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Generating Dominant Strategies for
Continuous Two-Player Zero-Sum Games

Marcell J. Vazquez-Chanlatte ∗, Shromona Ghosh ∗,
Vasumathi Raman ∗∗, Alberto Sangiovanni-Vincentelli ∗,

Sanjit A. Seshia ∗

∗University of California, Berkeley, Berkeley, CA (e-mail:
{marcell.vc,shromona.ghosh,alberto,sseshia}@eecs.berkeley.edu).
∗∗ San Francisco, CA (e-mail: vasumathi.raman@gmail.com)

Abstract: Motivated by the synthesis of controllers from high-level temporal specifications,
we present two algorithms to compute dominant strategies for continuous two-player zero-
sum games based on the Counter-Example Guided Inductive Synthesis (CEGIS) paradigm.
In CEGIS, we iteratively propose candidate dominant strategies and find counterexamples.
For scalability, past work has constrained the number of counterexamples used to generate
new candidates, which leads to oscillations and incompleteness, even in very simple examples.
The first algorithm combines Satisfiability Modulo Theory (SMT) solving with optimization
to efficiently implement CEGIS. The second abstracts previously refuted strategies, while
maintaining a finite counterexample set. We characterize sufficient conditions for soundness and
termination, and show that both algorithms are sound and terminate. Additionally, the second
approach can be made complete to within an arbitrary factor. We conclude by comparing across
different variants of CEGIS.

Keywords: Controller Synthesis, Robust Control, Counter-Example Guided Inductive Synthesis

1. INTRODUCTION

Correct-by-construction controller synthesis from high-level
formal specifications offers a promising means of raising
the level of abstraction for implementation. In particular,
reactive synthesis from temporal logic generates programs
or controllers which maintain an ongoing interaction
with their (possibly adversarial) environments. Reactive
synthesis from linear temporal logic using automata-
theoretic methods has been demonstrated for synthesizing
high-level controllers for robotics. However, for embedded,
cyber-physical systems (CPS), reactive synthesis becomes
much more challenging for several reasons. First, the
specification languages go from discrete-time, propositional
temporal logics to metric-time temporal logics over both
continuous and discrete signals, so the previous automata-
theoretic methods do not easily extend. Second, even
for simple classes of dynamical systems and metric-time
temporal logics, verification is itself undecidable, let alone
synthesis. Third, the state of the art for solving games over
infinite state spaces, as required for metric or quantitative
temporal objectives, is far less developed than that for
finite games.

To address these challenges, researchers have resorted to
various simplifications. One simplification is to consider
the control problem over a finite horizon instead of
infinite horizons. This ensures verification is decidable for
many interesting and practical systems and specification
languages, like metric temporal logic (MTL) (Koymans,
1990) and signal temporal logic (STL) (Maler and Nickovic,
2004). Reachability (Mitchell et al., 2005) based techniques
offer a suite of well-developed and mature tools for handling
finite horizon games, whose constraints amount to simple
safety invariants such as obstacle avoidance. However, direct
extensions to temporal constraints are not straightforward.
Existing approaches model the environment as a bounded,
non-deterministic disturbance (Ding et al., 2011), which is
often unrealistic, leading to infeasibility in applications

like autonomous driving for even very mundane cases.
Instead, one may have a more complicated model of the
environment that leverages either data-driven techniques or
known aspects of the behavior of the other agents, such as
their formal specifications. Our contributions are motivated
by improving the ability to use such models to constrain
the environment in non-trivial ways.

A promising and scalable approach is to formulate reactive
synthesis over a finite, receding horizon as a series of zero-
sum games between the system and the environment, where
the environment assumptions and system objectives are
systematically encoded into rewards (Raman et al., 2015).
This form of controller, known as Receding Horizon Control
(RHC), offers a (limited) form of reactivity. Each game is
solved using a Counter-Example Guided Inductive Synthesis
(CEGIS) (Solar-Lezama et al., 2006) scheme to search for
a dominant strategy. In particular, one first fixes a system
strategy and encodes the environment’s play as the solution
to an Optimization Problem (OP). If the system’s reward is
negative, the environment’s play is called a counterexample.
The system then proposes a new candidate strategy that si-
multaneously considers all previous counterexamples. This
process iterates until a dominant strategy is found. This
framework has seen success on (hybrid-)linear dynamical
systems and specifications in a large fragment of Signal
Temporal Logic, where the resulting OP reduces to a Mixed
Integer Linear Programming (MILP) Problem (Raman
et al., 2015).

Practical implementations of CEGIS suffers from two major
shortcomings. First, CEGIS is an iterative paradigm that
produces a series of candidate solutions with corresponding
counterexamples. In each iteration of CEGIS, one must
simultaneously solve the original OP for all previously found
counterexamples. In this paper, we refer to this ideal variant
of CEGIS as CN . The authors in (Raman et al., 2015)
speculated that in the case of MILPs, CN would scale poorly
as the set of counterexamples grew; but prior to this paper,
this had not been empirically demonstrated. Nevertheless,



this scaling issue was circumvented by considering only the
most recent counterexample in each iteration of CEGIS
(CSCE). This heuristic leads to the second shortcoming,
namely, that CSCE may oscillate indefinitely between the
same set of counterexamples.

Example 1. Consider the situation shown in Fig 1. De-

Fig. 1. The ego car is attempting to reach the goal while
avoiding collisions with the other cars.

pending on the ego car’s behavior, the lead car may move
to block the ego car, leading to a crash. If the ego car stops,
it may be rear ended. Reasoning about the infeasibility
of reaching the goal safely under an adversarial environ-
ment requires access to at least three counterexamples.
Maintaining only the last counterexample will cause the
CEGIS to loop indefinitely. An ideal synthesis procedure
would quickly reveal that the environment assumptions
need to be strengthened (e.g. assume that given enough
time the other cars would avoid the ego car or stop).
Such discrete sub-problems arise naturally within more
complicated (continuous space and time) driving scenarios.

To deploy a RHC on a complex CPS, the synthesis
procedure associated with each planning step must be
implemented in real time, and making CEGIS practical is
an important first step. However, prior efforts to speed
up CEGIS lead to incompleteness or non-termination.
For example, (Farahani et al., 2015) evaluated alternate
techniques such as Monte Carlo and dual formulations for
CEGIS to improve tractability. These techniques either
provide only probabilistic completeness, or suffer from
similar scaling-related issues.

In this paper, we present techniques and assumptions
under which one can make the CEGIS step of receding
horizon reactive synthesis practical, and characterize its
termination in a fairly general setting. We believe this
marks an important step towards synthesizing reactive
controllers in real time. Our contributions are as follows:

(1) Empirical results verifying that, as hypothesized
in (Raman et al., 2015), naively incorporating new
counterexamples in CN quickly becomes infeasible.

(2) A variant of CSCE , called CHYB, that adds fewer
constraints per iteration, avoids oscillations, and
outperforms CN in certain circumstances.

(3) A variant of CN , called CSN , that proposes dominant
feasible strategies rather than optimal robust strate-
gies. We demonstrate that CSN outperforms CN , CSCE ,
and CHYB . This comes at the cost of not yielding an
“optimal” robust strategy, where optimality is with
respect to a reward function capturing quantitative
satisfaction of the specification.

(4) A worst-case convergence characterization for CN ,
CHYB, and CSN which can be used for termination
thresholds. We additionally show that CHYB finds
an ε-robust solution when one exists, and provide an
ε-completeness proof.

2. PROBLEM STATEMENT

We seek solutions to the query:

∃u ∈ U . ∀w ∈ W . φ(u,w) (1)

Symbol Optimal Memory “Terminates” New

CN Yes ∞ Yes No
CSCE Yes 1 No No
CHYB Yes k ∈ N Yes Yes
CSN No ∞ Yes Yes

Table 1. Summarizes the algorithms studied in this pa-
per. “Optimal” means maximal with respect to a reward
function capturing satisfaction of the high-level specifica-
tion. “Memory” refers to the number of counterexamples
the candidate oracle takes into account before proposing
a candidate strategy. “Terminates” denotes whether the

algorithm terminates.

where u (w) encodes player 1’s (2’s) move, φ : U ×
W → {True, False} encodes player 1’s objective and ¬φ
is player 2’s objective. Both U and W are assumed to be
subsets of [−1, 1]

nu and [−1, 1]
nw respectively, where nu

(nw) are the dimensions of U (W). As is common in the
literature, we will often call player 1 the system and player
2 the environment. Thus (1) queries whether the system
has a dominant strategy. 1

Remark 1. In control applications, u and w are the se-
quence of control inputs for the system and environment
response, and φ is typically a temporal constraint such as:
“Eventually reach location A and always maintain at least
2 meters from all other objects”.

In addition to φ, we assume access to a function ρ : U ×
W → R, called the quantitative semantics for φ, such that:

ρ(u,w) > 0 =⇒ φ(u,w) is True

ρ(u,w) < 0 =⇒ φ(u,w) is False
(3)

and ρ is Lipschitz continuous in u. That is, there exists a
constant Lρ such that for all disturbances w ∈ W:

∀u,u′ ∈ U . |ρ(u,w)− ρ(u′,w)| ≤ Lρ|u− u′| (4)

Remark 2. The function ρ(u,w) is often interpreted as
a quantitative measure of satisfaction of φ(u,w). Larger
values offer a higher degree of satisfaction and lower values
offer a lower degree of satisfaction. An ε-robust solution
is a u such that ∀w ∈ W . ρ(u,w) > ε. Such solutions
are often desirable in RHC as they heuristically offer more
resilience to the uncertainty introduced by modeling errors
and the finite horizon approximations.

Example 2. (u,w)
ρ7−→ 0 trivially satisfies (3) and (4).

Example 3. Consider the specification “For the next 30
seconds, x > 2 implies that y will be less than 4 within two
seconds” on a system x(t+1) = x(t)+u(t)+w(t) and y(t+
1) = y(t)+u(t)+w(t) for bounded u(t), w(t). Consider the
following syntactically- generated quantitative semantics
over the state, following the quantitative semantics for
STL defined in (Maler and Nickovic, 2004).

(x, y)
r7−→ max
t∈{0,...,30}

(
x(t)− 2, min

t′∈{t,...,t+3}
(4− y(t′))

)
(5)

Since u(t) and w(t) are both bounded and r is smooth,
substituting the dynamics equations into (5) to get a
function over u(t), w(t) yields a quantitative semantics
satisfying (3) and (4).

1 Observe that one can take φ(u,w) to be of the form:

φ(u,w) , (ψA(u,w) =⇒ ψG(u,w)) (2)

where ψA(u,w) encodes assumptions (or constraints) on the actions
of the players and ψG encodes the guarantees required of the system.
This is without loss of generality since, ψA can always be taken to be
true. As discussed in the introduction, solving problems in the form
of (2) has applications in receding horizon control.



Solution Technique. There are numerous ways to al-
gorithmically solve (2). We shall focus on a subset of the
family of algorithms that fall under the CEGIS framework.
This framework can be presented in a much more general
setting, however, for the sake of exposition we present a
formulation tailored to the controller-synthesis problem.
We assume access to two oracles: a counterexample oracle
Oce which, given a candidate dominant strategy u, returns
a counter example w that refutes φ; and a candidate oracle,
Oca, which proposes a candidate dominant strategy given
the previous counterexamples. CEGIS is then an iterative al-
gorithm that repeatedly proposes new candidate strategies
to Oce. If the candidate strategy is indeed dominant, the
algorithm terminates and returns the strategy. Otherwise,
Oce returns a counterexample. If no candidate strategy is
found, the algorithm terminates with failure to synthesize
a winning strategy. The basic structure of the CEGIS meta
algorithm is given in Fig 2.

Fig. 2. CEGIS Meta algorithm.

Given this meta algorithm, one can choose Oca and Oce to
define a new CEGIS variant. However, before designing Oca
and Oce, it is fruitful to characterize some requirements
for soundness and completeness of a CEGIS scheme.

Definition 1. A counterexample oracle, Oce, is sound if:
when given a candidate u, if it returns ⊥ then u is a
dominant strategy, and if it returns w then w refutes
u, i.e., φ(u,w) is False; Oce is complete if: when given
a u such that there exists a counterexample, it returns a
counterexample.

Definition 2. A candidate oracle Oca is sound if: when
given the set of previous counterexamples Wk, if Oca
returns ⊥, then there is no strategy that simultaneously
counters all moves in Wk, and if it returns u, then∧

w∈Wk
φ(u,w) is True; Oca is complete if: given a coun-

terexample set Wk, if there exists u s.t.
∧

w∈Wk
φ(u,w),

then Oca returns such a u.

If Wk is equal to W then the conditions of Def 2 naturally
define soundness and completeness of the CEGIS variant.

We notice that the soundness of the CEGIS algorithm
follows immediately from the soundness of the oracles:

Proposition 1. (Soundness). Let u be the result of a
CEGIS algorithm using sound oracles Oca and Oce for
specification φ. If u = ⊥ then there is no dominant
strategy and if u 6= ⊥, then u is a dominant strategy.

In the sequel, we assume Oce and Oca are sound.

Similarly, we observe that if either Oce or Oca is not
complete, then the CEGIS loop cannot possibly be complete
(by completeness, we mean that if a dominant strategy
exists, the algorithm will return it). Therefore, we also
assume the oracles are complete.

This poses the question: if Oce and Oca are sound and
complete, does that imply that the CEGIS loop is complete?
The example below shows that the answer is negative.

Example 4. Consider the specification φ(u,w) = u +
w ≥ 0 where u,w ∈ [−1, 1]. Clearly u = 1 is a
dominant strategy. Nevertheless, let us explore what could
happen were we to solve this game algorithmically. Let

Oce and Oca be sound and complete as defined above.
Suppose we start the counterexample set with W0 = {0}.
The candidate oracle may then propose u = 0. The
counterexample oracle can then refute with w = −0.1,
growing the counterexample set to W1 = {0,−0.1}. Then
the system can propose u = 0.1. In response the counter
example oracle could refute with −0.11. Observe that this
sequence of appending 1s can continue indefinitely, with no
single example ever repeated. Thus, the CEGIS algorithm
would never halt, despite having a dominant strategy.

Notice however, that if either Oce or Oca had returned
values that minimize or maximize the quantitative seman-
tics, ρ(u,w) = u + w, the above example would have
terminated in a couple of iterations. This suggests forcing
at least one of the oracles to return “optimal” (max or
min ρ) candidates or counter examples, to ensure fewer
iterations for termination. In this paper, we argue that Oce
should be optimal, but Oca need not be. Intuitively, since
the counterexample set W grows with each iteration, Oca
needs to solve a harder problem at each iteration, whereas
the problem Oce solves remains of the same difficulty.

Is enforcing this optimality enough to guarantee complete-
ness? The answer is again negative.

Example 5. Consider a quantitative semantics such, that
within a closed ball around u∗ ∈ U , ρ(u,w) = 0. The
same line of reasoning as in Ex 4 applies since no gradient
exists within this ball and there are an infinite number
of counterexamples. At this time, we do not know of any
general conditions on ρ and φ for completeness.

A consequence of making Oce optimal is that one obtains an
“anytime” algorithm by maintaining the input u with the
best worst-case cost seen so far. This input is the closest to
a dominant strategy that has been found. This is relevant
for time bounded computations where optimal strategies,
while preferable, may not be necessary.

Additionally, while we do not get completeness, we do get
a weaker termination guarantee. Suppose we are willing to
accept a solution that leaves φ slightly unsatisfied. Namely,
ρ(u, ·) ∈ [δ, 0) for some δ < 0. Will the algorithm terminate
under this condition? Theorem 2 answers this question in
the affirmative.

Theorem 2. (δ-Termination). If U is bounded, Oce is opti-
mal, and the quantitative semantics, ρ(u,w) satisfies (3)
and (4), then either the CEGIS loop terminates or for
any δ < 0 there is an iteration n ∈ N such that ∀w ∈
W . ρ(un,w) ≥ δ.
Lemma 1. Let ρ satisfy (3) and (4) with Lipschitz con-
stant Lρ. If ρ(u,w) = δ 6= 0, then for all u′ in the open ball
of radius |δ/L| centered at u, we have φ(u,w) = φ(u′,w).

Proof. [Lem 1] Via Lipschitz Continuity (4), one must
perturb u by at least |δ/L| to make ρ(u′,w) zero. By (3) the
sign of ρ(u′,w) determines φ(u′,w). Thus, ∀u′ in the open
ball of radius |δ/L| centered at u, φ(u,w) = φ(u′,w).�

Proof. [Thm 2] Pick an arbitrary δ < 0. Assume for
contradiction that the CEGIS loop does not terminate,
and for each iteration i, ρ(ui,wi) < δ. Via Lem 1, the
ball of radius |δ/L| of inputs around ui is refuted by wi.
Thus, at each iteration, including wi in Wk refutes at
least this ball around ui. Observe that U is bounded.
Thus, there exists an iteration k ∈ N where Oca must
return ⊥ since all of the input space has been refuted. This
terminates the loop, leading to a contradiction. Therefore,
either the CEGIS loops terminates or ∃n ∈ N such that
ρ(un,wn) ≥ δ. Further, since Oce is optimal, ρ(un,wn) ≥
δ =⇒ ∀w ∈ W, ρ(un,w) ≥ δ.�



Fig. 3. Continuous RPS.

The proof of Thm 2 suggests a simple worst-case complexity
of a CEGIS scheme.

Theorem 3. Let (Oce,Oca) be a CEGIS variant with an
optimal Oce and ρ : [−1, 1]nu × [−1, 1]nw → R satisfying
(3) and (4) with Lipschitz constant Lρ. If each CEGIS
iteration takes at most T steps, then the worst case
running time for δ-termination is:

O (T · (Lρ/δ)nu) (6)

Proof. The result follows directly from the fact that any
two refuted balls can share at most half of their volume
(since they cannot intersect each other’s centers) and
refuted balls have volume proportional to (δ/Lρ)

nu .�

Designing the Counterexample Oracle, Oce. As
previously stated, for each CEGIS variant, we need a
counterexample oracle Oce to solve the following problem:

argminw∈W
{
ρ(uk,w)

}
(7)

where uk is the candidate strategy being refuted. In
the experiments section, this will take the form of a
MILP (Raman et al., 2014).

Designing the Candidate Oracle. In the CEGIS
variants CN and CSCE , Oca was assumed to solve the
following OP:

argmaxu∈U

{
min
w∈Wk

(ρ(u,w))

}
(8)

where Wk is a set of all previously seen counterexamples
(CN ) or the most recent counterexample (CSCE). In our
experiments, (8) is a MILP (Raman et al., 2014).

In CSN , we assume the candidate oracle returns a u that
solves the following satisfaction query.

∃u ∈ U .
∧

w∈Wk

φ(u,w) (9)

In our experiments, this will be a satisfiability modulo
theory (SMT) problem for Real Linear Arithmetic. 2 3

3. REFUTED INPUT SQUARES

Before developing the candidate oracle for CHYB , we give
an example that concretely illustrates the problems with
CSCE and suggests a simple solution.

Example 6. Consider a continuous variant of the familiar
zero-sum game: Rock, Paper, Scissors (RPS). Two players,
the system (s) and the environment (e) simultaneously
choose either (R)ock, (P )aper or (S)cissors. Let us rep-
resent the state of the system by x, the environment by
y, the system move by u and the environment move by w.
The dynamics are given by x = 60u, y = 60w.
Fig 3 depicts the embedding of Rock, Paper, and Scissors
onto R. If the state of either player is in (0, 10) ∪ [50, 60),
it is considered to be playing R; similarly, [10, 30) is P and
[30, 50) is S. Letting A = (S, P,R), the system’s winning
condition is:

2 As discussed in the previous section, solving (9) rather than (8)
comes at the cost of an optimal solution, something often desired in
applications where a CEGIS loop is used. Nevertheless, we believe
this solution can be made more robust with efficient post-processing.
3 If the image of the semantics ρ(U ,W) were {−1, 1}, then (9)
and (8) are equivalent, but (4) does not hold.

2∧
i=0

(
(y ∈ A[i mod 3)]) =⇒ (x /∈ A[(i+ 1) mod 3])

)
(10)

which encodes: Rock beats Scissors, Scissors beats
Paper, and Paper beats Rock, respectively.

First observe that neither the system or the environment
has a dominant strategy, and that for CEGIS to terminate
the system must have a counterexample from each of the
R, P and S regions in order to refute the entire input
space. Thus, the loop will never terminate for CSCE .

Let N denote the number of constraints required to encode
a single counterexample in (8). The original motivation (Ra-
man et al., 2014) for using CSCE instead of CN was that
the size of (8) grew linearly with a rate at least as large as
N . In this section, we explore a slight modification to (8)
that grows linearly with a rate near the dimension of U ,
which in general is much smaller than N .

One can think of the process of simultaneously handling
the previously seen counterexamples as implicitly removing
all parts of the input space that each counterexample
refuted. We can also explicitly compute sets of refuted
strategies (⊂ U) and modify the input space, U to
exclude subsets containing the refuted candidates. Notice,
however, that such sets are non-unique and potentially
non-convex, so explicitly finding the maximal refuted set
is not straightforward. Instead, inspired by Lemma 1, we
choose to find the largest closed ball centered around u
which is refuted by w. More precisely, we seek to find the
radius r ∈ R that solves:

argmaxr∈R {r ∈ R>0 | ∀u ∈ Br(u) . ¬φ(u,w)} (11)

where Br(u) is the closed ball of radius r around u. Denote
the set of refuted balls by the ith round of CEGIS as Bi.
Then the candidate oracle for CHYB solves:

argmaxu∈Uk

{
min
w∈Wk

(ρ(u,w))

}
(12)

where Uk = U \
⋃
Bk.

Remark 3. To approximately solve (11), first notice that
given a candidate radius, one can use Oca to query if
a candidate exists within that radius. If there does, one
must decrease the radius size. If not, one may increase the
radius size. As the input space is bounded, one can then
simply perform a binary search over the radii, and over
approximate the optimal radius by an arbitrarily small
margin. In our experiments, these series of queries are
handled efficiently by an SMT engine.

Encoding a refuted ball needs roughly 2nu constraints
(where dim(U) = nu). Further, if φ refers to each input at
least once, 2nu will be much smaller than N . Thus, this
addresses the primary concern in developing CSCE . Given
a counter example, we can now choose to allot either N or
2nu constraints. 4

Remark 4. Due to the approximate nature of binary
search on the real line, one must either err on the side of
over- or under-approximation. We choose to err on the side
over-approximation, potentially throwing out dominant
strategies. A simple corollary of Lemma 1 is that if w
is an optimal response to u, ρ(u,w) = a, and r is radius
found by binary search, then all strategies, u, between r
and the true radius r∗ have ρ(u,w) ≤ a+(r−r∗)/L. Thus,
if (r−r∗)/L is at most ε, one will only miss strategies that
are not ε robust. Thus, when computing r, if one uses
4 Let i ∈ N refer to the current iteration. In our implementation, we
simultaneously keep the k ∈ N most recent counterexamples. The
remaining i−k candidate counterexample pairs are encoded as refuted
balls. This trades-off encoding size for potentially more iterations.



an ε/(2L) tolerance and additionally adds ε/(2L) to the
result, then one always over approximates r∗ by less than
ε. We refer to this approximation as “bloating by epsilon”.

Observe that this provides a tunable completeness guaran-
tee for CHYB :
Theorem 4. (ε-Completeness). Given a bounded input
space, U , and ρ satisfying (3) and (4), if there exists an
ε-robust solution, then CHYB with ε-bloating will find a
dominant strategy.

Proof. At any iteration, i, of the CEGIS loop, let ui and
wi be the candidate strategy and counterexample returned
by Oca and Oce, respectively. Due to ε-bloating, the explicit
refuted ball in each round has non-zero radius. As in the
proof for Thm 2, since U is bounded, CHYB must terminate.
Further, by construction, ε-bloating only omits strategies
that are not ε-robust. Therefore, if there exists an ε-robust
solution, then the final input space is non-empty. Thus, by
exhaustive search, if there exists an ε-robust solution, then
CHYB with ε-bloating will find a dominant strategy. �

4. EXPERIMENTS

In the following we benchmark the performance of the
CEGIS variants CHYB, CSN , CN and CSCE across five
experiments, each designed to vary the difficulty in a
specific manner.

• In Exp 1, we extend the RPS game (Example 6) to
study the effects of subdividing the input space into
more regions (increased N) while keeping the number
of counterexamples fixed.
• Exp 2 extends Example 6 with additional moves. The

number of counterexamples grows with the number of
moves.
• In Exp 3 we study the overhead of introducing refuted

rectangles.
• In Exp 4 and 5 we introduce linear dynamics to

Example 6.

Our implementations of CN , CSCE , CHYB and CSN are
available as a python toolbox MagnumSTL (Vazquez-
Chanlatte, 2018). Our tool encodes the system and the
specifications as a MILP using the encoding in (Raman
et al., 2014). It uses two backend solvers, GLPK (Makhorin,
2018) for MILP (interfaced through optlang (Jensen et al.,
2016)) and Z3 (De Moura and Bjørner, 2008) for SMT
(interfaced through pysmt (Gario and Micheli, 2015)).

Further, as CSCE cannot terminate in all but one exper-
iment, for the purposes of comparison, we have omitted
it. We consider two instances of CHYB that remember the
most recent and the two most recent counterexamples, resp.

Experiment 1. In this experiment we modify the
embedding of R, P and S onto the real line (Fig 3) to
that shown in Fig 4 where the domain is broken down into
repeated R− P − S segments.

Fig. 4. Generalized continuous rps.

Notice that the required number of counterexamples
remains three. However, for the CHYB, the number of
iterations required increases as they must explicitly sample
more (u,w) pairs. Our results are shown in Table 2.

We see that as predicted in (Raman et al., 2015), CN scales
poorly as the number of regions increase. This is due to
the fact that the encoding size, N , increases as the number
of regions increased. CHYB with k = 2 scales only slightly

# Regions CSN CN Ck=2
HYB Ck=1

HYB

4 0.263 1.34 1.04 0.819
7 0.435 6.36 6.34 3.58
10 0.594 31 12.2 6.54

Table 2. Experiment 1 run times in seconds.

worse than CHYB with k = 1 since, the MILP has to keep
track of at least two counterexamples and is at least twice as
big. CSN performs the best, where the time taken remains
more or less invariant to the number of regions.

Experiment 2. In this experiment, we generalize our RPS
example to that shown in Fig 5: where the domain is broken

Fig. 5. Continuous RPS with n counterexamples

into n ≥ 1 possible plays, x1, · · · , xn such that x1 beats
x2, x2 beats x3, . . ., xn beats x1.

In every round, the system wins if the following is satisfied:

ϕi = y[t] ∈ xj → x[t] /∈ xi (13)

where j = i+ 1 (mod n).

Here, both the number of counterexamples as well as the
number of (u,w) pairs generated by CEGIS iterations
increase. Our results are shown in Table 3. We observe that
the results follow the same trend as Exp 1.

# Regions CSN CN Ck=2
HYB Ck=1

HYB

1 0.039 0.061 0.062 0.061
2 0.155 0.394 0.392 0.360
3 0.350 1.68 1.14 0.676
4 0.604 6.01 2.26 1.34
5 0.951 180 3.81 1.98

Table 3. Experiment 2 run times in seconds.

Experiment 3. In this experiment, we consider a simple
linear system, xi+1 = xi + 5

n (ui + wi), and a high level
specification, ϕ =

∨n
i=0 xi > 5. Additionally, we have,

U = W = [−1, 1] and the initial state x0 = 0. It is clear
that the environment has a dominant strategy wi = −1,
and our conjecture is that we need only a few iterations
for CHYB to converge. Particularly, we study the overhead
of introducing refuted rectangles. Our results are shown in
Fig 6.

Fig. 6. The x-axis shows the dimension of the input space,
while the y-axis shows the time taken for the CEGIS
loop to converge.milp ce 1 refers to CHYB with k = 1,
milp ce 2 refers to CHYB with k = 2, milp ce inf
refers to CN , and smt ce inf refers to CSN .



All engines perform fairly well (compare with the times
in Exp 1 and 2 ). As the original specification has a small
encoding which is comparable to encoding the refuted
rectangles, i.e., N ≈ 2nu, in this particular case, it appears
better to encode the counterexample than the refuted input
space.

Experiments 4 and 5. Exp 4 and 5 are modifications
to Exp 1. In Exp 4, we introduce linear dynamics to the
RPS,

xi+1 = xi + 30ui/n yi+1 = yi + 30wi/n (14)

where n is the number of steps taken and the initial state
is (x0 = y0 = 20). The specifications on the system remain
the same. As before, there is no dominant strategy for
the system, and the number of counterexamples remains
three. Our results are shown in Table 4. CHYB with k = 1
performs reasonably well initially, but times out eventually
(for discretization time > 3). CSN outperforms all the other
methods and remains more or less invariant to changes
to discretization time. The timeouts for CN and CHYB
with k = 2 happen after two counterexamples are found.
The encoding then seems to become too large for GLPK
to handle. For k = 1 the initial increase is due in part
to the size of the MILP encoding, but also because more
iterations are required since the counterexample in each
iteration refutes less of the total input space.

dim(u) CSN CN Ck=2
HYB Ck=1

HYB

1 0.35 18.01 1.52 0.88
2 0.53 timeout timeout 5.11
3 1.00 timeout timeout 6.38

Table 4. Experiment 4 run times in seconds.

In Exp 5, we introduce a small gap between R and P in
Exp 4. We denote this to be the ‘Spock ’. We update the
specification φ with an additional specification,

ϕdom = (y[t] ∈ {R,P, S})→ (x[t] ∈ Spock)

Choosing Spock yields a small positive ρ against all
disturbances and is, thus, a dominant strategy. Nevertheless,
u ∈ Spock has ρ so small that Oca does not propose Spock
unless R, P and S are refuted. CN and CSN would take at
least three iterations to refute them.

dim(u) CSN CN Ck=2
HYB Ck=1

HYB

1 0.206 1.23 1.25 0.773
2 0.321 3.57 3.61 7.28
3 0.662 28.31 33.40 39.00

Table 5. Experiment 5 run times in seconds.

Introducing the Spock region significantly improves perfor-
mance. CN and CHYB with k = 2 no longer time out. We
suspect that this is due to the dominant strategy aiding in
the branch and bound heuristics the MILP solver uses. In
practice, such a region will often exist. For example, this
could correspond to a near miss angle in the example in
Fig 1. Again, CSN outperforms the others. Not shown are
additional experiments increasing the time resolution by a
factor of 12, at which point the optimality of Oce leads to
exponential blow up similar to the other variants.

5. CONCLUSION

In this paper, we take steps towards making CEGIS-
based planning practical via a satisfaction oracle based
on SMT, and incorporating refuted strategies along with
counterexamples between iterations. We further present an
empirical study suggesting that incorporating more than

one counterexample while searching for new strategies is
indeed scalable, and provide comparisons across different
CEGIS implementations. CEGIS is an instance of oracle-
guided inductive synthesis (Jha and Seshia, 2017), and
our comparative study of CEGIS variants has similarities
with that work. As future work, we would also like to
(i) Leverage our new algorithms for real-time synthesis
of robust receding horizon reactive strategies for complex
cyber-physical systems with arbitrary temporal constraints.
(ii) Leverage warm starts and incremental SMT engines to
achieve further performance improvements. (iii) Further
refine the convergence rate beyond termination guarantees.
(iv) Leverage recent work on symbolic optimization with
SMT solvers (Li et al., 2014).
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