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Abstract

Opening of intermediate-conductance calcium-activated potassium channels (KCa3.1) produces 

membrane hyperpolarization in the vascular endothelium. Here, we studied the ability of two new 

KCa3.1-selective positive-gating modulators, SKA-111 and SKA-121, to (1) evoke porcine 

endothelial cell KCa3.1 membrane hyperpolarization, (2) induce endothelium-dependent and, 

particularly, endothelium-derived hyperpolarization (EDH)-type relaxation in porcine coronary 

arteries (PCA) and (3) influence coronary artery tone in isolated rat hearts. In whole-cell patch-

clamp experiments on endothelial cells of PCA (PCAEC), KCa currents evoked by bradykinin 

(BK) were potentiated ≈7-fold by either SKA-111 or SKA-121 (both at 1 μM) and were blocked 

by a KCa3.1 blocker, TRAM-34. In membrane potential measurements, SKA-111 and SKA-121 

augmented bradykinin-induced hyperpolarization. Isometric tension measurements in large- and 

small-calibre PCA showed that SKA-111 and SKA-121 potentiated endothelium-dependent 

relaxation with intact NO synthesis and EDH-type relaxation to BK by ≈2-fold. Potentiation of the 

BK response was prevented by KCa3.1 inhibition. In Langendorff-perfused rat hearts, SKA-111 

potentiated coronary vasodilation elicited by BK. In conclusion, our data show that positive-gating 

modulation of KCa3.1 channels improves BK-induced membrane hyperpolarization and 

endothelium-dependent relaxation in small and large PCA as well as in the coronary circulation of 

rats. Positive-gating modulators of KCa3.1 could be therapeutically useful to improve coronary 

blood flow and counteract impaired coronary endothelial dysfunction in cardiovascular disease.

Altered function of the intermediate-conductance calcium-activated potassium channels 

(KCa3.1) [1,2] has been suggested to accompany endothelial dysfunction observed in many 

cardiovascular disease states including diabetes [3] (for extensive review, see [4,5]). 

However, preserved KCa3.1 functions and ensuing EDH-mediated relaxations have also been 

reported [6–8]. So, regardless of whether the EDH system is impaired or preserved, 

pharmacological activation of KCa3.1 might constitute a therapeutic strategy to improve 

endothelial function in diseased coronary arteries and other vascular beds and may provide 

cardiovascular protection [4,5,9–12]. This strategy may be advantageous over strategies 

targeting other vascular and smooth muscle potassium channels such as KATP channels 

[13,14], K2P channels [15,16] and large-conductance KCa1.1 channels [17,18] because 

KCa3.1 activation particularly favours endothelium-dependent relaxation [5].

The current most selective and potent activator of KCa3.1, the benzothiazole SKA-31 [19] 

(for recent review, see [5]), which has 10 times higher potency on KCa3.1 channels than on 

KCa2 channels, has been shown to produce vasodilation in coronary and skeletal muscle 

vascular beds [20,21], to lower blood pressure in normotensive and angiotensin-II-infused 

hypertensive mice [19] and to produce a short-lived depressor response in conscious dogs 

and pigs [22,23]. However, at least in rodents, blood pressure-lowering doses of SKA-31 

also produce severe bradycardia [21] and sedation [24]. This may be attributed to the 

activation of cardiac and neuronal KCa2 channels and therefore limits the use of SKA-31 for 

cardiovascular conditions.

In the present study, we tested the hypothesis that selective pharmacological activation of 

KCa3.1 is capable of potentiating endothelial hyperpolarization and endothelium-dependent 

relaxation to bradykinin (BK). For this purpose, we investigated the effect of the 
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benzothiazole SKA-111 and the benzoxazole SKA-121, two new positive-gating 

modulators, in porcine large and small coronary arteries (PCA). SKA-111 and SKA-121 

have, respectively, 120 times and 40 times higher selectivity for KCa3.1 channels over KCa2 

channels [25]. We show that selective positive-gating modulation of KCa3.1 by SKA-111 

and SKA-121 elicited KCa3.1 currents and hyperpolarization in porcine coronary artery 

endothelial cells (PCAEC) and selectively potentiated BK-induced endothelium-dependent 

and, particularly, EDH-type relaxation of PCA. In Langendorff-perfused rat hearts, 

SKA-111 potentiated bradykinin-induced reduction in coronary perfusion pressure (CPP).

Materials and Methods

Porcine coronary artery endothelial cells

PCAEC were isolated from hearts kindly provided by the local slaughterhouse (Matadero 

Mercazaragoza, Zaragoza) as described previously [26]. In brief, PCAs, with an inner 

diameter of about 1–2 mm and an outer diameter of 2–3 mm, were carefully dissected and 

cleaned of surrounding tissue and fat, were cut open longitudinally and incubated in trypsin/

EDTA (0.25%/0.02%) in PBS without Ca2+/Mg2+ (Biochrom KG, Berlin, Germany) for 30 

min. Subsequently, PCAEC were scraped and aspirated from the luminal side using a pipette 

tip and seeded on cover slips. Cells were cultured in Dulbecco’s modified Eagle medium 

(DMEM) supplemented with 10% foetal calf serum (FCS) and 1% penicillin/streptomycin 

(Biochrom KG, Berlin, Germany). Before performing patch-clamp experiments, cover slips 

were transferred into the NaCl bath solution and the cells were used for electrophysiological 

measurements within ≈36 hr.

Patch-clamp electrophysiology

Whole-cell currents were measured using an EPC10-USB patch-clamp amplifier (HEKA 

Electronics, Germany) and Patchmaster™ software as described in detail previously [26]. 

Currents were recorded using voltage ramps (U-ramps, −100 to 100 mV, 1 sec.) and a 

holding potential of 0 mV. Leak subtraction was omitted during data acquisition, although 

‘ohmic’ leak of up to 0.3 nS was subtracted during analysis, if appropriate. Amplitudes of 

K+-outward currents were measured at 0 mV and normalized to cell capacitance. The 

standard pipette solution contained calcium to activate KCa channels and was composed of 

(in mM): 140 KCl, 1 MgCl2, 2 EGTA, 1.71 CaCl2 (1 μM [Ca2+]free) and 5 HEPES (adjusted 

to pH 7.2 with KOH). In another series of whole-cell experiments, we used a lower calcium 

concentration in the pipette solution of 0.7 mM ([Ca2+]free 0.1 μM) to demonstrate that KCa 

activation occurs only at a calcium concentration, which is above the threshold for KCa2.3/

KCa3.1 activation. In other experiments, we patch-clamped endothelial cell clusters using the 

pipette solution with low calcium to monitor current activation during BK and/or 5-HT 

stimulation in electrically coupled cells. In current-clamp experiments, we measured 

variations in membrane potential. Here, the calcium concentration in the pipette solution was 

0.7 mM ([Ca2+]free 0.1 μM). In all experiments, the NaCl bath solution was composed of 

(mM): 140 NaCl, 5 KCl, 1 MgSO4, 1 CaCl2, 10 glucose and 10 HEPES (adjusted to pH 7.4 

with NaOH). Regarding cell capacitance, single cells had a mean capacitance of 9.4 ± 0.7 pF 

(n = 29 experiments). Cells in clusters were electrically coupled and exhibited higher 

capacitance values of 101 ± 13 pF (n = 30 experiments).
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Gene expression studies

RNA isolation and reverse transcription: Total RNA from primary freshly isolated pig aortic 

endothelial cells was isolated with TriReagent (Sigma, St. Louis, USA) following the 

manufacturer’s protocol and further purified using RNAeasy MinElute Cleanup kit (Qiagen, 

Hilden, Germany). Quantity and purity of extracted RNA samples were analysed by 

spectrophotometry (NanoDrop 1000; ThermoFisher, Waltham, MA, USA) before using 

them to reverse transcription or storing them at −80°C for a later use. Isolated RNA samples 

were also analysed for integrity and genomic DNA contamination by gel electrophoresis 

prior to their use in reverse transcription.

RT-PCR was performed by using the SuperScript II reverse transcriptase (Invitrogen, 

Carlsbad, USA) following the manufacturer’s protocol. Random hexamers were used to 

synthesize cDNA. In order to detect mRNA expression of the channel genes (KCa 2.1, KCa 

2.2, KCa 2.3, KCa 3.1) and endothelial nitric oxide synthase (eNOS, gene name NOS3), we 

used a standard PCR protocol with an initial denaturation step at 94°C for 2 min., 40 cycles 

(94°C denaturation for 15 sec., 53°C annealing for 30 sec. and 72°C extension for 30 sec.), 

followed by a final extension step at 72°C for 5 min., using a MyCycler thermal cycler 

(BioRad, Hercules, USA) and Taq polymerase (Stratec, Birkenfeld, Germany).

Intron-spanning primers were designed by using Primer3 software.

Primer sequences:

β-Actin F, 5′-CACGCCATCCTGCGTCTGGA-3′;

β-Actin R, 5′-AGCACCGTGTTGGCGTAGAG-3′;

eNOS F, 5′-AGCCTCCAGAACTCTTTGCT-3′;

eNOS R, 5′-TGCCAATCTCTGTGCTCATG-3′;

KCa2.1 F, 5′-CCAGGACCAGGAAGAGGAAG-3′;

KCa2.1 R, 5′-TGAGTGCAAATGAGTACAGCG-3′;

KCa2.2 F, 5′-TCCTGCTCGGTCTGATCATC-3′;

KCa2.2 R, 5′-GTGGATGGGGCATAGGAGAA-3′;

KCa2.3 F, 5′-GACAACCATGCCCATCAGAC-3′;

KCa2.3 R, 5′-TCAGGGCCAACGAAAACATG-3′;

KCa3.1 F, 5′-TCCTGCTCAACGTCTCCTAC-3′;

KCa3.1 R, 5′-GGTCAGGAATGTGATGGGGA-3′.

PCR products were analysed by gel electrophoresis using 2% agarose in TAE buffer and 

stained with GelRed (Biotium, Bromma, Sweden). The expected product lengths were 380 

bp for β-actin, 198 bp for eNOS, 239 bp for KCa2.1, 208 bp for KCa2.2, 283 bp for KCa2.3 

and 233 bp for KCa3.1.
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Myography on porcine coronary arteries

Isometric myography on large PCA rings was performed as described previously [27,28]. In 

brief, rings were mounted onto an isometric force transducer (Pioden UF1, Graham Bell 

House, Canterbury, UK). The bath solution was a Krebs buffer (37°C; equilibrated with 95% 

O2/5% CO2) and consisted of (mM): 120 NaCl, 24.5 NaHCO3, 2.4 CaCl2, 4.7 KCl, 1.2 

MgSO4, 1 KH2PO4 and 5.6 glucose, pH 7.4. Rings were pre-stretched to an initial tension of 

1 g (10 mN). Changes in force were recorded using a Mac Lab System/8e program (AD 

Instruments Inc, Milford, MA, USA) at a sample rate of 0.5 sec. Small coronary arteries 

(internal lumen diameters of 250–400 μm) isolated from the left ventricle of hearts obtained 

at Danish Crown (Horsens, Denmark) were mounted in microvascular myographs and 

stretched as previously described for lamb coronary arteries [29]. To measure EDH-type 

relaxation in large PCA, the buffer contained the NO-synthase blocker, N-ω-nitro-L-arginine 

(L-NNA, 300 μM), and the cyclooxygenase blocker, indomethacin (INDO) (10 μM). In 

experiments on small PCA, we used 100 μM NG-nitro-L-arginine methyl ester (L-NAME) 

instead of L-NNA. After an equilibration period of 40 min., compounds, alone or in 

combination, or vehicle (DMSO), were tested as follows: 1) pre-incubation of rings with one 

or two compounds for 5 min.; 2) pre-contraction with 5-HT (1 μM, 10 min.); 3) cumulative 

relaxation with increasing doses of BK (10 nM, 100 nM and 1 μM, over 10 min.); 4) 

washout over 10 min. Finally, rings were contracted with KCl (60 mM) buffer for 10 min., 

and relaxation was induced by adding sodium nitroprusside (10 μM). In other experimental 

series, we conducted the experiments in the absence of L-NNA (or L-NAME) and INDO. 

Under these conditions, 5-HT caused smaller contractions above the low spontaneous tone in 

the large PCA (data not shown).

Data analysis

We evaluated absolute increases in force to 5-HT or to 60 mM KCl. EDH-type relaxations 

were determined as % change of pre-contraction relative to the totally relaxed state (absence 

of the contracting agents).

Isolated rat heart (Langendorff)

Male Sprague Dawley rats were used for these studies (Harlan Interfauna Ibérica S.A., 

Barcelona, Spain). All animal protocols conformed to the European Union Guidelines for 

the Care and the Use of Laboratory Animals (European Union Directive 2010/63/EU) and 

were approved by the Institute’s Animal Care and Use Committee (Comité de Ética de la 

Investigación, Universidad Autónoma de Madrid). Hearts were perfused in a Langendorff 

apparatus as described previously [30]. Briefly, hearts were removed from Sprague Dawley 

rats (300–350 g) under anaesthesia with i.p. sodium pentobarbital (100 mg/kg) and after i.v. 

injection of heparin (1000 UI). Next, the ascending aorta was cannulated and the heart was 

subjected to retrograde perfusion with Krebs buffer at 37°C. Perfusion was kept at a constant 

flow rate of 11–15 ml/min. to provide a basal CPP of 60–70 mmHg. CPP was measured 

through a lateral connection in the perfusion system. Changes in CPP were recorded using a 

Mac Lab System/8e program (AD Instruments Inc, Milford, MA, USA) at a sample rate of 

0.5 sec. After a 15-min. equilibration period with constant flow perfusion, U46619 (30–60 

nM) was infused to achieve a sufficiently high CP. CPP increased from low basal levels (<70 

Oliván-Viguera et al. Page 5

Basic Clin Pharmacol Toxicol. Author manuscript; available in PMC 2017 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mmHg) to 144 ± 3 mmHg (n = 10)., and when the CPP was stable, BK (0.01–1 nM) alone or 

in combination with SKA-111 (1 μM) was added to the perfusate and falls of CPP were 

recorded. In other series, SKA-111 was infused alone at a higher concentration of 10 μM.

Compounds and chemicals

Compounds were purchased from Sigma/Aldrich, Tocris, Fluorochem, Alfa Aesar, or 

synthesized in house (HW’s laboratory: TRAM-34 [31], SKA-111, SKA-121 [25]; RB’s 

laboratory: RA-2 [32]). Stock solutions (at 1 or 10 mM) were prepared with DMSO, and the 

final DMSO concentration was always <0.5%, if not stated otherwise.

Statistics

Data are given as mean ± S.E.M. For comparison of data sets, we used unpaired or paired 

two-tailed Student’s t-test or, in case of multiple comparisons, we used one-way ANOVA 

followed by the Tukey post hoc test. Statistical significance was considered for p-values of 

<0.05.

Results

Gene expression of KCa3.1 and KCa2 channels in PCAEC

RT-PCR analysis showed that freshly isolated PCAEC express the KCa3.1 and KCa2.3 

subtypes as well as KCa2.2 (fig. 1), providing additional evidence for mRNA expression of 

these channels in PCA endothelial cells [33,34].

Patch-clamp electrophysiology on primary PCAEC

We performed ‘whole-cell’ patch-clamp experiments on primary PCA endothelial cells 

(PCAEC). In single cells, infusion of calcium into the cells via the patch-pipette activated 

K+-outward currents that were voltage independent and showed inward rectification at 

positive membrane potentials (fig. 2A), thus resembling key electrophysiological properties 

of KCa3.1 channels [1,2,35]. Such current activation was not seen (fig. 2A) when we used a 

pipette solution with a free calcium concentration of 100 nM, which is below the threshold 

for KCa3.1 channel activation (fig. 2A).

The novel positive-gating modulator, SKA-111, with 120 times higher selectivity for KCa3.1 

over KCa2 channels [25] potentiated the KCa-outward currents by 7-fold (fig. 2B, panel on 

left for traces and panel on right for summary data). SKA-121 potentiated these currents in a 

similar way (fig. 2C, panel on left for traces and panel on right for summary data).

Potentiated currents were sensitive to the classical KCa3.1 blocker, TRAM-34 [31] (1 μM, 52 

± 5% blockage of SKA-111-activated currents, fig. 2B, and 78 ± 7% blockage of SKA-121-

activated currents, summary data in fig. 2C). The KCa2 blocker UCL-1684 [36] (1 μM) had 

small additional blocking effects (fig. 2B,C). The negative-gating modulator, RA-2 (1 μM), 

that directly suppresses positive-gating modulation [32] potently blocked all KCa current 

(not shown) and a small TRAM-34/UCL-1684-resistant KCa current (fig. 2B,C), which may 

suggest incomplete block of porcine KCa3.1 by the pore blocker, TRAM-34 [37].

Oliván-Viguera et al. Page 6

Basic Clin Pharmacol Toxicol. Author manuscript; available in PMC 2017 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We conducted a series of whole-cell patch-clamp experiments to show that calcium 

mobilizations to BK or 5-HT were also able to activate KCa3.1 (fig. 3A) and that positive-

gating modulation of KCa3.1 further potentiated these currents. We found that BK (fig. 3A, 

left) caused transient activation of outward currents that were long-lastingly augmented by 

SKA-121. In contrast, 5-HT produced only small outward currents under these conditions. 

Interestingly, SKA-121 produced large KCa3.1 currents also independently of BK and 5-HT 

(fig. 3A, right) that suggested some minor basal KCa3.1 activity in these isolated cells, which 

could be potentiated by SKA-121.

Next, we conducted a series of current-clamp experiments on primary PCAEC clusters to 

investigate whether KCa3.1 positive-gating modulators augment membrane potential changes 

in response to BK and 5-HT. As shown in fig. 3B, we first tested the effects of 5-HT and BK 

alone and found that 5-HT (1 μM) or BK (1 μM) shifted membrane potentials from 

depolarized values (≈1 mV) to negative values, with 5-HT producing small responses (≈Δ

−10 mV) and BK producing stronger responses (≈Δ−27 mV). The negative-gating 

modulator, RA-2, reversed the responses. In contrast, the positive-gating modulator, 

SKA-121, augmented the agonist-induced response (≈Δ−65 mV, p < 0.05; for trace, see fig. 

3B). This augmented response was likewise sensitive to RA-2. Importantly, SKA-121 was 

capable of producing hyperpolarization by itself. However, the amplitude of this 

hyperpolarization was smaller (≈Δ−42 mV) than the amplitudes seen after stimulation of BK 

in combination with SKA-121 (see traces in fig. 3B). Moreover, the time course of 

hyperpolarization was different: BK elicited maximal responses within a few seconds (‘time-

to-peak’, fig. S1), which can be expected for an agonist that binds to its GPCR and causes 

rapid IP3-mediated calcium release from the endoplasmic reticulum. In contrast, maximal 

responses to SKA-121 were achieved after approximately half a minute. The ability of 

SKA-121 to produce hyperpolarization in its own right can be explained by the activation of 

a few KCa3.1 channels exhibiting basal activity and normally only causing insignificant 

membrane potential changes but giving rise to a slow hyperpolarization response when 

potentiated by SKA-121.

EDH-type relaxation

Isometric tension measurements on large PCA in the presence of L-NNA and INDO to block 

NO and prostacyclin syntheses showed that contractions of PCA in response to 5-HT (1 μM) 

were of similar amplitude in the presence of SKA-111 (1 μM) or SKA-121 (1 μM) as those 

in the presence of the vehicle, DMSO (fig. S2A). Thus, SKA-111 and SKA-121 at 

concentrations ≤1 μM at which the compounds selectively activate KCa3.1 did not influence 

contraction or produce vasorelaxation on their own.

With respect to endothelium-dependent EDH-type relaxation, SKA-111 and SKA-121 

significantly augmented the BK-induced EDH-type relaxation in large PCA (fig. 4A, for 

summary data; fig. S3 for original traces). Fitting of the data revealed a left shift of the 

concentration–response curve (see table S1 for EC50 values). TRAM-34 (1 μM) reduced the 

SKA-111-potentiated response (fig. 4B) and the combination of TRAM-34 and UCL-1684 

(1 μM) had no additional effect. Data for SKA-121 are shown in fig. S4A. RA-2, a pan-

negative-gating modulator of both KCa3.1 and KCa2 channels, was equally effective in 
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inhibiting the SKA-111-potentiated BK response (fig. S4B). BK-induced relaxation in the 

absence of SKA-111 and SKA-121 (fig. S4C,D) was inhibited by the combination of 

TRAM-34 and UCL-1684 as well as by RA-2.

None of the compounds significantly altered KCl-induced contractions and sodium 

nitroprusside-induced relaxations in large PCA (fig. S2B,C).

In small porcine coronary arteries, we found essentially the same: 1 μM SKA-111 by itself 

did not change U46619-induced contractions (n = 6) (fig. S5), but SKA-111 markedly 

leftward-shifted concentration–response curves for BK-induced EDH responses (fig. 4C; for 

EC50 values, see table S1). In the presence of TRAM-34 or the combination of TRAM-34 

and UCL1684, SKA-111 did not change the concentration responses for BK (fig. 4C).

Together, these data demonstrate that BK selectively activates KCa3.1 to produce EDH-type 

relaxation and that positive-gating modulation of KCa3.1 is capable of potentiating this 

response in large- and small-calibre PCA.

Endothelium-dependent relaxation with NO and prostaglandin syntheses intact

In another series of experiments, we omitted blockers of NO and prostaglandin syntheses 

from the bath solution in order to evaluate the effects of the channel modulators with 

uncompromised synthesis of NO and the vasorelaxant prostacyclin. Positive-gating 

modulation of KCa3.1 showed a trend to potentiate BK-induced relaxations in the large 

PCA, although the difference did not reach a statistical significance (fig. S6A). Yet, such a 

trend was not seen when testing a positive-gating modulator of KCa3.1 in combination with 

the negative-gating modulator of KCa3.1, RA-2 (fig. S6B; for calculated EC50 values, see 

table S1). In contrast, in the small PCA, SKA-111 effectively leftward-shifted 

concentration–response curves for BK under these conditions (fig. 4D) as it did in the 

presence of L-NAME and INDO. TRAM-34 alone or the blocker combination, TRAM-34 

and UCL1684, suppressed this potentiation (fig. 4D).

Together, these data suggested that KCa3.1-selective positive-gating modulation also caused 

a significant potentiation of endothelium-dependent relaxations in small-calibre PCA when 

NO/prostaglandin synthesis was intact.

Experiments in isolated rat hearts

We next performed Langendorff experiments on rat hearts and tested whether positive-gating 

modulation of KCa3.1 potentiates BK-induced vasodilation in the coronary vascular bed 

(measured as a decrease in coronary perfusion pressure (CPP)). BK evoked reduction in CPP 

in a concentration-dependent fashion (fig. 5). Co-infusion of SKA-111 at 1 μM significantly 

potentiated this response at 1 nM BK by 14% (≈10 mmHg), but not at lower BK 

concentrations (fig. 5). Like in myography experiments, infusion of 1 μM SKA-111 alone 

did not change perfusion pressure (not shown). However, at a higher concentration of 10 

μM, at which SKA-111 becomes less selective and can activate KCa2 channels, SKA-111 

caused a substantial fall in CPP (−61 ± 2 mmHg, n = 4) that was clearly different from 

vehicle control (0.1% DMSO, −12 ± 2 mmHg, n = 2). This fall in CPP was as pronounced as 

the fall caused by a high BK concentration of 100 nM (fig. S7).
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In sum, these data suggest that selective positive-gating modulation of KCa3.1 by SKA-111 

is capable of improving BK-induced coronary dilations in the isolated rat heart.

Discussion

The goal of the present study was to test whether two new positive-gating modulators, 

SKA-111 and SKA-121, with an improved selectivity profile for KCa3.1 over KCa2 channels 

could improve endothelial hyperpolarization and endothelium-dependent vasorelaxation in 

coronary arteries. We found that (1) PCAEC exhibited calcium-dependent activity of KCa3.1 

currents and KCa3.1 gene expression. SKA-111 and SKA-121 potentiated calcium- as well 

as BK-induced KCa3.1 currents, while TRAM-34 inhibited the current. (2) Positive-gating 

modulation of KCa3.1 augmented hyperpolarization of PCAEC to BK and elicited slow 

hyperpolarization by itself. (3) Positive-gating modulation of KCa3.1 potentiated BK-

induced endothelium-dependent relaxation and, particularly, EDH-type relaxations in small- 

and large-calibre PCA. (4) In Langendorff-perfused hearts, positive-gating modulation of 

KCa3.1 potentiated BK-induced changes in CPP as a measure of coronary vasodilation. 

Together, the present data suggest that KCa3.1-selective positive-gating modulators have 

potential utility for pharmacological manipulation of blood flow in the coronary circulation.

Endothelial KCa3.1 and KCa2.3 channels have been reported to mediate a significant part of 

EDH-type relaxations in response to receptor stimulation in rodents, pigs and human beings 

(for in-depth review, see [12,38]). However, subtype-specific roles of KCa3.1 in 

endothelium-dependent relaxations in the coronary circulation have not been established so 

far, and it remains unclear whether selective positive-gating modulation of KCa3.1 elicits 

vasorelaxation in the coronary arteries and/or potentiates agonist-induced vasorelaxation. 

The main outcome of the present in vitro study on PCA was that we could demonstrate that 

KCa3.1 channels contribute to BK-induced EDH-type relaxation in small-calibre PCA in a 

substantial fashion and that this contribution could be further potentiated by SKA-111 and 

SKA-121. A major role of KCa2.3 was not evident for these EDH-type responses in PCA 

because the KCa3.1 blocker TRAM-34 inhibited the response, while the KCa2 blocker, 

UCL-1684, in combination with TRAM-34 had no additional effects on either the 

potentiated response or the non-potentiated response. Yet, it is worth to mention that 

inhibition of KCa3.1 did not completely suppress EDH-type relaxation, suggesting that other 

endothelium-derived relaxation factors such as prostacyclin or diffusible EDHF(s) [4,39,40] 

may play additional roles here. We further found that positive-gating modulation of KCa3.1 

was still able to augment BK-induced relaxation when nitric oxide and prostaglandin 

syntheses were intact. This was particularly evident in small-calibre PCA while potentiation 

was only seen by trend in the large-calibre PCA. This suggests that positive-gating 

modulation of KCa3.1 in the porcine heart is an effective way to improve endothelium-

dependent relaxation in a physiological setting as well as under conditions of compromised 

NO or prostacyclin synthesis or action.

It is worth mentioning that SKA-111 and SKA-121 were unable to produce relaxation by 

themselves in PCA. This was unexpected because positive-gating modulation by SKAs was 

capable of producing significant hyperpolarization of PCAEC in vitro. However, it needs to 

be considered that freshly isolated endothelial cells are in an altered state (as indicated by 

Oliván-Viguera et al. Page 9

Basic Clin Pharmacol Toxicol. Author manuscript; available in PMC 2017 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



their depolarized membrane potential) and slow hyperpolarization to SKAs may result from 

potentiating background KCa3.1 activity due to elevated basal [Ca2+]i. Alternatively, 

positive-gating modulation of KCa3.1 may have a stronger vasorelaxant impact in a situation 

of endothelial depolarization in order to restore the endothelial resting membrane potential 

and to provide a negative feedback (repolarization) on agonist-induced depolarization and 

tone as suggested previously [41]. The Langendorff experiments on isolated rat heart largely 

agree with our findings from vessel myography by showing that KCa3.1-selective positive-

gating modulation was capable of potentiating BK-induced reduction in coronary resistance.

Conclusions

Coronary artery disease is associated with compromised coronary blood flow and 

myocardial ischaemia. Therefore, from the translational clinical perspective, selective 

positive-gating modulators of KCa3.1 could be of therapeutic value to reverse ischaemia and 

improve selectively endothelium-dependent and/or agonist-induced vasodilation in the 

coronary circulation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Analysis of mRNA expression of KCa2/3 subtypes in freshly isolated porcine coronary 

endothelial cells. The GelRed-stained 2% agarose gel shows RT-PCR products for KCa2.2, 

KCa2.3 and KCa3.1 (lanes on right) that match expected amplicon sizes (208 bp for KCa2.2, 

283 bp for KCa2.3 and 233 bp for KCa3.1). Expression of KCa2.1 (expected amplicon size, 

239 bp) is not detected. Expression of beta-actin (expected amplicon, size, 380 bp; first lane 

from left) serves as positive control. Expression of eNOS (expected amplicon size, 198 bp, 

second lane from left) indicates endothelial origin of mRNA (lanes on left). M = molecular 

weight marker. Note the presence of primer dimers in the lower part of the gel.
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Fig. 2. 
Whole-cell patch-clamp recordings of KCa currents in freshly isolated endothelial cells of 

PCA. (A) Representative recording showing the activation of KCa currents during infusion of 

1 μM Ca2+ into the cells via the patch-pipette, and no activation during infusion of 100 nM 

Ca2+. (B) On left: Potentiation of KCa3.1 currents by SKA-111 (1 μM, n = 9) and current 

inhibition by the KCa3.1 blocker, TRAM-34 (1 μM, n = 8). Note that TRAM-34 in 

combination with the KCa2 blocker UCL-1684 (1 μM, n = 5) had additional effects by 

blocking a small KCa2 current. Complete block of TRAM-34/UCL-1684-resistant K currents 

by the negative-gating modulator, RA-2 (1 μM, n = 5). On right: summary of current data 

(currents at 0 mV normalized to cell capacitance). (C) On left: Potentiation of KCa3.1 

currents by SKA-121 (1 μM, n = 9) and block by TRAM-34 (1 μM, n = 9). Note a small 

additional effect by the combination of TRAM-34 and UCL-1684 (1 μM, n = 4). Complete 

inhibition of TRAM-34/UCL-1684-resistant K currents by RA-2 (1 μM, n = 3). On right: 

Current data (at 0 mV normalized to cell capacitance). Data points are means ± S.E.M. *p < 

0.05. Inserts: Chemical structures of the KCa3.1-selective positive-gating modulators, the 

benzothiazole, SKA-111, and the benzoxazole, SKA-121.
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Fig. 3. 
(A) Whole-cell patch-clamp recordings of KCa currents in PCAEC clusters. On left, time 

course of the effect of BK, SKA-121 and RA-2 on KCa3.1 currents. Note the double peak 

with the second peak being larger in some of the experiments. This could be interpreted as a 

positive feedback of KCa-induced hyperpolarization on the calcium influx that further 

increases KCa currents. In middle, representative recording of activation of KCa3.1 by BK, 

BK + SKA-121 and blockade of currents by RA-2. On right, summary data (currents at 0 

mV normalized to cell capacitance); 5-HT (1 μM, n = 3), BK (1 μM, n = 4), SKA-121 (1 

μM, n = 3), BK + SKA-121 (n = 3) and current inhibition by RA-2 (1 μM, n = 3). (B) 

Membrane potential measurements in PCAEC cluster in the current-clamp mode. On left, 

representative traces. On right: summary data: 5-HT (1 μM, n = 15), BK (1 μM, n = 13), 

RA-2 (1 μM, n = 7), SKA-121 (1 μM, n = 6), SKA-121 after 5-HT and BK (1 μM each, n = 

5). The latter hyperpolarization responses were reversed by RA-2 (n = 3 after 5-HT+BK and 

n = 8 after 5-HT+BK+SKA-121). Data points are means ± S.E.M.; *p < 0.05.
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Fig. 4. 
Potentiation of endothelium-dependent relaxation in large- and small-calibre porcine 

coronary artery. (A) EDH-type relaxation: SKA-111 and SKA-121, both at 1 μM, 

potentiated BK-induced relaxation in the presence of L-NNA (300 μM) and INDO (10 μM). 

Control (Ctrl) was BK-induced relaxation in the presence of the vehicle, DMSO (<0.5%). 

(B) TRAM-34 (1 μM) reduced the SKA-111-potentiated BK-induced EDH-type relaxations. 

The combination of TRAM-34 and UCL-1684 (1 μM) had similar effects. (C) Similarly, 

SKA-111 at 1 μM potentiated BK-induced relaxation of small-calibre PCA in the presence 

of L-NAME and INDO. Inhibition of potentiation by TRAM-34 or by the combination of 

TRAM-34 and UCL-1684. (D) Potentiation of BK-induced endothelium-dependent 

relaxation at intact NO and prostaglandin syntheses in small-calibre PCA and inhibition of 

potentiation by TRAM-34 or by the combination of TRAM-34 and UCL-1684. Data points 

(each 5–8) are means ± S.E.M. and were fitted with the Boltzmann equation. For clarity and 

mathematical reasons (curve fit and EC50 calculation), curves for large PCA were forced 

through 0% and 100% as indicated by black squares. *p < 0.05 versus control (DMSO).
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Fig. 5. 
Langendorff experiments on rat heart. At 1 μM, SKA-111 potentiates significantly the fall in 

coronary perfusion pressure (CPP) induced by 1 nM BK in the presence of the 

vasoconstrictor, U46619. Data points are means ± S.E.M. Control = BK w/o SKA-111. *p < 

0.05.
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