanical properties

that make it a promising candidate for nanoelectronic devices [8, 10]. 2D hexago-

nal boron nitride (h-BN) has the same 2D honeycomb structure as graphene. Its

lattice constant is closely matched to that of graphene, and its large band gap and

good thermal and chemical stability make it an excellent insulator, substrate, and

encapsulating material for graphene and other 2D materials [13,25]. There have been

a number of experimental and theoretical studies of the in-plane electronic proper-

ties of graphene on h-BN. [26–31] In general, in a h-BN graphene heterolayer system,

whether grown by chemical vapor deposition or assembled by mechanical stacking, the

graphene will not be crystallographically aligned with the h-BN. The misalignment

results in a small change in the in-plane graphene electron velocity [29].

Interest in the effect of misorientation on cross-plane transport began with bi-

layer graphene, and the first coherent tunneling calculations showed a 16 order of

magnitude change in the interlayer resistance as a function of the misalignment an-

gle [14]. Including phonon mediated transport reduced the dependence on angle to a
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few orders of magnitude [15]. Replacing the source and drain misoriented graphene

sheets with source and drain misoriented graphite leads resulted in the same angular

dependence and very similar quantitative values for the coherent current [32]. This

demonstrated sensitivity to interlayer misorientation motivates us to examine the

effect in Gr/BN/Gr devices.

There is also significant interest in Gr/BN/Gr heterostructures for electronic de-

vice applications [3, 5, 17–19, 33–47]. Gr/BN/Gr structures display negative differ-

ential resistance (NDR), [18, 39, 41, 44–46, 48] and theoretical calculations predict

maximum frequencies of several hundred GHz [19]. The NDR arises from the line-

up of the source and drain graphene Dirac cones combined with the conservation

of in-plane momentum. In one experiment in which plateaus were observed in the

current-voltage characteristics instead of NDR, the experimental results could be

matched theoretically by ignoring momentum conservation [38]. In the theoretical

treatments, the focus has been primarily on the rotation between top and bottom

graphene layers and the resulting misalignment of the Dirac cones [18, 41, 46]. Re-

cently, the effect of misalignment of both the BN and the graphene layers including

the effects of phonon scattering have been investigated using the low-angle effective

continuum model [44,49].

In this work, we focus on the effect of the BN misalignment and consider a system

of two aligned graphene layers serving as the source and the drain separated by one or

more AB stacked layers of h-BN that are misoriented with respect to the graphene. An

illustration of such a system is shown in Fig. 3.1(a). This system is analyzed using two

different models and the results from the two models are compared. Commensurate

rotation angles in the range 1.89◦ ≤ θ ≤ 27.8◦ are simulated with a tight binding

model and the non-equilibrium Green function (NEGF) formalism. The small angle

regime is also analyzed with a continuum model similar to that used in Ref. [49].
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Figure 3.1: (a) Atomistic geometry of the graphene/boron-nitride/graphene het-
erostructure. The top and bottom layers are aligned graphene. The middle boron-
nitride layer is rotated with respect to the graphene layers. (b) In k space. The
relative rotation between the Brillouin zone of h-BN (red) with respect to that of
graphene (black). (c) The energy gap of monolayer h-BN at the K point of graphene
as a function of rotation angle.
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The qualitative features of the two different models compare well, and the continuum

model elucidates the physics of the small angle regime.

The misorientation of the BN with respect to the graphene can have several pos-

sible effects that dominate in different regimes of angle and applied bias. (a) For

devices under high bias, it can alter the transverse momentum conservation and thus

degrade the NDR. (b) It can alter the potential barrier seen by the electrons at the K

points in the graphene, and thus alter the interlayer tunneling current and resistance.

(c) As in misoriented graphene on graphene, it can result in destructive quantum

interference that reduces the current. A signature of this effect is that over a range

of angles, the coherent interlayer resistance scales monotonically with the size of the

commensurate unit cell. [15, 32] (d) For small angle rotations, Umklapp processes

can open up new channels of conductance resulting in new features that depend on

Fermi level, angle, and bias. The presence or absence of these effects and under what

conditions they manifest themselves will become clear in the analysis.

3.3 Models and Methods

3.3.1 Tight Binding Transport Calculations

The interlayer transport in the Gr/BN/Gr device illustrated in Fig. 3.1 is analyzed

using a tight binding Hamiltonian and a non-equilibrium Green function (NEGF) ap-

proach for the transport. The device Hamiltonian has the following block tridiagonal

form

H =


HT (k) tT (k) 0

t†T (k) HBN(k) tB(k)

0 t†B(k) HB(k)

 , (3.1)
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in-plane interaction Interlayer interaction

t0 (eV ) t⊥ (eV ) d⊥
(
Å
)

λz
(
Å
)

λxy
(
Å
)

α
C-C 2.85 0.39 3.35 0.60 1.70 1.65
B-N 2.52 0.60
C-B 0.62 3.22 0.54 0.84 2.04
C-N 0.38 3.22 0.41 0.97 2.03

Table 3.1: Parameters for the tight binding model. t0 is the intra-layer, off-diagonal
matrix element. All other parameters are described by Eq. (3.2).

where k is the wavevector in the x−y plane, HT (B) is the Hamiltonian of the uncoupled

top (bottom) graphene layers, HBN is the Hamiltonian of the h-BN layer(s), and tT (B)

is the block of matrix elements coupling HT (B) to HBN . The elements tij of the off-

diagonal blocks tT (B) representing the interaction between atom i in a graphene layer

and atom j in the adjacent h-BN layer are given by [15]

tij = t⊥ exp

(
−rij − d⊥

λz

)
exp

[(
ξij
λxy

)α]
(3.2)

where d⊥ is the interlayer disatnce, rij is the distance between two atoms i and j,

and ξij =
[
(xi − xj)2 + (yi − yj)2

]1/2
is the projected in-plane distance between the

two atoms. The lattice constant of the entire system is set to that of graphene.

The misoriented commensurate primitive unit cells are created using the approach

described in Ref. [1]. Parameters for this tight binding model were extracted by fitting

the band structures to density functional theory (DFT) results. The on-site energy

for C, is set to 0 and the on-site energies of the B and N atoms are 3.40 eV and -1.31

eV, respectively. For multiple h-BN layers, we adapt the interlayer h-BN interaction

strength t′ = 0.60eV from Ref. [50]. All other parameters are shown in Table 3.1.

Since this is essentially a 2D - 2D tunneling problem, the coherent interlayer

transmission through the Gr/BN/Gr structure is calculated within a NEGF approach

using the ‘generalized boundary conditions’ described in Ref. [51]. Within the NEGF
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approach, the graphene layers act as the ‘contacts’ and the h-BN layer acts as the

‘device’. The surface Green’s functions of the top and bottom graphene layers are

gT (B)(E,k) =
[(
E + i

γ

2

)
I−HT (B)(k)

]−1
(3.3)

where I is the identity matrix, and the energy broadening γ = 80 meV is chosen to

match that of Ref. [52]. Given the surface Green’s functions, the rest of the NEGF

calculations follow as usual. Here the ‘device’ Green’s function is

Gr(E,k) = [EI−HBN(k)−ΣT (E,k)−ΣB(E,k)]−1 (3.4)

where the self energies resulting from coupling to the graphene layers are ΣT = t†TgT tT

and ΣB = tBgBt†B. The transmission coefficient is

T (E,k) = tr
[
ΓTGrΓBGr†] (3.5)

where ΓT = t†TaT tT , ΓB = tBaBt†B, aT (B) = −i(gT (B)−g†T (B)) is the spectral function

of the top (bottom) graphene layer, and tr [· · · ] indicates a trace of the matrix.

Integrating Eq. (3.5) for the transmission over the first commensurate Brillouin

zone, the energy-dependent transmission coefficient per unit area is

T (E) =

∫
1stBZc

d2k

4π2
T (E,k). (3.6)

This integration is performed numerically on a square grid with ∆kx = ∆ky = 0.005

Å
−1

. The linear conductance is given by

G = 2
e2

h

∫
dET (E)

(
− ∂f
∂E

)
(3.7)
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where the factor of 2 accounts for the spin degeneracy, and the integration over k

accounts for the valley degeneracy. The resistance is the inverse of the conductance,

R = 1/G.

For finite bias calculations, an applied bias Vb = ∆/e is symmetrically applied

across the device by setting Hi,j
T = δij∆/2 and Hi,j

B = −δij∆/2. When multiple BN

layers are present, the potential drops linearly within the BN region, since BN is an

insulator. The tunneling current flowing through the device is given by:

I =
2e

h

∫
dET (E) [f (E − µT )− f (E − µB)] (3.8)

where µT = µt + ∆/2 and µB = µb −∆/2 are the chemical potentials of the top and

bottom graphene, respectively, f(E) is the Fermi distribution function, and ∆V =

µt − µb is the potential difference between the charge neutral points of the two Gr

layers. ∆V accounts for the effect of gating and doping. We refer to ∆V as the

built-in potential in analogy with a pn junction, since this is the potential that exists

before the bias is applied.

3.3.2 Effective Continuum Model

As the rotation angles become smaller the commensurate unit cells become very large.

As a result, NEGF calculations with the large tight binding Hamiltonians become

computationally challenging. In order to better understand the physics governing

the interlayer transport at small rotation angles, we construct an effective continuum

model. In the small angle region (θ < 10◦), the coupling matrix between graphene
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and h-BN layer is of the following form [18,44,52]

Hint =
1

3

∑
j=1,2,3

e−iqi(θ)·rTj, (3.9)

where

Tj =

tCBη(j−1) tCNη
−(j−1)

tCB tCNη
(j−1)

 . (3.10)

In Eq. (3.10), the row indices correspond to the A and B atom of the graphene,

and the column indices correspond to the B and N atoms of the BN. The lower off-

diagonal element corresponds to a C atom directly over a B atom. All other elements

correspond to a C atom in the center of an equilateral triangle of B atoms or N atoms.

The hopping amplitudes tCB and tCN between a C atom and a B or N atom are the

same as those listed in Table 3.1. The phase factors η = ei(2π/3) result from the matrix

elements of the Bloch sums evaluated at the K points. The momentum shift qi(θ) is

the misalignment between the K point of h-BN and graphene. Specifically,

q1(θ) = kD(0, θ),

q2(θ) = kD(−
√

3

2
θ,−1

2
θ),

q3(θ) = kD(

√
3

2
θ,−1

2
θ),

(3.11)

where kD = 4π
3a

is the magnitude of the K point of graphene. When θ = 0, q = 0, and

the sum in Eq. (3.9) will cause the diagonal and upper off-diagonal elements of Hint

to vanish leaving a coupling matrix corresponding to AB stacking with the B atom

directly above the C atom.

By eliminating HBN from Hamiltonian (3.1), we reduce the 3 × 3 Hamiltonian

into an effective 2 × 2 Hamiltonian and obtain the effective interaction Hamiltonian
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between the top and bottom graphene layers as [24]

UTB(ε) = Hint(ε−HBN)−1H†int. (3.12)

The low-energy electronic structure of h-BN can be described by a gapped Dirac-like

Hamiltonian that acts on the B and N pz orbital basis around a given K point,

HBN(∆K) =

 εB ~υBN∆Keiθ∆K

~υBN∆Ke−iθ∆K εN

 . (3.13)

The energies εB and εN are the on-site energies of the B and N atoms, while υBN is

the velocity that is determined by the in-plane matrix elements between the B and

N atoms given in Table 3.1. The ∆K is the connection vector between K point of

graphene and h-BN. Then, we obtain

(ε−HBN)−1 =

1

(ε− εN)(ε− εB)− (~υBN∆K)2

ε− εN 0

0 ε− εB

 . (3.14)

The off-diagonal term vanished due to the three-fold symmetry of ∆K. Combining

Eqs. (3.9), (3.12), and (3.13), the effective interaction Hamiltonian is

UTB(ε) =
1

9

∑
i,j=1,2,3

eiGij(θT ,θB)rTi(ε−HBN)−1Tj (3.15)

where Gij(θT , θB) = qi(θT ) − qj(θB) is the momentum difference shift during trans-
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Figure 3.2: The K points of graphene and BN in momuntum space. Top and bottom
graphene layers are aligned. θT = θB

mission. Since the top and bottom graphene layers are aligned, θT = θB, and

|Gij | =

 0 for i = j
√
3kDθT for i 6=j

. (3.16)

This can be interpreted as the momentum being conserved for transmission between

aligned Dirac cones of the top and bottom graphene layers. For transmission between

misaligned Dirac cones, the momentum shifts by |Gij| =
√

3kDθT .

The tunneling matrix element for the transmission between the top and bottom

layers is:

Tα,β(kT ,kB) =
∑

i,j=1,2,3

tα,βi,j (kT ,kB)δkT−kB ,Gij
(3.17)

where

tα,βi,j (kT ,kB) =
1

9
φ†α(kT )Ti(ε−HBN)−1Tjφβ(kB) (3.18)

and the eigenvectors of the graphene layers are φα(k) = 1√
2

[
1, αeiθk

]
eik·r, where
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α = ±1 is the band index. The linear conductance is [14]

G =
e2gsgv
~A

∑
kT ,kB
α,β

|Tα,β(kT ,kB)|2A(εα(kT ), εF )A(εβ(kB), εF )

or

G =
e2gsgv
~A

∑
k,α,β

i,j=1,2,3

|tα,βi,j (k,k + Gij)|2A(εα(k), εF )A(εβ(k + Gij), εF )

where gs = 2 and gv = 2 account for the spin and valley degeneracy, respectively,

and A is the cross sectional area. A is the spectral function. For simplicity, we

approximate A by a Lorentzian function near the Fermi energy and use a broadening

lifetime the same as used in the NEGF calculations [46].

To better understand the effect of the rotation, we divide the conductance into

three parts.

G = Gi=j +Gα=β
i 6=j +Gα 6=β

i 6=j (3.19)

where the first part

Gi=j =
e2gsgv

~
∑
k,α=β

i=j=1,2,3

|tα,βi,j (k,k)|2A2(ε(k), εF ) (3.20)

represents the coherent transport process where the momentum is conserved between

the top and bottom graphene layers. The second and third terms correspond to

Umklapp processes in which the second term is an intraband process

Gα=β
i 6=j =

e2gsgv
~A

∑
k,α=β

i 6=j=1,2,3

|tα,βi,j (k,k + Gij)|2A(εα(k), εF )A(εα(k) + α~υ
√

3kDθ, εF ),

(3.21)
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Figure 3.3: The intraband and interband Umklapp processes.

and the third term is an interband process,

Gα 6=β
i 6=j =

e2gsgv
~

∑
k,α 6=β

i 6=j=1,2,3

|tα,βi,j (k,k + Gij)|2A(εα(k), εF )A(εβ(k) + β(~υ
√

3kDθ − 2εF ), εF ).

(3.22)

The intraband and interband Umklapp processes are shown in FIG 3.3. The

zone-folding allows the Umklapp process to satisfy momentum conservation. An

intraband Umklapp process indicates that the transmission is between same band

and an interband Umklapp process indicates that the transmission is between different

bands.
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3.4 Results

Fig. 3.4 shows the tight-binding, NEGF calculations of the zero-temperature, coher-

ent resistance versus Fermi energy (EF ) for heterostructures with (a) a single h-BN

layer and (b) 3 h-BN layers. The Fermi level, EF , varies from -0.5 eV to 0.5 eV

around the charge neutrality point for a range of rotation angles from 0◦ to 27.79◦

as indicated in the legend. The lowest black curve is the coherent resistance for the

ABA unrotated heterostructure. For all of the angles shown, the resistance monoton-

ically falls as the Fermi level moves away from the charge neutrality point where the

density of states of the graphene layers are a minimum. In contrast to rotated bilayer

graphene (r-BLG), for the two lowest angles, 6.01◦ and 7.34◦, there is no sudden

change in resistance with Fermi energy around 0.3-0.4 eV (compare with Fig. 2(a-b)

of Ref. [32]).

The vertical dashed lines in Fig. 3.4 correspond to a Fermi level of 0.26 eV. This

is the Fermi level previously used for comparisons of the interlayer conductivity of

misoriented bilayer graphene [14, 15, 32]. The numerical values of the resistance at

EF = 0.26 eV are given in Table 3.2. As the h-BN layer becomes misaligned, the

resistances increase by factors of 200 and 430 for the monolayer and trilayer BN

structures, respectively. This trend in the variation of resistance with rotation angle

is similar to the experimental observations in Ref. [3]. There it was shown that the

conductance can vary by a factor of 100 for different devices with the same h-BN

thickness. For both the monolayer and trilayer BN structures, the increase in the

resistance is a monotonic function of the BN rotation angle as the rotation angle

increases from 6◦ to 27.79◦. This trend is also in contrast to that of r-BLG. In the r-

BLG system, at low energies near the charge neutrality point, the coherent interlayer
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Figure 3.4: Zero temperature coherent resistance of twisted (a) Gr/1L h-BN/Gr het-
erostructure and (b) Gr/3L h-BN/Gr heterostructure as a function of Fermi Energy
for different commensurate rotation angles. The dashed line shows the Fermi energy
of 0.26 eV used to calculate the resistance values in Fig. 3.5. The resistances are
calculated from the tight-binding, NEGF approach.
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θ (degrees)
Gr/1L h-BN/Gr Gr/3L h-BN/Gr

Energy gap (eV) Resistance (Ωµm2) Energy gap (eV) Resistance (Ωµm2)

0.00 4.709 0.007601 4.709 0.7972
1.25 4.726 0.03710
1.41 4.730 0.03758
1.54 4.734 0.03711
1.61 4.737 0.03521
1.70 4.740 0.03308
1.79 4.743 0.03028
1.89 4.748 0.02844 4.713 2.752
2.00 4.752 0.02954
2.13 4.758 0.03481
2.45 4.774 0.05355
2.88 4.798 0.07565 4.726 4.474
3.15 4.815 0.08741
3.48 4.838 0.09981
3.89 4.869 0.1132 4.753 5.510
4.41 4.913 0.1288 4.774 6.094
5.08 4.976 0.1481 4.807 6.977
6.01 5.075 0.1753 4.865 8.495
7.34 5.237 0.2182 4.971 11.43
9.43 5.529 0.3048 5.184 18.87
13.17 6.106 0.5371 5.653 46.48
17.90 6.813 0.9770 6.274 123.6
21.79 7.280 1.120 6.701 199.7
27.80 7.686 1.563 7.073 344.3

Table 3.2: Effective BN energy gap and the coherent resistances at EF=0.26 eV for
different commensurate rotation angles and two different BN thicknesses of 1ML and
3ML. The resistances are calculated from the tight-binding, NEGF approach.

resistance is a monotonic function of the supercell lattice constant as opposed to the

rotation angle (compare to Fig. 1(d) of Ref. [15]).

To investigate process (b) in which rotation of the BN alters the tunnel barrier,

we calculate the energy gap of ML and trilayer h-BN at the BN k-point corresponding

to graphene’s K-point as a function of rotation angle as illustrated in Fig. 3.1(b).

The resulting effective bandgap for ML BN is plotted versus rotation angle in Fig.

3.1(c). Since the direct bandgap (4.7 eV) of h-BN occurs at its K-point, the minimum

BN bandgap ‘seen’ by an electron at the K-point in the graphene layer occurs for
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BN rotation angles of 0◦ and 60◦ when graphene’s K point is aligned with BN’s K

or K ′ points. The effective BN bandgap seen by an electron at the K-point in the

graphene layer monotonically increases as the BN is rotated from θ = 0◦, and it

reaches a maximum at θ = 30◦. In the Brillouin zone of the BN, this corresponds to

the bandgap near the M point. This monotonic increase in the tunnel barrier with

angle follows the same monotonic trend as the increase in resistance with angle.

To analyze the relation between the effective energy gap and resistance, we show

in Fig. 3.5 a semi-log plot of the resistance as a function of the effective BN band gap

(for different rotation angles) at EF =0.26 eV. For angles greater than 4◦, the tunnel

current scales exponentially with the effective bandgap as one would expect for tun-

neling through a potential barrier. Therefore, for θ > 4◦, we find that the dominant

process affecting the tunnel current is the change in the effective BN bandgap ‘seen’

by the electrons at the K point in graphene.

However, for small angles θ < 4◦, there is clearly a very different trend and

a different dependence of the resistance on the BN rotation angle. The different

dependencies arise from different parallel conductance channels that dominate at

different angle regimes. To analyze the low-angle region of the curve, we turn to the

effective continuum model.

A more detailed picture of the low-angle regime is given in Fig. 3.6 which shows

the resistance versus BN rotation angle calculated with both the continuum model

and the NEGF tight-binding model for two values of EF . The solid lines are from

the continuum model, and the triangles are from the NEGF, tight-binding model.

More low-angles are included in the NEGF calculations, and the smallest rotated

angle calculated from the NEGF, tight-binding model is 1.25◦. Both models show a

non-monotonic dependence of resistance on angle at very low angles θ < 2.5◦. While

the magnitudes differ between the two models, the overall trends match well.
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Figure 3.5: Zero temperature coherent resistance of graphene/1L h-BN/graphene
(upward-pointing triangles) and graphene/3L h-BN/graphene (downward-pointing
triangles) as a function of the effective energy gap of monolayer h-BN at the K-
point of the graphene. The angles are given next to each data point. The red lines
show exponential fits to the data, R = R0e

αEG . The values of α are shown next to
the fitted line. EF=0.26 eV.
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The continuum model tells us that there are three parallel conductance channels

corresponding to the direct and two Umklapp processes in Eqs. (3.19) - (3.22). The

individual channels dominate in different angle regimes. The angle at which each

channel dominates is primarily determined by the overlap of the spectral functions in

Eqs. (3.20) - (3.22). For the direct term, Gi=j of Eq. (3.20), the spectral functions

always overlap since the top and bottom graphene layers are aligned. For the two

Umklapp terms, the overlaps of the spectral functions are functions of the angles, and

the overlaps become negligible for ~υ
√

3kDθ >> ~/τ, εF . Therefore, for larger angles,

θ > 4◦, the direct channel dominates, and the dependence on the angle is through

the matrix element which, through HBN(k) and the effective interaction, includes the

effect of the increase in the apparent BN bandgap with angle as described above and

shown in Fig. 3.1(c).

The maximum overlap of the spectral functions in the ‘interband’ term of Eq.

(3.22) occurs when ~υ
√

3kDθ = 2εF . This term is maximum at rotation angle θm =

2εF/~υ
√

3kD, and it decreases for angles greater than or less than θm. This interband

term is responsible for the dip in resistance for θ between one to two degrees in

Fig. 3.6. It also explains the shift in angle with Fermi level. As the Fermi level

is increased, the local minimum moves to larger rotation angles since the angle of

maximum overlap θm is linearly proportional to εF .

The maximum overlap of the spectral functions in the ‘intraband’ term of Eq.

(3.21) occurs at θ = 0. As θ increases, this channel monotonically decreases with

the decrease governed by the decreasing overlap of the spectral functions. Since this

channel has a maximum as θ goes to zero, it governs the initial increase in resistance

for the smallest angles. The three individual contributions to the continuum model,

direct, interband, and intraband, are shown in Fig. 3.7 for the two different Fermi

levels, 0.26 eV and 0.16 eV.
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While analyzing the resistance as a function of rotation angle is useful for clar-

ifying the physics, verifying the trends shown in Fig. 3.6 would be very difficult

experimentally. Experimentally, it is far easier to fix the angle and sweep the Fermi

level of the top and bottom graphene layers. The resulting resistances calculated both

from the NEGF, tight-binding and the continuum models for a 1-ML BN rotation

angle of 3.89◦ are shown in Fig. 3.8(a).

Both models show non-monotonic behavior of the resistance as the Fermi level is

swept between 0.5 and 0.6 eV. To observe this feature at lower Fermi levels, a smaller

angle is required, and to observe the feature experimentally a larger resistance is

required. The larger resistance is achieved by increasing the number of BN layers

from 1 to 5. The resistance versus Fermi level calculated from the continuum model

for a 5-ML BN layer rotated by 1.50◦ is shown in Fig. 3.8(b). The non-monotonic

feature moves to lower energies and now occurs as the Fermi level is swept between 0.2

and 0.3 eV. The overall magnitude of the resistance is between 100 and 1000 Ωµm2
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which should be large enough to be ovservable, and it can be increased by increasing

the number of BN layers.

So far, we have focused on the 0-bias resistivity to elucidate the physics. However,

interest in this system is driven by potential applications, and one application of cur-

rent investigation is a high-frequency oscillator that exploits the negative differential

resistance observed under high-bias. To understand how the misorientation of the BN

layer affects the current-voltage (I-V) characteristic of this structure, we show in Fig.

3.9 the NEGF, tight-binding calculations using Eq. (3.8) of the I-V characteristics

for the unrotated structure and the structure with the BN layer rotated by 21.78◦ for

BN layer thicknesses of 1 ML, 3 ML, and 5 ML. The three I-V characteristics in each

plot are for three different built-in potentials ∆V between the two graphene layers.

The panels on the left are for the unrotated structure while the panels on the right

are for the 21.79◦ structure. In Fig. 3.9(a) and (b), it is shown that the rotation of

monolayer h-BN decreases the current by nearly 2 orders of magnitude. This rela-

tive decrease in the tunneling current becomes progressively greater as the number

of h-BN layers is increased, as shown in the other subplots. For the case of 5 h-BN

layers, the tunneling current is nearly 4 orders of magnitude smaller. As expected,

this decrease in the tunneling current and its scaling is consistent with the resistance

increasing with the rotation angles as shown in Fig. 3.4. While the current decreases

with rotation angle, the peak-to-valley current ratio is unaffected. For high-frequency

applications, both high current density and high peak-to-valley ratios are desirable,

and rotation of the BN layer provides one more tool for engineering optimal electronic

properties for applications.

For small rotation angles, it is interesting to consider whether new qualitative

features appear in the nonlinear I-V characteristic. To answer that question, we

applied the effective continuum model to calculate I-V curves of a structure with
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θ = 0.5◦. The results in Fig. 3.10, for 3 different values of built-in voltage ∆V , are

qualitatively different from the I-V curves for large angle rotation, since several regions

of NDR appear depending on the initial built-in potential. The first and third peaks

arise from the interband component which is maximum at Vbias = ±~υ
√

3kDθ−∆V .

The middle peak that occurs at Vbias = −∆V is caused by the direct tunneling term.

3.5 Tight-binding model and method details

The transmission coefficient over k in the first Brillouin zone, T (E) =
∫
1stBZ

d2k
4π2 T (E,k)

was numerically integrated on a square grid with ∆kx = ∆ky = 0.005 Å
−1

. Fig. 3.11

shows the momentum resolved transmission T (E,k) in the first Brillouin zone cor-

responding to the two commensurate rotation angles of 21.79◦ and 9.43◦ at E = 0.5

eV. The transmission is centered at the K and K’ and peaks on the isoenergy surface.

To extract a tunneling decay constant of the BN predicted by the interlayer tight-

binding parameters, we calculate the resistance of 1, 3, 5, and 7 layers of h-BN

for two angles of θ = 0 and θ = 21.79◦ at EF = 0.26 eV. Fig. 3.12 shows the

exponential increase in resistance with increasing number of h-BN layers for both

structures. Fitting the results to an exponential function, R = R0e
κ·n, where n is the

number of h-BN layers gives values for κ of 2.6 and 3.6 for the unrotated and rotated

structures, respectively. These values are similar to an experimentally extracted value

of κ = 4.0 [53].

3.6 Conclusions

Electron transport through a Gr / h-BN / Gr structure is examined within a tight-

binding model with commensurate rotation angles and within an effective continuum
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(b) graphene/1L h-BN/graphene with a 21.790 rotation angle; (c) graphene/3L h-
BN/graphene with no rotation; (d) graphene/3layer h-BN/graphene with a 21.790

rotation angle; (e) graphene/5L h-BN/graphene with no rotation; (f) graphene/5layer
h-BN/graphene with a 21.790 rotation angle.

42



0 0.5 1

V
bias

(V )

0

5

10

C
u

rr
e

n
t(

1
0

4
 µ

A
/µ

m
2
)

 5L h-BN

∆V=-0.3 V

∆V=-0.5 V

∆V=-0.7V

Figure 3.10: Current as a function of bias voltage for different potential differences
∆V between the two graphene layers for the 5L h-BN structure with a h-BN rotation
angle of θ = 0.5◦

Figure 3.11: Transmission coefficient T (E,k) in the first Brrillouin at energy of 0.5
eV for Graphene/1L h-BN/Graphene heterostructure with rotation angel: (a) 21.79◦

(b)9.43◦
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model. The two graphene layers are aligned, and the h-BN layer is rotated by an

angle θ with respect to the graphene layers. For angles greater than 4◦, the resistance

is dominated by the change in the effective h-BN bandgap seen by an electron at the

K point of the graphene. In this large-angle regime, the effect of rotating the BN is to

increase the barrier height of the BN tunnel barrier at the K point of the graphene.

For θ & 4◦, the resistance monotically increases with the rotation angle, and it reaches

a maximum at θ = 30◦. As θ is increased from 0◦ to 30◦, the coherent interlayer re-

sistance increases by factors of 200 and 430 for monolayer and trilayer BN layers,

respectively. For devices that exhibit NDR under high bias, rotation of the h-BN pri-

marily serves to reduce the overall magnitude of the current. It does not degrade the

peak to valley current ratios. In this large-angle regime, since the dominant physics is

that of single-barrier direct tunneling, phonon-scattering should have negligible effect

on the low-bias, angle-dependent trends and magnitudes of the interlayer resistances.

Since NDR results from momentum conservation, phonon-scattering will reduce the

peak-to-valley ratios, but this effect also exists in the unrotated structure. While we
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do not expect a significant dependence of the phonon scattering on the rotation angle

of the h-BN in the large-angle regime, this is an open question for further study.

The small-angle regime (θ . 4◦) reveals qualitatively new features both in the low-

bias interlayer resistances and in the high-bias I-V characteristics. The new features

arise due to the opening of new conductance channels corresponding to Umklapp

processes. With the two graphene layers aligned, Umklapp processes give rise to two

new conduction channels corresponding to an intraband term and an interband term.

The angular and energy dependence of these terms is primarily determined by the

overlap of the top and bottom graphene spectral functions that are shifted in mo-

mentum space with respect to each other by an Umklapp lattice vector. For a fixed

rotation angle θ of the h-BN layer, both the intraband and interband terms peak at

a Fermi level εmF ≡ ~vkDθ
√

3/2. At this Fermi level, the two spectral functions in the

interband term perfectly overlap, so that the interband term dominates. This strong

peak in the interband term results in a distinct, non-monotonic feature in a plot of

the interlayer resistance versus Fermi energy that occurs as the Fermi level is swept

through ±εmF . The qualitative trends of this non-monotonic feature are reproduced

in the tight-binding calculations for structures with small commensurate rotation an-

gles, although the overall magnitude of the feature is less. The interband term also

gives rise to two extra peaks in the nonlinear I−V characteristic on either side of the

peak resulting from the direct tunneling term. Amorim et al. [49] found that phonon

scattering and incoherent scattering in this low-angle regime reduces the magnitude

of the features resulting from Umklapp processes, but it does not remove them, so

that the new features in the low-angle regime should be experimentally observable.
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Chapter 4

Transport properties of bilayer

graphene on boron nitride with

small rotation angle

Monolayer graphene on h-BN with a small relative rotation angle has been studied

in detail [24, 25, 54, 55]. The long wavelength periodic perturbation of h-BN will

reconstruct the dispersion of graphene into minibands. The secondary Dirac points

emerge at the edge of the first miniband in each valley.

Recently, heterostructures made of slightly rotated bilayer graphene on h-BN are

drawing more and more attention [56–59]. Interplay between the perturbation from

the rotated h-BN, interlayer interaction and vertical asymmetry caused by an external

vertical electric field will produce a complex miniband structure. In this chapter, we

study how these mechanisms determine bilayer graphene’s in-plane transport proper-

ties.
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Figure 4.1: Atomistic geometry of AB stacked bilayer graphene on rotated h-BN.

4.1 Theoretical model

The atomic structure is shown in Fig 4.1. Bilayer graphene is on top of h-BN with

a small angle rotation with respect to the h-BN. We mark the bottom(top) graphene

as Gr1(Gr2), and h-BN layer interacts only with layer Gr1. Here we set the positive

direction of vertical electric field is from h-BN to graphene.

The Hamiltonians for the isolated graphene layers are:

HGr1 = νF

− eV
2

π†

π − eV
2

 ,HGr2 = νF

 eV
2

π†

π eV
2

 (4.1)

where σξ = (ξσx, σy) and π = ξpx + ipy is the momentum operator. The ξ = +1(−1)

stands for Dirac point K(K′). V = D · d represent the potential difference between

the two graphene layers, where D is the vertical electric field and d is the vertical

distance between the two graphene layers.

The tight binding model for interlayer interaction between AB stacked graphene
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is

TGr,Gr =

 0 ν3π

γ1 0

 , (4.2)

where γ1 characterizes the vertical interlayer hopping between the nearest neighbors.

ν3 describes the trigonal warping of bands resulting from next-neighbor interlayer

hopping.

Since we are interested in low rotation angles, we use a continuum model to

compute the coupling matrix between h-BN and Gr1 described in Chapter 2.4.3 [18,

44,52]

TGr,h-BN =
1

3

∑
j=1,2,3

e−iqj(θ)·r

 tCB tCNη
−(j−1)

tCBη
(j−1) tCN

 . (4.3)

In Eq. (4.3), the row indices correspond to the A and B atom of Gr1, and the

column indices correspond to the B and N atom of the h-BN. The diagonal element

corresponds to the C atoms directly over B and N atom. All other elements correspond

to a C atom in the center of an equilateral triangle of B atoms or N atoms. tCB and

tCN are hopping amplitudes between a C atom and a B or N atom. The phase factors

η = ei(2π/3) results from the matrix elements of the Bloch sums evaluated at the K

points. The momentum shift qj(θ) is the misalignment between the K point of h-BN

and graphene, which is caused by rotation and lattice mismatch. Specifically,

q1(θ) = kD(δ, θ),

q2(θ) = kD(−
√

3

2
θ − 1

2
δ,−1

2
θ +

√
3

2
δ),

q3(θ) = kD(

√
3

2
θ −
√

1

2
δ,−1

2
θ −
√

3

2
δ),

(4.4)

where kD = 4π
3a

is the magnitude of the K point of graphene. θ is the rotation angle

and δ ≈ 1.8% is the lattice constant mismatch between graphene and h-BN. Since
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the momentum shift is very small for small angle rotation, we neglect the dispersion

of h-BN [24] and write the Hamiltonian of the isolated h-BN as

Hh-BN =

εB 0

0 εN

 . (4.5)

The energies εB and εN are the on-site energies of the B and N atoms.

Integrating out the h-BN bases with second order perturbation, we transfer the

interaction between graphene G1 and h-BN into an effective additional Hamiltonian

term [24] to HGr1

Heff
h-BN(ε) = TGr,h-BN(ε−Hh-BN)−1T†Gr,h-BN . (4.6)

The bilayer graphene Hamiltonian including the effect of rotated h-BN is

H =

HGr1 + Heff
h-BN TGr,Gr

T†Gr,Gr HGr2

 . (4.7)

Boltzmann transport theory is used to calculate the transport properties of bilayer

graphene on top of h-BN [60]

σ =
e2

h

∫
BZ

k · dk · dθv2khτ(− ∂f
∂εk

) (4.8)

where the Fermi velocity is vF = 1
~
∂ε
∂k

∣∣∣
ε=εF

, f is the Fermi-Dirac distribution and τ is

the relaxation time.
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Figure 4.2: Conductivity as function of Fermi energy under different vertical electric
fields. The rotation angle is θ = 0.38◦. The vertical electric field is varied from -0.5
V/nm to 0.5 V/nm.

4.2 Results and discussion

The interaction parameters are taken from Ref [61]. The rotation angle determined

from the experimental system is θ = 0.37◦. FIG 4.2 shows the calculated conductivity

of bilayer graphene as function of Fermi energy under different electric field. The

relaxation time is set to ~
τ

= 1.5 meV. The colors of the different curves represent

the magnitude and direction of the vertical fields. More red color indicates negative

electric field with larger magnitude, while more blue color means positive electric field

with larger magnitude. Both positive and negative electric field open a gap around

the charge neutral point. Besides the main gap at the charge neutral point, the dip

in conductivity around EF = ±0.07eV is caused by the secondary Dirac cone. The

conductivity at the lower secondary Dirac cone changes a bit faster under positive

electric field than under negative electric field. On the other hand, the conductivity at

the upper secondary Dirac cone changes faster under negative electric field than under
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Figure 4.3: Calculated Rxx at both the electron side and the hole side of secondary
Dirac cone as function of vertical field. The rotation angle is θ = 0.37◦, which is the
same as the experimental device.

positive electric field. A positive sweep of the electric field causes the conductivity at

the upper secondary Dirac cone to first increase than decrease. A negative sweep of

the electric field causes the conductivity to monotonically decrease.

To better understand the relation between the conductivity at the secondary Dirac

points and the vertical electric field, we plot Rxx at the upper and lower secondary

Dirac points as functions of vertical field in FIG 4.3. The experimentally measured

resistance at the secondary Dirac cones is shown in FIG 4.4. The resistance shows

obvious electron-hole asymmetry with respect to the direction of the electric field. The

simulated results are in good qualitative agreement with the experimental results.

Superlattice minibands are produced by the periodic morié pattern induced by the

rotated h-BN substrate. We plot the first and second conduction minibands of this

heterostructure with no vertical field in FIG 4.5. The figure is centered at the original

Dirac point, with high symmetry points K and K′. The trigonal warping induced
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Figure 4.4: Experimentally measured Rxx at the electron side and the hole side of
the secondary Dirac cone as a function of the vertical field. The rotation angle is
θ = 0.37◦. Experimental data is provided by Prof. Marc Bockrath’s group.

by the bilayer graphene interaction leads to asymmetry between K and K′ for most

rotation angles [57]. The drop in conductivity on the electron side is associated with

a band gap between the first and second conduction minibands. The band gap is

induced by arch-shaped pockets in each band, which are produced by the interplay

between perturbation from the rotated h-BN and the interlayer interaction. Also,

the potential difference between the two graphene layers will affect the shape of these

pockets.

FIG 4.6 shows how the bands near the upper secondary Dirac point between

K and K′ change under different vertical electric fields. Positive vertical field will

decrease the distance between the two bands and the velocity of electrons in the bands.

These two changes will have opposite effects on the conductivity. The decrease in the

energy separation of the bands will increase the density of states at the secondary

Dirac cone which will increase the conductivity. But the decrease of the velocity

52



Figure 4.5: Conduction Superlattice minibands. The rotation angle is θ = 0.37◦ and
no vertical field is applied.
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Figure 4.6: Conduction minibands spectrum at the edge of gap under different vertical
electric fields.

will decrease the conductivity according to Eq (4.8). These two competing factors

cause the conductivity to first slowly increase then decrease under increasing positive

vertical field. Sweeping the vertical field in the negative direction increases the energy

separation between the two bands and decreases the velocity of the electrons in the

bands. Both the increase of band gap and decrease of velocity will decrease the

conductivity. So the conductivity at the upper secondary Dirac cone changes faster

under negative electric field than under positive electric field.
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Chapter 5

Properties of multilayer graphene

and the rotation effect of h-BN

layers

Multilayer graphene has proven to be an exceptional platform to study quantum

Hall physics [62–64]. Bernal stacking is the most stable stacking order of multiayer

graphene. The band structures of trilayer graphene can be treated as a combination

of monlayer-like and bilayer-like bands. The band structure of tetralayer graphene

can be decomposed into two bilayer-like bands with different effective masses [65]. In

this chapter, the effect of a rotated h-BN substrate on the electronic properties of

trilayer graphene is studied with DFT and tight binding models. The longitudinal

resistance of tetralayer graphene as function of carrier density and vertical electric

field is simulated with Boltzmann transport theory. Finally, we show how the analytic

results give a good explanation of the experiment results.
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Figure 5.1: Atomic structure of ABA-stacked trilayer graphene with tight-binding
hopping parameters for interlayer interaction.

5.1 TRILAYER GRAPHENE

5.1.1 Tight-binding model of trilayer graphene

The structure of ABA-stacked trilayer graphene is shown in Figure 5.1. We adapt

the Slonczewski-Weiss-McClure model [65,66] with tight-binding hopping parameters

described in Figure 5.1. The intralayer coupling between nearest neighbor carbon

atoms is given by hopping parameter γ0. γ1 is the interaction between carbon atoms

located one above the other in adjacent layers. Hopping parameters γ3 and γ4 rep-

resent the coupling to the second nearest neighbors of adjacent layers. γ2 and γ5 are
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the next-nearest layer couplings for nondimer sites and dimer sites. Besides these

interaction parameters, we also consider the on-site energy asymmetry between atom

A and atom B, ∆AB. Since trilayer graphene preserves the mirror symmetry, the top

graphene and the bottom graphene have the same potential when no vertical electri-

cal field is applied. We use ∆ to represent the potential difference between the middle

graphene and the top graphene.

The Hamiltonian of trilayer graphene in the vicinity of the Kξ valley is

H =



0 νπ† −ν4π† ν3π
γ2

2
0

νπ ∆AB γ1 −ν4π† 0 γ5

2

−ν4π γ1 ∆AB + ∆ νπ† −ν4π γ1

ν3π
† −ν4π νπ ∆ ν3π

† −ν4π
γ2

2
0 −ν4π† ν3π 0 νπ†

0 γ5

2
γ1 −ν4π† νπ ∆AB


, (5.1)

where ξ = ±1 is the valley index, and π = ξpx+ ipy is the momentum operator in the

x-y plane. The Fermi velocity of monolayer graphene is ν =
√
3aγ0

2~ . The interactions

γ3 and γ4 are represented in velocity form as ν3 = γ3

γ0
ν and ν4 = γ4

γ0
ν.

From this Hamiltonian, we obtain the eigenvalues and eigenstates of monolayer-

like and bilayer-like band edges at the Kξ point. They are

ε1 = ∆, |φ1〉 = |B2〉

ε2 =
γ2
2
, |φ2〉 =

1√
2

(|A1〉+ |A3〉)
(5.2)

for the bilayer-like band, and
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ε3 = ∆AB −
γ5
2
, |φ3〉 =

1√
2

(−|B1〉+ |B3〉)

ε4 =
−γ2

2
, |φ4〉 =

1√
2

(−|A1〉+ |A3〉)
(5.3)

for the monolayer-like band.

From equations (5.2) and (5.3), the parameters γ2, γ5, ∆ and ∆AB can be deter-

mined directly from the measurement of the band-edges at Kξ.

5.1.2 Effect of adding substrate h-BN and interface rotation

When we use h-BN layers to encapsulate trilayer graphene, the interaction between

the graphene and h-BN will modify the band structure of trilayer graphene. To

explore how the h-BN substrate affects trilayer graphene’s bands, we first use DFT to

calculate the band structures of these heterostructures. The tight-binding parameters

are determined by fitting the tight-binding and DFT low-energy, energy-momentum

dispersions.

DFT calculations are performed by the Vienna ab initio simulation package(VASP)

with a plane wave basis. The kinetic energy cutoff of 500 eV and 8 × 8 × 1 k point

mesh are used. The misoriented commensurate primitive unit cells are created using

the approach described in Chapter 2.2. We set the lattice constant a = 2.46Å for

graphene. The lattice mismatch between graphene and h-BN is ignored.

FIG 5.2(a) shows the band structure of isolated trilayer graphene and FIG 5.2 (b,c)

shows the band structures of trilayer graphene encapsulated by BN layers that have

a relative rotation at the graphene-BN interface. The fitted tight binding parameters

are given in Table 5.1. The magnitude of next-nearest layer couplings γ2 decrease

more than half when the trilayer graphene is encapsulated in the h-BN layers. We

use DFT to determine how adding h-BN modifies trilayer graphene’s charge distribu-
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(a) 3L-G (b) BN/3L-G/BN, θ=13.17o (c) BN/3L-G/BN, θ=27.80o

DFT

TB 

Figure 5.2: The band structures of (a) trilayer graphene and h-BN/trilayer
graphene/h-BN with rotation angles (b) 13.17◦ and (c) 27.80◦ between the graphene
and h-BN layer. The solid blue lines are the DFT simulated band structures and the
red dashed lines are generated by tight-binding model with fitted parameters.

Structure 3L-G
BN/3L-G/BN

θ = 13.17◦ θ = 21.79◦ θ = 27.80◦

γ0(meV ) 2550 2550 2550 2550
γ1(meV ) 350 370 390 350
γ2(meV ) -23.4 -6.70 -9.39 -6.83
γ3(meV ) 280 290 310 270
γ4(meV ) 130 150 150 150
γ5(meV ) 32.4 25.8 31.8 21.8

∆AB(meV ) 40.0 30.6 35.0 26.4
∆(meV ) 4.51 3.87 4.72 9.29

Table 5.1: Fitted parameters of the tight-binding model

tion. FIG 5.3 illustrates the atomic structure of h-BN/trilayer graphene/h-BN with

rotation angle 21.79◦ and the charge redistribution after the BN layers are added. The

blue isosurface represents charge depletion and the red isosurface represents charge

accumulation. We find that once we put the h-BN layer near the graphene, some of

the graphene layer’s charge will move toward the h-BN layer. In other words, the

top and bottom graphene layer’s wave function will shift away with each other. Since

γ2 is the direct interaction between carbon atoms of the top and bottom graphene

layers, adding h-BN layers will depress its magnitude.
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Figure 5.3: Charge redistribution of trilayer graphene structure when we add BN
layers at top and bottom with relative rotation angle 21.79◦. The blue(red) isosurfaces
represent the region where charge decreased(increased) when we add h-BN layers.

5.2 FOUR-LAYER GRAPHENE

5.2.1 Band structure and transport under bias voltage

Similar to the tight binding model of trilayer graphene, ABAB stacked tetralayer(four-

layer) graphene’s Hamiltonian in the vicinity of the Kξ valley is

H =



eD·d
2

νπ† −ν4π† ν3π
γ2

2
0 0 0

νπ ∆AB + eD·d
2

γ1 −ν4π† 0 γ5

2
0 0

−ν4π γ1 ∆AB + eD·d
6

νπ† −ν4π γ1
γ5

2
0

ν3π
† −ν4π νπ eD·d

6
ν3π

† −ν4π 0 γ2

2

γ2

2
0 −ν4π† ν3π − eD·d

6
νπ† −ν4π† ν3π

0 γ5

2
γ1 −ν4π† νπ ∆AB − eD·d

6
γ1 −ν4π†

0 0 γ5

2
0 −ν4π γ1 ∆AB − eD·d

2
νπ†

0 0 0 γ2

2
ν3π

† −ν4π νπ − eD·d
2


(5.4)
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Figure 5.4: The band structure of tetralayer graphene around the K points under
different vertical electric fields: (a) D= 0 mV/nm; (b) D= 20 mV/nm; (c) D= 40
mV/nm.

where the D is the vertical electric field and d is the thickness of tetralayer graphene.

The band structure around the K point for tetralayer graphene is shown in FIG

5.4 (a). Four low energy bands can be decomposed into two bilayer-like bands with

light and heavy effective masses. Since the interlayer second nearest neighbor γ3 is

considered in the calculation, the trigonal warping effect appears around the Dirac

cone. This means that the dispersion around the K point has C3v symmetry. When a

vertical electric field is added, the dispersion relation at K changes dramatically. FIG

5.4 (b,c) shows the band structures with vertical electric fields of D = 20 mV/nm

and D = 40 mV/nm. The vertical field increases the energy separation between the

bands.

The eigenvalues at the K point have the following form,

εL1 =
|eD · d|

6
+

√
(
eD · d

3
)2 + (

γ2
2

)2 (5.5)
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εL2 = −|eD · d|
6

+

√
(
eD · d

3
)2 + (

γ2
2

)2 (5.6)

for light mass BLG-like bands, and

εH1 =
|eD · d|

6
−
√

(
eD · d

3
)2 + (

γ2
2

)2 (5.7)

εH2 = −|eD · d|
6

−
√

(
eD · d

3
)2 + (

γ2
2

)2 (5.8)

for heavy mass BLG-like bands.

The analytic relation between band edge and the vertical field is ploted in FIG

5.5. The magnitudes of εL1 and εH2 increase monotonically with vertical field. While,

for εL2 and εH1 , their magnitude will first decrease then increase.

Boltzmann transport theory is used to calculate the in-plane transport properties

of tetralayer graphene. The conductivity can be written as a sum of intraband and

interband contributions [67]:

σxxintra = e2τ
∑
n

∫
BZ

1

(2π)2
dθkdk|〈nk| ∂H

∂kx
|nk〉|2(−∂fnk

∂εnk
) (5.9)

σxxinter = ie2~
∑
n,m 6=n

∫
BZ

1

(2π)2
dθkdk

fmk − fnk
εnk − εmk

〈nk| ∂H
∂kx
|mk〉〈mk| ∂H

∂kx
|nk〉

εnk − εmk + i~τ−1
(5.10)

where the εnk and fnk are the energy and Fermi-Dirac distribution function of band n

with wave vector k. We treat the relaxation time τ as an independent parameter and

assume that τ is the same for both intraband and interband scattering mechanisms

[67].

As Eq. (5.9) shows, the conductivity depends on the Fermi velocity and density of
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Figure 5.5: Bandedges at K point as function of vertical field.
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states at the Fermi level. The conductivity contributed by the intraband component

will increases as the Fermi level moves away from the charge neutral point.

On the other hand, the magnitude of the interband contribution is strongly de-

termined by the energy differences between two bands |nk〉 and |mk〉. The interband

contribution is maximum when the Fermi level moves to the energy where two bands

closely touch. Since an increase of vertical field will increase the separation between

each band, the conductivity contributed by interband scattering will be strongly de-

pressed when the energy differences of two bands are greater than ~τ−1.

5.2.2 Results and discussion

To make the calculation result more general, we adapted the most used parameter

values for the tight-binidng model from Koshino’s paper [65]. The relaxation time is

treated as a constant and is the only parameter needed to match the experimental

results. The calculated resistance as a function of charge carrier density and vertical

field is plotted in FIG 5.6. The relaxation time is ~/τ = 0.5 meV, which gives a good

match between the experimental and simulation results.

From FIG 5.6, we find that there is always a large resistance peak around charge

neutral point for a vertical field over 10 mV/nm. When the vertical filed is small

enough, the single peak will split into two peaks. To understand the evolution caused

by the change of vertical field, we plot the resistance as a function of charge carrier

density for different fields in FIG 5.7. The blue curve in FIG 5.7 shows two peaks

around the charge neutral point when the vertical electric field is zero. When the

vertical field increases to 10 mV/nm, the relation between Rxx and carrier density

becomes a single peak at the charge neutral point.

To investigate the mechanism that controls the the number of peaks, we plot the
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Figure 5.6: Rxx as function of charge carrier density and displacement field.
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Figure 5.7: Rxx as function of charge carrier density under different vertical electric
fields.
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Figure 5.8: The intraband contribution to the conductivity as function of charge
carrier density with no applied vertical electric field.
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Figure 5.9: The interband contribution to the conductivity as function of charge
carrier density with no applied vertical electric field.

intraband and interband contributions in FIG 5.8 and FIG 5.9 separately. FIG 5.8

shows that the intraband contribution to the conductivity increases monotonically

with increase in charge density. If we only consider the intraband contribution, we

get one sharp Rxx peak around the charge neutral point.

The interband contribution to the conductivity, shown in FIG 5.9, is relatively

small compared to intraband contribution when the Fermi level is away from the

charge neutral point. At low carrier density, the contribution of the interband term

can not be ignored. In FIG 5.9, the peak of the interband contribution to the con-
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Figure 5.10: Experimentally measured Rxx as a function of charge carrier density and
vertical electric field. Experimental data is provided by Prof. Jeanie Lau’s group.

ductivity is located at n = −0.05 × 1012 cm−2. The Fermi energy at this charge

density is EF = −5.5 meV, which is the energy where two bands touch. The other

two small peaks also coincide with the touching of the bands. Near the charge neutral

point, the interband scattering will split the single resistance peak into two peaks. As

FIG 5.4 shows, the vertical field will increase the separation between bands. When

the energy difference between two bands is greater, the interband contribution to the

conductivity becomes negligible. When the vertical field is larger than 10 mV/nm,

the interband contribution is suppressed since the bands are separated far away from

each other. The Rxx curve will only have one peak resulting from the intraband

scattering.
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The experimentally measured Rxx for different charge densities and vertical fields

is shown in FIG 5.10. The simulations showing the double peak around the charge

neutral point qualitatively matches the experimental result. Several tiny peaks appear

in the non-low charge density region in FIG 5.10. The small peaks occur when the

Fermi level reaches the band-edge causing appearance or disappearance of a transport

channel and the sudden increase of density of states. FIG 5.5 shows the relation

between different band edges with vertical field according to Eqs (5.5) to (5.8). The

vertical field tunes the position of the band edges, which will further determine the

position of the small peaks. The relation between band edges and vertical field shown

in FIG 5.5 matches the relation between small resistance peaks and vertical field

shown in FIG 5.6.
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Chapter 6

Conclusion

The critical findings of this work are summarized as follows:

1. For the graphene/h-BN/graphene heterostructure, the relative rotation between

graphene and h-BN layer affects the vertical resistance by more than two orders

of magnitude.

2. For angles greater than 4◦, the vertical interlayer resistance of the graphene/h-

BN/graphene heterostructure is dominated by the change in the effective h-BN

bandgap seen by an electron at the K point of the graphene. The resistance

monotically increases with the rotation angle, and it reaches a maximum at

θ = 30◦. For devices that exhibit NDR under high bias, rotation of the h-BN

primarily serves to reduce the overall magnitude of the current. The peak-to-

valley ratio is, however, unaffected by the misorientation angles.

3. In the small-angle regime (θ . 4◦), new features arise in the interlayer resis-

tance due to the opening of new conductance channels corresponding to Umk-

lapp processes. Umklapp processes give rise to two new conduction channels

corresponding to an intraband term and an interband term.
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4. For the bilayer graphene/ h-BN heterostructure, the vertical electric field can

tune the conductivity at the secondary Dirac cone. The relation between con-

ductivity and vertical field is asymmetric on the electron-side and the hole-side.

5. For the h-BN/trilayer graphene/h-BN heterostructure, the added h-BN de-

creases the coupling between the two outside layers of trilayer graphene. The rel-

ative rotation between h-BN and graphene also changes the trilayer graphene’s

interlayer coupling strength.

6. For tetralayer graphene, the combination of interband and intraband scattering

creates an extra Rxx peak around the charge neutral point, which qualitatively

agrees with the experimental result.
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