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Enhancing untargeted metabolomics using metadata-based 
source annotation

A full list of authors and affiliations appears at the end of the article.

Abstract

Human untargeted metabolomics studies annotate only ~10% of molecular features. We introduce 

reference data–driven analysis to match metabolomics MS/MS data against metadata-annotated 

source data as a pseudo-MS/MS reference library. Applying this approach to food source data, we 

show that it increases MS/MS spectral usage 5.1-fold over conventional structural MS/MS library 

matches and allows empirical assessment of dietary patterns from untargeted data.
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Metabolomics is improved by using a reference library of both known and unknown molecules.

Complex sequence data from metagenomic or metatranscriptomic experiments require 

for interpretation both databases of curated genes and reference data, such as whole 

genomes or other sequence data with carefully curated metadata (developmental stage, 

tissue location, phenotype, etc.).1–4 Such reference data-driven (RDD) analysis increases 

understanding of complex communities by using matches between genes or transcripts 

of known and unknown origin. The RDD strategy is essential for the successful analysis 

of most metatranscriptomics or metagenomics data. By analogy, interpreting LC-MS/MS-

based untargeted metabolomics data is performed by searching structural MS/MS libraries. 

However, leveraging reference data with curated and structured controlled vocabulary 

metadata to improve insights obtainable from untargeted MS/MS-based metabolomics is 

not yet done.

RDD analysis uses not only annotated MS/MS-spectra but also all unannotated spectra. The 

GC-MS BinBase resource has made a step in the direction of RDD. With BinBase one can 

annotate if a spectrum match has been observed in a non-public GC-MS dataset. However, 

the metadata is not well controlled and lacks the ability to add contextualized metadata.18,19 

In addition, as we have previously demonstrated, using structural annotations, the source can 

be determined by literature mining.20 However, due to above mentioned limitations and/or 

inability to link related spectra in the case of metabolism, the above strategies to annotate 

unknowns cannot be used to systematically to interpret the source information at the data set 

level. We therefore introduce the RDD approach for metabolomics (Figure 1), followed by a 

use case demonstrating empirical food readouts from untargeted human data (Figure 2).

Untargeted MS/MS-based metabolomics experiments involve searching MS/MS structural 

libraries since the late 1970’s 5,6, or, more recently, for investigating the distribution of 

a MS/MS spectrum across public untargeted data.21 Instead of only leveraging a single 

MS/MS spectrum to obtain an annotation, RDD metabolomics uses all MS/MS spectra from 

untargeted metabolomics files, which contain hundreds to thousands of MS/MS spectra, 

for metadata-based source annotation. The key differences are that the output reports 

contextualized information from source reference datasets. For successful RDD analysis, 

it is critical that the contextualized data are curated using controlled vocabularies or the 

results will not be amenable to downstream analysis. In the presented application for 

RDD, we investigated which food compositions could be recovered from data acquired 

from human biospecimens. Answering this question required a resource of reference food 

MS/MS source data and associated curated metadata. The source data includes MS/MS 

spectra of multiple ion forms of known and unknown molecules, isotopes, adducts, 

in-source fragments, and multimers.7,8 The curated reference dataset can be matched 

in human biospecimens via direct matching of the MS/MS spectra or by molecular 

networking. Unlike static libraries, RDD analysis retains flexibility by enabling custom 

addition of files or metadata, and also gives the user control on how the reference data 

is processed. We created a step-by-step tutorial for RDD analysis using GNPS (https://ccms-

ucsd.github.io/GNPSDocumentation/tutorials/rdd/ and corresponding video tutorial https://

www.youtube.com/watch?v=2-XsifrUY0Y).9
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To exemplify RDD metabolomics, and because food is critical for health, we created a food 

metabolomics reference data set. There is an unmet need to retrospectively and empirically 

read out food and beverage information from human metabolomics data, complementing 

current state-of-the-art mass spectrometry nutrition readout approaches targeting up to 

~150–200 metabolites, food frequency and abundance questionnaires, diet records, 24-hr 

recalls, which can be self-monitored or assisted by a nutritional specialist. 10,11 The food 

reference data set consists of untargeted metabolomics and detailed and structured metadata 

for ~3500 foods (157 different food-specific metadata fields, Table S1). It contains 107,968 

unique MS/MS spectra merged from 1,907,765 spectra. The food source data can be easily 

expanded by creating and depositing additional data sets and metadata in GNPS/MassIVE.

For RDD, food source data is subjected to GNPS based molecular networking14,15 together 

with human metabolomics datasets (Figure 2a). Using information on the controlled 

research diets of participants of a sleep and circadian study we assessed if RDD recovers 

food known to be consumed12. In this study, the participants were housed for four weeks 

and were given a controlled diet, therefore we know if the results agreed with the known 

diet from that study (Figure 2b). Of the 15 food categories, eleven represented direct 

matches to foods provided to the participants. Of those eleven matches, three matched to 

fermented versions of the non-fermented foods consumed such as fermented grapes instead 

of grapes, apple cider instead of apple, yogurt instead of milk, and four categories were not 

documented as consumed during the study, three of which could be explained. Evidence of 

caffeinated beverage consumption was observed only in two individuals — in the first 48hrs 

in one volunteer and once in a second volunteer in the middle of the study — that there 

were few matches to caffeinated beverages is consistent with the elimination of caffeinated 

beverages in the controlled diet. Although not always written on the ingredient list of 

packages, rosemary is a common ingredient added to ground meat to slow oxidation and 

spoilage. The source of the matches to soda are unknown. This demonstrates that RDD can 

successfully obtain the correct diet information from untargeted metabolomics data but also 

be used to monitor diet adherence in controlled-diet studies.

We also tested mismatched food inventories by cross-matching US or Italian foods (different 

diets) and clinical cohorts. Crossover revealed that MS/MS spectral usage rates —the 

percentage of MS/MS spectra interpreted by the analysis— were 5–6% in reciprocal tests, 

versus 15–30% when the correct regional foods were used (Figure 2c, p=0.019). These 

observations show that RDD analysis is selective based on the foods that are consumed but 

also that it is important to continue to grow the food reference database as generic food 

databases have considerable value. Efforts, such as the Periodic Table of Food Initiative, and 

linking of Metabolights and Metabolomics workbench repositories with GNPS/MassIVE 

will aid the expansion of the food reference data.

We next assessed if RDD analysis could recover a reference food spiked into human 

biospecimen extracts. We therefore analyzed mixtures of two human fecal samples or 

the NIST 1950 plasma reference extract with a tomato seedling extract in different 

proportions.22 In all three biospecimens, the proportion of spectral matches relative to the 

tomato seedling extract increased linearly with the spiked-in proportion (p=2.32E−31, SI 

Figure 1).
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Because RDD analysis can be performed retrospectively, we co-analyzed the food reference 

dataset with 28 additional public human datasets (Table S2, SI Figure 2). 10.1±4.4% of 

MS/MS spectra matched to spectral structural libraries. RDD increased MS/MS spectral 

usage 5.1±3.3-fold over structural MS/MS library matches. With molecular networking, 

which can capture metabolized versions of molecules, spectral data usage increased 

6.8±3.5-fold. Inclusion of connected nodes, representing potential metabolism via molecular 

transformations, resulted in a total increase of 43.7±3.1% (fecal; P=6.9e-10), 51.2±6.9% 

(plasma; P=2.8e-06), and 58.0±4.2% (other; P=1.4e-06) of MS/MS spectra that can be 

leveraged as empirical readout of diet (SI Figure 2).

To validate the food consumption read-outs obtained via RDD analysis from these 28 

datasets, direct spectral library matches in the molecular networks created by the food-based 

RDD analyses (1% FDR, and level 2/3 according to the metabolomics standards initiative 
13, 17) were evaluated to verify whether they make sense in the context of food. An 

InChIKey is available for 4,586 of 5,455 spectral matches against the reference libraries, 

which yielded 1,492 unique structures upon consideration of planar structures. For 415 

out of 1492 planar structures that had lifestyle tags associated in GNPS 20,21, “food 

consumption” was the most frequently reported tag (357 entries; 86%). Additionally, other 

matches are related to the food production chain, such as feed additives to promote animal 

growth that are tagged as “drug”, such as the antimicrobial agents monensin, enilconazole, 

kanamycin and other agricultural additives or environmental toxins such as domoic acid.25

To assess if RDD can reveal dietary preferences, we analyzed a data set of omnivores 

and vegans. Principal component analysis (PCA) of the spectral match relative proportions 

to reference foods revealed distinct patterns between dietary preferences (Figure 2d). 

Omnivores had more MS/MS matches to dairy, meat, and seafood (P=0.0021, 2.2e-10, 

and 7.7e-7 respectively), while vegans had more MS/MS matches to legumes, fleshy fruit, 

and vegetables (P=2.2e-10, 0.0096, and 0.029, respectively, Figure 2e). Because many 

MS/MS spectra from foods may overlap, using only MS/MS spectra unique to each food can 

provide additional specificity (Figure 2f). RDD analysis on an elderly population16 found 

that individuals with lower diet diversity had more spectral matches to dairy, soda, and 

coffee, and this diet type was more prevalent in the Alzheimer’s Disease group than those 

with normal cognition (SI Figure 3). This demonstrates that RDD analysis can be used to 

retrospectively stratify clinical studies based on empirical readout of diet composition for 

each sample.

RDD thus enables readout of dietary patterns (e.g. vegan versus omnivore) and consumption 

of specific food items, and, more generally, can be used to match against any curated 

and ontology - aware reference database of sources, including environmental or microbial 

sources. RDD metabolomics is currently unique to GNPS, as it requires highly scalable 

molecular networking and incorporation of detailed metadata. However, as other analysis 

ecosystems add molecular networking capabilities, or that make RDD compatible with 

other spectral alignment algorithms, it will become possible to use other resources for 

RDD metabolomics. As scalable molecular networking for GC-MS is also possible24, 

specialized resources, such as BinBase18,19, may eventually be leveraged for RDD 

analysis of specific applications or questions. To expand the scope of RDD metabolomics 
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beyond food readout, well curated datasets of personal care products, medications (not 

just active ingredients but also formulations), microbial isolates, country of origin, 

biological sex, age, etc. might also be used as source reference data and requires careful 

curation with controlled vocabularies and structuring of metadata. Potential applications 

of RDD metabolomics include understanding diet and nutritional intake, exposure risks, 

medication use, consumption of illegal substances, environmental allergens, pollution 

studies, microbiome investigations, food ingredients/adulteration, forensics, and personal 

care product tracing to inform of potential exposures and health implications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The concept of reference data-driven based analysis workflow.
1 - Perform spectral alignment of the MS/MS based untargeted metabolomics data from 

human biospecimens with data from reference samples that have controlled vocabularies 

for metadata. This can, optionally, be combined with MS/MS libraries. 2 - link the spectral 

matches to the source information from the metadata from the reference samples. Create a 

data table of source ontology, human biospecimen and counts to enable data science and 

interpretation.
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Figure 2. RDD with food reference data.
a. Food RDD analysis schema. b. Food spectral counts (1% FDR13) observed in plasma 

from a sleep restriction and circadian misalignment study that controlled the diet of the 

participants (n=371 samples from 20 healthy adults).12 The size of node represents the 

relative number of spectral matches at each food level. Blue arrow - foods that could be 

explained based although they were not provided in the study, orange arrow– source is not 

known. c. A crossover experiment between centenarian data from Italy and a sleep and 

circadian study from the US, for both fecal and plasma samples. Study region specific foods 
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consumed by those individuals (yes) vs a different set of study region specific foods (no), 

(one way Welch’s t-test, thick line is the mean, range within the box is the interquartile 

range, from the 25 to 75 quartile, min / max are the whiskers). d. PCA of food counts color 

coded by vegan (brown) vs omnivore data (green). e. Statistical analysis for the food counts 

at level 3 of the ontology, in relation to omnivore and vegan data (Wilcoxon test, n=36, 19 

are vegan and 19 are omnivore). f. Same as e. but level 4 ontology using unique spectral 

counts (spectral usage is the percentage of MS/MS spectra used in the analysis. Since they 

are unnamed ontologies as one would find in microorganism phylogeny in microbiome 

science - e.g. kingdom, genus, species we have denoted these as layers, Table S1). For 

e-f, The boxes represent the interquartile range (IQR). Lower limit (Q1) is 25th percentile, 

median (Q2), upper limit (Q3) is 75th percentile. Bars show Q3+1.5xIQR and Q1–1.5xIQR.
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