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Introduction

" The Irvine Program Transformation Catalogue

is basically a source book of ideas for improving programs.
By casual browsing, the reader may discover a number of
useful techniques for transforming programs into better ones.
When the moment comes to apply a particular technique, the

Catalogue can be referenced for details.

The ideas are presented in the form of

source-to-source transformations. These transformations

show how to change source language programs in a given
form into improved source language programs. Many of the

transformations are given as rules of exchange of the form

P = Q. This is intended to follow conventional usage in
mathematics. For example, in algebra, we might find the
distributive law given in a form such as = ( y + 3 ) = xy + zz,
in logic, we might find a simplification law given as

b A(b VvV e) =b, and in a table of integrals, we might find

a rule such as [ u dv = uv - [v du . Each of these exchange
laws can be used to replace a given expression with an

equivalent one.

In a similar vein, we can specify exchange rules

for expressions used in computer programs. For instance, we



might give a distributive rule involving conditional

expressions, such as

x + (if b then y else z) = (if b then x+y else x+z)

To specify that a given exchange rule is intended
for use in a preferred direction, we write P => Q. For
example, writing ba(bve) => b signifies our preference
for replacing the more complex expression ba(bve) with

the simpler expression b, where possible.

Under some circumstances, we might give separate
names to the same exchange applied in different directions.
For instance, ay + zz => x(y+z) might be calied "factoring
out the mononomial x", whereas x(y+z) => xy + xz might

be called "multiplying through by x".

The use of the double shafted arrow ( => ) in
place of the equal sign ( = ) can also help relieve possible
ambiguities in the transformation of expressions containing

the equal sign itself. For example, writing

b =c=4d => (b = ¢) and (e = d)
is less ambiguous than writing
b =c¢ =4d = (b = ¢) and (c = d) .



For this reason, we prefer to indicate bi-directional

exchange rules using a double-headed arrow ( <=>) as in

z( y + 2 ) <=>zxy + zz .

Some transformations can be applied only under
special conditions. For example, provided a # 0 we can
write ao => 1 . Sometimes, we state such conditions

formally as part of a transformation rule, as in writing

provided a # 0:

ao => 7

In this case the condition (a # 0) is called an enabling

condition.

Not all source-to-source transformations can be
conveniently stated as éxchange rules. Sometimes it is
preferable to give a procedure for transforming a program
into another. This condition usually applies when ﬁe cannot
easily devise a simple syntactic "pattern" to match situations

in which a transformation applies.

For example, one source-to-source transformation
of interest consists of removing "useless" assignment

statements, -which assign values to variables which are




never subsequently used in a program. This process is
better expressed as a procedure with several steps than

as an exchange rule on various forms of programs.

Such procedures are program manipulating programs.
In this situation, programs constitute dual entities that
do the manipulating and are themselves manipulated. This
requires introducing appropriate notational conventions to
distinguish between agents and objects of actions. The
notions are introduced in the Catalogue as required, and

a full explanation is given in an appendix.

Sometimes an idea behind a general principle of
Source-to-source transformations is given by example. Once the
example is properly understood, the general principle can

be applied in a large variety of circumstances.

For instance, (following [2]) consider searching a table T to see
if it contains an item X. Suppose the table has entries
numbered from 1 to ¥, signified by rt1l, rC21, ... s TLN].

A procedure to determine whether T contains X is as follows:




[N}

procedure Search(T,X); local i3

2. begin

3 1+N;

‘ while i>0 do

5 tf TLZ1=X then Return(true) else 1+i-1;
6 Return(false)

7 end procedure;

The "inner loop" of this procedure tests both whether >0

and whether 7T[{]=X for each distinct value of 1 tried.

Suppose we extend the table T to contain a new
0-th entry T[0], and we initialize this entry to
contain X. Whether or not X was in the original table T,
wWe can now be confident that X is in the extended table.
The way the above procedure determines that X is not in T is
is by determining that the table has been exhaustively searched
without having found any entry T[Z] containing X. However,
using the extended version of T enables us to eliminate the

test for exhaustion, as seen in the following procedure:

1 procedure Search(T,X); loecal A

2 begin TLO1<X; T+N;
3 while T[2]1#X do i<i-1;
¢ Lf i=0 then Return(false) else Return(true)

5 end procedure;




This procedure runs faster and is syntactically simpler
than the previcus one because the test (7>0) has been

eliminated from the inner loop.

This specific program improvement is an example

of a general principle, which can be stated as follows.

Suppose you are searching to find whether a search space S
contains an element X by systematically enumerating elements
of S in some prescribed order and comparing them to X. If you
extend S to include one more element containing X, which

is guaranteed to be enumerated last in the particular order
of search used, then there is no need to test explicitly

for exhaustion of the search space in your algorithm. Instead,
you can generate elements in the extended version of S until
finding X, and then you can conclude X was in the original
unextended space S, if and only if it was not found in the

extension.

Once this general principle has been understood
it can be applied not only to tables, but to search spaces
of many different shapes and organizations, such as binary
trees, list structures, and indexed files. Such a general

principle cannot be easily expressed as an exchange rule P => Q,



because the many forms of programs P to which it applies
are not readily characterized as instances of a simple
syntactic pattern P. Nor can we conveniently encode the
general principle as a program manipulating procedure
because the variety of programs and data structures to
which it applies is too large to yield easily comprehensible
code. But we can express such an idea by giving examples,
and stating the general principle of which thevexamples are
instances. Given the nature of our current knowledge of
computer science, the latter is the best choice available
to us for explaining such general program transformation

ideas to people (as opposed to machines).

Thus, the transformations in the Catalogue are
given in three forms: (1) pattern-directed exchange rules,
(2) program manipulating programs, and (3) examples plus

discussion.

Using the Catalogue to improve a given program
may involve transformations at all three of these levels.
For example, after producing the improved search program

above, line 4 ( at the bottom of page 5) reads:

4 if 1=0 then Return(false) else Return(true) .




There are two pattern-directed exchange rules

that can-be applied to simplify this statement, namely:

factoring conditionals (see §3.2.c)

tf b then F(c) else F(d) => F( if b then c else d)

and

simplifying conditionals (see §3.1.b)

if b then false else true => b

Applying these transformations to line 4, yields the

following sequence of transformations:

4 if ©=0 then Return(false) else Return(true)

U

4  Return ( if i=0 then false else true )

U

4 Return{~(i=0))

This last result can be rewritten as Return(i#0) by

applying the synonym transformation ~(z=y) <=> (z#y).

Facility with the application of transformations

in the Catalogue may be gained through practice.



The transformations in the Catalogue are intended

to preserve program equivalence. In particular, this means

we can applf certain transformations only under particular
enabling conditions that guarantee equivalence. Two such
enabling conditions are of such general applicability, however,
that they deserve special mention in the introduction.

These are called commutativity and freedom from side-effects.

Let F be a well—fo:med program. fragment (i.e. a phrase
in the grammar of the programming language at hand). Let
R(F) be the set of variables non-local to F that F either
reads but never writes ér reads before writing, and
let W(F) be the set of non-local variabieé that i’writés~
(whether or not it also reads them). Here a local variébie v in

F is a Vvariable used only within F and not elsewhere in the program.

Given two program fragments A and B, we wish to
know when it is permissable to exchange their order of
execution from A;B to B;A while preserving program
equivalence. It is permissable for A and B to read the
same read-only variables, but neither A nor B may write into

variables the other reads before writing, nor may they write into

common variables. In symbols, A and B are commutative

provided that W(A)n(W(B)uR(B))=@ and W(B)n(W(A)uR(A))=@g .



Whenever we are given a transformation that
implicitly changes the order of execution of some of
its constituent program fragments, the fragments whose

execution order is changed must be commutative. This

requirement is so pervasive that it is scarcely worth
mentioning it explicitly every time it applies. For example,

in the transformation:

a ; (Lf b then c else d) => (if b then(a;elelse(a;d))

the order of execution of ¢ and b is implicitly changed,

sO0 a and bmust be commutative. This would exclude transforming

<3 ; (if x>p then y else z)

into
(Zf x>w then (x<3;y) else (x<3;2))

for instance.

If the program fragment F does not write into
any non-local variables (i.e. if W(F)=@ ), then we say

that F is side-effect-free. Some transformations preserve

program equivalence only if one or more of the constituent
program fragments is side-effect-free. For example, the

McCarthy conditional transformation:

a Ab => if a then b else false

requires b to be side-effect-free in order to preserve

program equivalence, in general.



The Irvine Program Transformation Catalogue

originates from a current NSF research project at U.C. Irvine
on interactive program manipulation. We are trying to
understand how to program a computer to look at a given
program and to refine or improve it stepwise using

source-to-source transformations.

When we speak of stepwise refinement of a program,

we mean the following. Suppose P is a high-level program,
written without certain commitments to underlying data
representations. Supposevwe apply transformations to P that
"fill in details" mechanically by supplying data representations
and generating associated lower-level program text so as

to provide an implementation of P at a more concrete level.

This concrete version of P is said to be a refinement.

Experience shows that the text of programs generated
by mechanical refinement often requires improvement. Program
improvement consists of transforming a program to achieve-a
better appearance or better performance properties, perhaps

with the objective of meeting required operational constraints.

The Catalogue arose out of our attempts to describe
and classify a spectrum of source-to-source transformation

ideas we hope eventually to mechanize. We discovered,



coincidentally, that the Catalogue was a rich source of
ideas for people to use to improve programs manually.
It is also a beneficial pedagogical device to use to
provide beginning students with a stock of ideas and

techniques helpful for improving their programs.

‘While our basic research quest is aimed at
mechanizing program refinements and improvements, one
of its early by-products seems already to be potentially
useful to students, educators, and, perhaps, practicing
professionals alike. This may represent an instance
where basic research spins off immediately usable
results, and we intend to pursue further its potential

benefits in these contexts.



1. Assignment Forms

1.1 Nested Assignment Introduction (=>) & Elimination (<=)

1.1.1 examples

1.1.1.a xe0;y«0;23+0 <=> x+y<+z<0
1.1.1.b T0;y«x;3«y <=> X+y<+3<0
"1.1.1.c ey *z+5; wex <=> w<(x<y*z+5)
1.1.1.4

x+P(zx);

while B(x<«P(x)) do

I
v

while B(x) do <
' [f(x)]
[f(x);x«P(x)]

1.2 Transformations on Straight Line Sequences of Assignments

The transformations in this section (§1.2) deal

with sequences of assignments of the form
«E,; “Eoy o o o 3 <+ ;
x El’ z, E2, 5 T, En s
where the x, are variables and the Ei are expressions
which are either variables or constants, or are formed

by applying operators to subexpressions formed from

operators, variables,and constants.

1.2.1 Useless Assignment Elimination

Repeatedly delete assignments of the form x<F
where x is not used subsequently in the program and

where F is side-effect-free.



l.2.1.a example Let x, y, 2z, be input variables and
u, v, w be output variables. We assume that
the input variables have initial values, and that
only the values of the output variables are

needed. (In particular, r is not an output variable.)

u<x+2*y; u<x+2*y; u<x+2*y;
t<3*u+z; t<3*u+a; t<3*u+tz;
s*t<1; s*t-1; empty s

r<stx; => empty; => empty;
veu/6; ve*u/6; v€u/6;

wEt+us wEt+u; wEt+uy

1,2.1.b algorithm - Construct a directed graph with a
node for each variable. Construct for each
assignment an arc from node vy to v, whenever

v +E(...vl...) where H...vl...) is any expression

2
containing an occurrence of vye Now put squares
around output variables. For instance, example

§5.2.1.a leads to the following graph:
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° 9 input variables
temporary variables

N
(B ) AL

output variables
nERGINC .

Retain that portion of the graph connected by

at least one path to some square (i.e. to some
output variable) ,and discard nodes not connected

to some square by at least one directed path. Now
eliminate assignments-corresponding to deleted
nodes. For instance, the final form of 1.1.2.a comes

from the following graph:

input variables

temporary variables

output variables

Redundant Assignment Elimination

In a straight line sequence of assignments, if
awvariable is assigned twice in succession without
being referenced after the first assignment but
before the second, then the first assignment may be
eliminated. (Aho and Ullman give an algorithm covering

the functions of §1.2.1.b and ©.2.2 in [9] pp.850-851.)



1.2.2.a example

x<2*a+b; ' empty;

y<«3*b-c; => y«3*b-c;
z«d/4+e; z«d/4+e;
zey+2*a; Zvy+2*z;

1.2.3 Eliminating Assignments by Equality

1.2.3.a If the value of the variable a always
equals the value of the variable b then a<b can be
eliminated.

1.2.3.b special case:

a<a => emp ty

1.2.4 Eliminating Assignments by Constant Propagation and

Substitution

In a straight line sequence of assignments, an assignment
of the form x<«E can be eliminated by substituting E for x
everywhere x is referenced subsequently to the occurrence
of x«E Dbut before x or any of the variables of E are

reassigned.



l1.2.4.a example

x€2*y-a; empty;

u+t*zx; ust*(2*y-aq) ;

veq/(w=-3) => veq/(w-3)

w+3*x+e; wed*(2*y-aq)+ec ;
!

j xeu+f(2); xu+f(2) ;

1l.2.4.b remark: By means of "symbolic execution", we can
collapse any straight line Seéquence of assignment
statements into # assignment statements, one for
each of the »n "output" variables whose values need
to be used subsequently. Also, using this transformation,
any variable which is assigned a single constant value

may be Systematically eliminated throughout its scope.

1.2.5 Reordering Assignments to Eliminate Temporary Storage

l1.2.5.a Renaming:

Suppose x and y are distinct variables having

disjoint scopes. Here, in a straight line sequence
of assignments, the scope of a variable lasts from
the place it is assigned, up to and including

the last place it is referenced. Then Yy can be

replaced with x everywhere in y's scope.

-
"



l.2.5.b

1.2.5.c

examEle

x<2*a+b;
t« x/4-c;

ucx+m*i;
. no more references

. to x beyond
. this point

y«a-2*b; :
tvc-y/4;
ucm*i+y;

. no more references
to ¥y beyond
this point

try first §l.2.5.c.

r<2*a+b;
tvx/4d-c;

u<x+m*i;

x<a-2*b;
tvc-x/4;

usm*i+x;

Changing Overlapping Scopes to Disjbint Scopes

Pairwise Permutation:

In order for the transformation of §l1.2.5.a to

apply, two distinct variables must have disjoint

scopes. In some cases, a straight line sequence

of assignments can be reordered so that over-

lapping scopes become disjoint. This may be

accomplished by repeated application of pairwise

permutation of sequential statements.
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provided (x does not occur inEQ) and (y does

not occur in El) and ( x#y ):

x+El; y+E2;
y+E2; => x*—EJ;
1.2.5.4 example .
z+2*a-c, ' z+2*a-c,
C y<—2/b+d;> => u+f(m);
usf(x); y<2/b+d;
vegly); ~ vegl(y)s;

try next §l.2.5.a.

1.2.6 .Common Subexpression Elimination

Suppose the subexpression £ is used two or more
times on the right hand sides of assignments in
a straight line sequence of assignments. Let t
be a distinct new variable not appearing elsewhere

in the program.



l.2.6.a provided no variable in E is reassigned in the

statements between

respectively, and

| X e e eEeee 3

l1.2.6.b example

x<a -da2+b2 3

m<x/(-b);

y+a+Va2+b2

.
3

the assignments to x and y

t is a distinct new variable:

t+E;

x€...t... H

Y«.ooten H

tena?+b”

x<a-t 3

m«x/(-b);

y«a+t;
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2. Go To Forms & Labels

2.1 Go To Chain Elimination

2.1.a examgle

go to Li; go to L3;
L1: go to L2; => Ll1: go to L3;
L2: go to L3; L2: go to L3;

2.1.b example

go to L; L:§ => L:S
2.2 Elimination of Inaccessible Go To's & Labels

2.2.a Label Elimination - Let L be a label which does

not appear in any go to statement in the scope*of

I.. Then L can be eliminated. try next 2.2.b

2.2.b Inaccessible Go To Elimination

provided execution of S results in executing a

Return or a go t0 L', and S is not a declaration:

* The scope of a label L is defined to be the lexicographically
least enclosing block containing the label excluding

any nested blocks using the same label. This convention

follows ALGOL 60 usagec.



2.3

3.1
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Eliminating the Empty Loop

2.3.a provided B is false:

L: ©f B then

begin => L:empty
5;
go to L

end

while false do S => empty

try next §8.1
Other Transformations That Eliminate Go To's

remark See §4.1.2, §4.3.1, §4.4.2, and 8.2 for

transformations that eliminate go to's (namely,

inverses of transforms that eliminate for, while,

and repeat forms by reduction to explicit loops).

3. Conditional Forms

Trivial Conditional Simplifications

if B then true else false => B

if B then false else true => "B :

i1f true then P else @ => P

if false then P else @ => @




3.1.e
3.1.f
3.19g
3.1h

- 23 =

If B then P else p =>p

Lf B then P elge empty => if B then P

_Zf B then empty else @ => if "B then @

If “Bthen P elge @ => ZIf B then @ else p

3.2 Distribution and Faétoring on Conditionals

3.2.a

Let a be a unary operator in {+,-,n}.
Let B be a binary operator in

{+I-I*I/l +'=l#l>lil<lil v, Ay+}

Then,
provided a conditional is an operand of an operator:
aflZf b then c else d) => (Zf b then qe else ad)
ZB(Lf b then o else d) => (Zf b then zBe else xBd)

(Zf b then ¢ else d)gx => (Zf b then cBz else dBx)

examples

“(Lf a>5 them P(a) else 9(a)) =>
(Zf a>5 then “P(a) else ~q(a))
T+(Lf a>5 then y else z) => (Zf a>5 then Zty else gx+z)

(Zf a>5 then z else yl)+5 => (if a>5 then zx+5 else y<5)

Let the conditional (if b then ¢ else d) be

an argument to a function call F(al,ag,...,an).

Then,

F(al,...,(éf b then ¢ else d)""’an) f>

(2f b then F(al,...,c,...,an)else fYal,...,i...,an))
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3.2.d4 Let the conditional (if b then c else d) be

a subscript in a subscript expression. Then,

/ A[il,...,(éf b then c else d),...,ik] =>

(if b then A[il,...,c,..,ik]else A[iz,...,d,...,ik])

3.2.e if(if b then e else d) then w =>

if b then (if e then w) else (if d then w)

3.2.f In general, let F(...x...) be a program form. Then,

F(...(if b then ¢ else d)...) =>

(if b then F(...c...) else F(...d...))

provided b commutes with any subexpression of .F

whose order of execution with respect to b is changed

by application‘of this general transformation.

3.2.g example
provided V{Naﬁes(b):

for v«l step 1 until N do

Alv, (Zf b then c else d)]«B[v]

U

———

for v+«1 step 1 until N do

if b then Alv,c)«Blv]else 4[v,d]+B[v]

if b then

for v«1 step 1 until N do Alv,ecl«B[v]

else

for v«l step 1 until N do Alv,d]«B[v]
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3.2.h remark: Factoring and distribution are inverse

transformations. The rightward transformations above (=>)

illustrate distribution. Their inverses (<=) are

factoring.

3.3 Conditionalization of Boolean Expressions

3.3.a McCarthy Conditional Transformations:

provided a and b are side-effect-free:

anb => (if a then b else false)

avb => (if a then true else b)

va => (if a then false else true)

3.3.b Variable-Directed Conditionalization

Let F(az,az,...,an) be a Boolean expression over
Boolean primaries ass dgs- - .,a, (for n>1) using

the operators {A,v,v}. Define ¢ as follows:

provided n22:
@F(al,az,...,an) => if a; then @(V(F(true,aZ,...,an)))
else @(V(F(false,az,.i.,an)))
provided n = I:

@(F(az)) = VF(az)
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Where V is simplification with respect to
elimination of Boolean constants - as given

in §11.3.

example of Variable-Directed Conditionalization:

Let F(a,b,e,d) = (aAWb)v(d\(ayc)). Then,
¢((aanvb) v(dn (ave))) = if a
then O (V( truea~b)v(dal(truevel))) )

else @(V«falseA®b)v(dA(faZsevc))))

Applying removal of Boolean constants (Vw.r.t §11.3)

yields:

then arm: V((trueanb)v.(dA(trueve)))=> ( “b) v-(datrue)

=> pvd

else arm: Y falsean~b)v(da(falsevel)))=> (false) vidnac)

=> dAc

whence
d((ar~b)v(dalave))) =>
. if a then @(@bvd) else ®(dae)

ang 2(vbvd) = if b then @(V(vtruevd))else ®(V(vfalsevd))
o( dac) = 2f d then ¥(V( truenc)lelse ®(V( falsenc))

So the entire net transformation is:

(anvb) v(dAalave)) => if a then (if b then d else true)

else (if d then c else false)




3.4

4.1
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Reordering Nested Conditionals

3.4.a example

if a then (if b then c else d) else(if b then c else e)

=> £f b then c else (if a then d else e)

3.4.b remark §3.4.a is profitable if b is almost always

true and is cheap.

4. Looping Forms

Reduction of For-Forms

4.1.1 to While-Forms

4.1.1a for v+a step b until ¢ do S =>

—

v<€a,

while (v-c)*sign(b)<0 do
begin
53

v<v+b

end

try next: Vw.r.t. §11.1 and §11.2
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4.1.1.b example

for ve v+1 while v<N do =»
F V€v+1;

while v<l do

[S; vev+1]

4.1.2 To Explicit Loops

4.1.2.a Let L1 and L2 be distinct new labels not used elsewhere

in the program:

for v«a step b until ¢ do 5§ =>
‘begin
vea;

Li: if (v-c)*gsign(b) >0 then go to L2;
S;
v<v+b;
go to Li;

La: empty

end

try next: vw.r.t. §11.1 and s511.2.

4.1.2.b Let Ll and L2 be distinct new labels not used

elsewhere in the program.

for v<a while b do § =>
begin
Ll: dD+*a;

Lf “b then go to L2;



go to L1;
L2; emp ty

end

4.1.3 with Plural For-List Elements

Let P be a distinct, new procedure name,

not used

elsewhere in the program.

4.1.3.a example Suppose el,eZ,...,en is a for-list where

4.1.3.b

the e; are each arithmetic expressions:

for v<el,e2,...en do § =>

[ beain

procedure P;S5;

veel;P;

v<e2;P;

Veen; P

end

example

for v<a step b until e, e while f do § =>
[ begin

procedure P;S;

vea;

while (v-c)*sign(b)<0 dol[P; v<v+b 1;
ve;

while f do [P;vee]

end

S ——

try next Vw.r.t. §11.



4.1.4 Simplifying Reduced For-Forms

4.1.4.a remark: When the for list elements are of
a simple variety, simplification of a reduced
for-form with respect to §11.1 and §11.2 is

often possible. For example,

4.1.4.b example
for i<l step 1 until N do A[i]<«d =>

i<1;
\)
while (i-N)*sign(1)<f dolA[i])«p;i<i+1]
Here, w.r.t. §11.1 and §11.2,V yields the steps:
(1-N)*Sign(1)<f => (i-N)*1<y

=> (i-N) <g => (i<N).
So the above result simplifies to

1<1;

while ©<N do [A[Zl«0;7<i+1]

_4.2 Transforming Controlled Variables in For-Forms
4.2.1 Manipulating the Range
4.2.1.1 Shifting
provided ' v is local to the

for-statement:

for v+«a step b until ¢ do S(v) =>

for v+ axzk step b until ctk do S(vgk)




4.2.1.2 Dialating (=») and Contracting (<=)

4.2.1.2.a Erovided v. is local to the

for-statement:

for v<«a step b until ¢ do S(v*k) <=>

or v<a*k step b*k until e*k do S(v)

4.2.1.2.b example (of contracting the range:)

4.2.1.3

4.2.1.4

for nickels <5 step 5§ until 100 do

P(nickels)

=> for nickels <1 step 1 until 20 do

P(nickels *5)

Renaming

provided ¢ and ;7 are local, and -

7 # Names(S(i))

for i<a step b until e do S(i) =>

for j«a step b until ¢ do S(g)

Simplifying Final Test to Check for Zero

4.2.1.4.a example Using §4.2.1.1 and §4.2.1.2

we can produce Final Tests on Zero:
for i«1 gtep 2 until 101 do P(i+6)
w first shift range down by 101 (using
\"

4.2.1.1)
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for 4+1-101 gtep 2 until 101-101 do

P((1+101)+6)

y then reduce to while loop and
v

simplify:
1 +-100;

while (i-#)*sign(2)<0 do [P((i+101)+6)]

L+1+2
" v gives final form:
1 «-100;

while ©<0 do [P(i+107);i<i+2]

4.3 While-Form Introduction & Elimination

4.3.1

Reduction to Explicit Loops
grovided L is a distinct new label:

while b do § => L: if b then

begin
S
go to L

end

See also §4.1.1, §4.4.1



4.4 Repeat-Form Introduction & Elimination

4.4.1 Reduction to While-Forms

repeat S until B => S; while~B do S

4.4.2 Reduction to Explicit Loops

provided L is a distinct new label:

repeat S until B => L:S;

if ~ B then go to L
4.5 Loop-Form Transformations

4.5.1 Loop Fusion

4.5.1.a example
for i+1 step 1 until 20 do A[i]<«B[Z];

for j+5 step 5 until 100 do CLj/51«4;

transforming the second by renaming (j-1)
" _
Y and contraction of the range (see §4.2.1.2.b)

for i+l step 1 until 20 do A[<l«B[i];

for i<1 step 1 until 20 do C[i]«g

!} now by loop fusion

for i<1 step 1 until 20 do

begin
a[i] «Blz1;
clz] «#

end
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4.5.2 Loop Doubling

4.5.2.a example

for i+1 step 1 until 100 do Al[i ]«B[Z]

=>for i<l step 1 until 50 do

Alil«B[2];

A[Z+50]«B[1+50]
4.5.3 Loop Case Splitting
4.5.3.a example

for i<1 step 1 until 30 do

if <15 then pAlil«B[i]else 4[1]<«-Br %]

I
v

for i«1 step 1 until 15 do A[i]«B[<];

for i+16 step 1 until 30 do A[1]«-B[%]

4.5.3.b remark contrast this with distribution

of conditionals in §3.2.q.

4.5.4 Loop Unrolling

4.5.4.a example
for i«0 step 5 until 15 do P(i+2) =>




P(2);
P(7);
P(12);

p(17)

4.5.5 Removal of Invariants

4.5.5.a example

for v«1 step 1 until N do

T<y+2;
Afv]«B[v-=]
end

x+g&2;

for v«1 step 1 until N do A[v]«B[v-zx]

4.5.6 Reduction in Operator Strength
4.5.6.a example Let k be a distinct, new variable:

for i+l step 1 until 100 do

A[2%25]«g

k+25;

for i<l step 1 until 100 do

[A[k]«d; k<k+25]



4.5.6.b remark: compare with g4.1.2.1l.a

applied to above input, which yields

! I
i v

for i+«25 step 25 until 2500 do A[i]«d

| 4.5.7 Test Replacements & Loop Removal

w 4.5.7.a example

begin loecal i; - begin

i<l; k<25;

k«25; while k<2500 do

while <100 do ~ AlkJ«t;
Alk)«2; [k+k+25;
k<k+25; end
1<+1+1;

en

4.5.7.b remark the right side is the reduction of 4.5.6.a

after i+j using While-Forms.

4.5.8 Nested Loop Simplification

4.5.8.a prov1ded P is invariant over R* and P and Q
are side-effect-free:

while P do while P do
=>

if @ then R else S [[while @ do R];S]

‘ *P is invariant over R provided W(R) n R(P) =g (cf. page 9).



4.5.8.b provided P and R

repeat

if @ then R else S
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until P

commute:

=>

repeat
[while Q do R; 51

until P

5. Compound Statements and Blocks

5.1 Eliminating Redundant Begin-End Pairs

5.1.a

5.1.b

provided S is a single statement

§5.1.a

begin

21/

end



5.2 Statement Fusions

5.2.1 Forward Fusion of Conditionals

Provided S;and b commute:

Sl;i.ﬁ b then ¢ else d => if b then[Sl;c]eZse[sl;d]

5.2.2 Backward Fusion of Conditionals

(2f b then c else d),'Sl => 1f b then[c;Sl ]else[d;slj

5.2.3 Fusion of conditionalswithout Else Clauses

Provided b is invariant over c:

if b then c;

2 then d => 1f b then c else d
i1f ~b then

5.2.4 Nested Conditional Introduction

5.2.4.a example

~ if a then {bsgo to L}; ] if a then b else

if ¢ then {d;go to L};| =>| (Lf ¢ then d else e)

€s

L: Sl _
L:_SJ

. -
try next §2.2.




5.2.4.b example

provided (Sl is a Return or a go to) and (Sz

is not labeled):

if a then S.;8 => if a then S, else S,

1

1°°2

Using Block Structure to Save Space

Variables declared in disjoint blocks can use the same
space since their activations occur at disjoint times.
Hence, if a variable x is used in block Bl but not in

block B2 and is declared in any block global both

to B, and BZ' moving the declaration to the head of Bl

1
saves space:

B _ B

<declaration of z> Bz'kdeclaration of x>
By

[ use of =

use of x .

. =>

Bar Bs :

x not used x not used
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6. Declarations

6.1 Eliminating Useless Declarations

- If a variable is declared but never used within the
scope of its declaration, the declaration can be

eliminated.

begin <declaration of x> ; begin empty;

x not used not used

end

I

6.2 Shifting Array Bounds

6.2.a If a xth subscript i, of an array A[...,ik,...]
is declared to vary between m, and Dy, then the
declaration and use of A can be changed within

its scope by applying the following transformations

uniformly:

array A[...,mk:nk’...]=> array A[...,mkia:nkta,...]

A[...,ik,...] => A[...,ikta,...]
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6.2.b 'examgle

begin integer array A[1:100];

for i<«1 step 1 until 100 do

| Alil« g
end
3 I

begin integer array A[#:99];

for i+«1 step 1 until 100 do

Ali-1]« ¢
end

(Notice the latter can be improved by applying

a range shift transformation given in §4.2.1.1)

i
v

begin integer array A[g:99];

for 1«0 step 1 until 99 do

ARy



Reduction in Array Dimension by Change of Declaration

and Accessing

6.3.a

Let Ali;,i,,...,i ] be a subscripted expression

2 "r
for an array A of dimension r, where A is declared
by a_l'Li't_‘LA[mlznl,mzznz,...,mr:nr]. Let £(iy,i,r...si))
be a 1-1, onto mapping of subscripts (iy,i,/...,1})
onto the range m:n. Then, the following transformations
reduce A to linear dimension when applied uniformly

in the scope of A.
array A[ml:n sMo Ty e-esm :n_] => array Alm:n]
127872 r'r

A[iz_’iz,"tt,ir] => A[f(?:l,iz.,ooo,/l:z’)]

example

array A[1:N,1:%]; wA[l:N2];

LAl F]. . __:>; e Af(2-1 ) *N+5 ]

where £(1,5) = [i-1)*N+j |

more generallwv Let g(ml:nl,...,mr:nr) = mi:ni,...,mﬁ:ni

and f(il,i ,...,ir) = f’(ii,ii,...,ii) be a 1-1, onto

2
mapping of r-tuples onto k-tuples in the respective

domain and range Then,
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array A[ml:nl,...,mr:nr] => array A[mi:ni,...,mlz:nlz]
...A[il,...,ip]... =>... A[f(il,...,ir)]...

transforms A by changing its dimension, shape, or

subscript ordering.

Fusion of Independent Modules into a Common Program with

Suitable Renaming.

Let Ml and M2 be blocks using local names L,=({

17 Wqprlgpreaeity)

and L2=(£21,£22,...,£2n) rgspectively. Let
E={(e; ,e] )|eiéL1,e£eL2,(lii§k)} be an equivalence deqlaration

which declares e;=e;” for (1l<i<k), and let Left (E)

= <{ei|3(ei'e£)eE}. Compute a substitution S={(ei,ni)|ei§
Left(E)‘AniéLluL2 Ani;énj for 1<i,j<k}. S is a renaming

of equivalence variables with distinct new names not
conflicting with names in both L, and L,. Now rename the

2
modules and fuse them, as follows:

-

<declarations for variables in Left(E)>

/ [

E S

Lu,
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7. Procedures

Eliminating Calls

7.1.1 Suitable’gzstematic Renaming

and then called within the Scope of its definition
as follows:

r <decZarations of- 30>

4

F<declaration of P(?U;z}

[8(7.2.5 ) >

<declarations of 31>
@[...P(Z)...]

Here, P is declared with formal parameters f

and local variables Z at the heag of a block @ )

Block is global to the definition and use of

P, and it contains declarations of global Variables
30. The body of p is a piece of text B(?,Z,EO)



v{hich is a function of ?,Z and c_fo; The

procedure P is called with a list a of actual
parameter expressions at a point @ in the

program. This point of call is embedded within

a block @ containing declarations of variables 31
defined for the point of call, but not at the point
of declaration of P. Thus, we can write 3=al,a2,...,an
where ai=Ai(§0,§l) for (l<i<n) to indicate that

each of fhe actual parameters in the call P(g) can

be a function of variables EO and 51.

If the formal parameters f of P are called by name,
we substitute the actual parameter expressions a used
in the call P(Z) for respective occurrences of f in
the body B(g,f,go) , and we replace ﬁhé call P(-a-) at

level with the biock:

[II <declarations of 7> B(&',Z,Eo)ﬂf..

e et e =
e st .

* The brackets ...[...]... are called "return intercept
brackets". If an expression of the form Return(X) is
executed within a pair of return intercept brackets,
control returns to the text immediately surrounding the

bracketed text, as if the bracketed text had been a
procedure call (see §12.2.4).

f e e e o oo
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Since this substitution may introduce name conflicts
we must first employ "suitable systematic renaming"
to eliminate them. The following diagram indicates
the environments after replacing the call P(a) with

the text of P:

'

1

<declarations of Eb >

CE’._

<declaration of P(?);z}
[8(7. 2.9, = >

[ <declarations of §Z>

...l<dectarations of 2>

B e

Bl(a, 0,9, 11 ...

Two forms of possible name conflicts arise when
we compare this diagram to the original form of
. the program above. First, the proper bindings

of the actual parameters g,

1=Ai(§0,§l) may be

occluded by name conflicts with £, so that
names in Kn(gougl) need to be changed. Second,
the proper bindings of Eb may be occluded by

name conflicts with Ei, so that names in Eln Sb

need to be changed.
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We adopt the policy of changing the most local
declaration of a given conflicting name. We

éhoose diséinct new names, not used elsewhere in

the program for this purpose. Thus, let N= EOUEIUfUZ
be the set of names used in the program. Compute three

substitutions Sl,S2 and F as follows:

— -~ . . -.b:h_;
S ;= {(vi,vg)l(viegongl), (v, is used in B(f,Z,g,))

viEN, and vi# v for 1#7}

RN T3

52={(ni,n£)Iniezn(gougl),(ﬁi 18 used in.lgk

Sy

n%éﬁ, and ni# nz for i# 4}

r A fas wr [aplasion
5; S 7

Now create a substituted text as follows:

~<decZa1ﬂation of P(?);Z;B(?,Z‘,EO) >

<declarations of g,>

<declaration of ;} >

l:-//a <declarations of L>B(F,1, g,)1

F 5,
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If the parameters f of P(f) are called by value

instead of by name, the block created at

becomes:
( [ <declarations of ?'and f>;
fivags f2+a2;---;fn+un;
s, | BELGy )

where the substitution %2 must be redefined to

eliminate conflicts with f as well as Z, as follows:

S2.= Ungnz ) [ nye(Ful)algyug,), (n, is used «:nfa‘),
S
1

(nZ¢lN), and n;# nj for i#37}

and where

4 = {(ait/;i”(ai are distinet new symbols aigN)

S

—
and aiea).

Before replacing the call P(a) With the derived
text./h<declarations of ?>;B(2:2:52)]
Se

it is useful to attempt program simplication, since
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formal parameters may be replaced by constants
allowing partial evaluation of the surrounding

procedure text as outlined in §7.1l.2.

7.1l.1l.a example

6D .

begin integer j,x,y; integer array Al1:100];

e xEy<«Piged; ...

érocedure P(q,r);integer q,r;integer i,J,k
begin i<x+a;j<y-1;k<d
- A[q+i]<—A[r-(j+k)_]. ..
end

D)

[begin integer 1,x,3;

s XE3C1;1€3;
Gi)[..P(x+i,z+j)...

end

To compute the substitutions, Sl,S2 and F, first set:

90 = j:x:y:A

f =q,r N
7 = 4,4,k

31 = 1,%,23
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Then, using v~ to denote a distinct new symbol

corresponding to v, we get

{(x,2")}

{(£,27),(4,5°)}

I W U
it

= {(q,x"+i),(r,3+j)}

Using these substitutions we get the final transformed

text:

begin integer j,x,ys;integer array A[1:100];

coexey<figed; ...
procedure P(q,r);integer q,r;integer i,J,k;
begin i+x+2;j«y-1;k<0;

o Algtil«ar-(5+K) . . .

Q,

en

® |

" begin integer i1,x”,3;

€9 -

[ integer 27%4%k;
begin Liex+8; 5 +y-1;k<f ;
v ALz +L) 4] wd(2+5) - (G 7+K) ], . .

-~ Lend
end

]
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7.1.2 Partial Evaluation

7.1.2.a example

When the actual parametérs 3 of a procedure call
P(E) are substituted for the formal parameters T
in the body B(?,f,ﬁo)-of-the procedure declaration
P(£), a piece of substituted text B(a, z,ﬁo)
results which can frequently be simplified. For
~example, let P be declared és»fq;i?ws:

integer procedure Modulo(xz,y);integer z,y;

Return (if y=0 then x else x-y*Entier(xz/y))

and suppose we expand the call
«e. Modulo(a[i]+1,2)...
The substituted body becomes

[ Beturn(if 2=0 then A[i]+1 else

(4[21+1) - Entier((alil+1)/2)) ]

But since 2=f evaluates to false, we can use

if false then A else B => B to simplify this to:

l Return(ali +1-2%Entier( (A[21+1)/2) ]
Then, using [Return(x)] => X, we get the final form:

e o (A[2])+1) - 2%Entien( (A[Z]+1)/2) ...
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7.L2.b The Inside~Out Method

Partial evaluation of a piece of program text

may be accomplished using an "inside-out" method
which simplifies program constituents in the order
of deeper to shallower levels of nesting. This

works as follows:

l. First, perform all possible arithmetic on constants.
Eg. 2*3+5 => 11, x*sign (6) => x*1 (see §ll1l.1).

2. Second, perform algebraic simplifications,
particularly elimination of algebraic identities
(as in x*1 => x, y+0 => y, 0*x => 0) and trivial
cancellations (as in x/x => 1, 2y-3y+y => #),
(see §11.1).

3. Third, simplify relational expressions (eg.
3>0 =>true, x#x => false, Xx-y<f§ => x<y, =as-b
=> a>b), (see §ll.2).

4. Fourth, simplify Boolean expressions (eg.

(x>0) A (truevfalse) => (x>»0),

v(trueva) => ~v(true) => false. In particular, Boolean

constants true and false that are operands

of Boolean operators may be eliminated (see §11.3).
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5. Finally, simplify control forms (eg.

if true then x else y => x, while false do

S => empty)

Whenever a function f(g) is called with actual
parameters §=a1,a2,...,anthat are all constants,
the entire call can be simplified to a constant

by normal procedure evaluation, provided f is

side~effect-free.

8. The Mechanics of the

Empty and Undefined Program Forms

Empty Introduction and Elimination

The empty program is an identity under program trans-
formation, much the same way that 0 and 1 aré identities
under addition and multiplication (x+0 = x, x*1 = x).
The empty program is created by transformations that map
program fragments that do nothing into the explicit

constant empty. For instance,

while false do S => empty

and

if false then A => empty

The empty program combines with program syntax in which

it is embedded according to certain simplification laws.
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8.1.a Empty Block Elimination

8.1.c

begin
empty => empty
end

Empty For Statement Elimination

provided i is local to the for-statement:

for i+a step b until ¢ do empty; => empty

Empty Statement and Empty Declaration Elimination

.

begin 51;52;...Si_i;emgty;3i+1;...;Sn end =>

begin 31532;"';Si-1;si+13'"5Sn end

As an example of the latter transformation,

note that a labelled empty statement can be

eliminated by transferring its label to the

following statement:
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8.1.d Empty Procedure Elimination

procedure P(;);<decZarations>;empty=>empty

provided all calls P(g) in P are also replaced
by empty everywhere in the scope of the declaration

of P.

8.1l.e Empty While-Do and Repeat-Until Elimination

provided b is side-effect-free:

while b do empty => empty

provided b is side-effect-free:

repeat empty until b => empty

Undefined Introduction and Elimination

The undefined program (or, special case, the undefined
value) can result from executing or transforming certain

program forms. For instance, if a=0 then

ao => yndefined ,
x/a => undefined , and

Log(a) => undefined



- 56 -

The undefined value can propagate. Whenever
an operand of an operator, or an argument of a

function is undefined, then the result is undefined.

a <operator> undefined => undefined
undefined <operator> a => undefined
<operator> undefined => undefined
f(al,az,...,an) => yndefined if a; = undefined

for some 7 such that (1<i<n).

When undefined is a body of an iterative control

form, or a procedure, the result is undefined.

while b do undefined => undefined

repeat undefined‘until b => undefined

for v<a step b until ¢ do undefined =>undefined

When undefined is an arm of a conditional then the

result is undefined unless the arm is not executable.

- Thus, for example,

if x>0 then undefined else P(a) => undefined

i1f false then undefined else P(a) => P(a)

i1f true then x else undefined => x
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8.2.d A call in a procedure which has not been declared

is undefined.

provided P has not been declared :

P(Z) => undefined

8.2.e example

In general, the undefined program form may appear
as a result of an undefined operation, but it may,
in turn, be eliminated through transformations of
the text in which it is embedded. For instance,

expanding the call Modulo(S,O) in the function

integer procedure Modulo(x,y) ;integer Z,y;

Return (if y=0 then z else x-y*Entier (x/y))

gives:

I Return (if 0=0 then 5 else 5-0*Entier (5/0))1
v 8.2

| Return (if true then 5 else 5-0*Entier (undefined))ﬂ

Y 8.2.a
| Return (if true then § else 5-0*undefined) 1

Y 8.2.a twice
| Return (if true then 5 else undefined) 1

v 8.2.c
ﬂ Return (5) ﬂ

L]
\4

5

In strict inside-out evaluation by mechanical means, it is

convenient to be able to deal with the undefined program.

El



9. High-Level Forms

9.1 'Reduction versus Recognition

Reduction is a transformation that maps programs in a
language L into programs in a proper subset L~ of L.

For instance, the reductive transformation:

while b do § => L:if ~b then

begin

maps programs written in a superset of Algol 60

into pure Algol 60.

Recognition is the inverse of reduction. It replaces

program fragments written in a language L~ with equivalent

constructions in an extension L of L® (where L’ cL).

An example of recognition mapping Algol 60 into an

extended Algol 60 is:

1<1;

I
v

for i+1 step 1 until N do " repeat Al2]«0;i+i+1

A[i]*‘o until, i>N



Reduction can be used to map programs written.in an extension
E of a base language B into programs written only in B.

If accompanied by simplification, reduction can produce
increased efficiency, but this may occur at the expense

of reduced legibility. Conversely, recognition may improve

legibility at the expense of efficiency.

While the transformations in §9.2 are given as reductions,

they may be applied in the reverse direction to produce

recognitions.

Reductions

9.2.1 Parallel Assignments

A parallel assignment takes the form
(xl,mg,...,xn)+(e1,32,...,en)

and assigns the values of e; to X all at once
(for l<i<n). For instance, (x,y)<(y,x) exchanges

the values of x and y.

provided XyrXgyre.e, X are variables, xl,xz,...,xﬁ
are distinct new variables not used elsewhere in

the program, and e; are side-effect-free (1<i<n):
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(mz,xz,...,xn)+(e1,ez,...,en) =>

V4 4 s
XL, 3L € S s o5 o e
17€71° %7€ s 5T, ey

S I B, Sy S «~x’
LyTLgsT T gs 2%y
If some of the x; are subscripted expressions, then
this reduction is valid provided no xj is used in
a subscript in Xy for 1<j<i. For instance,

(a[il, i)« (i,a[i]) => K[ileizi“«alil;alil«a”[il;iei”

is valid, but (i,A[i] )<(a[i],i) =>

if<«ali];a[i]«i;i«i”;A[i]«A"[i]  is invalid

(Minimizing the number of temporary variables used
to serialize a parallel assignment has been shown

to be NP-complete by R. Sethi[ll]).

Iterators

example
provided A is an array [1:N,1:M];

for xe (subscripts of A) do Alx]«0 =>

for i< 1 step 1 until N do
for j« 1 step 1 until M do A[1,j1«0;
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9.2.2.b example (printing prime pairs between N and M)
[ for ze (the set of odd integers between N and M) do

if ((x) is prime) and ((x+2) is prime) then

“Print(x, newline,z+2, newline) ]

=> [ x«2*Entier(N/2)+1;
while =zsM do
begin
if ((x) is prime) and ((x+2) is prime)
then Print(x, newline, x¥2, newline);
xex+2

end ]

9.2.2.c remark The use of high level iteration clauses
such as xe(Subscripts of A) or xe(The set of odd
integers) can sometimes make a program easier for
people to read since the "key idea" is described
directly rather than being buried in the mechanics

~ of sequencing. Using high-level iterators can

occasionally make program text more concise, since
a large amount of equivalent low-level program

text is sometimes required to express the same idea.

If an iteration clause can be given a perfectly
precise underlying meaning by means of mechanical

transformation, there is no reason not to use
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it in rendering high-level program text more legible

and concise for people.

9.2.3 Zahn and Dahl Loop Reduction

We use the form of Zahn and Dahl loops given by

Knuth [2].

9.2.3.a Zahn Loop Reduction

end

loop until <event>; or

or <event>n

<statement Zist>0 3

repeat;
then <event>1+ <gtatement Zist>1;

<event>n+ <statement Zist>n;

where <statement Zist>0 contains occurrences of

<event>.
1

for (1<i<n), and <event>, are

distinct Boolean variables.

U

<event> «<egvent> <.

1
Sl

go to loop;

next:i1f <event>

2

loop: -I.<statement list>

>

1

i1f <event>
n

..+<event>n+false;

0o ?

then[<statement Zist>2] else

then[<statement Zist>n] ;



e —— T ——..
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where the substitution S is given by

§,={(<event>,, [<event> «true;go to next])| (1<i<n)}

and where loop and next are distinct new labels

not appearing elsewhere in the program.

9.2.3.b Dahl Loop Reduction

Zoop;gkwhile B:?ﬁregeat;

U

£1:[51;

if ~B then go to L2;
[71; go to L1;
L2: empty

i

where § and T may be sequences of one or more
statements and where L1 and L2 are distinct new

labels not used elsewhere in the program.
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10. High Level Transformations

10.1 Eliminating Search Exhaustion Tests by Data

Structure Extension

10.1.1 example (See Introduction (pages 4-7) for explanation) :

procedure Search(T,X); array T[1:N]; integer i;
begin i+«N;

while 1>0 do if T[Z1=X then Return(true) else i+i-1;
Return(false)

end

U

procedure Search(T,X);array TLO0:N]; integer <i;
begin TLOl«X; i<N;

while TLt11#X do i<«i-1;

Return(i#0)

end

10.2 Recursion Removal

10.2.1 Replacing the Final Call With a Go To

10.2.1.a example (of printing a binary tree T
composed of nodes which are either empty, or
contain an Info field which gives information
to be printed, and Left and Right Subtree fields
which give pointers to left and right subtrees,
(cf. Knuth [2], p.281)).

procedure TreePrint(T); binary tree T; value T;
begin

if Empty(T) then Return;
TreePrint(LeftSubTree0f(T));

Print(Info(T));

TreePrint(RightSubTree0f(T))

end
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procedure TreePrint(T); binary tree T; value T;
begin
if Empty(T) then Return;
L: TreePrint(LeftSubTreel0f(T));
Print(Info(T));
T«RightSubTreeOf(T); go to L

end

10.2.2 Replacing a Recursive Call Using an Explicit Stack
10.2.2.a example (see Knuth [2], pp. 281-282):

The latter program in §10.2.l1l.a transforms to:

procedure TreePrint(T); binary tree T; value T;

begin stack S; S+«+emptystack;
L1: while~Empty(T) do
Push(T)onto(S); T<«LeftSubTreeOf(T);
I:gﬁ to Li;
L2:T«TopOf(S); Pop(S);
Print(Info(T));
T<«RightSubTreeOf(T)
if ~Empty(S) then go to L2;

end

remark This program contains an instance of a
jump into the middle of a loop. For an interesting
defense of this "mortal sin", see Knuth [2],p.282.
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10.2.3 Replacing a Descending Recursion with a Descending

Iteration

10.2.3.a example

procedure Factorial(N); integer N; value N;
Return( if N=0 then 1 else N*Factorial(N-1))

U

procedure Factorial(N); integer N; value N;

begin integer i;

Factorial<«l;

while N>0 do
[%actoriaZ+N*FactoriaZ;
d

N«N-1

en

remark Recursion removal can be done mechanically by
introducing explicit stacks. Transformation to
equivalent,stackless, iterative forms has received
frequent attention in the literature. See for example,
McCarthy [3], Manna and Waldinger[5], and Darlington
and Burstall[4]. We do not attempt here a representative

summary of its many facets.

| 10.3 Refinement of Abstract Data Structures

10.3.1 example (the set membership predicate XeY ):

Given an algorithm P written using set notation

(e.g. using expressions such as An(BuC), or

if XeY then C«Cu{X}), we may wish to choose one of

many possible underlying representations R for sets,
\ * and to map P into a concrete program using R. Here,
we exemplify what might occur if X were a-character,
Y were a set of characters, and we chose to represent

| Y using a list.
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Thus, we assert:

(1) Let (X) be a (Character)
(2) Let (Y) be a (Set of (Character)s)
(3) Represent (Y) by a (List)

Now we apply the following deductive assertion
to statement (3):

if (the Representation of (Y) is a (List)) then
Asgert( the Representation of (Y) is
(Finitely Enumerable))

As a consequence, a new statement can be made:

(4) The Represenfation of (Y) is (Finitely Enumerable)

We now examine the following transformation:

provided (There exists a (Z) such that
((X) is a (2)) and ((Y) is a set of (2)s) and
(The Representation of (Y) is (Finitely Enumerable)):

(XeY) => [for each a such that aeY do
1f X=a then Return(true);

Return(false) ]

The enabling condition of this transformation is
satisfied by assertions (1), (2) and (4) above. Hence,

(XeY) can be rewritten as:

(5) [for each a such that aeY do
i1f X=a then Return(true);

Return(false)]
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Now the following transformation applies:
provided The Representation of (Y) is a (List):

for each a such that aeY do S(a) =>
[list t; t<X;
while t#NIL do
begin
S(head(t));
t«tail(t)

end ]
It maps the last given form of the program in (5) into:

[I [list t; t+Y;
while t#NIL do
| begin
1f X=head(t) then Return(true);
t<«tail(t)

end 1;

Return(false) |}

The latter piece of text is the concrete implementation

of the predicate XeY, when Y is a list.

If the representation for Y had been a bit-vector, or
an array instead of a list, the underlying concrete

code generated would have been different. For example,
provided The Representation of (Y) is (Array[M:N1J]):
for each a such that ae¥ do S(a) =>

[integer i;
for i<«M step 1 until N do S(Y[Z1)]
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is a transformation which applies if Y is represented
by a linear array. This transformation maps (5) above

into the following concrete underlying program text:

I (Znteger <;
for i<M step 1 until N do
if X=Y[<1lthen Return(true)l;

Retﬁrn(false)]

10.3.2 remark In a more extensive fashion, Schwartz[6]
has shown how abstract operations on sets can be
implemented concretely, and the book by Dijkstra,
Dahl, and Hoare[7] gives numerous examples of refinement

of abstract data into concrete representations.

10.4 Replacing Loops that Sum Polynomials with Polynomials

of Higher Degree

10.4.1 The general idea of the transformation is;

provided f is a polynomial of degree n:

S<0;
for i<a step b until e¢ do  => S+g(e)
S+S+f(1) where g is a polynomial

of degree n+l.

10.4.2 example
S<0; i
for i+«1 step 1 until n do  => S<+(n+1)*n
5«5 + 3*1%-1/2




In many cases, the polynomial g can be determined
using the calculus of finite differences (see
Goldberg [8] for details).

10.5 Procedural Abstraction

Naive programmers often repeat the same, or nearly the
same, sequence of instructions. For example, in the
computation of the Cosine of the angle between two

3~-vectors v and w one might find the code:

S<«0;y

for i«1 step 1 until 3 do
S«S+vl1]*wli];

R<03;

for i+1 step 1 until 3 do
R«R+v[21* v[<];

T+0;

for i<«1 step 1 until 3 do
T«T+wli1*wl<];

Result<+S/(R*T)

By recognizing the common loop one can replace

this code by the following:

real procedure Dot(z,y);real array x,yl1:31;

begin integer i;
Dot<0;
for i«1 step 1 until 3 do Dot<«Dot+x[<]1*yl<]1;

end;

Result<Dot(v,w)/(Dot(v,v)*Dot(w,w))



Procedural abstraction is the inverse of expansion of

a procedure call into a substituted, partially evaluated,
procedufe text. A program to identify unifiable pieces
of code must be able to take a set of similar program
fragments (say similar with respect to structure),

P;/Pyse..,P, , and to construct a least common generalization.

n

11. Manipulation of Expressions

11.1 Arithmetic Expressions

11.1.1 Performing Arithmetic on Constants

Let a and b be arithmetic constants, and let
execute(F) be the result of evaluating program

fragment F to produce a value. Let o be an operator
such that a ¢ {+,-,x,%,4,<,<,=,2,>,%2,8in,c08,abs,entier,

log,exp,signt. Then,

(aa) => execute(oaa)

(aab) => execute(aob)

11.1.2 Eliminating Arithmetic Identities

at+tl0 => a a-0 => a

0+a => a 0-a => -a

a*l => a a/l1 => a

1*a => a 0/a => 0

O%a => 0

a*0 => 0 remark: See §8.2 for cases that
. yield an undefined result.

atl => 1

Ita =>

atl => a
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11.1.3 Trivial Cancellations

x+(-x) => 0 _ x/x => 1

11.1.4 Eliminating Unary Minus

ll.

-(-a) => q

(-a)-b => -(a+h)

(-a)+(-b) => -(a+b) (-a)*b => -(a*b)
(-a)-(-b) => b-a a*(-b) => -(a*b)
(-a)*(-b) => g*p (-a)/b => -(a/b)
(-a)/(-b) => a/b a/(-b) => -(a/b)

(-a)+b => p-qg
a+{-b) => g-p

a-(-b) => a+b

at(-b) =>1/(atbh)
(=a)+N =>((-1)+N)*(atlN)
-(a-b) => b-a

1.5 Clearing Rational Fractions

(a/b)*(e/d) =>
(a/b)/(c/d) =>

(a/b) *c =>
e*(a/b) =>
(a/b)/c =>
e/(a/b) =>
(a/b)+N =>

(a/b)+(c/d) -=>
(a/b)-(c/d) =>

(a/b)+e =>
(a/b)-c =>
a-(b/ec) =>
at+(b/c) =>

(a*c)/(b*d)
(a*d)/(b*ec)
(a*c)/b

(a*c)/b

a/(b*ec)

(b*e)/a
(atN)/(b+N)
(a*d+b*c)/(b*d)
(a*d-b*e)/(b*d)
(a+c*b)/b
(a-c*b)/b
(a*e-b)/c
(a*c+b)/c



11.1.6 Suggestions for Simplifying Rational Forms

(a) Perform arithmetic on constants (§11.1.1).

(b) Eliminate identities (0 and 1) and perform
trivial cancellations (§11.1.2 and §11.1.3)

(c) Eliminate unary minus (§11.1.4)
(d) Clear fractions (§11.1.5). Now the expression
is either in the form P or the form P/Q

where P and Q are free of division operators.

(e) Multiply out P and Q, collect like terms, and
cancel terms where possible.

(f£) Try to factor P and Q and remove the polynomial gcd.
(g) Optionally express polynomials in the numerator
(and denominator, if applicable) using Horner's Rule

for quick evaluation. E.g.

n n-1 1

a, + x*(a1+x(a2+...x(an)...l)

11.1.7 remark The above algebraic transformations produce
only mild simplifications of algebraic expressions. These
are only the most rudimentary and skeletal indications of
the sort of manipulations required. Not only is algebraic
simplification unsolvable, in general, it requires a
sizable amount of sophisticated code, in particular cases.
The approach of using only pattern-directed transformations
such as those above has been tried by Fenichel and found to
be deficient in several respects. The code for the MACSYMA
System, a sophisticated algebraic manipulation system,

amounts to over 300,000 words on the DEC PDP-10.



This Catalogue does not aspire to swallow the whole
field of algebraic manipulation as a special case of
program manipulation, but instead emphasizes program
transformations outside the realm of conventional

algebraic manipulation.

11.2 Relational Expressions

11.2.1 Relational Simplifications

We define the following set: <rel>= {<,<,=,%,2,>}.

11.2.1.a Cancellations:

ate <rel> bte => a <rel> b

provided e¢>0:

a*e <rel> b*e => a <rel> b

11.2.1.b Simplifications with 0 and 1

a-b <rel> 0 => a <rel> b
0 <rel> a-b => b <rel> a
provided b>0:

a/b <rel> 1 => a <rel> b
1 <rel> a/b => b <rel> a
provided a>0 and b>0:

(l/a) <pel> (1/b) => b <rel> a

11.2.1.c Simplifications to true and false

a=a => true asa => true aza =* true

a#a => false a>a => faZse a<a =* fﬁ£§£
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11.2.2 Arithmetic Negations of Relations

-a < =b => a > b
-a £ -b => g 2 b
-a > =b => q < b
-a 2 -b => aq S b
-a = =b => a = b
-q # =D => q # b

| 11.2.3 Logical Relational Negations

~(a = b) => a #b
~(a # b) => a =b>b
~(a < b) => a z2b
~(a < b) => a > b
~(a > b) => a <b
~(a 2 b) => a <b

11.2.4 Relational Synonyms

Let <ge>={>,2} and let <le>= {<,<}:

b) => (a < b)v(a
b) => (a > b)V(a

b)
b)

(a
(a

IA

v

a=b=c¢ => (a=>blala = c)

a;<ge>1b <ge>4 e => (a<ge>1b)A(b<ge>Zc)

a <Ze>1b <Ze>2c => (a<Ze>1b)A(b<Ze>2c)

11.2.5 Combining Ranges
11.2.5.a examples

(asz<b)A(eszs<d) => max(a,ec)<x<min(b,d)
(asxs<b)v(e<xsd) => if (bzec)A(asd) then min(a,c)<xs<max(b,d)
else (asxs<sb)v(esz<d)

provided a>b: -(asxsb) => false




11.3 Boolean Expressions

11.3.1 Eliminating Boolean Constants

a A true => a a Vv true => true
true A a => a true V a => true
a A false => false a Vv false => a
false A a => false ' false v a => a

~true => false

~false => true

11.3.2 Boolean Simplifications and Equivalences

anb <=> baa Commutative Laws

avb <=> bva

an(bae) <=> (aab)Arc

av(bve) <=> (avb)ve Associative Laus

aha <=>

Idempotent Laws
ava <=> a

an(bve) <=> (anb)v(anc) Distributive Laws

av(bae) <=> (avb)a(ave)

~(anb) <=> (~a)v(~b)
14
~(avb) <=> (~a)A(~b) DeMorgan's Lauws

~~g <=> @ Double Negation Law

an(avb) <=> a

av(anb) <=> a Subsumption Laws
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~av(anb) <=> (~a)vb Cancellation Laws

~an(avb) <=> (~a)Ab

(an~b)v(aab) <=> a Ground Resolution Laws
(av~b)a(avb) <=> a

(av~al) <=> true Exeluded Middle Law
(an~a) <=> false Contradiction Law

11.3.3 remark Boolean simplification is at least as hard
as the NP-Complete problems and no method of simplification

is known requiring less than exponential time. -




12, Appendices

12.1 Notational Conventions

12.1.1 Sequences

Vector notation is used to denote sequences

of statements or lists of identifiers or arguments:

-

statement sequences: 5 = 51;52;...;Sn
-

identifier sequences: UV = VU, ,V,4..0,V
A 1°72 n

argument sequences: a al,az,...,an

12.1.2 Substitution

A Substitution is a set of ordered pairs of the
form (n,X), where n is a name, and X is an expression
to be substituted for n.

S = {(n;X,)| n; are distinct names }

Let F be a program fragment containing instances of
the names n;. Then the result of substituting X; for
every occurrence of n; simultaneously and uniformly

in F is denoted:
E
S
This is pronounced the "substitution of F with

respect to S".

For example, Let S ={(x, a+b), (y, m*k), (z,F(y))}
and let F =,begin q«x*z; if b then Return(y) end . Then,

'/; = begin q+~(a+b)*F(y);if b then Return(m*k) end
S



12.1.3 Simplification
The simplification of a program fragment F with

respect to a set of transformations x, is denoted
V_F
x

or, where the simplification transformations are

apparent from context, just simply V F.

12.2 Programming Language Forms

12.2.1 Use of Algol 60 Conventions
The syntax and terminology used in the Catalogue

follow Algol 60 conventions, except for a few
extensions, which have been added to provide
coverage of structured programming syntax.

12.2.2 Structured Programming Extensions

12.2.2.a While-Do Forms:
While <Boolean Expression>Do <Statement>
12.2.2.b Repeat-Until Forms:

Repeat <Statement> Until <Boolean Expresstion>

12.2.2.c Return Expressions and Statements:

To exit from the execution of a procedure P(g),

the statement forﬁ Return can be used. To exit
from a procedure P(g) and, simultaneously, to

return the value of the expression E the expression
Ret;rn(E) can be executed. Executing Return(E) has
the same effect as executing begin P<E;Return end

where P is the procedure identifier.




12.2.3 Synonyms for Begin-End Brackets

- Any form of parentheses or brackets can
be used to stand for Begin-End pairs in Algol 60.

The Catalogue uses such bracketing as -

L ]
L] . L] ( . L ) L4 .
and
Sl;
52;
_Sn ‘ -

In the latter case, indentation and the left
square bracket in the margin, together indicate the
scope of a Begin-End pair delimiting a compound
statement or block.

12.2.4 Return-Intercept Brackets

The special brackets ...[ ... ] ... are

called "return-intercept brackets". Whenever

a Return statement, or a return expression of

the form Return(E) is executed within return-intercept
brackets, control passes to the text immediately
surrounding the least enclosing pair of return-
intercept brackets, as if the brackets delimited

the text of a procedure call. Otherwise, the
return-intercept brackets function exactly like
Begin-End brackets. Return-intercept brackets can

be used to set up "block expressions" as in CPL.



n

For example, the following text computes X/ », £(i)
i=o

X/lreal S; integer 1; S+0;
for i+0 step 1 until n do S«S+f(i);
Return(S)]

12.2.5 Extended Identifiers and Procedure Calls

Sequences of identifiers separated by spaces
stand for single identifiers, and procedure calls
and declarations may be given in the following

extended forms;

12.2.5.a examples (of extended identifiers)

the Left Hand Side
Numerator of X
Output Buffer

12.2.5.b examples (of extended procedure calls)
Pop(T) From (S)

Write(M+5) On the (Mag Tape) Device
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Rec'd.

9-30-85JM

alif. Univ. Irvine. Dept. of Information
(Calif. Uni Irvi D f Inf i
§.Computer Sci. Tech. rgport ; 161)

Dealer

Lrvine : Dept. of Info. & Computer Sci.,
URE[Y ® Qg; Calif. ’ 1976. Fund Charged Cost

No. of
Copies 2

Bk. Hr. from Serials

Order
No.

HANDLING : 1 copy - stax O-cui

L.C. Card

1 copy - archives O-pf





