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On the Periodic
Electrodeposition of Alloys
Mark W. Verbrugge and Charles W. Tobias
Department of Chemical Engineering
_and Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Abstract

The increased demand for thin films of alloyed materials with known
chemical composition, phase structure, and morphology has stimulated
alloy-electrodeposition research. An experimental and theoretical investiga-
tion of periodic alloy electrodeposition is presented. A mathematicﬂ model
is developed for the electrodeposition of alloys by an arbitrarily specified.
cell-current or electrode-potential waveform. Transient, convective mass
transfer, Butler-Volmer electrode kinetics, and individual component activi-
ties in the electrodeposit are considered. The model can be used to calculate
current-potential relationships, ionic concentration profiles, and electro-
deposit composition. The theoretical predictions are compared with experi-
mental results for the electrodepositipn of cadmium telluride onto a rotat-
ing disk electrode. A number of in situ and ez situ analytical techniques that
were used to characterize the thin film, alloy electrodeposits clearly illus-
trated the effect of the cell-current waveform on the electrodeposit mor-
phology and physical properties.

In order to gain fundamental insight into metal deposition processes, a
convenient series solution is presented for the evaluation of ionic concentra-

tions during triangular current-sweep chronopotentiometry at a rotating
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disk electrode, and at a stationary, planar electrode in the absence of free
convection. The treatment is valid for electrode processes with one electro-
chemical reaction of uniform rate along the electrode surface. The advan-
tages of controlled-current processes, relative to controlled-potential
processes, for obtaining kinetic, thermodynamic, and transport information
are elucidated. Theoretical predictions are compared with results obtained
for the deposition of cadmium from a dilute, aqueous, cadmium-
sulfate/potassium-sulfate electrolyte. - |

The cadmium telluride material electrodeposited in the alloy study is
photovoltaic and semiconducting. Description of the semiconductor-
electrolyte  interface is addressed mathematically by extending exisﬂing
steady-state models to account for variable illumination. Analytic solutions-
for the minority-carrier concentration in the semiconductor phase are
presented for pulse, step, sinusoidal, and periodic sjuare-pulse illumination.
The periodic illumination of the semiconductor-electrolyté interface can be
used as a means to evaluate transport and kinetic coefficients of photoelec-
trochemical systermns with widely varying time constants, particularly since
the system reaches a uniform and sustained periodic state when subjected

to a periodic light flux.
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Chapter 1.

Thesis Introduction

To be accepted, a new approach must pass through the danger zone of
exaggerated expectations and yield physically realistic, discernible results.
This is the present state of multicomponent electrodeposition modeling. A
large amount of literature is devoted to the study of alloy electrodeposition.
At times, however, workers in this fleld still find themselves part of a gam-
bling fraternity. The objective of this research was to provide a new frame-
work for the rational description of periodic alloy electrodeposition based on
previous fundamental work relevant to this study, and to develop new con-
cepts necessary to advance the understanding of these processes.

In the analysis of periodic, alloy electrodeposition, two developing
areas of research are condensed into one. Alloy-electrodeposition research
is stimulated by the unique advantages electrodeposition offers for alloy for-
mation: the control of alloy composition, the ability to prepare thin films,
and the relatively low cost of electrodeposition process technology.
Periodic-electrodeposition processes, which have been analyzed quantitively
for single-component electrodeposition processes, represent the second
developing area of research integrated into this study. Although a general
and fundamental treatment explaining the effect of a periodic current or
potential source on electrodeposit properties has yet to be developed, inves-
tigations have clearly shown that a periodic current or potential source can
be used to produce superior electrodeposits for many metal/metal ion sys-
tems.

In Chapter 2 of this thesis, a literature review of experimental and



theoretical periodic alloy-electrodeposition studies is presented. Following
this, a mathematical model is developed which allows for the calculation of
electrodeposit composition, ionic surface concentrations in the liquid ;-ahase,
and the .cell-current/ electrode-potential relationship during a periodic
alloy-electrodeposition process. A three-component system, with phy-
sicochemical parameters characteristic of metal/metal ion systems, was
chosen to analyze the effects of various cell-current and electrode-potential
waveforms for a periodic alloy-electrodeposition process.

In Chapter 3, the model developed in Chapter 2 is applied to the
periodic electrodeposition of cadmium telluride. Results of the simulation
are compared with experimental data obtained in the deposition of the alloy
from an acid sulfate bath. The present aéplications of cadmium telluride are
reviewed briefly, and literature concerning cadmium-telluride eiectrodepo-
sition is referenced. Both in sifu and ez sifu analytical techniques are
employeed to characterize the electrodeposited cadmium-tellurium materi-
als.

In the cadmium telluride électrodeposition investigation, it was found
that the kinetics of the cadmium-cation reduction strongly influence the
cadmium-telluride electrodeposition process. An expermental and theoreti-

cal investigation of the cadmium electrodeposition process from an agueous,

sulfate bath, similar to that used in thé cadmium-telluride electrodeposition_

process, is described in Chapter 4. The bulk of the analysis addresses the
ionic mass transport, since charge-transfer kinetic equations require the
knowledge of the ionic surface concentrations, cell-current density, and
electrode potential.

A particularly useful characterization technique for the evaluation of
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cadmium telluride electrodeposits is to measure the transient pho-
toresponse of the resulting deposits. Since cadmium telluride is a semicon-
ducting photovoltaic material, photoresponse analysis can be used to esti-
mate electrodeposit composition and address electrodeposit quality. In
Chapter 5, theoretical work is presented for the study of transient and
periodic illumination of a semiconductor-electrolyte interface. This treat-
ment is analogous to work in Chapter 4, in which standard, cyclic chronopo-
tentiometric techniques are used to study a metal-electrolyte interface.
Analytic solutions are presented for the evaluation of charge-carrier concen-
trations in the semiconductor electrode.

Chapters 4 and 5, neither of which directly address alloy-
electrodeposition processes, grew out of results obtained in the éadmium-
telluride étudy of Chapter 3. As much as possible, the chapters in this thesis.
have been written so that they may be read independently. A list of nomen-
clature, a list of references, and an appendix is provided for each chapter. It
is hoped that this will make the reading of this thesis more straightforward

and more interesting.



Chapter 2.

A Mathematical Model for the

Periodic Electrodeposition of Alloys

The properties of alloys vary over a wider range than those of their
parent metals, and thus can often be designed to fulfill better the mechani-
cal and chemical requirements of our civilization. Electrodeposition offers
several unique advantages for the formation of alloys. The superior control
of the alloy composition, including the formation of non-equilibrium alloys,
and the ability to prepare thin films are well documented. Brenner's ency-
clopedic monograph (1) reviews some practical methods for the electrodepo-
sition of various alloys and Gorbunova and Polukarov's treatment (2) out-
lines the fundamental principles involved. Srivastava and Mukerjee (3)
review developments in the electrodeposition of binary alloys.

It has long been known that pulsing the current can profoundly affect
the nature of single-component electrodeposits. Although the pulse plating
of alloys has received comparatively little attention, it has been observed
that the phase structure and morphology of alloy deposits can be altered by
changing the characteristics of the pulse-current waveform. This work
presents a model for predicting the current-potential relationship and the
composition proflles in the electrodeposit and the electrolyte.

Wan et al. (4) have presented a literature review dealing with the appli-
cation of pulse-plating techniques for single-component metal deposition.
Avila and Brown (5) have cited the following advantages of pulse plating over
dc electroplating: 1) extremely dense and highly conductive deposits, 2) a

reduced need for plating additives, and 3) increased plating rates. In refer-
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ence to the last advantage, Cheh (B8) has shown analytically that pulse-
current plating can never attain a higher average plating rate than dc plat-
ing at the diffusion-limited current. However, a higher average current den-
sity is often used in pulse plating, relative to dc plating, since poor quality
electrodeposits are often formed ur;der dc conditions near the diffusion-
limiting current. Lamb (7) has investigated the mechanical properties of
single-component copper and silver electrodeposits obtained by current
pulses in the microsecond range. Puippe and Ibl (8) studied the morphology
of pulse-plated cadmium, copper, and gold electrodeposits. The influence of
the off-time, the pulse-current density, and the length of the pulse time were

analyzed. Different morphological trends were observed and discussed for

the different chemical systems. Ismail (9) investigated the periodic, '

reverse-current electroplating of copper from an alkaline-cyanide i)ath. The
maximum brightness occurred at 0.27 Hertz with a cathodic-current to
anodic-current ratio of two. Despic and Popov (10) examined the effect of a
pulsating potential on the morphology of copper and zinc electrodeposits.
Typical results illustrated that increasing the frequency led to a progres-
sively smoother deposit. Popov (11) also has reviewed some approaches to
the quantitative modeling of the surface-roughness amplification during an
electrodeposition process. Sullivan (12) has reported that high-current-
density pulse-plating of cobalt results in significantly stronger and harder
electrodeposits.

The pulse plating of multicomponent electrodeposits has received less
attention than pure-component electrodeposition. Gelchinski et al. (13)
electroplated chromium-cobalt alloys using a pulse-potential source. Mirror

bright electrodeposits containing supersaturated solid solutions were



obtained. It has been observed that the structure and the physical proper-
ties of the electrodeposited alloys can be very different from the thermally
prepared ailoys of similar composition. Gelchinski et al. also found that a
change in the electrodeposition conditions can cause a marked change in the
phase structure of the electrodeposit, even for those deposits of identical
chemical composition. Burrus (14) has described various conditions where
the pulse pléting of different metals and metal mixtures can be used advan-
tageously. Leidheiser and Ghuman (15) used a pulse-current'set;p to elec-
trodeposit silver-tin alloys which could be easily polished to a high luster.
Cohen et al. (18) have electroplated cyclic, multilayered, alloy-coatings of
varying silver and palladium composition with square-pulse and triangular

current waveforms. They also report on periodic-potential plating studies of

various multicomponent electrodeposits.

Mathematical Analysis

In considering the mathematical modeling for the electrodeposition of
multicomponent alloys, it is convenient to divide the problem into three
interrelated parts: the liquid phase containing the discharging ions, the

electrolyte-electrodeposit interface, and the electrodeposited alloy.

The Liquid Phase

One of the goals of this work is to predict quantitatively the ionic
surface-concentrations throughout the electrodeposition process. It has
been well established that the ionic surface concentrations can greatly
influence the electrodeposit composition and morphology (17,18).

A theoretical analysis for single-component mass transfer in pulsed

electrolysis was recently published by Chin (19). A stagnant (Nernst)



diffusion layer was assumed to be valid in order to develop a comprehensive
theory for pulsed electrolysis. Chin's paper includes a brief review of previ-
ous theoretical studies in single-component pulsed electrolysis.

Since our treatment uses a current-step solution and the method of
superposition to derive a model for multicomponent mass transfer, we shall
review some current-step solutions which can be used with this technique.
The method of superposition is computationally very eflicient, although the
differential equations describing the process must be linear for this method
to be applied. Thus migration effects are not included in this model. Double
layer charging is also not considered. Since practical plating baths usually
contain an excess of supporting electrolyte, migration effects can often be
neglected. Double léyer charging effects can become important in an elec-
trodeposition process if microsecond current cycles are used (20). Before
proceeding, it should be mentioned that attempts have been made to
describe multicomponent, pulse-current processes qualitatively. (21—-24).
Also, Cheng and Cheh have presented finite-difference models for the pulse-
current electrodeposition of copper with hydrogen evolution (25) and of
lead-tin alloys (28).

The convective diffusion equation for the one-dimensional maés tran-

sport of species i is

ac" aC‘- =D azc¢
3t T Ay T Gyt

[2-1]

For high Schmidt numbers, the appropriate expression for the normal

component of the fluid velocity to a rotating disk electrode (RDE) is (27,28)

vy, = —0.51023 w¥2y-1/2y2 | [2-2] -



The radial variation of the ionic surface concentration is neglected in
this treatment, as it would considerably complicate the problem (29-31). In
a rigorous treatment for the RDE system incorporating both radial and axial
variations, dimensionless groups arise which include the disk radius. (29,30)
For small disks, it is appropriate to neglect radial variations in concentra-
tion and potential. Nanis and Klein (32) qualitatively address this assump-
tion in their one-dimensional treatment for transient mass transfer to an
RDE in the absence of kinetic resistance.

For the current-step problem, the initial condition and boundary con-

ditions are

ci(Oy) =cf , : [2-3]
cy(t@) =cp | [2-4]

and

dci(t.0)  4(0)

dy  mFD [2-5]
where the electrode reaction for metal deposition is
kot
VAN ST [2-6]
kay

Krylov and Babak (33) have obtained an analytic series solution for the
current-step problem stated by Egs. [2-1] through [2-5]. However, the solu-
tion does not converge for long times (34). Nisancioglu and Newman (35)
numerically calculated an alternate series solution which is valid for long
times and can be used in conjunction with a short-time, asymptotic series

representation of Krylov and Babak's solution.
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Nisancioglu and Newman'’s long-time solution is
cy = C'l? + [2-7]

Dt [1‘(:15/3) r
]

4,6, s, & yT(4/3)
—_— e=*dz - 3 B, 7,
ny FD,I{4/3) E(fl " ,,21 Sl [ A
6‘ :

The values of By, Z, and A, are given in Refs. (20) and (35).
The first few terms of the short-time, asymptotic series representation

of Krylov and Babak’s surface-concentration solution are:
cf=c}+ ' [=2-8]

2i,Vt \/;I Dit e [ Dit 3

1- +
Vg | 16| el 40 [
3VAT(4/3) 3V31(4/3)

L I

In Eqgs. [2-7] and [2-8), 4, is the Levich diffusion layer thickness (36)

Dy i3 /2
6, = 1.612 [——‘-]1 [i]l , [2-9]
v W

which is the characteristic distance for long times.

More approximate representations for the current-step problem have
also yielded relatfvely accurate results. In a classic treatment, Rosebrugh
and Lash Miller (37) derived an analytic solution for the current-step prob-
lem by replacing Eq. [2-1] with the equation representing Fick's second law of

diffusion and Eq. [2-4] by
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ci(t.6;) =c . [2-10]

This solution is presented in the appendix.

Rosebrugh and Lash Miller used the method of superposition on their
current-step solution to describe single-component mass transfer with a
periodic current source (37). Cheh et al. (6,38,39) have made use of this
solution by comparing it with some experimental results. Visawanathan and
Cheh (40) and Hale (41) have presented numerical solutions to Egs. [2-1]
through [2-5] and compared their solutions to that of Rosebrugh and Lash
Miller. (Hale actually compared his solution to Siver’s solution (42), which
Siver had in turn referenced to Rosebrugh and Lash Miller.) The error was
always less than 4 percent. Visawanathan et al. (43) numerically solved.the
system of Egs. [2-1] through [2-4], with a pulsé-current boundary condition
in place of Eq. [2-5], and compared this to Rosebrugh and Lash Milier's ana-
lytic solution for a pulse-current source. The agreement between the two
solutions was excellent.

| For the problem we address in this work, we require a current-step
solution for short and long times. There is very little extra numerical effort
involved in using Egs. [2-7] instead of Eq. [RA-2], especially if only the surface
concentrations of the discharging ions are required. For this reason, we
have chosen to use Egs. [2-7] and [2-8], along with the method of superposi-
tion, to model the ionic mass traﬁsfer. This restricts our treatment to an
RDE. The procedure to be used for other systems which can be modeled
accurately with a Nernst diffusion layer is presented in the appendix. A com-
parison between the two methods is shown in Fig. 2-2 for the RDE system.

The method of superposition can be used with Eq. [2-7] to obtain an

expression for the ionic concentration during controlled potential or cell-
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current processes:

ey = iv'..n ®1'..n + ‘I’i.n , [2‘11]

where

5, . . = X D [ﬂ%&]"(t ~tn1)
(L — -z - -
B n mFDT(A/3) J e=dz-3 B.Ze [2-12]

yI(4/3) k=1
A .
and
Yin =cf + [2-13]
6‘ n-1 [ e Dy F“%‘/_s)']a(t—tj-l) e Dy [.1:146%3.). 2 (t -tj)
———re L B.Z, le —-e
n, FD,I{4/3) ,‘é, Uy :4;:1 ke Lt

The current source has been expressed as n discrete current steps. The
method of superposition has been used previously for single-component,
pulse-current chronopotentiometry by Andricacos and Cheh (44), and there
are a number of references in the literature which can be consulted to
derive Egs. [2-11], [2-12], and [2-13]. (37.45,48)

For short times, the series in Egs. [2-12] and [2-13] will not converge.
Equation [2-8] can then be used to express 8;, and ¥;,. For very short
times, only the first term in Eq. [2-8] need be retained. Equation [2-8] then
becomes the familiar Sand equation and d; drops out of the problem since
there is no characteristic length for the semi-infinite linear diffusion prob-

lem. Equations [2-12] and [13] are then replaced by



i2

2Vie -t _,

Oy = ——— [2-14-]
nFV 1D, ‘
and
Ve, =ef + ——— z,[Vt—tjl Vt-—tj] [2-15]

mFV "

Equations [2-14] and [2-15] can also be used to solve the analogous problem

of multicomponent mass transfer to a stationary electrode.

The Liguid-Electrodeposit Interface

While a relatively accurate liquid-phase transport model can be
developed, such an exacting and general approach is not as easily accom-
plished for the interface. In multicomponent electrolysis, the potential dis-
tribution across the Jogble layer will be affected by the various discharging
ions. However, in well supported solutions, the discharging ions will not
significantly influence the double-layer structure. The crystallization kinet-
ics can also be changed, although this will not be conéidered in this paper.
An excellent treatment of this problem can be found in the work of Fleisch-
mann and Thirsk (47).

For the electrode reaction of component i, given by Eq. [2-6], a Bulter-
Volmer expression will be used to describe the electrode kinetics. Specific

adsorption and chemisorption are not taken into account. Thus (48)

. o
= ka'ia‘me(l - BIngSVy —kg 4 p“-" e ~BimnSTn [2-16]

GP..
3

where

L
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[+
nif % Stre In Sre | i [2-17]

Vo=Ep + | Ufe - P
o

The bracketed term in Eq [2-17] represents the open-circuit potential
difference between the reference‘electtode and a standard hydrogen elec-
trode. The potential difference between the working electrode and the refer-
ence electrode is E,. The laét term in Eq. [2-17] accounts for the ohmic drop
between the reference electrode and the working electrode. Hence, V, is the
potential difference between the working electrode and a standard hydrogen
electrode, corrected for ohmic drop.

The individual currents can be obtained by substituting for ¢f, in Eq.

[2-18] using Eq. [2-11], evaluated at the surface, and solving for i; ,:

PRI (L R S N e L

0

1'1. = 2-18]
" LF.'. _]:_kc‘.@‘ﬁne"pt"ifvn [
nF  p, oAb

The total imposed current must equal the sum of the m individual

currents:

L: 1'«.,.] —in =0 [2-19]

Equations [2-18] and [2-19] can be combined to yield a nonlinear equa-
tion in V,. The second order Newton-Raphson algorithm (49) is used to solve
the resulting equation for ¥, in the case of controlled current processes, and
for i, in the case of controlled potential processes.

Using Egs. [2-18] and [2-19], for the controlled current mode of opera-

tion, the function H, is defined as
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H, = [i} T'l.n]—"'n . ' [2-20]
=
For the correct value of the electrode potential, H, will be equal to zero. H,
is given by
ko g e (IBOMIe _ L g g5 g —BiufVa
m ok b P g ¢ .
H,= X 3 > —i . [2-21]
i=1 =+ —k, 0F 0PIV

mF o op T
The value of ¥, is found by iteration:
Ha

[aH,.] 5 o [2-22]
av, JI°

(Vn)m = ('Vn)old -

The alue of the derivative in Eq. [2-22] is

ka.{a'i.n(l - By) e(l-ﬁi)mﬂn + kc.iq’{ﬂi e~ PiniSfVa
aH, i RT pPo T

aVn & 1 1 2
= —_— —k. .03 -fini fVa
nF o p, °F e

1 mn
;:kc.t Of nkg 1@y amy fe (1~ 2ROMSTa

+ I " . ' [2-23]
[‘"TF_; + % k. ;0fe -ﬁtmﬂ'n]

For each time step, the iteration scheme outlined in Egs. [2-20]
through [2-23] must be completed. However, when the previous time step's
value of V, is used to start the iteration in Eq. [2-22], convergence is gen-
erally obtained within 3 or 4 iterations.

It should be noted that the partial currents can be obtained explicitly

in terms of ¥, in Eq. [2-18] because the electrochemical reaction was

a
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assumed to be first ordér in the concentration of the discharging metal ion.
This is usually the case in the electrodeposition of metals. If the reaction
were not first order, it would still be relatively easy to solve numerically for
the electrode potential and the partial currents.

Equation [2-18] is also valid for controlled potential electrolysis. If the
ohmic drop is neglected in Eq. [2-17], Eq. [2-18] yields the partial current
explicitly for controlled potential electrolysis. For the controlled electrode-
potential mode of operation with ohmic resistance (r # 0), Eqgs. [2-18] and

[2-19] can be combined to form a function I,, analogous to H,

L= —in + [2-24]
L L PRl ;ch",q,t,_ne —BimSen o ATl
L 11 - i
i=1 =k 0. e PinSen g BTy
. "HF Po c.i f.n

Ce
where e, = E, + | U}, - 1 Esinln —|| . The value of the cell-current
Nee S r Po

density can be found by iteration:

EYA ' [2-25]

(i Jnew = Cimgyyg = |2me
[E’ old

where
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== -1- [2-26]

. (1—BInife —A. . —BynySfe
kc.ia’i.ne "(1 ﬂi)r 3_(1 - By In frin + kc.t\Pts.ne "B eﬂ(?‘t!”‘in

i RT poRT .
t=1 A .1 Lk, 08,0 PimS en g Bimitrin
mF Pa
1

_kc 108nks 0 ne -ZBfﬁernmﬁ.e - (1 - 28)nyfri,

<
[_ + _kc t@f"e‘ﬂi’%f‘neﬂi'ﬂf’in]

The model we have provided for the liquid-phase mass transfer and
kineties -could also be used to describe processes for the electrosynthesis of
compounds by a periodic current or potential source. Alkire and Tsai (50)
have listed a number of references for the synthesis of conpounds by a
periodic current source.

The Electrodeposit

Two problems must be treated for a complete description of the solid-
state alloy. The first problem concerns the dependence of the surface
activity on the alloy composition. When experimental data are combined
with the judicious choice of an activity model, the activities of the alloy com-
ponents can be obtained. The second problem involves the actual number-of
monolayers in the electrodeposit which affect the surface activity, or the
relevant surface-activity thickness ( KSAT).

The first step in determining component activity coefficients is to
choose a model for the molar excess Gibbs energy G¥. The excess properties
are taken with reference to an ideal solution wherein the standard state for

each component is the pure solid at the temperature and pressure of the
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mixture. Once the molar excess Gibbs energy is expressed, the activity

coefficients ¥; can be found by (51)

M] . [=2-27]

RT Iny; = [ N,
Since no general treatment has yet been developed to consider repul-

sion between ion cores or the interaction among cores and electrons at the
Fermi surface, a useful approach is to treat the interaction between ions in a
mixture by a pairwise model. The properties of such a system are
represented by the sum of interactions between neighboring pairs of ion
cores and the complications due to higher-order interactions are ignored.
This quasichemical (or lattice theory) approach is outlined by Swalin (52) for
regular solut-i,ons in which there is no excess entropy creation upon miixing, -
and any nonideality is considered in an enthalpy of mixing term. For the
quasichemical apéroach, the activity coeflicients for a binary, regular solu-

tion are given by (52,53)

Iny, = 9—%& [2-28]
(1 -~ =5)0 [2-29]

In 7B = —_——RT

where () is an adjustable parameter.

Equations [2-28] and [29] bear close resemblance to the two-suffix Mar-
gules equation. Guggenheim (54) has extended the quasichemical approach
to model systems which exhibit considerable deviation from randomness.
For this case, the excess entropy of mixing is no longer zero and a short-
range order parameter is introduced which may be determined in some

cases by x-ray and neutron diffraction techniques (52).
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Two other informative treatments of solid-state thermodynamics
should be mentioned before presenting the theoretical aspects for the
activity model we have chosen to use in this paper. Darken and Gurry’s text
(55) contains a large number of references with tabular thermodynamic data
for numerous metal s&stems. as well as an informative description of solid-
state physical chemistry. Lumsden’s (56) monograph illustrates the useful-
ness of thermodynamics for the accurate correlation of various equilibrium
properties in alloy systems.

Electrodeposited metals usually have a more ﬁne-gréined, amorphous
structure than their pyrometallurgical counterparts. Hence, the simple
quasichemical lattice model does not generally represent the true thermo-
dynamic nature of electrodeposited alloys. The activity model proposed by
Renon and Prausnitz (57,58) is well suited to such a rorphology. The authors
define a local mole fraction z;; representing the mole fraction of i in the
vicinity of j. In a treatment similar to Guggenheim's extension of the quasi-
chemical lattice theory, the local mole fractions are related to the overall

mole fractions through Boltzmann factors:

T _ % exp (—a; g5/ RT) [2-30]

Ty T exp(—augm/RT)

The parameter ay (ay = a;) characterizes the tendency of components i and
j to mix in a nonrandom fashion. The parameter g4 (gi = gii) represents the
energy of interaction between an i —k molecular pair. Scott’s theory (59) is
used to relate the extensive excess properties to the interaction energies
and the local mole fractions. For a solution of m components, the molar

excess Gibbs energy is
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ﬁ Ti Gjtzj
GF¥ i=1 !
RT = i 4 : [2'31]
=l i: Gri Zx
k=1
where
(95 — gut)
Ty = _J_ET_“_ [2-32]
and
Gy = exp(—auT) . [2-33]

Using Eqgs. [2-27] and [2-31], the activity coefficient of component i can be

calculated (57):

n
Y TGy - 3z Gy
j=1 m 2y _ =1
Iny; = = 2 Ty — ——— [2-34]
§=1 i & Ty i iz
k=l k=1 k=1

One of the advantages of this activity model is that it can be extended
to as many components as desired without any additional assumptions and
without adding any constants other than those obtained from Binary data.
This treatment is applicable to partially miscible as well as completely mis-
cible systems.

For some alloy systems, the simpler quasichemical treatment may
represent the activity data quite well. This approach, outlined by Egs. [2-28]
and [2-29], can also be extended to model muiticomponent systems. When
Egs. [2-28] and [2-29] cannot be used to fit the data, the computer programs
listed in appendix K of Ref. 80 can be used to fit the parameters of Eq. [2-34].

For this general treatment, we have chosen to use Egs. [2-30] through

[2-34] to describe the electrodeposit thermodynamics. However, the overall
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mole fractions in Eq. [2-30] must be adjusted to represent the surface,
rather than bulk, composition. Though the activity model accounts for local
composition, no characteristic length is associated with the range of applica-
bility. Even for single-component electrodeposition systems, the surface
plays a major role in the kinetics. Wranglen (81) observed that metals of low
overvoltage grow by the lateral extension of layers, 0.1—-1 wm thick. It was
also observed that changing the current density changes the relative growth
rates between crystal faces as well as where the deposited layers begin to
grow on the respective crystal faces. Wranglen’s microphotographic study of
growth layers contains results for a periodic current source although no
bhigh-frequency results are reported.

Underpotential deposition studies can yield some information about
the RSAT. Kolb et al. (82) correlated the underpotential shift between the
bulk deposit stripping peak and the first deposited monolayer stripping peak
as a function of the difference in work functions between the substrate and
the deposited material. The authoré conclude that the work function of the
first deposited mﬁonolayer may not differ greatly from that of the bulk elec-
trodeposit, although the optical properties of such a monolayer are usually
far from those of the bulk. Adzic et al. studied the underpotential deposition
of Zn on Ag (63) and Zn on Cu and Au (64). For these reversible systems, the
results support the work of Kolb et al. Approximately one monolayer of zinc
was formed on the polycrystalline substrates prior to bulk deposition.

All of the work mentioned above indicates that the RSAT is about one
monolayer. However, this may not be the case for all systems. Cadle and
Bruckenstein (65) found that although only one monolayer of Bi is deposited

on Pt by underpotential deposition, it is not until approximately 5 mono-
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layers have been deposited that bulk deposition is occurring.

Takamura and Kozawa (66) have reviewed a great deal of literature con-
cerned with the use of optical réﬁectance methods to investigate an
electrode-electrolyte interface in situ. They have found that for a number of
systems, the first few atomic layers do not have the same reflectance proper-
ties (87).

In general, higher current densities will shorten the KSAT. Setty and
Wilman (88) have shown by electron diffraction experiments that high
current densities promote the growth of a random, polycrystalline deposit
growth which does not reflect f;he originai electrode structure even during
the initial stages of electrodeposition. Since most pulse-plating processes
make use of unusually high current densities, a highly random (or amor-
phous), polycrystalline deposit typically results. It has also been observed .
that the influence of a polycrystalline substrate with small crystallite grains
ceases to exist at much earlier stages of deposition than that of the surface
* of a large single crystal substrate (69).

Though there is a wealth of literature concentrating on epitaxy and
morphology of electrodeposits, there is no clear a priori approach to esti-
mate the RSAT. The work reviewed in this paper dealt only with the early
stages of electrodeposition. In a pulse-plating processes, the deposit usually
has a random, polycrystalline structure, and the RSAT is probably much less
than that of the initially deposited monolayer.

Optical studies seem to indicate that the RSAT can be greater than a
monolayer. Conversely, the high current-density pulses often used in practi-
cal plating operations may lower the RSAT to about a monolayer. In light of

the above considerations, it may be advantageous to weight the substrate’s
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influence on the newly forming surface with a function that decays with
depth (70,71). For the purposes of this work, the following heuristic treat-

ment will be used in estimating a relevant surface composition z;:

. RSAT - d,,
L 1o |- —pgr||Fm

zi - [2'35]
RSAT - dyy,
"23 1—exp[—o’—RSAT ]

where d,,;; =< RS'AT..

In Eq. [2-35], the subscript ml refers to a monolayer, d,,; is the
monolayer's distance from the surface, ¢ is a system-specific proportionality
constant, z; ,; refers to the monolayer mole fraction of component i, and
the bracke_ted terms are weighting functions for each monolayer. Mono-
layers that are deep below the surface make only a small contribution to the
relevant surface composition. For d,,, > RSAT, no eflect on the surface com-
position is taken in account. Equation [2-35] assures that the sum of the
overall mole fractions is unity. It can also be seen that if ¢ is set to a very
high value, then the weighting function for each monolayer within the RSAT
will essentially be unity.

We can now formalize in the following algorithm the procedure for the
implementation of the mathematical model.

Fort =t, t; - t,
i. Obtain{i, | E,}
2. Solve for 8¢, and ¥#, (Egs. [2-12] through [2-15]).

3. Solve for{H, | I, } (Eq. {[2-21]|[2-24]}).
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4. Solvefor{(dH,/dV,) | (8I,/3i,)} (Eq. {[2-23] | [2-28]}).
5. solve for {V, | i,} by iteration (Eq. {[2-22] | [2-25]}).

6. Obtain the new surface composition from the individual
" currents according to Faraday's law (Egs. [2-18] and [2-
35]).

7. Determine the new surface activity (Eq. [2-34]).

The quantities in brackets, { }, separated by a bar, |, refer to the controlled
current mode of operation (first quantity in the brackets), or the controlled
potential mode of operation (second quantity in brackets). Appendix 2 con-
tains the computer program and data file used to implement the mathemati-
cal algorithm.

Results

We have chosen to model a three-component system to illustrate the
flexibility of the algoriihm. It is not possible to obtain the necessary param-
eters required for the model from the literature; for this reast;n, we are
presently working on experiments that should yield the necessary data. We
will discuss the experimenta_l investigation and make a model comparison in
a future publication.

The model inputs are listed in Table 1. The values of the standard elec-
tx;ode potentials U? can be calculated from the rate constants. The values of
U are 0.3, 0.1, and —0.1 volts, for components 1, 2, and 3, respectively. For
each reaction, the rate constants have been chosen to yield an exchange-
current density of 2 ma/cm? for ¢; =1 and (¢;/p,) = 1 mol/kg . The tran-
sport properties for all components are equivalent since the diffusion
coefficient and the characteristic length §; , which has been used to nondi-
mensionalize the mass-transfer problem, were set equal for all ionic species.

For the base case, the current is pulsed to the totél de limiting current

of the system. This current program is displayed in Fig. 2-1. In Fig. 2-2, the



Table 1. Model inputs.’

24

Quantity Units
e? ix10-8 1x 1075 1x 1074 mol/cm3
dn 3 A

kg 8.741x 10 2,109 x 10-10  5.091 x 10-7 mol/cm?-s
kg 1.229x 103  5.092x10°7 2.110x107® kg/cm?-s
g 2 2 2 —

r 0 ohm —cm?
RSAT 9 A

x? 1.0 0.0 0.0 mol i/mol
B: 0.5 0.5 0.5 -

o 1.0 1.0 1.0 -

0y 0.001014 0.001014 0.001014 cm

Po 0.001 kg /cm?

P4 0.073 0.073 0.073 mol/cm3®
c 1.0 -

For component entries, component 1 is at the far left, followed by
components 2 and 3 respectively.
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Figure 2-1. Current source for the base case. The maximum cathodic
current is the sum of the dc limiting currents of the discharging ions (-211
mA/sq-cm).
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dimensionless surface concentrations are plotted for a system in which a
Nernst diffusion layer is applicable (the dotted curves) and for the more
rigorous solution outlined by Egs. [2-12] and [2-13] (the unbroken curves). It
can be seen that the two solution techniques yield very similar answers, as
would be expected from the close agreement of the reépective current-step
solutions. Due to the low bulk concentration and more noble character of
component one, its surface concentration remains negligible throughout the
electrodeposition process. The least noble component 3 has the highest bulk
and surface concentration. Figure 2-2 illustrates that the process reaches a
uniform and sustained periodic state after about the fourth cycle.

The electrode-potential profile is port_rayed in Fig. 2-3. The lower por-
tions of the curve correspond to the on-time. While deposition is occurring,
. the electrode potential is forced to more cathodic (negative) values since the
discharging ion concentrations are decreasing. During the off-times, the
potential drifts in the anodic direction as corrosion reactions take place and
metal ions are transported to the electrode surface by convection and
diffusion.

One of the more practical aims of this work is to obtain the electro-
deposit composition. A plot of the deposit composition is shown in Fig. 2-4.
Though component 1 is the most noble component, its low bulk concentra-
tion limits its rate of mass transfer thereby suppressing its deposit concen-
tratiqn. The opposite is true for component 3. About 10 monolayers are
deposited during the on-time; thus, there is a considerable variation in the
electrodeposit concentration during the on-time. The corrosion currents
also cause a change in the deposit mole fractions during the off-time. At
higher frequencies, there would be less variation in the deposit composition
during a pulse.

In order to obtain the deposit mole fractions, the partial currents must

be known. A plot of partial currents is shown in Fig. 2-5 for a pulse-reversal
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Figure 2-2. Dimensionless surface concentrations for :he first five cycles.
The current source is shown in Fig. 2-1. The dotted curve was obtained using
the Nernst diffusion layer approximation. The surface concentration of com-
ponent 1 remains near zero throughout the deposition process.
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Figure 2-3. Electrode potential relative to a SHE for the base case.
The lower portion of the curve represents the on-time.
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Figure 2-4. Deposit mole fraction variation for the base case. Uppermost
curve: component 3. Middle curve: component 2. Lowestmost curve: com-
ponent 1. At time zero, the electrode is pure 1.
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Figure 2-5. Component currents for a pulse-reversal current source. The
current is reversed to 52.8 mA/sq-cm. The maximum cathodic current is the

same as that shown in Fig. 2-1 (211.2 mA/sq-cm).
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current source. A pulse-reversal current source is often used to produce
smooth deposits. and it has a significant effect on the alloy composition and
ionic surface concentrations. Due to the high bulk concentration of com-
ponent 3, it carries most of the cathodic current. Figure 2-5 shows that com-
ponents 1 and 2 incur mass-transport limitations during the on-time. Com-
ponent 3 also carries most of the anodic current due to its more negative
standard electrode potential. At the end of the fifth cycle, the total deposit
mole fractions are 0.028, 0.222, and 0.750 for components 1, 2, and 3, respec-
tively. For the base case (Figs. 2-1 through 2-4) the analogous values are
0.021, 0.175, and 0.804. In addition, the pulse-reversal current source sup-
ports higher ionic surface concentrations due to the periodic deposit disso-
lution. A comparison of Figs. 2-2 and 2-8 illustrates this.

Some insight into multicomponent electrodeposition can be gained by
examining the case of a triangular current source. The triangular current
waveform in Fig. 2-7 reaches a cathodic current density 1.7 times the total
dc limiting current density displayed in Fig. 2-1. The nonlinear nature of the
electrode kinetics is manifest in the electrode-potential profile in Fig. 2-8.
The waveform in Fig. 2-7 was constructed to disallow the achievemnent of a
periodic state. In Fig. 2-8, it can be seen that the minima reach more
cathodic values for each succeeding period. At 0.20 seconds, all three
discharging metal ions reach a zero surface concentration. Directly after
this another reaction would be forced to take place, such as solvent decom-
position.

The influence of the individual solid-state activities is shown by the
comparison of Figs. 2-9 and 2-10 for the last off-time displayed in Fig. 2-1.
The partial currents for the base case are shown in Fig. 2-9. Component 1
carries its dc limiting current density throughout the process. Component 2
is also depositing during the off-time whereas component 3 dissolves. The

partial currents sum to zero during the off-time.
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Figure 2-8. Dimensionless surface concentrations for the pulse-reversal
current source. The surface concentrations are higher than those for the
pulse-current source depicted in Fig. 2-2.
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Figure 2-7. Triangular current source. The maximum current is 1.6 times
the base case maximum cathodic current source shown in Fig. 2-1.
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Figure 2-8. Electrode potential relative to the SHE for the triangular current
source displayed in Fig. 2-7. For the specified conditions, a periodic state will

not be achieved.
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Figure 2-9. Component currents during the fifth off-time for the base case.
The activity coefficients are all unity.
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Figure 2-10. Component currents during the fifth off-time of the current
source shown in Fig. 2-2. For this case, the activity coefficients deviate from

unity. gs;—gss=9gsz—9gss = —20,000J/mol. Component 3 is attracted to
components 1 and 2 in the electrodeposit.
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When the energy of interaction between components 1 aﬁd 3 and com-
ponents 2 and 3 is attractive, the corrosion currents are reduced and the
deposit is more stable during the off-time. This is depicted in Fig. 2-10.
These concepts are important to the understanding of the corrosi_.on of
alloys. In particular, elements can be chosen to form a more corrosion resis-
tant alloy. Though the partial currents are relatively low in Figs. 2-9 and 2-
10, and the overall deposit composition will not change greatly because of
the surface free-energy changes, situations can occur in which the individual
solid-state activities could be very important. For instance, in pulse-
reversal electrodeposition, where the magnitude of the anodic current is
high, the surface aétivities will play an important role in determining the
electrodeposit composition and the ionic surface concentrations.

Thus far, we have investigated controlled current processes. The same
equations are.used to describe controlled potential processes, although the
iteration scheme is slightly altered. For the electrode-potential source
shown in Fig. 2-11, the surface-concentration history shown in Fig. 2-12
results. The situation is analogous to that shown in Fig. 2-2; the low concen-
tration and more noble character of component one forces its surface con-
centration to negligible values throughout the process. Conversely, com-
ponent three, which has the highest bulk concentration and is least noble,
maintains a high dimensionless surface concentration.

The cell-current history is given in Fig. 2-13. The current is initially
high during the more negative portion of the electrode potential cycle, and
then diminishes due to increasing mass-transport resistance. The partial
current densities are shown in Fig. 2-14. The mass-transport and kinetic
resistances adjust themselves so that component one maintains its
diffusion-limited current density, component two carries the majority of the
cell-current density, and component three maintains a low rate of reaction

with little mass-transport resistance. The component currents can be
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Figure 2-11. Electrode potentxal source. A SHE is assumed, and there is no

ohmic resistance.
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Figure 2-12. Dimensionless surface concentrations for the potential source
shown in Fig. 2-11. The surface concentration of component one remains
near zero throughout the deposition process.
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Figure 2-13. Cell-current density for the electrode-potential source shown in
Fig. 2-11.
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Figure 2-14. Component current densities for the electrode-potential source
shown in Fig. 2-11.
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Figure 2-15. Deposit mole fraction history for the electrode-potential source
shown in Fig. 2-11. Uppermost curve: component 2. Middle curve: com-
ponent 3. Lowermost curve: component i. At time zero, the electrode is
pure 1.
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integrated to yield the total deposit mole fractions displayed in Fig. 2-15.
Since component two carries most of the cell-current density, it has the
highest concentration in the deposit, followed by components three and one,
respectively. From Fig. 2-15, it can be seen that the concentrations of com-
ponents one and two increase during the more anodic portion of the
electrode-potential cycle, while the concentration of component three
decreases. During this time, components one and two contine to deposit, and
component three dissolves anodically.
Conclusion

In this chapter, a mathematical model was presented for the periodic
electrodeposition of alloys by an arbitrarily specified cell-current density or
electrode-potential source. The method of superposition is used to solve this
problem with an efficient numerical algorithm. This treatment exposes the
lérge number of parameters the electroplater must consider for obtaining
thin alloy films with the desired properties. If an accurate model is used by
the eléctroplater, the different plating parametefs can be intelligently

varied to assist in manufacturing the desired electrodeposit.



Nomenclature
surface activity of component i at time stepn
concentration of species i during time step n, mol/cm?3
bulk concentration of species i, mol/cm?
surface concentration of species i during time step n, mol/cm?

reference electrode compartment concentration of species i,

mol /cm?
monolayer thickness of electrodeposit, cm
diffusion coefficient of species i, cm?/s

electrode potential relative to the reference electrode during time

stepn,V

F/RT. V-1

Faraday’s constant, 96487 C/equivalent

energy of interaction betxv;een components i and j, J/mol
molar excess Gibbs energy, J/mol

zeroing function, mA/cm?

current density carried by species i at time step n, mA/cm?
total current density at time step n; mA/cm?

anodic rate constant of component i, mol /cm?—s
cathodic rate constant of species i, kg/cm?-s

number of deposit components

symbol for chemical formula of species

time steb

number of electrons in the deposition reaction of species
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number of electrons in reference-electrode reaction
moles of component i

total moles

cell ohmic resistance, Q-cm?

universal gas constant, 8.314 J /mol =K

relevant surface-activity thickness, cm

stoichiometric coeflicient of species i in reference electrode reac-
tion

time, s

absolute temperature, K

standard electrode potential for reaction involving species %, V

- standard electrode potential of the reference electrode reaction, V

normal velocity component to a rotating disk electrode, cm/s
mole fraction of component i

normal distance from the electrode surface, cm

species interaction constant characteristic of the nonrandomness

of the mixture

symmetry factor for component i

activity coeflicient of component i
0.89298, the gamma function of 4/3
concentration function, mol/A-cm
surface-concentration function, mol/A-cm

Nernst diffusion layer thickness of species i, cm



Pa

Pi

exponential proportionality constant for the KSAT ﬁlole fraction
kinematic viscosity, cm?/s

solvent mass density, kg/cm3

species i molar density, mol/cm?3

disk rotation speed, radian/s

concentration function, mol/cm?

surface concentration function, mol/em?3
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Appendix 2

The use of Rosebrugh and Lash Miller’'s Solution

Rosebrugh and Lash Miller’s solution could be used to derive alternate
expressions for Egs. [2-12] and [2-13]. The current-step solution is first
required. Fick's second law,

dcy a%¢c;

T D; BF , [2A-1]

with the initial condition and the boundary conditions given by Egs. [2-3], [2-
5], and [2-10] outline the current-step problem. The solution is (25)

wh |y 8 $ 00 (MGiY)  _meaye

b+ g 2 )
. w . szDi
where m =2j —1.9; = g5- and oy = .

The sirriilarity between Egs. [2-7] and [2A-2] is evident. Retention of the:
velocity term in Eq. [2-1.], the convective diffusion equation, tends to change
slightly the eigenfunctions and the eigenvalues. The form and the behavior
of the two current step solutions are very similar.

For short times, Eq. [2A-2] can be reduced to the Sand equation. Thus,
Eq. [2-8] bears a close resemblance to the asymptotic expression of Eq. [2A-
2] evaluated for short times and at the electrode surface.

When the method of superposition is used to obtain an expression for a

varying current source, the concentration can be expressed by Eq. [2-11] and

—mBai(t ~tn-1)

=, cos(mg;y)e [2A-3]

a 8
7T2 j=1 m?

n FD;

Gi.n= l_dyT—

and
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\I’i.n = c,” + : [2A'4]

6, g n=l. = cos(mg,y) —mBay(t ~tx) Qmaat(t4tb—1)
™ FD {"ﬁ?j=l71.jkz=:l ————mz _ [e -8 ] .

The similarity between Eqgs. [2-12], [2-13], [2A-3], and [2A-4] is evident.
This is especially true at the electrode surface where Z; is unity. Equatio'ns
[2A-3] and [2A-4] and Egs. [2-14] and [2-15] were used to model the solution-

side mass transport in order to obtain the dotted curves in Fig. 2-2.
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Computer Program for Periodic Alloy Electrodeposition:

T

Current Controlled Mode of Operation

program NEWGC (input,output)

This program models nmulticomponent electrodeposition
by an arbitrarily specified current source. The con-
vective—-diffusion equation for one dimension is used

to model mass transport to a rotating disk electrode.
Butler-Volmer kinetics are used and individual
component activities are treated in the electrodeposit.

Inputs

S1I units are used.

NONRANDOMNESS FACTOR {alpha(i, j)=alpha(j,i)}...... alpha(i,j)
SYMMETRY FACTOR teeesesccssavsccascsssssessssssosas D(1)
LIQUID BULK CONCENTRATION cceeveveccescccceascassaes (1)
DIFFUSION COEFFICIENT toeesvccscssosesccossnnssesss A(1)

SOLID STATE MOLAR DENSITY ceecescescocsosascsecssss den(i)
LIQUID SOLVENT MASS DENSITY ccecosoccsesescssesecssss densol

ENQUIVALENTS/MOLE ¢eveeessossscceccossssscsecssccsoss €q(i)

- NERNST POTENTIAL OF THE REFERENCE ELECTRODE ....... eref
ENERGIES OF INTERACTION {g(i, 3)=g(j,1)} seeeeneesss g(i,3)
FOR LINEAR SWEEP CHRONOPOTENTIOMETRY, ichose =1 . ichose
FOR PULSED CURRENT CHRONCPOTENTIOMETRY, ichose =2 .

NUMBER OF CCMPONENTS teccsccssesacnssssecsscssssess NCON
TOTAL NUMBER OF CYCLES ccccccccccecscscacsanseaasss NCYC
MAYIMUM CATIODIC CURRENT eeceeveccasossccsaccasessss pmMax
MINIMUM (POSSIBLY ANODIC) CURRENT ceceesescosesssss pmin
RSAT PROPORTIONALITY CONSTANT ecceceeesconccssascess Prop
CELL OIMIC RESISTANCE cecoeevsscsossecscscncssceaas T
ANODIC RATE CONSTANT sveceseacsscavscssnscasesesess rka(i)
CATHODIC RATE CONSTANT ceeeocsccocesscessnsscssasse Tkec(i)
RELEVANT SURFACE ACTIVITY THICKNESS (RSAT) ........ rsat
DIFFUSION LAYER THICKNESS ceesecacccscscscsssscsass s{i)
TIME FOR FIRST PORTION OF CYCLE. cceeeeeencerecnseaas t2
TIME* FOR" SECOND PORTION OF CYCLE seeeevoncnasnsnans t3
INITIAL DEPOSIT MOLE FRACTION sveveesensvasnnassoss xinit(i)

0000000000000 NnDN

common a(3),ac(3),alpha(3,3),b(3)

common c(3),capg(3,3),cf(3),cg(3),csf(3)

common d(3),den(3),densol,depth,dimecsf(3),e,eq(3),eref
common fa,fitot(3),fr,g(3,3),ichose,n,ncom,op(3)

common p,pi2,pi(3,1000),pmax,prop,ptest,r,rka(3),rkc(3),rsat
common s(3),t,tau(3,3),tcyc,thmon,ts

TThe subroutine used for the potential controlled mode of opera-
tion is placed at the end of Appendix 2.
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common v,x(3),xinit(3),xitot(3)

read 5, ichose
read 5, ncom
read 5, ncyc

5 format(15x,110)

read 10, densol
read 10, eref
read 10, pmax
read 10, pmin
read 10, prop
read 10, r

read 10, rsat
read 10, t2
read 10, t3
read 10, thmon

10 format(15x,el0.3)

read 15, ((alpha({,j), j=1,ncom),i=1,ncom)
read 15, (b(i),1=1,ncom)
read 15, (c(1i),i=1l,ncom)
read 15, (d(i),i=1,ncom)
read 15, (den(i),i=1,ncom)
read 15, (eq(i),i=1l,ncom)
read 15, ((g({1,3), ji=1,ncom),i=1,ncom)
read 15, (rka(i),i=1,ncom) )
read 15, (rke(i),1i=1,ncom)
read 15, (s(i),i=1,ncom)
read 15, (xinit(i),i=1,ncom)
15 format(1l5x,el10.3,2x,el0.3,2x,el0.3)

fr=38.9442
fa=96487.0
pi2=3.141592654%%2

c The deposit mole fractions are set and the diffusion
c parameters are calculated.
do 20, i=1,ncom
x(1)=xdinit (i)
a(i)=d(i)/(s(i)/.89298)**2
20 continue
c
c The time step is set.
ts=aminl(0.02*t2,0.02%*¢t3)
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCecececececeeecececcecece
c To print out a result similar to Cheh”s fig.2, (1971, JECS)
c pmax=-eq(l)*fa*d(1)*c(1)/s(1)
c pnin=0.0
c ts=0.1%*t3
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To print out a result similar to Roseburgh and Lash
Miller”s,
TABLE IT
a(l)=1.0
ncom=1
ncyc=5
pmax=~0.05%eq(1)*fa*d(1)*c(1l)/s(1l)
pmin=pmax
s(1l)=sqrt(pi2*d(1)/4.0)
t2=0.5
t3=0.5
ts=0.1
xinit(1)=1.0
TABLE III
pmin=0.0
ts=0.01

**%% Also dimcsf is changed in subroutine genkin. ***

CCCCCCCCCCCCeCcCCcCCcecLccCccececeeecececcececceceecececeececceeeecceceeecceecececcececccececee

C
C

80

90

[

[eoy

The total cycle time tl is
tl=t2+t3

n=0
t=0.0

Obfain the initial surface activities.
call act

print 80
format(4x,#ni#f,6x,#tot curt#,sx,#cur 1#,5x,ffcur 2#,5x,#cur 3#,
5x,#csurfl#,bx,fesurf2#,b4x,fcsurfld#,3x,#rsat x1#,3x,
“jtrsat x2#,3x,#frsat x3#,5x,#depth#/)
print 90
format(3x,#timef,4x,#voltaget,3x,#overpotl#,2x,#foverpot2#,
2x,#overpot3#,2x,#dimesfl#,3x,#dimesf2#,3x,#dincs£3#,
3x,#total x1#,2x,#total x2#,2x,#total x3#/)

ntot=ncyc*int(tl/ts)
do 1000 n=1,ntot
t=float(n)*ts

The applied current is now obtained.

tcyc=amod(t,tl)

For linear sweep chronopotentiometry (LSC), ichose=1
For pulsed current chronopotentiometry (PCC), ichose=2
if(ichose.eq.2)go to 150

LSC »
if(tcyc.le.t2)go to 120
p=(pmin—-pmax)/t3 *(tl-tcyc) + pmax
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go to 160
120 p=(pmin-pmax)/t2 *tcyc + pmax
go to 160
c
c PCC
150 continue
if(tcyc.le.t2)go to 155
p=pmin
go to 160
155 p=pmax
c
160 continue
c
c The current independent functions cf(i) and cg(i)
c are now obtained for both components.
call conc
c .
c The electrode potential is now found.
call genkin
c
c The relevant surface activities, mole fractions, and
c the deposit thickness are now found.
call act
c :
c The results are now printed. ]
print 200, n,p,(pi(i,n),i=1,ncom),(csf(i),i=1,ncom),
1 (x(1),i=1,ncom),depth"
200 format(lx,i18,1x%,4(£f9.1,1x),3(£9.4,1x),3(£f9.7,1x),e10.4)
print 201, t,v,(op(i),i=1,ncom),(dimesf(i),i=1,ncom);
1 (xitot(1),1=1,ncom)
201 format(1lx,£8.5,1x,7(£f9.6,1x),3(£9.7,1x)/)
c
1000 continue
c
stop
end
c

CCCCCCCCCCCCCCCCCCCCCCCCCCeeecceececceecceeeccceccececceccececcecceccececeee
c .
subroutine conc

This program calculates the concentration functions

cf(i) and cg(i). The surface concentration can then

be obtained by c(surface)=cg(i) + pi(i,n)*cf(i).

Nisancioglu and NHewman”s current-step solution

and the Sand equation, are used along with

the method of superposition to solve for the

transient, convective mass transfer.

[Nisancioglu and Newman, J. Electroanal. Chem., 50(1974)23-39]

N o0onoonooonnan

common a(3),ac(3),alpha(3,3),b(3)
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common c¢(3),capg(3,3),cf(3),cg(3),csf(3)

common d(3),den(3),densol,depth,dimecsf(3),e,eq(3),eref
common fa,fitot(3),fr,g(3,3),ichose,n,ncom,op(3)

common p,pi2,pi(3,1000),pmax,prop,ptest,r,rka(3),rke(3),rsat
common s(3),t,tau(3,3),tcyc,thmon,ts '

common v,x(3),xinit(3),xitot(3)

dimension con(10),eig(10)
pie=3.141592654

con(l)=.663516066
con(2)=.081564022
con(3)=.034457046
con(4)=.01962199
con(5)=.0123965
con(6)=.0092267
con(7)=.0069329
con(8)=.0055048
con(9)=.0044645
con(10)=.0037089

eig(1)=2.58078493
eig(2)=12.3099728
eig(3)=24.4331401
eig(4)=38.3054830 '
eig(5)=53.5740271 -
eig(6)=70.0220380 :
elg(7)=87.5010784
eig(8)=105.902059
efg(9)=125.140833
eig(10)=145.15016

do 500 i=1,ncom
The function cf(i) is now obtained.
w=a(l)*ts
if(w.ge.0.01l)go to 15
cf(1)=2.0/(eq(1)*fa) *sqrt(ts/(pie*d(1)))
go to 20 ' :

15 cf(1)=0.0
do 16 j=1,10
cf(1)=cf(1) + con(j)*exp(-eig(]j)*w)
16 continue

cf(i)=s(i)/(eq(i)*fa*d (1)) *(1.0 - cf(i)/.89298)
20 continue

The function cg(i) is obtained here.
cg(1)=0.0
if(n.eq.l)go to 110
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do 100 k=1,n-1
w=a(i)*ts*float(n-k+1)
if(w.ge.0.0l)go to 25
w=pi2*d(1)/(4*s(i)**2) *ts*float(n-k+1)
cgl=1.0 - 4.0*sqrt(w)/pie**1.5
go to 30

cgl=0.0

do 26 j=1,10
cgl=cgl + con(j)*exp(~eig(j)*w)
continue

cgl=cgl/.89298

w=a(i)*ts*float(n-k)
if(w.ge.0.01)go to 35
w=pi2*d(i)/(4*s(i)**2) *ts*float(n~k)
cg2=1.0 - 4.0*sqrt(w)/ple**1.5

+ go to 40

cg2=0.0

do 36 j=1,10
cg2=cg2 + con(j)*exp(-eig(j)*w)
continue

cg2=cg2/.89298

cgk=pi(i,k)*(cgl - cg2)
cg(i)=cgk + cg(1)
continue

cg()=c(i) ~ s({)*cg(i)/(eq(i)*fa*d(i))
continue

return
end

CCCCCCCCCCCCCCCCCeLCLccecececceececeecceceLcececcececeececcecececececeececececececcecceccecececee

c
c
25
26
c
30
c
35
36
c
40
100
c
110
500
c
c
c
c
c
c
c
c

subroutine genkin

This subroutine uses Butler-Volmer kinetics to calculate the
electrode potential. The value of e calculated by this sub-
routine is not the electrode potential v. v=e-eref+p*r
where r is the cell resistance.

comnon a(3),ac(3),alpha(3,3),b(3)

common c(3),capg(3,3),cf(3),cg(3),csf(3)

conmon d(3),den(3),densol,depth,dimcsf(3),e,eq(3),eref
common fa,fitot(3),fr,g(3,3),ichose,n,ncom,op(3)

common p,pl2,pi(3,1000),pmax,prop,ptest,r,rka(3),rkc(3),rsat
common s(3),t,tau(3,3),tcyc,thmon,ts.
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conmon v,xX{(3),xinit(3),xitot(3)
dimension q(3,3),2(7,3)

do 20, i=1,ncom
q(l,1)=(1.0~-b(1))*eq(i)*fr
q(2,1)==-b(i)*eq(i)*fr
q(3,1i)=(1.0 - 2. O*b(t))*eq(i)*fr

z(1l,i)=rka(i)*ac(i)
z(2,1)=rkec(i)*cg(i)/densol
z(3,1)=1.0/(eq(i)*fa)
z(4,1)=rke(i)*cf(i)/densol
z(5,1)=2z(1,i)*(1.0 - b(i))*fr/fa
z(6,1)=2z(2,1)*b(i)*fr/fa
z(7,1)=z(1,i)*2(4,1i) *eq(i) *fr
continue

If n=1 or the current has just been pulsed to,pmax,
the bisection method is used to find a bound
on e. Then, the Newton-Raphson is used to obtain e.
if(n.eq.l)go to 25
if(ichose.eq.l)go to 45
if(abs(p).le.abs(ptest))go to 45
el=0.2
e2=-0.6
do 41, k=1,50
em=(el+e2)/2.0
hbil=-p
hbim=-p
do 30, i=l,ncom
hbil=hbil + (z(1l,i)*exp(q(l,i)*el) - z(2,1)*
exp(q(2,1)*el))/(z(3,1) + z(4,i)*exp(q(2,1i)*el))
hbim=hbim + (z(l,i)*exp(q(l,i)*em) - 2(2,i)*
exp(q(2,1)*em))/(2(3,1) + z(4, i)*ekp(q(Z i)*em))
continue
1f(hbil*hbim.gt.0.0)go to 35
e2=em
go to 40
el=em
enew=(el+e2)/2.0
change=abs((abs(enew) - abs(em))/enew)
if(change.le.0.1l)go to 44
continue
If the next statement 1s executed, convergence was not achieved.
print 42 em
format(2x,#No convergence. em=i,el0.4)
stop

The Newton-Raphson is now started.
e=enew
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do 100, j=1,20
h=-p
dh=0,0
do 50 i=1,ncom
h=h + (z(1,i)*exp(q(l,1)*e) - z(2,1)*exp(q(2,1)*
e))/(z(3,1) + z(4,1)*exp(q(2,1)*e))
dh=dh + (z(5,1)*exp(q(l,i)*e) + z(6,1)*exp(q(2,1)*
e) + z(7,i)*exp(q(3, i)*e))/(z(3 1) + z(4,1)*
exp(q(2,1i)*e))**2

continue

enew=e - h/dh

change=abs((abs(enew) - abs(e))/enew)
e=enew

if(change.le.0.001)go to 110
continue

If a transfer to 110 was not made, convergence was not
achieved.
print 105, e
format(lx,#No convergence#,2x,£10.5)
stop

The individual currents are now obtained.
do 120 i=1,ncom
pi(i,n)= (2(1 1)*exp(q(l,i)*e) ~ 2(2,1)*exp(q(2, 1)*e))/
(z(3,1) + z(4,i)*exp(q(2, i)*e))
continue

The surface concentration csf(i), the dimensionless
surface concentration dimcsf(i), and the surface
overpotential op(1l) of each species is now calculated.
do 130 i=l,ncom

csf({)=cg({) + pi(i, n)*cf(t)

1f(c(1).eq.0.0)go to 130

dimcsf(i)=csf(i)/c(i)

The next definition is used i1if Cheh”s or RLM"s work

is being used as a check.

dimesf(i)=(csf(1)=-c(i))*eq(i)*fa*d(1) /(pmax*s(i))

1f(ac(i).ne.0.0)go to 125

op(1)=-9.999999

go to 130

op(i)=e = 1.0/(eq(i)*fr)* alog(rke(i)*esf(1)/(

densol*rka(i)*ac(i)))
continue

The eletrode potential relative to a specified reference

electrode is now obtained.
v=e - eref + p*r

61
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ptest=p

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

o

No0oo0oo0o0o0n0o00nonoa:n

10

15

subroutine act

This subroutine determines the surface activities

of the components in the electrodeposit. The NRTL
activity model is used on each monolayer of deposit.
Each monolayer”s influence on the surface composition

is exponentially weighted. Monolayers below the RSAT
(relevant surface~activity thickness) have no influence
on the surface composition.

[Renon and Prausnitz, AIChE J, 14(1968)135]

common a(3),ac(3),alpha(3,3),b(3)

common c(3),capg(3,3),cf(3),cg(3),csf(3)

common d(3),den(3),densol,depth,dimcsf(3),e,eq(3),eref
common fa,fitot(3),fr,g(3,3),ichose,n,ncom,op(3)

common p,pi2,p1(3,1000),pmax,prop,ptest,r,rka(3),rkc(3),rsat
common s(3),t,tau(3,3),tcyc,thmon,ts

common v,x(3),xinit(3),xltot(3)

dimension flux(3)

rgas=8.314
temp=298

Calculate the initial surface activities if t=0.0
if(n.ge.l)go to 10
Initially there has been no current passed.
depth=0.0
do 5, i=1,ncom

fitot(1)=0.0

continue
go to 180

do 15, i=1,ncom
flux(1)=0.0
x(1)=0.0
continue
Start at the first nmonolayer.
m=1
thick=0.0
wetot=0.0
wefun=1.0 - exp(-prop*(rsat-thmon)/rsat)

Start the weighting of the individual monolayers.
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do 100, j=1,n

k=n+1-j
ftot=0.0

" The deposit:thickness is now calculated. Cathodic

currents are negative.

do 30, i=1,ncom
flux(1)=pi(i,k)/(eq(i)*fa) + flux(i)
ftot=ftot + flux(i)
thick=thick - pi(4i, k)*ts/(eq(l)*fa*den(i))
continue

The activity coefficients are calculated if thick > rsat.
The denominator of the weighting function, wetot, cannot be
calculated until the very last monolayer has been treated.
if(thick.lt.rsat)go to 50
do 40, i=l,ncom

x(1)=x(1)/wetot

continue
go to 120

continue

if(j.1lt.n)go to 70
If j=n, the original electrode will influence the surface
composition.
subfun is the integrated weighting function for the
original substate.
subfun=1.0 - rsat/(prop*(rsat-thick)) *(1.0 - exp( prop*
(rsat-thick)/rsat))
wetot=wetot + wefun + subfun
do 60, i=l,ncom
if flux(1)>0, the original electrode dissolved.
1f(flux(i).1le.0.0)go to 55
x(1L)=xinit(i)
go to 60
x(1)=(x(1) + flux(i)/ftot *wefun + xinit(i)*subfun)/wetot
continue
go to 100

continue

if(thick.le.float(m)*thmon)go to 100

A complete and new monolayer has been deposited.

do 75, i= 1 ncom
Af- flux(i))O more than a monolayer of i has dissolved.
1f(flux(i).le.0.0)go to 74
print 72, 1,flux(i)
format(lx,#Greater than a monolayer has dissolved, i=#,
i2,#flux(i)=#,el0.4)

stop
x(1)=wefun*flux(i)/ftot + x(i)
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filux(i)=0.0
continue
m=m+1
wetot=wetott+wefun
wefun=1.0 - exp(-prop*(rsat-float(m)*thmon)/rsat)

continue

The relevant surface composition has now been obtained. The
total deposit mole fractions and the deposit depth is now
obtained.
ftotal=0.0
do 170, i=1l,ncom .
fitot(i)=fitot(i) - pi(i,n)/eq(i)
Because of the finite time steps, sometimes a very small
negative value of fitot(i) can result. This is physically
unrealistic.
if(fitot(i).1t.0.0)fitot(1)=0.0
ftotal=ftotal + fitot(i)
depth=depth - pi(i,n)*ts/(eq(i)*fa*den(i))
continue
do 175, i=l,ncom
xitot(i)=fitot(i)/ftotal
continue

‘“he relevant surface activity is now calculated.
The following constants need only be evaluated once.
continue
1if(n.ge.l)go to 220
do 210, j=1,ncom
do 200, i=1l,ncom
tau(j,1)=(g(j,1)-g(i,1))/(rgas*tenp)
capg(j,i)=exp(~alpha(j,i)*tau(j,1))
continue
continue

do 400, i=1,ncom
if(x(i).gt.0.0)go to 222
ac(1)=0.0
go- to 400

serkl1=0.0

do 225, k=1,ncom
serkl=serkl + capg(k,i)*x(k)
continue

serjl=0.0
serj2=0.0
do 300, j=l,ncom
serjl=serjl + tau(j,i)*capg(j,1)*x(])
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serk2=0.0
do 230, k=1,ncom
serk2=gserk2 + capg(k, j)*x(k)

230 - continue
c
serll1=0.0
do 240, 1=1,ncom
serll=serll + x(1l)*tau(l, j)*capg(l,])
240 continue
c

serj2=serj2 + x(j)*capg(i, j)*(tau(i,j) - serll/serk2)/serk2
300 continue

c _
ac(i)=x({)*exp(serjl/serkl + serj2)
400 continue
c
return
end
c
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Data File for Current Controlled Mode of Operation

ichose
ncom
ncyc
densol
eref
pmax
pmin
prop

r

rsat
t2

t3
thmon
alpha

2

3

5
1.000e+03
0.000e+00
-2.112e+03
0.000e+00
1.000e+00
0.000e+00
9.000e-10
2.000e-02
2.000e-02
3.000e-10
1.000e-01
1.000e-01
1.000e~01
5.000e~01
1.000e+00
1.000e-09
7.296et04
2.000e+00
2.000e+03
2.000e+03
2.000e+03
8.741e-10
1.229e+01
1.014e-05
1.000e+00

1.000e-01
1.000e~01
1.000e-01
5.000e-01
1.000e+01
1.000e-09
7.296et+04
2.000e+00
2.000et+03
2.000e+03
2.000e+03
2.109e~06
5.092e-03
1.014e~-05
0.000e+00

1.000e-01
1.000e-01
1.000e-01
5.000e-01
1.000e+02
1.000e-09
7.296et+04
2.000e+00
2.000e+03
2.000e+03
2.000e+03
5.091e-03
2.110e-06

0.000e+00

N
(o))

note alpha(di, j)=
alpha(j,i)

note g(4,3)=g(j,1)
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Kinetic Subroutine for Potential Controlled Mode of OperationT
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c
subroutine genkin

This subroutine uses Butler-Volmer kinetics to calculate the
electrode potential. The value of e calculated by this sub-
routine is not the electrode potential v. v=e-eref+p*r
where r is the cell resistance.

"o nn060n

common a(3),ac(3),alpha(3,3),b(3)

common c¢(3),capg(3,3),cf(3),cg(3),ecsf(3)

common d(3),den(3),densol,depth,dimcsf(3),e,eq(3),eref
common fa,fitot(3),fr,g(3,3),ichose,n,ncom,op(3)

common p,pi2,pi(3,1000),prop,ptest,r,rka(3),rke(3),rsat
common s(3),t,tau(3,3),tecyc,thmon,ts

common v,x(3),xinit(3),xitot(3)

dimension q(3,3),2(7,3)

" do 20, i=1,ncom
q(1,1)=(1.0-b(1))*eq(1)*fr
q(2,1)==b(i)*eq(i)*fr :
q(3,1)=(1.0 = 2.0*%b(i))*eq(i)*fr

z(1l,1i)=rka(i)*ac(i)*exp(q(l,i)*(v+eref))
z(2,i)=rke(i)*cg(i)/densol*exp(q(2,i)*(v+eref))
z(3,1)=1.0/(eq(i)*fa)
z(4,1)=rke(1)*cf(i)/densol*exp(q(2,1i)*(vt+eref))
z(5,1)==2(1,L)*(1.0 - b(i))*fr/fa*r
z(6,1)==2(2,1)*b(i)*fr/fa*r
z(7,1)==2z(1,1)*2(4,1) *eq(i) *fr*r

20 continue '

If no ohmic drop is taken into account, an explicit
c solution for the partial currents can be obtained.
if(r.ne.0.)go to 44
p=0.0
do 25 i=1,ncom
pi(i,n)=(z(1,i) - 2(2)1))/(2(3)i) + z(4,1))
p=p + pi(i,n)
25 continue
go to 121

0

TThe only major change in the computer program for the potential

controlled mode of operation, relative to the current controlled
mode, is the different electrode-kinetics subroutine. Because of
this, only the kinetics subroutine, subroutine genkin, is listed.
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The Newton-Raphson is now started.
if(n.eq.l)p==50%eq(l)*fa*d(1)*c(1l)/s(1)
do 100 j=1,20
h=-p
dh=-1.0
do 50 i=1,ncom
h=h + (z(1,1)*exp(-q(l,L)*r*p) - z(2,1)*exp(-q(2,1)*
r*p))/(z(3,1) + z(4,{)*exp(-q(2,1)*r*p))
dh=dh + (2(5,1)*exp(-q(l,1)*r*p) + 2(6,1i)*exp(~q(2,1)*
r*p) + z(7,1)*exp(-q(3,1)*r*p))/(2(3,1) + z(4,1)*
exp(=q(2,1)*r*p))**2

continue

pnew=p - h/dh

change=abs( (abs(pnew) - abs(p))/pnew)
p=pnew

1f(change.le.0.001l)go to 110
continue

If a transfer to 110 was not made, convergence was not
achieved.
print 105, p
format(lx,#No convergencei,2x,f10.2)
stop

The individual currents are now obtained for cases where the
ohmic resistance is considered.
do 120 i=1,ncom '
pi(i,n)=(z(1,1)*exp(-q(l,1)*r*p) - z(2,1)*exp(-q(2,i)*r*p))/
(2(3,1) + z(4,i)*exp(-q(2,1i)*r*p))
continue

The surface concentration csf(i), the dimensionless
surface concentration dimecsf(i), and the surface
overpotential op(i) of each species is now calculated.
do 130 i=1,ncom '

csf(i)=cg(i) + pi(di,n)*cf (i)

if(e(i).eq.0.0)go to 130

dimesf(i)=csf(i)/c(i)

The next definition is used if Cheh”s or RLM”s work

is being used as a check.

dimesf(i)=(csf(i)=c(i))*eq(L)*fa*d(i) /(pmax*s(i))

1if(ac(i).ne.0.0)go to 125

op(1)=-9.999999

go to 130

op(i)=v = 1.0/(eq(i)*fr)* alog(rkc(i)*csf(i)/(

densol*rka(i)*ac(i))) + eref - p*r
continue
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return

end
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLLCCCCCCLCCeCCCCceeeeccececeecee
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Chapter 3.

- The Periodic Electrodeposition

of Cadmium-Tellurium Compounds

The unique physical properties of CdTe are reflected in the numerous
devices constructed from this material. A large amount of scientific litera-
ture is devoted to the study of CdTe fabrication processes and material char-
acterization. In this work, we investigate the periodic electrodeposition of
CdTe and analyze the resulting thin films. Tribbals (1) cites perhaps the ear-
list study devoted to the production of CdTe, published by Oppenheim in
1857. Cadmium telluride is probably the most extensively studied wide
band-gap, II-VI compound. (2) A number »f monographs {(eg. reference 3, and
references cited therein) are devoted exclusively to CdTe. Cadmium tellu-
ride materials have found applications as gamma-ray and x-ray spectrome-
ters, electrooptic and acoustooptic modulators, optical elements, liquid-
crystal imaging devices, and solar cell materials.

Perhaps the most promising application of CdTe lies in the fabrication
of photovoltaic devices. In 1956, Loferski (4) presented a theoretical treat-
ment to aid in the selection of the optimum semiconductor for photovoltaic
solar-energy conversion. The semiconductor yielding the highest maximum
efficiency, defined as the ratio of the maximum electrical power output to
the solar power flux incident to the semiconductor surface, was CdTe.

Thin films of CdTe have been prepared by chemical vapor deposition,
vacuum evaporation, and electrodeposition processes. As is the case in the
present study, most CdTe-electrodeposition processes make use of an aque-

ous, cadmium-sulfate, tellurium-dioxide, sulfuric acid electrolyte. (5-14)
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Thin film electrodeposits have also been formed from nonaqueous solvents
(15,18) and from aqueous potassium-cyanide electrolytes. {(17) Since the
costs associated with thin film electrodeposition processes are generally less
than the previously mentioned thin film fabrication techniques, this study is'
particularly relevant to the fabrication of large area, CdTe solar cells. There'
are two other notable features concerning the CdTe-electrodeposition pro-
cess that motivate the selection of this particular system for a study of alloy
electrodeposition. First, since the cadmium and tellurium ions are at 'rela-
tively low concentration in the electrolyte (0.1 molar and 0.001 molar,
respectively), dilute solution transport equations can be employeed to model
the liquid-phase transport. Secondly, there is a large free energy of reaction
in the formation of CdTe from Cd and Te, and the thermodynamics of the
solid-state strongly influences the electrodeposition process.

In the following sections, we analyze the electrodeposition of tellurium
and cadmium. Following these analyses, the measured physicocheﬁlical
parameters for tellurium eleétrodeposition and cadmium electrodeposition
will be used to study the codeposition of tellurium and cadmium. The reac-
tions relevant to the study are listed in Table 3-1. In all t;hese deposition stu-
dies, 0.3-M-H,SO, was used as supporting electrolyte. The Cd?* species was
obtained by adding cadmium sulfate, and the HTeOZ species resulted from
adding tellurium dioxide to the electrolyte (reaction vi of Table 3-1). The
experimental equipment used in this work is shown in Fig. 3-1. Glassy-
~ carbon and polycrystalline cadmium rotating disks were used. Standard
metallographig polishing techniques were used to remove all projections
greater than one micron in height. The electrodes were cleaned with a dilute

nitric acid solution before each experiment. The potential of the working
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Table 3-i. Reactions

Interfacial Reactions:

Reaction Standard Electrode Electrochemical

Designation Potential (V) Reaction

i 0.84 Hg,S0, + 2e~ =2Hg + S02-

i 0.55 HTeOg + 3H* + 4e~ =Te + 2H,0
i 0.00 H*+e-= %—Ha

v -0.40 Cd?* +2e~=Cd

v -0.92 Te + 2e~ =Te?"

Homogeneous Reactions:

Reaction Homogeneous
Designation Reaction

vi TeQz + H* = HTeO g
Vit Cd + Te = CdTe




73

Nawied)

\

1

Heater

Digital
Thermometer

| Temperature
Controller
Rotator - .
. Galvanostat ! Function
Voltmeters - Generator
o Oscilloscope
1
Computer
|
Plotter
CE WE RE

Q5

Light Source
or
Microscope

Figure 3-1. Experimental equipment. Upper flgure: schematic illustration of |
eripherals. Lower figure: schematic illustra- -

tion of the counter electrode CE), working electrode (WE), and the reference

the electrochemical cell and

electrode (RE).




74

electrode was measured against a mercury-mercurous sulfate reference
electr-'ode.‘ The morphology of the developing electrodeposit was investigated
in situ by placing a microscope, bequipped with a camera (Polaroid High
Speed Land Film, type 47) below the glass bottomed cell. The photoresponse
of the electrodeposit was investigated with a chopped light source which was
placed below the electrochemical cell, the light beamn incident to the working
‘electrode surface. For the RDE experiments, a Pine Instruments ASRP2 rota-
tor was used. The Princeton Applied Research model 173
potentiostat/galvanostat confrolled the operation of the cell. An Interstate
F77 function generator was used with the potentiostat/galvanostat. The data
were stored on a Nicolet 1090A digital oscilloscope and later transferred to
an HP9825A computer. A generalized data-acquisition program was written
for the Nicolet-1090A/HP9825A-computer/HP9862A-plotter data-acquisition
system. The program is listed in Appendix 3. With this system, distinct por-
tions of the oséilloscope memory can be dedicated to the recording of two
experimental variables. If the cell current and electrode potential (relative
to a reference electrode) are recorded, and other experimental variables
requested dur:ing the operation of the computer program are entered, the
following plots can be generated: cell-current density versus time, electrode
potential (relative to a SHE) versus time, integrated charge passed versus
time, and cell-current density versus electrode potential (relative to a SHE).
The aqueous, sulfuric acid electrolytes were prepared from analytical
reagent grade chemicals and distilled water which was passed through a Cul-
ligan water purification unit consisting of an organic trap, a deionizer, and a
microfilter. The specific conductance of the treated water was 15 Mohm-cm.

Nitrogen, first equilibrated with a similar electrolyte, was bubbled through
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the cell solution for 1 hour prior to experiments. A nitrogen atmosphere was

maintained above the electrolyte during the experiment. .

The Electrodeposition of Tellurium

The primary factor limiting the rate of CdTe electrodeposition is the
mass-transfer resistance of the discharging HTeOZ ion. This is due to low
solubility of TeO; in aqueous, sulfuric acid solutions, reaction vi in Table 3-1.
Since there is very little HTeO4 in solution, relative to the concentration of
Cd?*, the HTeO4 species quickly becomes diffusion limited if a one-to-one
ratio (1:1) of cadmium to tellurium is desired in the electrodeposit. If a

direct current source is used to form the CdTe electrodeposit, approxi-

mately 1:1 CdTe can be produced if the cell-current density is % X ium.meo 3

where 1%

im HTeOZ is the steady-state diffusion-limited current density of the

HTeOZ species:

Dm'eog"?n o
i = - 0d [3-1]
um.HTeOQ’ 4F6HT!0§‘

0}re0 3 is the Levich diffusion-layer thickness for the HTeOZ species,

]

HTeO a’ [A)

L 1
= 1.612[3135;&?--]3 [i}; . [3-2]

The factor of -2— preceding ":um.}rreo; is required since four moles of electrons

are reacted per mole of tellurium deposited by reaction i, and two moles of
electrons are reacted per mole of cadmium deposited by reaction iv.
The tellurium solution chemistry is very complex, and Eq. ii of Table

3-1 is only an approximation for the HTeOz /Te electrode processes.
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Electroanalytical studies of tellurium in the +4 state are presented in the
fundamental work of Lingane and Niedrach. {(18,18) The chemistry of TeO; in
sulfuric acid solutions is addressed in the work of Flowers et al. (20) The solu-
bility of TeO,, which limits the rate of CdTe electrodeposition in aqueous,
sulfuric-acid solutions, was investigated by Schuhmann (21), who postulated
the solution species to be HTeOZF and electrode reaction ii of Table 3-1. Issa
and Awad (22) studied the solubility of TeOy in aqueous HCl and buffered solu-
tions. Cheng (23) noted that the sulfate electrolytes yielded a slightly higher
solubility than a number of other inorganic salts he studied. Dutton and
Cooper (24) have reviewed analytical work on the oxides and oxyacids of tel-
lurium. Later, Cooper (25) produced a treatise on the element tellurium and
its unique chemaistry.

In the present work, the diffusion coeflicient of the HTeOZF species,

D

HTe0j+ Was calculated from the limiting current curves depicted in Fig. 3-2.

The cell temperature during the experiment was 20°C, and the calculated

2
g Cmi

diffusion coefficient is 9.4 X 10~ . The resulting Levich plot is shown

in Fig. 3-3 for the 20°C experiment, as well as for similar experiments con-
ducted at 55, 70, and 85°C.

Knowledge of the temperature dependence of DHTeOd’ is of value since

CdTe is often electrodeposited at higher temperatures to obtain large grain
deposits with superior electronic properties. At these higher temperatures,
the solubility of TeOj is still low relative to CdSO, (the soluble salt used to

place Cd?* in solution), and a direct current-density source equal to

b

% ium,}rreog can still be used to yield approximately 1:1 CdTe. In order to

obtain 1:1 CdTe and use the i X estimate for the cell-current

2 %X Yum HTeog
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Figure 3-2. Limiting current curves for HTeOg. The current density is swept
from 0 at a rate of -0.81 mA/cm? ~s. From right to left, the curves
represent 392, 588, 784, and 980 rpm. A 5-mm outer diameter, glassy car-

bon, rotating disk electrode was used.
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Figure 3-3. Levich plots for HTeOZ at various temperatures. The system
temperature in °C is listed as a parameter. The diflusion coeflicients are list-
ed in Table 3-2.
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density, Dy o E(T) must be known for all temperatures, as can be seen from

Eq. [3-1]. Often the relationship (26)

-—-—-;.“ N constant [3-3]

holds true, where u is the solution viscosity. For the aqueous H;S0O, - HTeOZ

solutions analyzed in this work, the average value of the constant in Eq. [3-3]

was 3.04 x 10-10 %L:I?g. with a standard deviation, weighted over the four
temperatures, of 0.014 x 10-10 S8 "8 Table 3-2 lists the temperature

s?-K
dependence of the solution transport properties. Handbook values were used

for the electrolyte viscosity.

Table 3-2. Transport properties of Te-deposition electrolyte.

DHTeOQ‘“‘
. Temperature Viscosity Diflusion Coefficient —
cm? ‘ cm ~g
©w &= B F=
293 0.010 9.4 x 10-8 3.21x 10~ 10
328 0.0050 2.0x10°% 3.05x 10~ 10
343 0.0041 2.4 % 103 2.87 x 10~ 10
358 0.0034 3.2x10°5 3.04 x 1010

Besides providing transport information, Fig. 3-2 shows two apparent
‘half-wave potentials, one near 0 volts and the other near -0.5 volts. Both are

independent of rotation rate. This behavior is characteristic of tellurium
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deposition on glassy carbon' electrodes and has been investigated by Ngac ef
al, (27) They postulate that the initial submonolayer tellurium deposit is
poorly conducting and that after a critical amount of tellurium has been
deposited, a more conductive solid phase is formed. Our experiments sup-
port this theory, since upon subsequent cycling only one half wave near 0
volts was observed, after several atomic layers of tellurium had been depo-
sited.

In Fig. 3-4, the temperature dependence of the potential-time response
to the limiting current sweeps used in the construction of the Levich plots in
Fig. 3-3 is shown. Two half waves are seen for all potential-time traces.
Between 80 and 80 seconds, the cell-current density was reduced to zero. As
expected, the open-circuit potential for the HTeOZ /Te electrode (reaction i,

Table 3-1) is near 0.5 volts for the electrolyte used in these experiments. The

o8

characteristic time for mass transfer D; is on the order of seconds, yet it
i

takes minutes for this system to reach the calculated open-circuit potential.
The unusually long time required to reach the steady-state open-

circuit potential is further investigated in Fig. 3-5. About 100 monolayers of

mA
(1178 e
em? (

tellurium were deposited - at a cathodic-current-density-of—1.0-
rpm, 20°C). After this, the cell-c;':urrent. ‘density was reduced to zero, and the
open-circuit potential-time response was recorded. As can be seen from the
inset of Fig. 3-5, about 15 minutes were required for the electrode potential
to reach its steady-state value near 0.5 volts. Since the liquid-phase tran-
sport and composition are well characterized, and the characteristic time

for mass transport is orders of magnitude less than 15 minutes, it is

apparent that significant interfacial or solid-state changes take place during
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Figure 3-4. Potential-time response for various temperatures. The current
vas swept from O at a rate of -0.76 mA/ em? —s. The disk rotation rate was
392 rpm. From the uppermost curve to the lowermost curve, the system
temperature was 85, 70, 55, and 40°C, respectively. Between 80 and 80
seconds, the cell current density was is zero.
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the first 15 minutes on open circuit.

The last area of study we describe involves the kinetics of tellurium
deposition, reaction ii of Table 3-1. Triangular current-sweep chronopoten-
tiometry experiments were conducted on this system; the experimentally
recorded potential-time response is represented by the dotted curve in Fig.
3-8. The technique used to construct the theoretical response to the

triangular-current sweep, the solid curve in Fig. 3-6, is given in Chapter 4 of

4
this thesis. A cathodic rate constant of 3.16 x 108 kg and a sym-
mold —ecm? -5

metry factor of 0.1 were used to construct the solid curve in Fig. 3-6. Using

the standard electrode potential, 0.551 volts, the anodic rate constant can be

gz _mol

calculated to be 1.87 x 10~ =
cm® —s

. The corresponding exchange-current

density, based on bulk concentrations and unit activity of the electrodeposit,

is 2.0 2L
cm

To summarize the tellurium electrodeposition study, we have analyzed
the mass transport of HTeOZ, the knowledge of which is i.nt.egral to charac-
.terizing the electrodeposition of cadmium telluride. In addition, we have
investigated the kinetics of tellux_'ium electrodeposition. Undoubtedly, a
more complex reaction scheme applies than the four-electron transfer reac-
tion listed in Table 3-1; however, this simplified model can be used to
represent fairly accurately the experimental behavior of tellurium electro-

deposition, as depicted in Fig. 3-6.

The Electrodeposition of Cadmium

The electrode potential at which the cadmium deposition reaction

occurs, reaction iv of Table 3-1, can be used to approximate the potential at
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Figure 3-8. Electrode potential. Dotted curve: experimental data (1176 rpm,
20°C, 0.01-Hz current source). Solid curve: theoretical result. The triangu-
lar current-density source had minimum cathodic currents of zero at di-
mensionless cycle times of zero and one. The maximum cathodic current
density was -1.62 mA/cm? at a dimensionless cycle time of 0.5.
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which 1:1 CdTe can be deposited from an aqueous, sulfuric acid electrolyte.
As mentioned previously, due to the low solubility of TeOg, the mass transfer
of the HTeOZ species usually limits the rate of Te deposition, and has a
correspondingly low surface concentration. No matter how much more
cathodic the electrode potential is driven, the rate of tellurium deposition is
nearly constant, and the added cathodic potential is "used” to increase the
rate of cadmium deposition. Knowledge of the electrode-kinetic behavior of
reaction i is an important aspect in the understanding of CdTe electrodepo-
sition processes. Also unlike tellurium electrodeposition, coherent films of
cadmium can be deposited from an aqueous, suifuric acid electrolyte. In this
section, the effect of a rectangular pulse-current source on the cadmium
electrodeposit morphology is investigated.

Before considering the electrode-kinetic behavior of reaction v, we
shall address the steady-state polarization curves covering the full potential
range of cadmium deposition. The polarization curves in Fig. 3-7 were used

to evaluate the diffusion coeflicient of Cd?*. The current was swept from 0 at

a rate of -1.43 L The cell temperature during the experiment was

cm®? -5

2
g cm

23°C and the calculated value for D .. is 3.6 x 107 . The resulting

Levich plot is shown in Fig. 3-8. Since the CdTe-electrodeposition process is
less affected by the Cd?* mass transport, relative to the HTeOF mass tran-

sport, the temperature dependence of DCda" will not be addressed.

In Chapter 4 of this thesis, the diffusion coefficient of the Cd?* species

in a 0.0058-M-CdSO,/0.25-M-K;SO, electrolyte was found to be

2
3.6 x 10-¢ =

. Since D,z in the 0.1-M-CdS0,/0.30-M-H,S0, electrolyte is

cd e+

2
3.7x 109 crsn , we have a strong indication that there are no significant
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Figure 3-7. Limiting current curves for Cd?*. The current density is swept
from 0 at a rate of -1.43 mA/cm? -s. From right to left, the curves
represent 392, 588, 784, and 980 rpm. A 5-mm outer d.larnet.er. glassy carbon,

rotating disk electrode was used.
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Figure 3-8. Levich plot for Cd2*. These data yield D e, = 3.6 X 10-% cm?¥/s.
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ion-ion interactions, only ion-solvent interactions, and that dilute solution
transport equations can be used to analyze the experimental systems. In

g cm?

addition, DHTeog in the aqueous, sulfuric acid electrolyte is 9.6 x 10~

considerably higher than szr The HTeOZ complex is rather large, with

only one positive charge spread throughout the ion. Consequently, it is prob-
ably less solvated with water molecules and can diffuse faster through the
solution than the smaller Cd?* species (the concentration gradient of both
species being equal), which probably has a larger hydration shell.

The polarization curves in Fig. 3-7 contain two rather notable features.
First, there is a significant amount of underpotential deposition of cadmium
on the glassy carbon electrode near zero current, at the start of the linear
current sweep. The calculated open-circuit potential for the cadmium elec-
trodeposition reaction is near -0.43 volts for the 0.1 molar Cd?* solution used
in these experiments and for unit activity of a cadmium substrate,
Secondly, the potential-current relation is quite linear between 0.5 volts,
near zero current density, and -0.75 volts, near the beginning of the limiting
current for each expeﬁment. In general, the current potential curve is
difficult to duplicate theoretically with a Butler-Volmer electrode-kinetic
expression. In Chapter 4 of this thesis, we present an investigation of cad-

mium electrodeposition from an aqueous, sulfate electrolyte. A cathodic
rate constant for reaction iv of 3.0 x 10~8 -;-r-n%g—— and a symmetry factor of
-8

0.15 were found to represent best the current-potential relationship for the
discharge of Cd2* from the sulfuric acid electrolye. Using the standard elec-

trode potential of -0.403 volts, the anodic rate constant can be calculated to

mol

be 1.29 x 10° 2
cem? - s

. The corresponding exchange-current density, based
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on bulk concentrations and unit activity of the electrodeposit, is 9.1

In Chapter 2 we outlined the motivation for using a pulse-current
source. Frequently, the pulse-current electrodeposits contain superior
mechanical properties relative to deposits formed with a direct current
source. The remainder of this section is devoted to the analysis of the
pulse-current cadmium-electrodeposition processes. A 5-mm outer diame-
ter, polycrystalline, cadmium, rotating disk electrode was used in these
experiments. The cadmium electrodes were etched in a dilute nitric acid
solution, the effect of which is shown in Fig. 3-9. Figures 3-10, 3-11, and 3-12
illustrate the pronounced effect of a rectangular pulse-current source on
electrodeposit morphology. Two different grains were observed in the cad-
mium electrodes; for this reason, the pictures of the approximately 1-um
thick cadmium electrodeposits always contained the two grains. In addition,
two photos were taken of each electrodeposit, one of the disk center and one
of the disk edge; more electrodeposit is formed at the outer edge of the elec-
trode due to the nonuniform current distribution. The mass-transport resis-
tance was not a significant factor as the maximum current density during
the pulse on-time was only one-half the Cd?* limiting current density. The
on-time was equal to the off-time; no current was passed during the ofi-time.
Due to these conditions, the ratio of the Cd?* surface concentration to the
Cd?* bulk concentration oscillated between 0.5 and 1.0. For the direct
current electrodeposition process, the cell current was one-fourth the C_d2+
limiting current. Using the left photos in Figs. 3-10, 3-11, and 3-12, Which
represent the disk center, we found that a 100.-Hz rectangular pulse-
current source formed the smoothest and most coherent metallic film.

To summarize this section, we have analyzed the mass transport of the
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Figure 3-9. Cadmium electrode substrate. Upper photo: substrate prior to
nitric acid etch. Lower photo: substrate after nitric acid etch. The width of
each photo is 80 um.
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Figure 3-10. Cadmium electrodeposits. A direect current source was used to
form the electrodeposits in the upper photos, and a 0.100-Hz pulse-current
source was used to form the electrodeposits in the lower photos. The left
photos represent the disk center, and the right photos represent the disk
edge. The width of each photo represents 90 um. A 25°C, 0.3-molal-HoS0,,
0.1-molal-CdS0,, agueous solution was used,

91
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Figure 3-11. Cadmium electrodeposits. A 1.00-Hz pulse-current source was
used to form the electrodeposits in the upper photos, and a 10.0-Hz pulse-
current source was used to form the electrodeposits in the lower photos. The
left photos, represent the disk center, and the right photos represent the
disk edge. The width of each photo represents 90 um. A 25°C, 0.3-molal-
HzS0,, 0.1-molal-CdS0,, agqueous solution was used.
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Figure 3-12. Cadmium electrodeposits. A 100.-Hz pulse-current source was
used to form the electrodeposits in the upper photos, and a 1000-Hz pulse-
current source was used to form the electrodeposits in the lower photos. The
left photos represent the disk center, and the right photos represent the
disk edge. The width of each photo represents 90 um. A 25°C, 0.3-molal-
HyS0,, 0.1-molal-CdS0,, agueous solution was used.

a3
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Cd?* species. In addition, the effect of a rectangular pulse-current source,
with the on-time equal to the off-time, on the cadmium-electrodeposit mor-
phology was investigated. A 100.-Hz current source provided the smoothest
and most coherent thin film electrodeposit. The kinetics of the cadmium-
electrodeposition process, reaction iv of Table 3-1, are briefly addressed; a
more thorough study is presented in Chapter 4. With the tellurium and cad-
mium transport and kinetic analyses complete, the electrodeposition of

CdTe can now be addressed.

The Codeposition of Cadmium and Tellurium

In this section, the cadmium electrodeposition and tellurium electro-
deposition studies will be combined to analyze cadmium telluride electro-
deposition. Specifically, the transport and kinetic parameters measured in
the individual component deposition studies can be used to describe the
multicomponent electrodeposition process. Furthermore, a solid-state ther-
modynamic model will be incorporated into the alloy-deposition analysis to
describe the activity of the individual components in the electrodeposit.

These thoughts can be clarified with the help of Fig. 3-13. For a dilute
liquid phase, there are no ion-ion interactions, and the dilute solution equa-
tion of convective diffusion used in Chapter 2 can be applied to evaluate
c;(t,y), the concentration of the reactant or product species in the neutral
liquid phase. Nearer the interface, for solutions of high ionic strength and
dilute in reacting ions, the diffuse portion of the double layer will not change
significantly in structure, and the potential drop across this region of charge
separation can be neglected for highly conductive, well supported solutions.

The inner edge of the diffuse portion of the double layer is the outer
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Figure 3-13. Schematic illustration of the electrodeposit, interface, and
liquid phase. IHP refers to inner Helmholtz plane, and OHP refers to outer

Helmholtz plane.
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Helmholtz plane {OHP), which represents the plane of closest approach for
the non-specifically adsorbed ions. Immediately adjacent to the electrode
surface is the inner Helmholtz plane (IHP), where solution species can be
~ specifically adsorbed to the electrodeposit surface. Since specific adsorb-
tion is dependent on the electrodeposit-solution interaction, and since it is
not included in our model, the rate constants measured for cadmium and
tellurium electrodepositior; r1:1ay have to be éltered in an attempt to match
experimental and calculated results, as the CdTe surface may specifically
adsorb species differently from the cadmium or tellurium electrodes. In
general, the inner Helmholtz plane poses a very difficult region to quantify.
In this study, t;he last region of interest, the forming electrodeposit, is
assumed to contain three species in equilibrium: Cd, Te, and CdTe.

The most accessible experimental variables are the total cell current
and the potential of the working electrode with respect to a suitable refer-
ence. For this reason, we shall compare calculated polarization curves with
those obtained by experiment. It is also possible to compare the predicted
and measured electrodeposit composition, but this is a more difficult task
and would probably provide less insight. Too little electrodeposit is formed
to allow accurate determination of the composition by quantitative analysis.
(Only thin film deposits were formed because thick deposits tend to acquire a
roughened surface and affect the fluid flow, thus decreasing the chances for
successful experimental-theoretical comparison.) There is a number of
other ex-situ analysis techniques, although they do not appear as quantita-
tive or convenient as theoretical-experimental comparisons of polarization
curves obtained in alloy electrodeposition processes. For instance, in Auger

electron spectroscopy analyses, preferential sputtering of components often
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takes place {28,29) and electron attenuation within the deposit complicates
surface characterization. {30) Brenner (31) reviews some limitations associ-
ated with the use of x-rays for structural chacterization of alloy electrodepo-
sits. Swathirajan (32) presents support for the use of in-situ acquisition of
cell current-potential characteristics and subsequent comparison with
theoretical calculations in order to investigate electrochemical stripping
experiments of alloy electrodeposits, in lieu of ez-sifu surface analysis tech-
niques. In this work, all electrodeposit compositions were estimated with a
Kevax AMR 1000 x-ray analyzer. The electrodeposit structures were qualita-
tively analyzed with an x-ray diffractometer. Photoresponse measurements
were also employeed to analyze the CdTe semiconducting films.

The next section of this chapter develops the equations governing the
electrodeposition of CdTe. The solution technique to this system of equa-

tions was addressed in Chapter 2 and will not be repeated in this chapter.

Mathematical Analysis

The liquid phase. The one-dimensional equation of convective diffusion is

used to describe the mass transport of species i

acy dcy a%c,

ot tUiay ThoE [3-4]
where
v, = - 0.51023 0¥ 2y 1292 [3-5]

The initial condition and boundary conditions are

ei(Oy) =cf . [3-6]



98

ci{t,@)=cf , ‘ [3-7]

and

ac(t,0) _ sif(t)

ay - ny FD; - - (e8]
The electrode-reaction is
koy :
me~ T Vs . [3-9]
‘ i
kat

Equation [3-9] is a general expression for an electrochemical reaction, by
which any of the electrochemical reactions in Table 3-1 can be represented.
Equation [3-4] proﬁdes a good representation of the ionic mass tran-
sport for systems with large Schmidt numbers, small disk radii, low
exchange-current densities, highly conductive electrolytes, and low concen-
trations of reacting species. For the CdTe electrodeposition process, sub-
script 1 refers to HTeOg, H*, Cd?*, and Te?". Four convective diffusion equa-
tions are written for the four species, the solution to this system of equa-
tions yields the surface concentrations of the reactant and product species
and the partial current densities of reactions i, iii, tv, and v. It should be
noted that the hydrogen evolution reaction may have a non-uniform distri-
bution due to the high concentration of H*. However, the hydrogen evolution
reaction is very slow on the electrodeposited material, and the high kinetic
resistance tends to promote a uniform reaction distribution. Usually, the
CdTe electrodeposition takes place with high current efficiency and little

hydrogen evolution occurs.

The liquid-electrodeposit interface. A Butler-Volmer electrode-kinetic
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equation is used to relate the partial current density of the electrochemical
reaction I, the surface concentrations of the species participating in the
reaction, and the electrode potential. The four electrode-kinetic equations

represent reactions ii, i, iv, and v of Table 3-1, respectively:

iy - : -
Tr = kaue® TP ag, —k, e V(o mreos ){(Cg+)° [3-10]

— = kg @ (1 —ﬁm)ﬂ’(pﬂz) V2 ok, e "Pmﬂ’cH+ [3-11]

Gy (1 - Bp)2fV

=kg e Bk

- [3-12]

@cq -kc.iv
sr=kepe! e ke PV ag, [3-13]
In addition, the sum of the partial current densities must equal the cell-
current density,
i 4 = toen [3-14]
i=it ’

The potential V in Egs. [3-10]-[3-13] represents the potential difference
between the working electrode and a standard hydrogen electrode, corrected

for ohmic drop. Vis giiren by

1
Ny S

V=E+ |U% - gsi.raf INCi rey |—%eut - [3-15]

where F is the measured cell potential.
The partial current densities in Eqs. [3-10]-[3-13] couple the convective
diffusion equations through the boundary condition given by Eq. [3-8]. The

activity of the cadmium, a¢y, and tellurium, ag,, will be dealt with in the next



100

section.

The Electrodeposit. To evaluate the component activities in the electrodepo-
sit, we will make use of Jordan’s random associated solution {RAS) theory.
(33) Jordan developed this theory in order to describe mathematically the
liquidus curve for the Cd-Te and Zn-Te systems. Since the same three
species are present in the solid phase, we shall attempt to use the same
model. Engelken (8) has used the RAS model to analyze the steady-state
electrodeposition of CdTe. |
The CdTe-RAS theory assumes that departures from ideal-solution
behavior of the Cd-Te-CdTe system are due to short range, nearest neighbor
iﬁteractions. which are taken into account by identifying the activity
coeflicients ¥cq, ¥1e, and Ycgre, With thoée of a regular, ternary solution, mak-
ing use of interchange energies for Cd-Te, Cd-CdTe, and Te-CdTe interac-
tions. These expressions can be combined with the Gibbs energy of forma-

tion for CdTe (reaction wii, Table 3-1):

& CdTe

3-18
QcqGTe [ ]

AG%&R = —R7Nn

If the interchange energies for Cd-CdTe and Te-CdTe interactions are taken

equal, the activities can be approximated as

Ere ~ZTcq + P [ aZeq)? ]

= 3-17

@Te 1+pP %P TR | [3-17]
Tca —Zre + P Ba(ETe)zﬂ

- [3-18

@cd 1+P  °P|"rT | [3-18]

and



101

i-P a — '
Geogre = 1+ PexP[ZRT (1 —4zTesz)] ' [3"19]
where
i
P=[1-ZZea(t - 82 F - [3-20]

Bact 18 the degree of dissociation at Zgy = ZFp, = 0.5; the overbar has
been used to denote atomic mole fractions. Equations [3-17]-[3-19]
represent a one-parameter vmodel for the electrodeposit thermodynamics,
since the Gibbs free energy of formation for CdTe can be used to eliminate a
or f4:¢. The behavior of this activity model, using the parameters Jordan
used, is displayed in Fig. 3-14. In general, foi‘ values of ¥p, or Epq less than
0.5, extremely small activities are registered for cadmium or tellurium,
respectively. The acyr, curve in Fig. 3-14 is asymmetric because Jordan used
one value of a for Ty, <0.5, and another for Zp, >0.5. In our .work, o was
eliminated by making use of AGcgre (Eq. [3-18]), hence a remained constant
for all values of Z,.

The atomic mole fractions for teilurium, Z7e. and cadmium, Ty, can be

obtained by integrating the appropriate partial current densities:

¢
S 2iydt
oy = ——AL . | [3-21]
[ (i +2iy —2i,)dt
{gsar
and
Epe =1 —=Fcq - [3-22]

In these expressions, the time interval from fpsy7y to £ is required to deposit

one relative surface-activity thickness (RSAT), which was discussed in
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Figure 3-14. Behavior of the RAS model. Equations [3-17] - [3-19] were used
to obtain the relative activities acq, a@71,. and @cgre. Using Jordan’s data at
1400 K, Bact = 0.055, a = —3.1 kcal /mol for X7, <0.5, and
a = —10.9 kcal /mol for Zp, > 0.5. _
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Chapter 2.

The liquid-electrodeposit interface section and the electrodeposit sec-
tion of this work provide boundary-condition information for the mass-
transport problem. In these two sections, there are 10 unknowns:
Ugts Bggs Ly Tys V. E, Gcq, Bme, Zcq, and Z1e. These are balanced by the following
10, independent equations: [3-10], [3-11], [3-12], [3-13], [3-14], [3-15], [3-17],
[3-18]. [3-21], and [3-22). The computer program used to solve this system of
equations and optimize the appropriate physicochemical parameters is
presented in Appendix 3. In the next section of this treatment, we will
analyze the CdTe periodic electrodeposition process with model and experi-

mental results.

Results of Proposed Model

The current source used in the theoretical calculations and experi-

mental work is shown in Fig. 3-15. The maximum pulse-current is

1.23 x 1%

;tm}rr;og- As previously discussed,

%xiumm.eoa yields nearly 1:1

CdTe. For the 30 — (3 &
m cm

) maximum cathodic current source used in
this study, we would expect the Te atomic mole fraction to be greater than
0.5. The input parameters to the experimental program are listed in Table
3-3. In the following discussion, we will analyze the base-case behavior and
explain how the input kinetic constants and 84, were chosen. In Fig. 3-18, a
plot of the ionic surface concentrations is shown. A surface-concentration
plot is not shown for Te?~ since reaction v of Table 3-1 did not take place

under these conditions, although the rate constants for this reaction were

set to high values. Te?" did not form for two reasons. First, Te is attracted to
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Figure 3-15. Base-case cell-current density.
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Table 3-3. Input Parameters. '

Quantity Units
e} 1.0x10-¢ 3.0x10-* 1.0x 10-* 0.0 mol
cm
2
D, 9.4x10-% 9.3x10-5 3.6x10-© 9.3 x 10~5 cr:
kg, 3.4x10"® 50x10712 7.8x 105 ® #
ke, 8.7x10"5 50x10-12 1.8x 1078 ® ¥
ny 4 1 2 2
r 0 Q-cm?
RSAT 10 A
a - 1.7 % 108 J
_ mol
Bact 8.4 x 10~5 -—
I3 0.26 0.50 0.20 —
6 0.0058 0.0034 0.0011 0.0034 em
Po 0.0010 -5-5?
cm
B 0.049 (Te) 0.077(Cd)  0.0025 (CdTe) :‘n‘l’;

¥ Optimized results were used for kg ;. k., . @, Bact,» and B;. For species en-
tries, denoted by subscript i on the variable quantity, HTeOZ is at the far
left, followed by H*, Cd2*, and Te?®, respectively, unless otherwise stated.
For reaction entries, denoted by subscript I on the variable quantity, reac-
tion % is at the far left, followed by iii, iv, and v, respectively.

¥ The rate-constant units are reaction dependent. For anodic rate constants,
the units are: mol/[cm? ~s —[[(anodic reactant concentration units)™].

1
For cathodic rate constants, the exponent s; is replaced by —s;.
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Figure 3-18. Base-case, dimensionless, ionic surface concentrations.
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Cd and CdTe in the deposit, thus Te has a supressed deposit activity and the
cathodic term in Eq. [3-13] is strongly reduced. Secondly, the electrode
potential required tb deposit CdTe is significantly more aﬁodic than the -0.92
volts standard elecﬁrode potential of reaction w. It should be noted that
reaction ¥ cannot be arbitrarily dropped from the analysis @ priori. It is
commonly observed in the electrodeposition of pure Te (unit deposit
activity) that Te?" is formed prior to hydrogen evolution. (34-37) In addition,
more cathodic potentials result if larger cathodi.c currents are used;.this
could done to create a deposit with higher Cd content. As can be seen in
Table 3-3, the Bulk concentration of HTeO4 is much lower than that of Cd?*
or H*. The HTeOZ¢ concentration reaches a low value near the end of the first

CHre0s

on-tirne, where =0.16 and £ =0.5s. During the following off-time,

€ HTe0g

diffusion and convection resupply the electrode surface with HTeOZ ions
from the bulk electrolyte, and the conceﬁtration of HTeOg increases until
the beginning of the next on-time. This process is repeated over the subse-
quent cycles. The Cd?* and H* species incur very little mass-transport resis-
tance, and their surface concentrations do not differ much from their bulk
concentrations under these conditions.

The partial current densities for reaction ii, iii, and iv are given in Fig.
3-17. At the beginning of the on-time {0 seconds for the first cycle) reaction
i supplies most of the current and the HTeOJ surface concentration is
reduced. As the HTeQg ion becomes mass-transfer limited, reaction iv
increases in rate and more Cd is deposited. During the ofi-time, Cd dissolves
and Te continues to eleétrodeposit. For these conditions, there is very little

hydrogen evolution. The electrodeposition process takes about 5 cycles to
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Figure 3-17. Base-case, partial current densities. Under these conditions,
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reach a uniform and sustained periodic state, both experimentally and
theoretically. About 1.5 HKSAT are deposited per cycle. It is the
electrodeposit’s influence that prolongs the approach to steady state; the
sﬁrface-concentration profiles reach a periodic state prior to the fifth cycle,
as seen in Fig. 3-18. The partial curfent densities during a particular cycle
are dependent on the HSAT concentration formed during the previous cycle.
It is because of this dependence on the previous cycle that the system oscil-
lates about the uniform periodic state until the fifth cycle.

In Fig. 3-18, the electrodeposit mole fractions are presented for the
base conditions. The mole fractions are related to the atomic mole fraction

by the following equations:

Ere —Fcqg + P

Feqg — 27y + P
= 3-23
Foa 1+P [3-23]
1-P
Zeate = T4 P ' [3-24]

As expected, due to the Gibbs free energy of formation of CdTe being large
and negative, very little free Cd exists for ¢y <0.5. Most of the Cd is present
in the CdTe. It can also be seen that during the off-times, the free Te present
in the deposit increases. During the ofl-times, Cd dissolves, and free Te is
released into the electrodeposit, which increases the Te mole fraction.

The experimental and calculated electrode potential behavior is
presented in F‘igs. 3-19 and 3-20 for the fifth cycle, after the system has
reached a periodic state. To construct the theoretical curve in Fig. 3-19
(1abeled INITIAL), the measured rate parameters (kq ;. k¢ ;. and, fqc) for the

Te deposition, Cd deposition, and H, evolution were used. In an attempt to
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force reaction v to take place with the current source specified in Fig. 3-15,

DTeg-_ was set to a high value, and the rate constants for reaction v were also

set to a high value; the ratio of the rate constants is fixed by the standard
electrode potential. To represent better the experimental curve, a multidi-
mensional optimization routine was used tq minimize the difference between
the calculated and experimental potential response. The optimization rou-
tine is discussed in Chapter 4, and the computer program used to calculate
the optimized curve, labeled FINAL in Fig. 3-20, is given in Appendix 3. The
optimization routine was not sensitivé to the kinetic parameters for Hj; evo-
lution or Te dissolution to produce Te?"; these parameters remained
unchanged. B4 was set equal to 0.055 to construct the INITIAL curve in Fig.
3-19, as this was the value Jordan used in his high temperature experiments.
The optimization routine changed this parameter more than any other. The
final values of the optimized parameters are listed in Table 3-3. The shape of
the INITIAL curve in Fig. 3-19 resembles the experimental curve. After the
optimization routine operates on the model, the resultant FINAL curve in Fig.
3-20 is displaced closer to the expgriment.al curve. It should be noted that
the ordinate is different in Figs. 3-19 and 3-20. The proposed fit solution in
Fig. 3-20 does not represent an entirely satisfactory result, although the
theoretical solution does remain in a potential region near the experimental
curve. A sensitivity analysis of the optimized parameters is addressed in the
following text in order to gain insight into the model’'s behavior.

The effect of changes in the Te deposition kinetics is depicted in Figs.
3-21 and 3-22. If the rate constants kg  and k. 4 are set larger by an order of
magnitude, or a larger symmetry factor, more Te is incorporated into the

electrodeposit. The periodic state is reached more quickly since Cd
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dissolution from the lower Cd-content deposit is supressed during the off-
time. A uniform and sustained periodic state is reached by the third cycle in
each case.

" If the Cd kinetic constants are reduced by an order of magnitude, the
systermn reaches a steady state after about 2 cycles, as seen in Fig. 3-23, for
the same reasons as just discussed. Because the system is more sensitive to
the Cd-electrodeposition kinetics, a steady state is reached more quickly in
Fig. 3-23 than in Figs. 3-21 and 3-22. The system is less sensitive to Te-
electrodeposition kinetics, reaction ii, because the major obstacle to Te
deposition is the HTeOZ -mass-transfer resistance.

If the hydrogen rate constants are increased by four orders of magni-
tude, the partial current densities during the deposition process are
represented by Fig. 3-24. For this case, Hj is evolved during the on-time,
slightly reducing the Te and Cd deposition rates, relative to the base-case -
deposition rates. During the off-time, the low concentration of soluble H; is
oxidized to H*, and at the end of the off-time both Cd and Te electrodeposit,
in contrast to any of the previous results.

If B4t is increased by an order of magnitude, increasing the dissocia-
tion of CdTe, the electrodeposit composition histofy in Fig. 3-25 results.
Comparing Fig. 3-25 with the base-case deposit-mole-fraction plot in Fig. 3-
18, we can see that a higher concentration of free Te results with the
increased CdTe dissociation.

The mole-fraction plot in Fig. 3-26 shows that if the base-case phy-
sicochemical parameters are used, the CdTe content in the electrodeposit
can be increased by specifying an on-time to off-time ratio of 3:1 for the

cell-current source, instead of the 1:1 ratio used in the base conditions.
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Since the HTeOZ species is mass-transfer limited during the majority of the
on-time, the Cd?* rate of reaction increases throughout the on-time (eg. Fig.
3-17). During the extra on-time in the 3:1 mode of operation, more Cd is
deposited, which combines with the free Te in the electrodeposit to form
CdTe. More cathodic potentials result in the 3:1 mode of operation, and some
hydrogen evolution occurs during the last part of the on-time. The CdTe con-
tent in the electrodeposit can also be increased by increasing the maximum
current during the on-time. The partial currents for a maximum cathodic
current density equal to twice that of the base conditions is shown in Fig. 3-
27. In this mode of operation, the HTeQ3 species quickly becomes mass-
transfer limited, and the rate of Cd deposition increases during the on-time.
With the added amount of Cd in the electrodeposit, a larger Cd corrosion
current is observed during the off-time. It can also be seen that Hy begins to
evolve during the on-time. The system reaches a uniform and sustained
periodic state after the second cycle since about 3 RSAT are deposited dur-
ing the on-time, the system being nearly driven to a steady state by the end
of each on-time.

In this section, a mathematical model has been presented that, when
combined with experimentally obtained polarization curves, can aide in the
investigation of the periodic electrodeposition of CdTe. The next section of
this work will deal with experimental observations useful in the study of the

CdTe electrodeposition process and of the deposited material.

Characterization of CdTe Electrodeposits

In this section, we address the atomic composition, phase structure,

surface morphology, and photovoltaic properties of CdTe electrodeposits. An
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x-ray analyzer was used to evaluate atomic compositions, and an x-ray
diffractometer was employeed to elucidate deposit phase structure. Scan-
ning electron microscopy provided surface morphology information. The
photoyoltaic properties of the CdTe deposit were investigated by means of
steady state and transient photoresponse experiments.

For the model and experimental work presented in the previoius sec-
tion, the electrolyte temperature was 25°C. For the study of CdTe electro-
deposited at 25°C, the experiments outlined in Fig. 3-28 were implemented.

A cyclic, triangular current source with a minimum cathodic current density

2 is shown in the
m

of 0 and a maximum cathodic current density of 5’.1 o
upper plot of Fig. 3-28. In the lower illustration of Fig. 3-28, the potential
response is given for varying illumination intensities. The deposits were
illuminated ﬁth a 150 watt, tungsten-halogen, fiber-optic light source
(Dolan-Jenner Industries, Inc., Model 510 Fiber-Lite). The potential response:
labeled dark is obtained for no illumination of the deposit during the electro-
deposition process. The two other potential response curves correspond to
low illumination intensity and high illumination intensity incident to the
forming electrodeposit. It can be seen that the light sources, which generate
minority carriers (electrons) in the p-semiconductor, displace the electrode
potential to more positive values around the peak cathodic current density.
Near zero current, the deposit surface is mostly metallic tellurium, and no
longer a semiconductor. It is apparent in Fig. 3-28, however, that the open-
circuit potential (at 300, 800, and 900 s) is a function of the illumination
intensity. This is due to the different deposit compositions, which have been
altered by the light source dﬁring the deposition process. For higher illumi-

nation intensities, more cadmium is incorporated into the electrodeposit
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and a more cathodic potential is observed at zero current.

The preceding analysis is supported by the results displayed in Figs.
3-29, 3-30, and 3-31. The experiments outlined in Fig. 3-28 were conducted
with an additional variatic;n: the ﬁber-optié light source was chopped to
create a pulse-light source of low duty cycle; the on-time to off-time ratio
was near 0.1. For no illumination, the potential response in Fig. 3-29 was
recorded, which is identical to the dark-current potential response in Fig. 3-
28. For the low intensity, pulse-light source, the potential response of Fig.
3-30 resulted. The high intensity, pulse-light source was used to obtain the
potential response displayed in Fig. 3-31. Two key conclusions can be formu-
lated from the analysis of Figs. 3-29, 3-30, and 3-31. First, the pulse-light
source of low duty cycle can be used to obtain in sit'u.. the photoresponse of
the forming electrodeposit. During the off-time, a potential response curve
sirnilarv in form to the nonilluminated potential response in Fig. 3-29 is
obtained for both the low and high light-source potential traces in Figs. 3-30
and 3-31. During the on-time, a second potential response curve is obtained
within the off-time traces in Figs. 3-30 and 3-31. The difference between the
on-time and off-time traces represents the in situ photoresponse of the elec-
trodepositing material. Careful comparison of the digitally obtained poten-
tial data shows that the high light source data in Fig. 3-31 are displaced to
slightly more anodic potentials during the pulse on-time. The second con-
clusion to be drawn in the analysis of Figs. 3-29, 3-30, and 3;31 concerns the
open-circuit behavior of the electrochemical system. Comparison of Figs. 3-
29, 3-30, and 3-31 shows that nearly identical open-circuit potentials are
obtained for all three experiments, in contrast to the results for the

constant-intensity light-source experiments displayed in Fig. 3-28. Because
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Figure 3-29. Potential response for the current source given in Fig. 3-28 and
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the integrated amount of light striking the deposit is very small for the
pulse-light source of low duty cycle, the electrodeposit composition is virtu-
ally unchanged by the light source, and the electrodeposits are of identical
composition at open-circuit. The electrodeposit surface is no longer sem-
iconducting or photovoltaic near zero current, being composed primarily of
metallic tellurium. Since the deposits are of identical composition and the
surface is not photovoltaic near zero current, identical open-circuit poten-
tials are obtained.

The effect of a pulse-current source on the electrodeposit morphology
is investigated in the scanning electron micrographs shown in Figs. 3-32
through 3-36. The electrolyte composition and temperature are listed in the
figure captions; these are identical to the conditions used in the modeling
work. The electrodeposit compositions were all about 47 atomic percent cad-
mium (* 2 atomic percent) as measured ez sifu with a Kevax x-ray analyzer.
The deposit in Fig. 3-32 was obtained with a direct current source of

1.5 x ium.HTeog'

The pulse-current source frequencies are listed in the figure
captions of Figs. 3-33 through 3-36. The pulse-current sources had off-times

of zero current and on-times with a cathodic current density of

1.7 x ium,HTeog: the factor 1.7 (instead of 1.5) was found to place more cad-

mium in the deposit (as predicted by the model work and investigated in Fig.
3-27), and make up for the cadmium dissolution during the off-times. The
upper micrograph in each of Figs. 3-32 through 3-36 was taken at 2000x and
the lower micrograph at 5000X magnification. The electrodeposits were
nearly 1 um thick. Although there is a significant difference between the
surface morphology for the direct current deposit versus the pulse-current

deposits, the latter electrodeposits all had similar surface morphologies.
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XBB859-7671

Figure 3-32. Scanning electron micrographs of a CdTe electrodeposit created
with a direct current source. The width of the upper micrograph is 50 um,
and the lower micrograph width is 20 um. A 25°C, 0.3-molal-H;S0,4 0.001-
molal-HTeOg, 0.1-molal-Cd?*, aqueous electrolyte was used.
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XBBB59-7674

Figure 3-33. Scanning electron micrographs of a CdTe electrodeposit created
with a 1.00-Hz pulse-current source. The width of the upper micrograph is
50 um, and the lower micrograph width is 20 um. A 25°C, 0.3-molal-HzS0,,
0.001-molal-HTeO4, 0.1-molal-Cd?*, aqueous electrolyte was used.
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XBB859-7677

Figure 3-34. Scanning electron micrographs of a CdTe electrodeposit created
with a 10.0-Hz pulse-current source. The width of the upper micrograph is
50 um, and the lower micrograph width is 20 um. A 25°C, 0.3-molal-HzS0,,
0.001-molal-HTeO04, 0.1-molal-Cd?*, aqueous electrolyte was used.



XBB859-7680

Figure 3-35. Scanning electron micrographs of a CdTe electrodeposit created
with a 100.-Hz pulse-current source. The width of the upper micrograph is
50 um, and the lower micrograph width is 20 um. A 25°C, 0.3-molal-HzS0,,
0.001-molal-HTeO4, 0.1-molal-Cd?*, aqueous electrolyte was used.
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XBB859-7683%

Figure 3-36. Scanning electron micrographs of a CdTe electrodeposit created
with a 1000-Hz pulse-current source. The width of the upper micrograph is
50 um, and the lower micrograph width is 20 um. A 25°C, 0.3-molal-HzS0,,
0.001-molal-HTeO4, 0.1-molal-Cd?*, aqueous electrolyte was used.
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The pulse-current sources produced deposits with amorphous, spherical
structures of approximately 0.5 um in diameter. The direct current source
produced a smooth, coherent film covered with distinct crystals approxi-
mately 0.7 um in width. The central nodule in Fig. 3-33 was used to focus the
electron microscope and was uncharacteristic of the 1-Hz electrodeposit.
Thus far, we have addressed the electrodeposition of CdTe from an
electrolyte maintained near room temperature. Although the results are
helpful in the analysis of the CdTe electrodeposition process, solar cell grade
CdTe is usually deposited from aqueous, sulfuric acid electrolytes at higher
temperatures to promote large grain growth in the electrodeposit. In the
investigation described ‘below. the electrolyte temperature was kept at 85°C
£0.5°Cin an effort to produce higher quality, photovoltaic, thin film CdTe.

The high temperature data for i , shown in Fig. 3-3, can he used

Yim HTe03
as a guideline for the production of 1:1 CdTe. Electrodeposits were formed
with a pulse-current source of zero current during the off-time and

1.7 x ilim.H'I‘eOﬂ'

during the the on-time. The electrodeposit compositions are
listed in Table 3-4. The deposits had slightly more tellurium present than
cadmium; consequently these deposits were p-semiconductors, since we
assume no other impurities affected the photovoltaic properties of the depo-
sits. Trace amounts of lead, plutonium, thallium, and uranium were also
detected in some of the electrodeposits. The compositions in Table 3-4 indi-
cate a nearly uniform electrochemical reaction distribution across the disk

surface. As expected by potential theory considerations, more cadmium is

deposited at the outer edge of the RDE than at the center.
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Table 3-4. Compositions of pulse-plated, CdTe electrodeposits.

Sample Frequency of Atomic % Cd  Atomic % Cd
Number Current Source (Hz) (disk center) (disk edge)
1 0.100 47.5 48.5
2 1.00 45.5 45.8
3 10.0 47.0 47.3
4 100. 48.0 46.0
5 1000 46.7 48.8

Mean Composition: 486.5 47.3

In order to evaluate the photovoltaic properties of the different electrodepo-
sits, the following experiment, illustrated in Fig. 3-37, was completed for
each deposit. After approximately a 3 — um thick electrodeposit had been
formed, the deposits were etched in a 50°C, 10-M-NaOH solution for 1 min.
During the etching process, the disk rotation rate was maintained at 2000
rpm. The NaOH etch solution has been found to be effective in previous stu-
dies of p-CdTe photovoltaic devices (38). Immediately afterwards, the disk
electrode was placed in a 1.0-M-NaOH solution at 25°C, and kept stationary. A
0.1-Hz (on-time equal off-time), rectangular square-pulse light source was
then employeed, along with the low frequency triangular current-sweep
shown in Fig. 3-37. A typical potential response of the etched deposits, with
compositions listed in Table 3-4, is shown in Fig. 3-38 for a 100-Hz electro-
deposit subject to the experiment outlined in Fig. 3-37. During the pho-

toresponse analysis, the following electrode reaction took place:
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2H,0 +2e~ - 20H™ + H, . [3-25]

For all of the electrodeposits tested, the maximum photoresponse was

mA

observed during the first 20 seconds, during which time |i | <3.0 = In
cm

Fig. 3-39, the effect of the etching process on a 100.-Hz electrodeposit is por-
trayed. In the upper plot, no etching of the 100.-Hz electrodeposit was com-
pleted prior to the photoresponse experiment. Conseque;ntly. no significant
photoresponse resulted. In the lower plot, after 1 minute of the NaOH etch-
ing process previously described, the resulting potential response was
obtained. The etch process is a very important aspect of semiconductor
electrode pretreatment and has been investigated by a number of authors
for CdTe devices. Takahashi et al. {14) noted a similar relationship between
the etching process and the photoresponse for CdTe electrodes. Gaugash and
Milnes (('9) tested ten different etch solutions for CdTe electrodes. Their
results indicated that a tellurium rich surface layer often resulted. This
might be explained by the more noble character of tellurium relative to cad-
mium.

As can be seen in Fig. 3-38, no significant photoresponse results after
20 seconds. In Fig. 3-40, the low current density photoresponse, correspond-
ing to short times in Fig. 3-38, is analyzed. Again, the light source depicted
in Fig. 3-37 was used. The current was swept linearly from 0 at -60

MA
em? —min

The periodic potential response shown in Fig. 3-40 indicated
that no electrodeposit corrosion occurred; the surface remained unaltered
after the experiment was duplicated 25 times. In an effort to compare the

photoresponse of the different electrodeposits listed in Table 3-4, the poten-

tial response for the experiment outlined in Fig. 3-37 has been plotted in Fig.
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Figure 3-39. Effect of etching process on electrodeposit photoresponse.
Upper curve: no etch. Lower curve: i1-min etch in a 50°C, 10-molal-NaOH
solution. During the etching process, the RDE rotated at 2000 rpm. For the
photoresponse experiment, a 25°C, 1.0-molal-NaOH solution was used.
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3-41 for each electrodeposit. It appears that the electrodeposit created with
the 100.-Hz cell-current source yielded the largest photoresponse.

The effect of the pulse-current frequency on the electrodeposit mor-
phology in the 85°C experiments is shown in Figs. 3-42 through 3-46. In gen-
eral, these electron micrographs look very similar to those obtained for the
25°C electrolyte, shown in Figs. 3-32 through 3-36. The diameter of the
spherical nodules, however, is larger in the high temperature experiments.
The upper micrographs in Figs. 3-42 through 3-48 were obtained at 5000x
magnification, as were the lower micrographs in Figs. 3-32 through 3-36; the
length scale is the same for each set of micrographs, which allows for direct
comparison. The lower micrographs in Figs. 3-42 through 3-46 were obtained
at 10,000x magnification, while that in Fig. 3-47 was obtained at 50,000x
magnification. The larger diameter of the spheres at the higher tempera-
tures may be due to the fact that approximately 3 times the number of
coulombs were passed in the 85°C experiment as in the 25°C experiment. It
can also be seen that the spheres are more developed and separate in the
85°C experiments than in the 25 °C experiments. This may be caused by the
etching process completed for the electrodeposits formed at 85°C. X-ray
diffraction patterns indicated that the deposits were polycrystalline, con-
taining little long range order. Lower pulse-current frequencies and higher
electrolyte temperatures yielded sharper x-ray diffraction patterns, indicat-
ing more long range order. Due to the polycrystalline, disordered nature of
the electrodeposits, quantitative information regarding the amount of each

phase present could not obtained from the x-ray diffraction patterns.
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Figure 3-41. Photoresponse of samples 1-5 of Table 3-4. The light source and
current density are shown in Fig. 3-37. The first parameter to each curve
denotes the current frequency used to electrodeposit the CdTe. The second
parameter gives the potential used to shift the curves so that none of the po-
tential traces overlaps. A 25°C, 1.0-molal-NaOH solution was used.
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XBBB59-7696

Figure 3-42. Scanning electron micrographs of a CdTe electrodeposit created
with a 0.100-Hz pulse-current source. The width of the upper micrograph is
18 um and the lower micrograph width is 9 um. An 85°C, 0.3-molal-HgSOy,,
0.001-molal-HTeO4 0.1-molal-Cd?*, aqueous electrolyte was used.
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XBB859-7699

Figure 3-43. Scanning electron micrographs of a CdTe electrodeposit created
with a 1.00-Hz pulse-current source. The width of the upper micrograph is
18 um and the lower micrograph width is 9 um. An 85°C, 0.3-molal-H;S0,,
0.001-molal-HTeQ4, 0.1-molal-Cd?*, agueous electrolyte was used.
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XBB859-7702

Figure 3-44. Scanning electron micrographs of a CdTe electrodeposit created
with a 10.0-Hz pulse-current source. The width of the upper micrograph is
18 um and the lower micrograph width is 9 um. An 85°C, 0.3-molal-H;S0,,
0.001-molal-HTeO4, 0.1-molal-Cd?+, aqueous electrolyte was used. A dust
particle is shown in the upper center portion of the upper micrograph.
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XBB859-7705

Figure 3-45. Scanning electron micrographs of a CdTe electrodeposit created
with a 100.-Hz pulse-current source. The width of the upper micrograph is
18 um and the lower micrograph width is 9 um. An 85°C, 0.3-molal-H,S0,,
0.001-molal-HTeO#, 0.1-molal-Cd?*, aqueous electrolyte was used.
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XBB859-7708

Figure 3-48. Scanning electron micrographs of a CdTe electrodeposit created
with a 1000-Hz pulse-current source. The width of the upper micrograph is
18 um and the lower micrograph width is 9 um. An 85°C, 0.3-molal-HS0,,
0.001-molal-HTeO4, 0.1-molal-Cd®*, agueous electrolyte was used.
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XBB859-7709

Figure 3-47. Scanning electron micrographs of a CdTe electrodeposit creat-
ed with a 10.0~Hz pulse-current source. The width of the micrograph is
2.3 um. An 85°C, 0.3-molal-HzS0,4, 0.001-molal-HTeOg, 0.1-molal-Cd**, aque-
ous electrolyte was used.
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Conclusion

The codeposition of tellurium and cadmium represents an intriguing
process problem with unique chemistry. In this work, we have addressed the
evaluation of physicochemical parameters for tellurium deposition, cad-
mium deposition, and the codeposition of tellurium and cadmium. In addi-
tion, results are presented for the in sifu investigation of forming electro-
deposits. The influence of the pulse-current-source frequency on the elec-
trodeposit morphology and photovoltaic behavior is clearly illustrated.
Perhaps the most important aspect of the characterization study is that pro-
nounced changes in the deposit photovoltaic properties and surface mor-
phology result from changes in the cell-current waveform. Knowledge of the
CdTe-electrodeposition physicochemical parameters, and the material pro-
perties resulting from the electrodeposition conditions, should prove helpful

in the electrochemical fabrication of CdTe devices.
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Nomenclature
a; surface activity of component i
. . . mol
c; concentration of species 1,
cem3
ct bulk concentration of species 1, mol
, em?3
. . . mol
C.raf reference electrode compartment concentration of species i, p—
. . .em?
D, diffusion coeflcient of species ¢, —
e symbol for an electron
E electrode potential relative to the reference electrode, V
7/ F/RT, V-1
) C
F Faraday's constant, 96487 —————
equivalent
i cell-current density, mA
cm?
i partial current density for reaction {, —-
em?
kg, anodic rate constant of reaction !
k.4 cathodic rate constant of reaction
M; symbol for chemical formula of species i
n number of electrons in reaction !
Py, hydrogen partial pressure, atm
T cell ohmic resistance, ! —cm?
. J
R universal gas constant, 8.314 ————
mol — K

RSAT relevant surface-activity thickness, cm



ﬁact

B
S

1562

stoichiometric coefficient of species i
time, s
absolute temperature, K

standard electrode potential for reaction i, V

cm
S

normal velocity component to a rotating disk electrode,

molecular mole fraction of species
atomic mole fraction of species i

normal distance from the electrode surface, ecm

. J
interchange energy, ol

degree of CdTe dissociation at Zp, = ZT¢q = 0.5
symmetry factor for reaction !

Levich diffusion layer thickness of species i, cm

- s . cm
kinematic viscosity,

kg

solvent mass density, 3
cm

ol

L. . m
species ¢ molar density, —5
cm

L

disk rotation speed, radian_
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Optimization Program for the Codeposition of Cd and Te

program FCT (input,output)

This program fits the three rate constants, three symetery
factors, and the degree of dissoclation of CdTe in the
deposit for an equimolar composition of Cd and Te.

The vector xguess contains the first guesses of

these parameters. The logarithms of the rate constants
are used in the optimization routine.

" xguess(l)=rke(l)
xguess(2)=rkec(2)
xguess(3)=b(1l)
xguess(4)=b(2)
xguess(5)=betl=bet2
xguess(6)=rke(3)
xguess(7)=b(3)

The program CT is used to- predict the electrode .
potential. In this program, CT is used as a
subroutine. The description of CT is given below.

The library routine LMDIF1l is used to mimimize the sum
sum of m nonlinear functions in n variables by a
modification of the Levenberg-Marquardt algorithm.

A general least-squares solver (LMDIFl) is used.
Subroutine fcn calculates the functions. The Jacobian

is calculated by a foward-difference approximation.
[Garbow, Hillstrom, and More, Argonne National Laboratory,
March 1980]

subroutine CT

Nov. 5, 1984

This subroutine changes FNGC in order to model the
CdTe system. The changes in FNGC allow for the
RAS model to be used instead of the NRTL model.

To incorporate these modifications, the following
changes are made:

1. The read statements are changed.

2. The print statements are changed.

3. The common statements are changed.

4. Subroutine act is changed. The weighting
of all monolayers within the RSAT is set
equal to unity. This 1s equivalent to
prop >> 1 in FNGC.

common a(3),ac(3),alphl,alph2,b(3),betl,bet2



(2]

o o0oo0n0n0~non

10-

15

20

common c(3),cf(3),cg(3),csf(3)

common d{3),den(3),densol,depth,dimcsf(3),e,eq(3),eref
common fa,fitot(3),fr,ichose,n,ncom,op(3)

common p,pi2,pi(3,2000),pmax,r,rka(3),rke(3),rsat
common s(3),t,tcyc,ts

common v,x1,x2,x(3),xitot(3)

The next two common statements are needed only for FCT
and fcn.
common /one/ ncyc,nopt,pmin,t2,t3,tprint
common /two/ jpr,vexp(50)
dimension fvec(50),iwa(7),wa(435),xguess(7)
external fcn
read 5, ncyc
format(15x,110)

read 10, densol
read 10, eref
read 10, pmax
read 10, pmin
read 10, r
read 10, rsat
read 10, t2
read 10, t3
read 10, tprint
read 10, ts
format(15x,el0.3)

read 15, (c(1),i=1,ncom)

read 15, (d(i),i=1l,ncom)

read 15, (den(i),i=1,ncom)

read 15, (eq(i),i=1,ncom)

read 15, (s(i),i=l,ncom)
format(l5x,el0.3,2x,el10.3,2x,el10.3)

The optimization parameters are now entered.
tol is the error tolerance.
m is the number of data points.
nparm is the number of parameters to be fit.
lwa is (m*nparm + S*nparm + m) normally.
read 20, m
read 20, nparm
lva=m*nparm + 5*nparm + m

format(15%,110)

read 25, tol

read 25, (xguess(i),i=1,nparm)

The logrithms of the rate constants are optimized.
xguess(l)=aloglO(xguess(1l))
xguess(2)=aloglO(xguess(2))
xguess(6)=aloglO(xguess(6))

161
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format(1l5%,el0.3)

read 30, (vexp(i),i=1,m)
format(15x,£f10.3)

The next statement pertains to the print out.

jpr=0

The variable nopt 1s a counter for the optimization routine.
nopt=0

END OF DATA ENTRIES

CCCCCCCCCCCCCCCCCCCCCLcLCCcecCCeCLceecLeeececececececeecceecccececceecceceecceeeccceccee

[}
(o4

1000

c

* % % % F X ¥ F* ¥

Call for parameter fit.

call 1mdifl(fcn,m,nparm,xguess,fvec,tol,info,iwa,wa,lwa)

fnorm=enorm(m, fvec)

Print results.

jpr=1

call fen(m,nparm,xguess,fvec,iflag)

xguess(1l)=10.%*xpguess(l)

xguess(2)=10.**xguess(2)

xguess(6)=10.**xguess(6)

print 1000, fnorm,info,(xguess(il),i=1,nparm)

format(/5x,#Final L2 norm of the residuals = #,£15.7 //

5x,#Exit parameter = #,2x,110 //
5x,#Final approximate parametersi# //
5x,#xguess(l), rkec(l) #,e15.8 /
5x,#xguess(2), rke(2) #,e15.8 /
5x,#xguess(3), b(l) #,£15.12 /
5x,#xguess(4), b(2) #,£15.12 /
5x,#xguess(5), bet #,£15.12 /
5x,#xguess(6), rkc(3) #,e15.8 /
5x,#xguess(7), b(3) #,£15.12)

[N I O | B I

stop
end

CCCCCCCCCCCCCCCececeeecceeceeceeecececcececececceceececceececececeeeceeccecececceccee

[od

[

subroutine fcn(m,nparm,xguess,fvec,iflag)

dimension fvec(50),xguess(7)

common a(3),ac(3),alphl,alph2,b(3),betl,bet2

conmon ¢(3),cf(3),cg(3),csf(3)

common d(3),den(3),densol,depth,dimesf(3),e,eq(3),eref
conmon fa,fitot(3),fr,ichose,n,ncom,op(3)

common p,pi2,pi(3,2000),pmax,r,rka(3),rkc(3),rsat
common s(3),t,tcyc,ts

common v,x1,x2,x(3),xitot(3)

common /one/ ncyc,nopt,pmin,t2,t3,tprint
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common /two/ jpr,vexp(50)
sumfv=0.

The constraints (walls) are placed on the problem now.
if(xguess(l).ge.~100.)2,2010
if(xguess(l).1le.100.)3,2010
if(xguess(2).ge.~100.)4,2010
if(xguess(2).1le.100.)5,2010
if(xguess(3).ge.0.)6,2010
1f(xguess(3).le.1.)7,2010
1f(xguess(4).ge.0.)8,2010
1f(xguess(4).1le.1.)9,2010
if(xguess(5).ge.0.)10,2010
1f(xguess(5).1e.0.5)11,2010
1f(xguess(6).ge.-100.)12,2010
if(xguess(6).1e.100.)13,2010
1f(xguess(7).ge.0.)14,2010
if(xguess(7).ge.l)go to 2010

The logarithms of the rate constants were used in the
optimization routine.

xguess(1)=10.**xpuess(1l)

xguess(2)=10.**xguess(2)

xguess(6)=10.* *xpuess(6)

Define constants.
£fr=38.9442
£fa=96487.0
p12=3.141592654*%2

The program variables are set equal to the vector xguess.
rkc(1l)=xguess(l)
rka(l)=rkc(l)*exp(-eq(l)*fr*.529)
rke(2)=xguess(2)
rka(2)=rkc(2)*exp(+eq(2)*£fr*.403)
b(1l)=xguess(3)

b(2)=xguess(4)

betl=xguess(5)

bet2=betl

rkc(3)=xguess(6)

rka(3)=rkec(3)

b(3)=xguess(7)

The next statement relates alpha, the energy of interaction
parameter, with beta, the degree of dissociation parameter.
The reference given in suboutine act should be consulted
for questions.

alphl=-4963.%alog(betl**2,/(3.57e~18%(1l.~betl1**2,)))
alph2=alphl
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The substrate mole fractions are set and the diffusion
parameters are calculated.
do 20 i=1l,ncom

a(i)=d(1)/(s(i)/.89298)%*2

continue

The total cycle time tl is
tl=t2+t3

Initialize counters.

iter and kcount are used in order that the number of time
steps per cycle need not be equal to m, the number of
experimental data points to be optimized per cycle.

k=0

iter=int(tl/ts)/m

kcount=iter-1

Start the programc....
n=0
t=0.0

Obtain the initial surface activities.
call act

Print the output—-column headings.
print 80
format(3x,#time#,b4x,ftot cur#,éx,#cur 1#,5x,#cur 2#,5x,
fcur 3#,4x,#rsat x1#,4%,#trsat x2#,4x,#tot x1#,
4x,ittot x2#,4x,#tot x3#,4x,#depth#/)
print 90
format(3x,#time#,4x,#voltage#,3x,#overpotl#,2x,#foverpot2#,
2x,#overpot3#,2x,#dimesfl#,3x,#dimesf2#,3x,#dimecsf3#,
3x,#gross x1#,2x,#gross x2#,2x,#rsat acl#,2x,
ftrsat ac2#/)

ntot=ncyc*int(tl/ts)
do 1000 n=1,ntot
t=float(n)*ts

The applied current is now obtained.

tcyc=amod(t,tl)

For linear sweep chronopotentiometry (LSC), ichose=1
For pulsed current chronopotentiometry (PCC), ichose=2
1f(ichose.eq.2)go to 150

LSC
if(teyc.le.t2)go to 120
p=(pmin-pmax)/t3 *(tl-tcyc) + pmax
go to. 160 ' '
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p=(pmin-pmax)/t2 *tcyc + pmax
go to 160

PCC
continue
if(teyc.le.t2)go to 155
p=pmin
go to 160
p=pmax

continue

The current independent functions cf(i) and cg(i)
are now obtained for both components.
call conc

The electrode potential is now found.
call genkin

The results are now printed.
if(amod(float(n),tprint).ne.0.)go to 900
print 200, t,p,pi(l,n),pi(2,n),pi(3,n),x(1),
x(2),xitot(l),xitot(2),xitot(3),depth
format(x,£f8.4,x,4(£9.4,x),5(£9.6,x),el10.4)
print 201, t,v,op(l),0p(2),0p(3),dimesf(1l),dimesf(2),dimesf(3)
,X1,x2,ac(1),ac(2)
format(x,£8.4,x,4(£f9.5,x),5(f9.6,x%),e9.2,x,e9.2/)

The relevant surface activities, mole fractions, and

the deposit thickness are now found.

continue

call act

if(t.le.float(ncyc-1)*tl)go to 1000

kcount=kcount+l '

1f(kcount.lt.iter)go to 1000

k=k+1

fvec(k)=vexp(k)-v

sumfv=sumfv + sqrt(fvec(k)**2)

if(jpr.eq.1l)print 950, k,t,p,v,vexp(k),fvec(k)
format(x,13,x,4(£10.5,x),£f10.5)

kcount=0

if(k.eq.m)nopt=nopt+l

{f(k.eq.m)print 960, (xguess(i),i=1,nparm),sunfv
format(x,2(el5.8,x),2(£f12.9,x),el2.6,x,el15.8,x,f12.9,x,£83.5)

if(k.eq.m)sumfv=0. :

cccececeeeeceeccececececeeececececececcecececececececeeccec
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c
c 970

The next three lines can be used to stop the program
after one interation.
if{nopt.eq.l)print 970, nopt

format(x,/#STOP, nopt= #,14)
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1000

c
2010

2020

c
2030

2040

Cc

if(nopt.eq.l)stop

continue
go to 2030

do 2020 k=1,m
fvec(k)=10000.

continue
go to 2040

xguess(l)=aloglO(xguess(l))
xguess(2)=aloglO(xguess(2))
xguess(6)=aloglO(xguess(6))

continue

return
end
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subroutine conc

This program calculates the concentration functions

cf(4) and cg(i). The surface concentration can then

be obtained by c(surface)=cg(i) + pi(i,n)*cf(i).

Nisancioglu and Newman®s current-step solution

and the Sand equation, are used aloug with

the method of superposition to solve for the

transient, convective mass transfer.

[Nisancioglu and Newman, J. Electroanal. Chem., 50(1974)23-39]

common
common
common
common
common
common
common

a(3),ac(3),alphl,alph2,b(3),betl,bet2
c(3),c£(3),cg(3),esf(3)
d(3),den(3),densol,depth,dimecsf(3),e,eq(3),eref
fa,fitot(3),fr,ichose,n,ncom,op(3)
p,pi2,p1(3,2000),pmax,r,rka(3),rke(3),rsat
s(3),t,tcyc,ts

v,x1,x2,x(3),xitot(3)

dimension con(10),eig(10)

pie=3.141592654

con(l)=.663516066
con(2)=.081564022
con(3)=.034457046

con(4)=

.01962199

con(5)=.0128965
con(6)=.0092267
con(7)=.0069829
con(8)=.0055048



15

16

20

25

26

30

35

36

con(9)=.0044645
con(10)=.0037089

eig(1)=2.58078493
eig(2)=12.3099728
elg(3)=24.4331401
eig(4)=38.3054830
eig(5)=53.5740271
e1g(6)=70.0220380
eig(7)=87.5010784
eig(8)=105.902059
eig(9)=125.140833
eig(10)=145.15016

do 500 i=1,ncom
The function cf(i) is now obtained.
w=a(l)*ts
if(w.ge.0.01)go to 15
cf(1)=2.0/(eq(L)*fa) *sqrt(ts/(pile*d(1)))
go to 20
cf(1)=0.0
" do 16 j=1,10
cf(L)=cf(1) + con(j)*exp(—-eig(j)*w)
continue '
cf(1)=s(1)/(eq(i)*fa*d(4i)) *(1.0 - c£(1)/.89298)
continue

The function cg(i) is obtained here.
cg(1)=0.0
if(n.eq.l)go to 110
do 100 k=1,n-1
w=a(i)*ts*float(n-k+1l)
1f(w.ge.0.01)go to 25
w=pi2%d(1)/(4*s(i)**2) *ts*float(n—k+1)
cgl=1.0 - 4,0*sqrt(w)/pie**1.,5
go to 30 .
cgl=0.0
do 26 j=1,10
cgl=cgl + con(j)*exp(-eig(j)*w)
continue
cgl=cgl/.89298
w=a(1l)*ts*float(n-k)
1if(w.ge.0.01l)go to 35
w=pi2*d(1)/(4*s(1)**2) *ts*float(n-k)
cg2=1.0 = 4.0*sqrt(w)/pie**1.5
go to 40
cg2=0.0
do 36 j=1,10
cg2=cg2 + con(j)*exp(~eig(j)*w)
continue
cg2=cg2/.89298

167



168

40 cgk=pi(i,k)*(cgl - cg2)
cg(i)=cgk + cg(i)
100 continue
110 cg(L)=c(i) = s(i)*cg(i)/(eq(L)*fa*d(1))
500 continue
c
return
end
c
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c
subroutine genkin

This subroutine uses Butler-Volmer kinetics to calculate the
electrode potential. The value of e calculated by this sub-
routine is not the electrode potential v. v=e-eref+p*r
where eref is the potential difference between the reference
electrode and a SHE and r is the cell resistance.

00600 0n0n

common a(3),ac(3),alphl,alph2,b(3),betl,bet2

common c(3),cf(3),cg(3),ecsf(3)

common d(3),den(3),densol,depth,dimcsf(3),e,eq(3),eref
common fa,fitot(3),fr,ichose,n,ncom,op(3)

common p,pi2,pi(3,2000),pmax,r,rka(3),rkc(3),rsat
common s(3),t,tcyc,ts '

common v,x1,x2,x(3),xitot(3)

dimension q(3,3),z(7,3)

do 20 i=1,ncom
q(1,1)=(1.0-b(1))*eq(1)*fr
q(2,1)=-b(1)*eq(L)*fr
q(3,1)=(1.0 = 2.0*%b(1))*eq(i)*fr

z(1,1)=rka({)*ac(l)
z(2,1)=rke({)*cg(i)/densol
2(3,1)=1.0/(eq(i)*fa)
z(4,1)=rkc(i)*cf(i)/densol
z(5,1)=2z(1,1)*(1.0 = b(i))*fr/fa
2(6,1)=2(2,1)*b(1)*fr/fa
z(7,1)=2z(1,1)*2(4,1)*eq(1) *fr

20 continue

If n=1 or the Newton-Raphson becomes unstable,
the bisection method is used to find a bound
on e. Then the Newton-Raphson is used to obtain e.
1f(n.gt.l)go to 45
25 el=2.
_e2==3,
do 41 k=1,50
em=(el+e2)/2.0

N0 o0onaon



30

35

40

41

42

44
45

50

100

105

110

169

hbil=-p
hbim=-p
do 30 i=1,ncom
hbil=hbil + (z(1l,{)*exp(q(l,i)*el) - z(2,1)*
exp(q(2,1)*el))/(z(3,1) + z(4,1)*exp(q(2,1)*el))
hbim=hbim + (2(1,i)*exp(q(l,i)*em) - z(2,1)*
exp(q(2,1)*em))/(z(3,1) + z(4,1)*exp(q(2,1)*em))
continue
1if(hbil*hbim.gt.0.0)go to 35
el2=en
go to 40
el=em
enew=(el+e2)/2.0
change=abs((abs(enew) -~ abs(em))/enew)
if(change.le.0.01)go to 44
continue
If the next statement is executed, convergence was not achieved.
print 42, em
format(2x,#No convergence. em=#,el0.4)
stop

The Newton-Raphson is now started.
e=enew
do 100 j=1,100
h=-p
dh=0.0
do 50 i=1,ncom
h=h + (z(1,1)*exp(q(l,1)*e) - z(2,i)*exp(q(2,i)*
e))/(z(3,1) + z(4,1)*exp(q(2,1)*e))
dh=dh + (z(5,1)*exp(q(l,i)*e) + z(6,1)*exp(q(2,i)*
e) + z(7,1)*exp(q(3,1)*e))/(2(3,1) + z(4,1)*
exp(q(2,1)*e))**2
continue
enew=e - h/dh
change=abs((abs(enew) = abs(e))/enew)
if(change.ge.0.5)go to 25
e=enew
print 99, j,e
format(1x,13,2x,£15.10)
if(change.le.0.0005)go to 110
continue ‘

If a transfer to 110 was not made, convergence was not

achieved.
print 105, e

format(lx,#No convergencef,2x,£f10.5)
stop

The individual currents are now obtained.

do 120 {=1,ncom
pi(i,n)=(z(1,1)*exp(q(l,i)*e) - z(2,1)*exp(q(2,1)*e))/

e iy 2k ot g et
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c

120

125

130

170

(z(3,1) + z(4,1)*exp(q(2,1)*e))
continue

The surface concentration csf(i), the dimensionless
surface concentration dimcsf(i), and the surface
overpotential op(i) of each species are now calculated.
do 130 i=1,ncom

csf(i)=cg(i) + pi(i,n)*cf(1)

1f(c(i).eq.0.0)go to 130

dimesf(i)=csf(i)/c(1)

if(ac(i).ne.0.0)go to 125

op(1)=-9.999999

go to 130

op(i)=e - 1.0/(eq(i)*fr)* alog(rkc(i)*csf(i)/(

densol*rka(i)¥*ac(i)))
con}inue

The eletrode potential relative to a specified reference
electrode is now obtained.
v=e - eref + p*r

return
end
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subroutine aci:

This subroutine determines the surface activities
of the components in the electrodeposit. The RAS
activity model is used on each thickness of deposit
equivalent to the RSAT. Monolayers below the RSAT
have no influence on the surface composition.
[Jordan, Metallurgical Transactions, 1(1970)239.]

common a{(3),ac(3),alphl,alph2,b(3),betl,bet2

common ¢{(3),cf(3),cg(3),csf(3)

common d(3),den(3),densol,depth,dimcsf(3),e,eq(3),eref
common fa,fitot(3),fr,ichose,n,ncom,op(3)

common p,pi2,pi(3,2000),pmax,r,rka(3),rkc(3),rsat
common s(3),t,tcye,ts

conmon v,x1,x2,x(3),xitot(3)

dimension flux(3)

rgas=8.314
temp=298

if(n.ge.l)go to 10

Calculate the initial surface activities if t=0.0

R
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depth=0.0
do 5 i=1,3

fitot(i)=0.0
x(1)=0.
xitot(i)=0.
continue

x1=0.
x2=0.
go to 180

The variables are initialized.
do 15 i=1,3

flux(i)=0.0
x(1)=0.0
continue

thick=0.0

Starting with the last time step, the rsat composition
is calculated.
do 100 j=1,n

k=n+1-j

The deposit thickness for each time step is now found.
Cathodic currents are taken as negative in this

work. The calculation of the thickness for

each time step is approximate since it is assumed

that the equilibrium constant for Cd + Te = CdTe is
far to the right. This is a valid approximation,

especially since we only want an estimate of the thick-

ness. Later, when the depth of the total deposit is
calculated, a more rigoress treatment is used.
Amagats law 1Is used when calculateing the thickness.

fluxln=pi(l,k)/(eq(l)*£fa)
flux2n=pi(2,k)/(eq(2)*fa)

ccceeececeececeeceecgeeececceceeccececececce
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22

print 22, j,fluxln,flux2n
format (x,# j= #,115,/,
x,#fluxln= #,£15.13,/,
x,#flux2n= #,£15.13)

ccgeeeeeeececceececeeeceececeececceeccece

1f(fluxln.1t.0.)go to 24
1f(flux2n.1t.0.)go to 23

Cd and Te dissolved.

tflux3=0. '

tflux2=£flux2n

tfluxl=£fluxln

go to 261 -

Cd deposited and Te dissolved.

171
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24
c
c
25
c
c
26
c
c
c
261
27

172

tflux3=0.

tflux2=£f1lux2n
tfluxl=fluxln

go to 261
if(flux2n.1t.0.)go to 25
Te deposited and Cd dissolved.
tflux3=0.

tflux2=flux2n
tfluxl=fluxln

go to 261

Both Cd and Te deposited.
1if(flux2n.lt.fluxln)go to 26
More Te deposited than Cd.
tflux3=flux2n
tfluxl=fluxln-flux2n
tflux2=0.

go to 261

More Cd deposited than Te.
tflux3=fluxln
tflux2=flux2n-fluxln
tflux1=0.

thickn is the thickness per time step n. If thickn
is greater than the rsat, the program is halced.
thickn==ts*(tfluxl/den(l) + tflux2/den(2) +
tflux3/den(3))
if(thickn.le.rsat)go to 28
print 27, n,t,thickn
format(x,#The time step is too large.#,/,
X, #n= #,115,/,
X, #t= #,£15.9,/,
x,#thickn= #,el5.8)
stop
thick=thick + thickn
flux(l)=£f1lux(l) + fluxln
flux(2)=flux(2) + flux2n
ftot=f1lux(l) + flux(2)

ccceeeeeececeeceecececececececcececcecceccecece
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print 29, tfluxl,tflux2,tflux3,flux(l),flux(2),

thickn, thick
format(x,#tfluxl = #,£f15.13,/,
x,#tflux2 = #,£15.13,/,

x,ftflux3 = #,6£15.13,/,
x,#£flux(l)= #,£15.13,/,
x,#flux(2)= #,£15.13,/,
x,#fthickn = #,el15.8,/,
x,#thick = #,el5.8)

cceeeeeeceeeecceecececeeececeecceccececec
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c The rsat composition is calculated if thick => rsat
c or 1f j=n and we have scanned down to the electrode
c substrate.

if(j.eq.n)go to 36
if(thick.lt.rsat)go to 100
36 x(1)=flux(l)/ftot
x(2)=f1lux(2)/ftot
Due to the numerical solution of this problem,
sometimes a very small, negative mole fraction
or a mole fraction slightly in excess or unity
can result. This is corrected below.
1f(x(1l).gt.1.)x(1l)=1.
1£(x(1).1t.0.)x(1)=0.
1f(x(2).gt.1.)x(2)=1.
1£(x(2).1t.0.)x(2)=0.
cceceeceeecceeceeccecceeeecececee

0000

c
c print 37, x(1),x(2)
¢ 37 format(x,#x(1)= #,£15.10,/,
c * x,#x(2)= #,£15.10)
c
cecececececeeccececceecececeecececee
go to 120
100 continue

0O 0000

phases present are Te (1), Cd (2), and CdTe (3).
120 ftotal=0.0
do 170 i=1,2
fitot(i)=fitot(1) + ts*pi(i,n)/(eq(i)*fa)

The relevant surface composition has now been obtained.
total deposit mole fractions and the deposit depth are now
obtained. It is assumed that Amagat”s law applys. The three

173

The

c Because of the finite time steps, sometimes a very small

postive value of fitot(i) can result. 'This is physically

c unrealistic as it implys the original substrate dissolved.

1f(fitot(1i).gt.0.0)fitot(1)=0.0
ftotal=ftotal + fitot(i) '

170 continue
do 175 i=1,2
xitot(i)=fitot(1)/ftotal
175 continue

if(xitot(l).gt.0.5)alph=alphl
if(xitot(l).gt.0.5)bet=betl
1f(xitot(l).1t.0.5)alph=alph2
if(xitot(l).1t.0.5)bet=bet2

alph=alph/(rgas*temp)

pact=sqrt(l. - 4.*xitot(l)*xitot(2)*(l. — bet**2.))
xl=xitot (1)

x2=xitot(2)

xitot(l)=(x1-x2+pact)/(l.+pact)
xitot(2)=(x2-xl+pact)/(l.+pact)
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xitot(3)=1l.-xitot(l)=-xitot(2)

if(xl.le.0.)xditot(1)=0.

if(x2.1e.0.)xitot(2)=0.

1f(xitot(3).eq.l.)xitot(3)=0.

depth==ftotal*(xitot(l)/den(l) + xitot(2)/den(2) +
xitot(3)/den(3))

The activities are now obtained.
1f(x(l).gt.0.5)alph=alphl $ bet=betl
if(x(l).le.0.5)alph=alph2 $§ bet=bet2
alph=alph/(rgas*temp)

pact=sqrt(l. = 4.*x(1)*x(2)*(1. - bet**2.))

ac(l)=(x(l) - x(2) + pact)/(l. + pact)*exp(alph*x(2)**2,)
ac(2)=(x(2) - x(1) + pact)/(l. + pact)*exp(alph*x(1)*%*2,)

Due to round—-off errors, sometime a very small, negative value
of activity can result. This is corrected below.
if(ac(l).1t.0.)ac(1)=0.

if(ac(2).1t.0.)ac(2)=0.

1f(x(1).1le.0.)ac(l)=0.

1£(x(2).1e.0.)ac(2)=0.

The next line'would be used to calculate the activity of

CdTe. For this program, ac(3) is the activity of hydrogen.
ac(3)=(l. - pact)/(l. + pact)*exp(alph/2.*(1l. = 4.*x(1)*x(2)))
ac(3)=1.

CCCCcceeeeeeceeeeceeeceececeeccececcee
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181

print 181, ac(l),ac(2),ac(3)

format(x,#ac(l)= #,el5.8,/,
x,#ac(2)= #,el15.8,/,
x,#ac(3)= #,el5.8,/)

1f(n.eq.10)stop

[of ¥ od of af oS o of of of e o af of o o of of e o of of of of of of oY ol of oJ of o]

[

[o

return
end
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2

3

2
1.020e+03
0.000e+00
=3.000e+01
0.000e+00
0.000e+00
1.000e~09
5.000e-01
5.000e-01
1.000e+00
1.000e-02
1.040e+00
9.600e-10
4.,900et+04
4.000e+00
1.580e=-05
50

7
1.000e~-10
1.000e-01
3.000e-05
'1.000e-01
1.500e-01
5.500e-02
1.500e-07
5.000e-01
.073

.055

.039

.024

.013

.009
-.005
-.016
-.026
-.036
~.045
-.053
-.061
-.066
-.069
-.071
-.073
-.074
-.075
-.076

1.060et+02
3.600e-10
7.690e+04
2.000e+00
1.130e-05

[rke(1)]
[rke(2)]
(b(1)]
(b(2)]
[Eeta]
[rke(3)]
[b(3)]

The next 50 points are for run
(2500 rpm)

#9218412.

3.160et+02
9.312e-09
2.580et+04
1.000e+00

3.359e-05 [2500 rpm]
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-.079
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-.052

-.038
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Chapter 4.

‘Triangular Current-Sweep Chronopotentiometry
at Rotating Disk and Stationary, Planar Electrodes

Cyclic chronopotentiometric and chronoamperometric techniques
have been shown to be particulary useful in the study of electrode reactions.
(1) In the study of these electrochemical methods, the question arises: Can
one more conveniently obtain kinetic, thermodynamic, and transport infor-
mation by controlling the potential or the current? In chronoamperometric
experiments, the poteptial is a programmed function, and the current is a
dependent variable. This method has the advantage of using the reversible
cell potential, an easily calculated value, as a reference point. In chronopo-
tentiometric experiments, the current is a programmed function, and the
potential is a dependent variable. The relevant difiusion-limited current and
zero current represent two references.

Potential-controlled processes are usually more difficult to describe
mathematically. In this case, a kinetic expt;ession relating the cell current,
electrode potential, and ionic surface concentrations of the reactant and
product species must be introduced as a boundary condition to link the con-
trolled potential to the mass-transport problem. For‘ current-controlled
processes, on the other hand, the mass-transport problem avoids kinetic
considerations, provided only one electrochemical reaction takes place and
the rate of reaction is uniform along the electrode surface.

In this work, we develop the required mass-transfer solutions for tri-
angular current-sweep chronopotentiometry at a rotating disk electrode

(RDE) and at a stationary, planar electrode (SPE). The solutions are shown to
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converge rapidly and are easily implemented. Analogous solutions for tri-
angular potential-sweep chronoamperometry {cyclic voltammetry) do not
exist for electrode processes with kinetic resistance. Andricacos and Ross
have published solutions for triangular potential-sweep chronoamperometry
at an RDE (2) and at an SPE (3), in the absence of kinetic resistance. Their
elegant mathematics yielded solutions more cumbersome than thoée
presented in this work. In a later publication (4) they compared their models
with experimental results for the electrodeposition of silver, a reversible
system. In tvhe present work, the kinetic processes are easily addressed;
because of this, we are able to use a multidimensional optimization routine
to fit experimental data by adjusting appropriate physicoéhemical con-
stanis.

The effects of double-layer charging, migration, and a non-uniform
potential field are neglected in this treatmént. The experiments reported in
this work were designed to minimize these effects, to demonstrate the appli-
cability of the theoretical results, and to study the technologically important

cadmium deposition process.

Triangular Current-Sweep Chronopotentiometry at an SPE
Fick's second law, the diffusion equation, is used to describe the tran-

sport of reactants and products:

aci 320‘
—_— =D, — 4-1
3t D ay? [4-1]
The initial condition is uniform concentration,
ci(0.y) =cf . [4-2]

and the two boundary conditions are-bulk concentration of species far from
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the electrode,

ci(to) =cf | [4-3]

and Faraday’s law relating the concentration gradient at the electrode sur-

face to the programmed current function

dcy(t,0) _ s¢ift)

ay - nFDi [404]
The electrode reactiori is written as
ko
ne~ > VsiM* . [4-5]
K 1

For s; >0, the species is an anodic reactant. For s; <0, the species is a
cathodic reactant.

The triangular-sweep function i(t) can be expressed by a Fourier series

(5)
. PN E - L.
i(t) =i+ (ig—1i )[—-—— -,-—cos——] 4-6
)=ir+lr -4 =13, 52 L [4-6]
This programmed current density is depicted in Fig. 4-1.
Using Duhamel's theorem, Eqgs. [4-1] - [4-4] can be replaced by
t 1
vl —cF = Ts* JiQ)(E =2) Zda [4-7]
- i = - -— . -
nF ﬂ'D( 0 _

This equation, derived in Appendix 4, has appeared numerous times in the
SPE chronopotentiometry literature. (6-11) Two reviews (12,13) also cover
the SPE literature.

After Eq. [4-8] is substituted into Eq. [4-7] and the required integration
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iy

CURRENT DENSITY

i

DIMENSIONLESS TIME T/(2L)

Figure 4-1. Periodic current source. For the experiments in this work, iy =0
and iy = -1.53 mA/cm?2.
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is performed, the following solution is obtained:

cf“f  slip-i) (L )& i t )l 8 i=
& T T nRs l"Df]2 [“ ' [T]Z—EE..

L

cos [ﬂ]cp (Vajt/r )+ sin[ﬂ]SF (Vajts1 ) [4-8]

The functions Cp and Sp are Fresnel integrals. They are tabulated, and the

following expressions can be used to evaluate them: (14)

Crlz) = 3+ £ (2)sin( 3-22) - g (z)eos(F-2?)  [49]
Se(z) = 5 =1 ()eos(5-2%) — g (@)sin(F-=?) | [4-10]
1(z) = 1+ 0.926z +e(z) [4-11]

2 + 1.792z + 3.104z2

1
- + _
9(=) = 3T 142z v 492z v 6.870a° ¢ F) [4-12]

| e{z)] = 0.002

For values of t greater than L, Cp and Sp rapidly approach % . The concen-

tration expression can be further simplified since a relatively accurate
answer is obtained if only the j =1 term is kept in the series. This is shown
in Fig. 4-2, where a plot of the surface concentration is given. With these

approximations, and for i; = 0, the concentration expression simplifies to

(& —cfvfnF (rD; L t - 2\/5 ¢ ) +
Seip { L;]z = [r}z -3 [cos [%]4— sm[%} . [4-14]
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(c& — el )nF (nD,
Setig

- DIMENSIONLESS TIKE T/7(2L)

Figure 4-2. The dimensionless concentration for the SPE. The periodic solu-
tion is represented by the wavy, solid curve. The dotted curve results if only
the j =1 term is retained in the series. The solid, monotonic curve

represents the SPE solution if the current were stepped to ig/2 . For this
plot, iy = 0.
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Equation [4-14] represents a satisfying result of this work. The relatively
cumbersome mathematical description of the SPE system has been
simplified to yield a compact and accurate solution for the surface concen-

trations. It is evident that the concentration oscillates about the value

i
corresponding to a current step to —g—, the average current density for the

process.

Triangular Current-Sweep Chronopotentiometry at an RDE

Current-controlled electrolysis at an RDE has received a great deal of
attention. (15-24) In a general treatment for the RDE system incorporating
both radial and axial variations in concentration and potential, dimension-
less groups arise which contain the disk radius, rotation rate, current den-
sity, and other transporf. and kinetic parameters. (17) Experiments can be
easily constructed to remove radial effects (18), as can be seen by an-
analysis of the appropriate dimensionless groups. Fdr experimental condi-
tions consisting of a small disk, low reactant and product concentrations,
and a well supported electrolyte, a one-dimensional treatment (excluding
radial variations) can be used to analyze rigorously the RDE system. In the
present work, a one-dimensional convective-diffusion equation is used to

model the transport of the reactants and products:

-] Cq a Cy a 2C¢

—— — —— 4.-‘15
at + vll ay Di ayg [ ]
The velocity normal to the disk surface is given by (21,22)
3 _1
v, = -0.51023w2 v Zy? . [4-18]

The initial and boundary conditions are given by Eqgs. [4-2], [4-3], and [4-4].
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The electrode reaction is given by Eq. [4-5], and the currént density is
expressed in Eq. [4-8].

To obtain a solution, an integral analogous to Eq. [4-7] is required. In
their classic treatment, Rosebrugh and Lash Miller (15) obtained such an
integral for the case of pure diffusion, which can be modeled by Egs. [4-1]

(the diffusion equation), [4-2], [4-4], and the boundary condition

cg(y.6¢) =cf . | [4-17]
where §; represents the thickness of a stagnant diffusion layer. Pesco and
Cheh have made use of this approach to model periodic-current chronopo-
tentiometry at an RDE. (20)

The convective-diffusion equation, Eq. [4-15], subject to the conditions
given by Egs. [4-2], [4-3], and [4-4] can be replaced by the following superpo-
sition integral. (19,27)

' % ac,(A0) 3
cy(8:,¢) —c = / ——55-—3-)\—@;,,-(0‘- AN . [4-18]

The new variables are

_ Dt

0, = —, -
3, Yify):
= —_ 18 | _}2 -
G {0.510231/] [w] ' [4-20]
$u = '6% , and f4-21]

Opy =
Fa= [aci(e.o) ' [4-22]

agy
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In contrast to the SPE system, the RDE system has a characteristic
length §;, which is representative of the the region where the concentration
differs from c¢;°; however, the convective-diffusion equation is used to model
the transport, and d; is used only to nondimensionalize the problem. Since
the SPE systemm has no characteristic length, the complete mass-transfer
solution can be displayed in Fig. 4-2 by a single curve. Such a convenient
plot for the RDE system cannot be constructed.

The dimensionléss concentration function @p; results from the flux-
step problem, described by the convective-diffusion equation, along with con-
ditions [4-2], [4-3], and a flux-step for the last boundary condition. The solu-

tion for the flux-step problem is

« k== .
Opy=fe~*dz - ) By Z(&)e ™ %% [4-23]
& k=0

Equations [4~18] and [4-23] result from the work of Nisancioglu and Newman.

The values of B, and b, are given in Appendix 4. At the electrode surface, the

de
eigenfunction Z, is equal to unity. Using Fick's law, the normal gradient —

9

in Eq. [4-18] can be related to the current density i{¢). After combining Egs.

[4-8], [4-18], and [4-23] and integrating, the following expression can be

obtained for the concentrations
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(e —cy)nFD; _ 1, ke - bydy k& &
sG-9 2 2 BA0-eT0 =5 8 nhg, Sl

2 'LH -"LI k=0

jm0 8, im0
bicos I ] 1+ %% —l—] 1T ]—cos I
0r1 5,014 9L :

1
i2lB2 + ﬂ‘l.]z
2 k [eL.i

jmo, b, i,
-Z-— sin ] 1 —e bed 2 Li ] + cos Ak
eLt 074 91,: 014

DL
68

This-solution can be considerably simplified. At the electrode surface,

where 8y ; =

Zy = 1. For i; = 0 and long times, the solution can be further reduced to

y - 2 kak X
Syig 3 e k=0 §=18... ; 4-25
j2lp2+ [_-71"_.]2 [4-25]
01

Jmdy jm Jmd, ]
b, cos + sin
k [OL.i ] [91..;- ] ' [91..(

(o8 —cf*)nFD, 1 1‘[4 4 k= iz 1
-z

As was observed for the SPE system, this solution oscillates about the solu-

i
tion for a current step to ?. the average current density during the pro-

cess.
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The Current-Potential Expression
The most accessible experimental variables are the total cell current
and the potential of the working electrode with respect to a suitable refer-
ence. We shall therefore relate the predicted concentrations to the pro-
grammed current density and the measured potential by a Butler-Volmer

kinetic expression
i _ - 8 - -3 |
n—F--k“e(l ﬂ)ﬂfV];I et —k.e ﬁ"fVI;Ia,‘ t [4-26]

where f = =R—F;,-, a, represents the activity of species i, and

1

V=E+ U,?. - 77-rgff ?si'nflna.;_,.,, —-ir . [4-27]

The bracketed term in Eq. [4-27] represents the open-circuit potential
difference between the reference electrode and a standard hydrogen elec-
trode (SHE). E is the measured potential between the working electrode and
the reference electrode. The last term in Eq. [4-27] accounts for the ohmic
drop between the working electrode and the reference electrode. Therefore,
the potential difference between the working electrode and a SHE, gorrected
for ohmic drop, is represented by V.

For dilute solutions, the activities in Eq. [4-28] can be replaced by con-
centrations. For the discharge of a metal ion (@4, = 1) in a dilute system

with negligible ohmic drop, Eqs. [4-28] and [4-27] can be combined to yield

[4-28]

. cpurf
.’:—szae(l“ﬂ)ﬁfg—kcg‘pnfg [ f ]

Po

The SHE has been taken as a reference, and a first-order reaction has been

assumed. Since a SHE has been assumed, the bracketed term in Eq. [4-27] is
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zero. It should be noted that the concentration overpotential is included in
this treatment since the surface concentration of the discharging metal ion
is used. Equation [4-28] contains two independent kinetic parameters, # and

the magnitude of either k; or k; . The Gibbs free energy of reaction fixes the

. ke
ratio E: .

In this work, the electrodeposition of cadmium from dilute, aqueous,
CdSO4 —K,S0, ;olutions has been chosen to test the viability of the theoreti-
cal model. The deposition of cadmium from a well supported, aqueous elec-
trolyte, a technologically important process, has been the subject of a
number of fundamental studies. (28-39) Furthermore, since cadmium alloys
are also comfnonlj electrodeposited, understanding the Cd?* discharge
behavior is desirable for these processes as well.

Burste;n (39) describes the present state of understanding of the kinet-
ics of the cadmium electrode as follows: "Even in acid-sulfate and per-
chloréte solutions in which the metél does not equilibrate with the oxides,
there is no agreement regarding its mechanism of dissolution.” It is not

clear whether a one-step mechanism,

k.
Cd?* +2e~ > Cd -~ [4-29]
ka
described by Eq. [4-28], or a two-step mechanism, involving a Cd* species,
should be used to capture the salient features of the kinetic behavior.
(29,30,31,32,35,36,37,38)
Since the Cd* species has never been shown to exist as a stable ion in

solution, it is postulated that Cd* is adsorbed at the electrode surface. The
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proposed mechanism is:

ke.1
Cd?*+e~ * Cdiy [4-30]
L %)

Cdty, +e— * Cd [4-31]

This mechanism appears in the metal-deposition literature for cadmium (30)
and other metal/metal-ion systems. (26,32) With our nomenclature, the
current-potential expression for the two-step process, given by Egs. [4-30]

and [4-31], (referred to with subscripts 1 and 2, respectively) is

oZatr
Po [4-32]

ka 1"023 @~Fy~Fe)E - kc lkc 2¢ "8+ BrE

i » :
In writing Eq. [4-32], it is assumed that the time rate of change of the current

is slow enough to allow reactions 1 and 2 to occur at the same rate
(iy=ig= %). since the Cd Jy, ions do not diffuse away from the electrode sur-

face. For this reason, our experiments were conducted at relatively low fre-
quencies. It should be noted that for k 3 >>k,; or k3 <k,,, an apparent

one-step current-potential expression results. We also have

k
AGS = FU? = RT 1nkLl ,and [4-33]
al .
kcz
AGY = FU} = RT In : [4-34]
kaz

and hence
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U® + U§ =—0.806 V, [4-35]

the standard electrode potential for the reduction of Cd?* to Cd. In Egs. [4-
33] and [4-34], the rate constants need not have the same units since the
standard state activities of the products and reactants are also included in
these expressions.

Equation [4-32] has five independent parameters: B8,, fa, k;,. k;2, and
U$. The ratios of the rate constants are fixed by Egs. [4-33] and [4-34]. The
sum U} + U3 is fixed by Eq. [4-35].

Neither Eq. [4-28] nor Egq. [4-32] can be solved explicitly for E. A
Newton-Raphson routine which converges rapidly for each equation is out-

lined in Appendix 4.

Experimental

The experiments described below were designed to illustrate‘the» utility
of triangular current-sweep chronopotentiometry. We have chosen the depo-
sition of cadmium because of its technological importance and because it
offered two key advantages: the\ hydrogeﬁ overvoltage is very high on this
metal, and cadmium ions are not complexed in the aqueous, potassium-
sulfate electrolyte employed in this study.

A 5-mm-diameter, glassy-carbon disk electrode was employed in our-
experiments. Standard metallographic polishing techniques were used to
remove all projections greater than one micron in height. The potential of
the working electrode was measured against a mercury-mercurous sulfate
refgrence electrode. For the RDE experiments, a Pine Instruments ASRP2
rotator was used. The Princeton Applied Research model 173

potentiostat/galvanostat controlled the operation of the cell. An Interstate
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F77 function generator was used with the potentiostat/galvanostat. The data
were stored on a Nicolet 1090A digital oscilloscope and later transferred to
an HP9825 computer.

The electrolyte, a 0.0058 -M —CdS0, / 0.25-M —K,S0, solution, was
prepared from analytical reagent grade chemicals and distillegl water which
was passed through a Culligan water purification unit consisting of an
organic trap, a deionizer, and a microfliter. The specific conductance of the
treated water was 15 Mohm-cm. Nitrogen, first equilibrated with a similar
electrolyte, was bubbled through the cell solution for 1 hour prior to experi-
ments. A nitrogen atmosphere was maintained above the electrolyte during

the experiment. The temperature was maintained at 25°C. Handbook values

kgs) and the kinematic viscos-

were used for the solvent density p, (0.001 om

2
ity v (0.01 9’—:—).

c

, 2
The diffusion coefficient of Cd?*, 3.6 x 10~8 r: , was calculated from

the limiting current curves depicted in Fig. 4-3. The resulting Levich plot is
shown in Fig. 4-4. The line drawn through the points in Fig. 4 was obtained by
the method of least squares; the origin was not included in the linear regres-

sion.

Discussion
We have chosen a Levenberg-Marquardt algorithm to compare and con-
trast the theoretically predicted electrode potentials with the experimen-
tally measured results. One basic algbrithm for finding a minimum is the
method of steepest descent, which goes back to Cauchy and his attempts to

solve the problem of finding a minimum of a real-valued, multivariable func-
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tion by repeatedly finding minima of a function of one variable. Alterna-
tively, the Newton-Raphson algorithm can be used to vary the parameters
until the partial derivatives of the objective function

2 (B thoory — Fie ezperimens)° With respect to the parameters to be optimized
E .

are sufficiently close to zero. The Newton—Raphso; method is often seen to
diverge from the solution, while the method of steepest descent coﬁverges in
an agonizingly slow and computationally expensive fashion. Levenberg (32)
proposed a method to estimate intelligently a damping factor for the
Newton-Raphson routine, while preserving the symmetry of the problem in
order that simplified methods for the solution of linear, simultaneous equa-
tions could still be employed. Marquardt (33) proposed another modification
which allowed a proper scaling of the problem by making use of the standard
deviations of the partial derivatives in the Jacobian. Marquardt used a maz-
imum neighborhoozi method which performs an optimum interpolation
between the Newton-Raphson method and the method of steepest descent.
The Levenberg=Marquardtvroutine we used was written by Garbow, Hillstrom,
and More. {34) Another more recent method, the Simplex algorithm (35,36)
is appealing; however, it does not converge as quickly as a Levenberg-
Marquardt algorithm, which avoids the divergence problems of the Newton-
Raphson without incurring unacceptable losses in speed. Three experi-
ments, each with fifty data points, were used as data bases in the optimiza-
tion program. Typically, the program used less than 500 CP seconds on a CDC
7600 computer. The computer program for the one-step mechanism is listed
at the end of Appendix 4.

Results obtained from the RDE system were used to compare experi-

ment and theory. With this system, natural convection, spherical diffusion,
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and one-micron surface roughness will not be important considerations.
This is less often the case for the SPE system.

After optimizing the two parameters for Eq. [4-28] and the five parame-
ters for Eq. [4-32], we found that the two-step mechanism could not be used
to represent the data better than the one-step mechanism. A number of ini-
tial guesses were attempted to ensure that the fit solution was indeed a glo-
bal minimum. It is unfortunate that we could not prove or disprove the vali-
dity of the two-step mechanism; insteéd. it is shown that over a broad
cathodic potential raﬁge the ’two-step mechanism cannot be used to
represent the data better.

We originally introduced the two-step mechanism to ascertain whether

it could better represent the cusp in the potential-time data shown at

?tL-= 0.25 in Fig. 4-7. Since the data could not be better represented by the

two-step mechanism, and since there is no physical evidence for the preé-
ence of Cd*, we prefer the use of Eq. [4-28], representing the single-step
charge transfer, for the current-potential relation. The optimized resulits,
"however, cannot be used to refute the two-step mechanism because it is pos-
sible that the kinetic constants for the one-step process represent lumped
parameters.

The optimized parameters are:

B = 0.5707

k, =8.991x 10717 —E__
cm”® -8

These parameters can be used to calculate an exchange-current density:
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iy =nFkfk} Pafa (05e) F .

For the pure cadmium eiectrode, acqg = 1. The above equation can be used to

mA

calculate i, = 0.0897 pemrall Vetter has cited (37) values of 8 =0.55 and

1, = 1.5 ;?fz for a similar 0.005-M —CdS0O,/0.8—M —K;S0, electrolyte,
cadmium-electrode system at 20°C. The exch#nge-current densities differ
by an order of magnitude, although the symmetry factors show close agree-
ment.

The kinetic parameters can be used to calculate the appropriate
dimensionless groups to verify the one-dimensional nature of the mass tran-
spprt in the experiments. These calculations were made, and we conclude
that the one-dimensional analysis, stated explicitly by Eg. [4-15], is a correct
representation for this experimental system.

Calculated potential-time curves for the single-step, two-parameter
mechanism are compared with experiment in Figs. 4-5, 4-6 and 4-7. Figure
4-8 displays the surface concentration during the high frequency experi-
ment. The results for the five-parameter model could not be distinguished
from the results for the two-parameter model. The uppermost curve in each
figure represents the potential response which would result in the absence of

kinetic resistance. These results represent the uniform and sustained

periodic state; hence, Eq. [4-25] can be used to obtain the surface concentra-

tions. When %= 0, the current density is i;. For %= 0.5, the current

mA

7 The low-
cm

density is ig. In these experiments, i; =0 and iy = —1.53

frequency results are shown in Figs. 4-5 and 4-6. Both the model and experi-

~ mental results display a pseudosteady state. For the low frequency cases,
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Figure 4-5. Electrode potential. Dotted curve: experimental data. (235 rpm,
0.01 Hz) Lower, solid curve: optimized model prediction. Upper, solid curve:
theoretically calculated potential for no kinetic resistance.
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Figure 4-8. Electrode potential. Dotted curve: experimental data. (392 rpm,
0.01 Hz) Lower, solid curve: optimized model prediction. Upper, solid curve:
theoretically calculated potential for no kinetic resistance.
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Figure 4-7. Electrode potential. Dotted curve: experimental data. (235 rpm,
0.1 Hz) Lower, solid curve: optimized model prediction. Upper, solid curve:
theoretically calculated potential for no kinetic resistance. concentration
during the higher frequency experiment.
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Figure 4-8. Surface concentration. The cgg history during the uniform and
sustained periodic state for the conditions of Fig. 7.
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the concentration c’c‘s’g; is lowest halfway through the cycle, when @ =ig.

Correspondingly, the concentration overpotential has ifs largest magnitude
at mideycle. This is particularly apparent in Fig. 4-5.

The slightly higher frequency results are shown in Figs. 4-7 and 4-8.
Fig. 4-7 has a an asymmetric nature relative to Figs. 4-5 and 4-8 because the

characteristic time L for the current sweep is of the same order of magni-

(]
tude as the characteristic time D_?’ for the mass transport. The correspond-
3 .

ing concentration profile shown in Fig. 4-8 is asymmetric as well.

Conclusions

Convenient mass-transfer solutions have been obtained for triangular
current-sweep chronopotentiometry at rotating disk and stationary, planar
electrodes in the absence of free convection. Because the solutions can be
evaluated efficiently, a numerical multidimensional-optimization routine,
which requires a large number of functional evaluations, was used to com-
pare and contrast the ability of various discharge mechanisms to match
experimental data. Using the rotating disk system, we have examined the
cadmium electrodeposition process. For a single-step, two-electron transfer

mechanism, the optimized exchange-current density (based on the bulk con-

centration of Cd?*) and the symmetry factor are 0.0897 and 0.571,

m
m?

respectively.



Nomenclature

activity

. mol
concentration, ——

. . . cm
diffusion coeflicient,

measured electrode potential, V

symbol for the electron

c

Farraday’s constant, m

current density,
: ¥y om?

exchange-current density, A >
cm

current densities defined in Fig. 4-1, c._l';?

standard free energy of reaction, n:ol '
anodic and cathodic rate constants

one-halif the cycle period, s

symbol for the chemical formula of species i

number of electrons in a reaction

cell resistance multiplied by the disk area, —cm?

: J
universal gas constant, 8'314'mol X
stoichiometric coefficient

absolute temperature, K

time, s
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Po

ref

1,2

203

standard electrode potential, V

electrode potential defined by Eq. 4-27, V
. cm
velocity normal to the electrode surface, —

distance normal to the electrode surface, cm -
charge number
Greek latters
symmetry factor
characteristic length, ecm
dimensionless distance
dimensionless concenf.ration
dimensionless time
dimensionless half-cycle time
the gamma function of 4/3

dummy variable of integration, s

2

kinematic viscosity, cm
3.1415...

solvent density, _kg_s_
cm

angular rotation of the disk, radian

Subscripts
species i
reference electrode compartment

reactions 1 and 2
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Superscripts
surf electrode surface

® far away from the electrode surface
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Appendix 4

Dubamel’s Integral for the SPE
The flux-step (or current-step) problem is given by the diffusion equa-

tion,

aCi _ azc,-,

TR g [4A-1]

subject to an initial condition representing initially uniform concentration,

e (0.y) =cf . : [4A-2]

a boundary condition for bulk concentration of species far from the elec-

trode,

ci(t) = of . [4A-3]

and a second boundary condition relating the current density to the concen-

tration gradient at the electrode surface by Farraday's law,

aci(t,O) _ S.;'I:

ay - 'nFDi [4A-4]
The solution, often referred to as the Sand equation, is
f —f = - — | — |2 : -
vl —cfF nF | 7D ] . [4A-5]

Using equation [A-5], Duhamel’s integral can be written for the SPE systerxi

with a time-varying current source:

H 1
d esg {t -\ )>
f —p® = ; - 2 -
cferf — o ’o i(A) I a [ Di ] dA | [4A-6]

or
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s ¢ -1
cfef —of =~ M i\t -2 2, .
TV e

which is Eq. [4-7] of the text. The development of an integral analogous to Eq.

[4A-7] for the RDE system is easily accomplished by a similar derivation.

The Coefficients and Eigenvalues for Eq. [4-23]
The following table gives the first ten eigenvalues b, and coefficients

B,. Reference 15 or 23 should be consulted for the eigenfunctions Z, (¢).

Table 4A-1. Coefficients and Eigenvalues for Eq. [4-23]

k B b

0 0.863516066 2.58078493
1 0.081564022 12.3099728
2 0.034457046 24.4331401
3 0.01962199 38.3054830
4 0.0128965 53.5740271
5 0.0092287 70.0220380
8 0.0069829 87.5010784
7 0.0055048 105.902059
8 0.0044654 125.140833

9 0.0037089 145.15016

The Newton-Raphson Algorithms
For both current-potential expressions, EF is solved for by a Newton-

Raphson algorithm.

The One-Step Reaction Scheme
The function H(F) is defined by

H=1i(t) -i(E) . [4A-8]

The cell-current density i(¢) is known. The second term i(£) is given
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by the right side of Eq. [4-28]. For the correct value of £, H will be zero. The

potential £ (equal to Vin Eq. [4-27] since a SHE reference is assumed and the

ohmic drop is neglected) can be found by iteration:

el

The derivative gli is

dF
dH } v A
"Z‘Ezka(l_’ﬁ)nfe(l ﬁ)nfE""kcﬁnfe AnsE P
[}

. The Two-Step Reaction Scheme

Making use of Eq. [4-32], the function H is defined as-

H=we"? + wze"® + weV’ + w,e™¥
The new variables are:
w,; =k kpezp(—2fU°)

wp = (2~ —B)f

wg = kKo C':E’!;

=—(8; + B2)
'ws:'"%kcz
we = — faf

i
Wy = = o=k ezp(~fUY)

wg=(1-48,)f

The value of U® is -0.403 volts for this system. The derivative

[
dE S

[4A-9]

[4A-10]

[4A-11]
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dH

i wwze™? + waw e F + wawge + wawge™¥ | [4A-12]

Equations [4A-9].[4A-11], and [4A-12] can be used to solve for E.
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Optimization Program for the One-Step Mechanism

program RDE1l (input,output)

December 1,1984

This program models the electrodeposition of cadmium
from an aqueous solution of potassium sulfate. The
solution is well supported. A one-step reaction scheme
is assumed valid.

INPUTS

bulk concentration Cd(+2), Wol/l .tcveeencerosancnsssnnes C
most anodic current, A/SQ.CM tc.veeeeeenseeacanssassesss curl
most cathodic current, A/SQ.CHm «eseveessescececcnaenossas cur?
diffusion coefficient, Sq.Cm/S€C ceevveessennncaverseass d
electrons per reactiOn scecececcsecssccecscscscossscsscsess €4
rotation rate, 1/SeC teceecersncsnscessoscnsnssscnssscess OlELA
cycle period, S€C cevscoeccccasscccssscecsasascesosasscs L1
standard electrode potential, vOlts ceccecevacseasessssss utheta
VisCOSItY, SQ.CR/SEC «ereeereresscesesososcnsassssnnanee VIS
Initial gpuesses : ' --
cathodic rate constant Cd(+2) to Cd, cm/sec seseeeeessos ®(1)
symmetry factor Cd(+2) to Cd cccoveccocscenrconacsncsses X(2)

dimension fvec(150),iwa(2),wa(460),x(2)

common b(l0),c,curl,cur2,d,e(l0),eq,fa,fr

common omeg(3),ple,pr,s,tone(3),utheta,v(150),vis,vth
external fcn

The next line pertains to the print out of results.
pr=0.

Optimization parameters

tol is the erorr tolerance.

m is the number of data points.

n is the number of parameters to be fit.
lwa is (m*n + 5*n + r) normally.

The vector x contains the initial guesses.

‘read 4,m

read 4,n

lva=m*n + 5%n + m
format(10x,110)

read 5, tol

read 5, (x(i),i=1,n)
format(1l0x,5el0.4)

Inputs for the evaluation of v-v(ref)
read 10, c

read 10, curl

read 10, cur2



[
Cc

CcCCcCecceceeececeecececcceeceeceececceeeeceecececeecceeccececceeceecececcecce

Cc
[

10

15

read 10, d

read 10, eq

read 10, omeg(l)
read 10, omeg(2)
read 10, omeg(3)
read 10, tone(l)
read 10, tone(2)
read 10, tone(3)
read 10, utheta
read 10, vis

format(10x,£f15.10)
read 15, (v(i),i=1,m)
format(10x,£15.10)

The first guess at v-v(ref) is now made.

vth==.45

Constants
fa=96487.
fr=38.9442
pie=3.14159
b(1)=.663516066
b(2)=.081564022
b(3)=.034457046
b(4)=.01962199
b(5)=.0128965
b(6)=.0092267
b(7)=.0069329
b(3)=.00550483
b(9)=.0044645
b(10)=.0037089
e(1)=2.58078493
e(2)=12.3099728
e(3)=24.4331401
e(4)=38.3054830
e(5)=53.5740271
e(6)=70.0220380
e(7)=37.5010784
e(8)=105.902059
e(9)=125.140833
e(10)=145.15016
END OF INPUTS

Call for parameter fit.
call Imdifl(fcn,m,n,x,fvec,tol,info,iwva,wa,lwa)
fnorm=enorm(m, fvec)

Print results.
pr=l.
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call fen(m,n,x,fvec,iflag)
print 1000, fnorm,info,(x(]j),i=1l,n)
1000 format(5x,#Final L2 norm of the residuals = #,f15.7 //

* 5x,#Exit parameter = #,2x,i10 //
* 5x,#Final, approximate parameters# //
* 10x,#x(1) (rate counstant) = #,el15.7 /
* 10x,#x(2) (symmetry factor) = #,£f15.7 /)
c
end
c

CCCeeCcCCCceCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeceeecececeec
c

subroutine fen(m,n,x,fvec,iflag)

dimension fvec(150),x(2)

common b(10),c,curl,cur2,d,e(10),eq,fa,fr

common omeg(3),ple,pr,s,tone(3),utheta,v(150),vis,vth

c
c The constraints are put on the problem now.
1if(x(2).ge.0.)5,110
5 if(x(2).1e.1.)10,110
10 if(x(1).1t.0.)go to 110
c
dc 100 j=1,m
c
c The values of variables for the different runs are

c now obtained.
if(j.gt.m/3)go to 20
jtime=0
tl=tone(l)
onega=omeg(l)
go to 40

20 if(j.-gt.-2*m/3)go to 30
jtime=m/3
omega=omeg(2)
tl=tone(2)
go to 40

30 jtine=2%*m/3
onega=omeg(3)
tl=tone(3)

40 s=1.0049*%d**(1./3.)*vis**(1./6.)*sqrt(l./omepga)
dimtl=tl*d/s**2, '
diml=0.5%dimt1
ti=float(j-jtime)/float(m/3)*tl
t=ti*d/s**2,
concl=0.
do 90 k=1,10

conc2=0.
do 80 1=1,15,2
rl=float(l)
conc2=conc? + (e(k)*cos(rl*pie*t/dinl) +



30

90
c
c
c
c
c
c
c
c
c
c
c
c

c 951
c

95

96
c

97

98

99

100
c
c

215

(rl*pie/diml)*sin(rl*pie*t/diml))/
(rl*¥*2*%(e(k)**2 + (rl*pie/diml)*#*2))
continue
concl=concl + e(k)*b(k)*conc2
- continue

y=(.5 + curl/(cur2-curl))*.89298 -
4.,%concl/pie**2

y=1. + 1000.*(cur2~-curl)*s*y/(2.*fa*d*c)

c2=y*c

c2 is the surface concentration of Cd(+2). The

next portion of this program calculates the potential
difference between the working electrode and the
reference electrode, which is a directly measureable
quantity.

if(t.le.diml)cur=(cur2-curl)*t/diml + curl
if(t.gt.diml)cur=(curl-cur2)*t/diml + 2*cur2 - curl
do 95 i=1,100

The next two lines are for debugging.

print 951, vth
format(2x,#vth= #,£15.7)

if(vth.gt.~0.4)vth=-.4

1f(vth.lt.=4.)vth==4.

hzero=cur/(eq*fa) - x(1)*(exp(~eq*fr*utheta)*exp((
1.-x(2))*eq*fr*vth) - c2%*exp(-x(2)*eq*fr#*vth))

dhzero=-x(1)*(exp(-eq*fr*utheta)*(l.-x(2))*eq*fr*
exp((1.-x(2))*eq*fr*vth) + c2*x(2)*eq*fr*
exp(—-x(2)*eq*fr*vth))

vthnew=vth - hzero/dhzero
i f(abs((vthnew=vth)/vthnew).1le.0.0005)go to 97
vth=vthnew
continue
print 96, c2,vth
format(2x,#10 COMVERGENCE c2= #,el5.7,# vth= #,el5.7)

stop

fvec(j)=v(j)-vthnew

if(pr.eq.l.)print 93, j,ti,cur,y,vth,v(j),fvec(])
format(2x,13,2x,5(el0.3,2x),el0.3)

if(j.eq.m)print 99, (x(i),i=1l,n)
format(x,e20.12,x,£20.12)

continue

go to 13V

In case a constraint was hit, the following 3 lines
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c are used.
110 do 120 i=1,m
fvec(1)=100.

120 continue
c
130 continue
return
c
c Last line of subroutine fcn.
c

end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeececcececceceeceeecceeee
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Data File for Optimization Program

150
2
l.e-15
.0000e~10 .5000e+00
.0058
.0
.00153
.0000036
2.0
24.7
41.1
24.7
100.
100.
10.
.4030
.01
.4680 [run #7188401]
4700
L4740
.4820
.4980
.5070
.5130
.5170
.5205
.5240
.5265
.5290
.5320
.5335
.5360
.5380
5405
5425
.5455
.5475
.5505
.5530
.3560
.5610
.5645
5670
.5630
.5530
.5525
.5435
.5460
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32
33
34
35
36
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

o
O

79

Q
o

Q
(9]

82

83

-.5400
-.5370
-.5350
-.5325
-.5275
.5240
.5215
-.5185
+5150
.5120
.5070

.4965
.4860
<4790
.4730
<4705
-.4650
<4680
4715
4785
+4950
.5115
.5190
.5245
.5280
.5305
.5330

-.5350

-.5365
.53860
.5400
«5420
.5435
.5450
.5470
.5515
.5495
.5520
.5530
.5550
.5570
-.5560
-.5535
.5505
«5435
.5470
«5455
.5430
.5410

.5030

[run #7188402]

213



34

[o]
Q

36

87

88

89

90

91

92

93

%

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

-.5390
-.5370
-.5350
-.5325
-.5300
.5280
.5245
-.5215
.5175
.5140
.5080
.5015
4925
4805
4720
4690
4655
.4805 [run #7188403]
-.4730
4730
4765
4795
.4850
L4940
.5055
.5155
.5240
.5290
.5315
.5360
.5345
.5375
.5385
5415
.5420
.5440
.5460
.5480
.5490
.5510
.5535
.5560
.5580
-.5595
-.5590
.5585
.5575
.5570
.5545
-.5525
-.5510

!



135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

+5500
+5485
.5460
<5440
.5415
.5395
.5375
«5345
.5340
.5285
.5250
.5220
.5165
.5110
-.5045
-.4960
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Chapter 5.

The Transient and Periodic llumination

of a Semiconductor-Electrolyte Interface

Since Brattain and Garett's fundamental study of the semiconductor-
electrolyte interface (1), there has been a large research effort directéd
towards understanding and characterizing semiconductor-liquid junctions.
Promising photoelectrolysis and solar cell schemes exist based on such an
interface. (2) Bard (3) and Heller (4) have recently reviewed efficient pho-
toelectrochemical (PEC) systems, elucidating problems and progress.

A useful technique in the characterization of PEC cells is to analyze the
system’s response to a-varying light source. (5,6,7) This is analogous to vary-
ing the current or potential {(chronopotentiometry or chron?:amperometry,
respectively) in order to study traditional electrochemical systems. In this
work, we present analytic solutions for minority-carrier transport equations
that allow for the description of a PEC cell subject to pulse, step, sinusoidal,
and periodic square-pulse illumination. This treatment is an extension of
existing steady-state models by Gartner (8) and Dewald (9). These models
have been shown by a number of authors to predict very accurately the
behavior of wide band gap PEC systems. (10,11,12,13,14)

The response of a photoactive system to a varying light intensity has
been the 'subject of many studies. van Roosbroeck examined injected
current-carrier transport in a semiconductor as a means to determine car-
rier lifetimes and surface recombination velocities. (15) Since van
Roosevroeck’s study, numerous researchers have addressed the response of

PEC systems under varying illumination intensities. (ie. 16,17,18,19,20) In
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addition, Laser and Bard implemented' a more general digital-simulation
model to study transient charge injection in a PEC cell. (21)

| The major emphasis of this treatment deals with the solution to the
equations describing minority-carrier transport in the semiconductor; this
is because semiconductor-electrolyte interfaces are often analogous to
Schottky barriers in metal-semiconductor contacts, and the electrolyté=
species transport usually plays a minor role in the determining the PEC sys-
tem behévior. (1,22) For the description of many PEC systems, it is neces-
sary to incorporate kinetic resistances at the interface. (23) The next sec-
tion of this work addresses the proper use of a semiconductor-electrode
kinetic expression. Following this section, the minority carrier transport

equations are solved.

The Interfacial Kinetic Expression

A number of treatments for the analysis of semiconductor-electrolyte
systems state that a Butler-Volmer type equation is probably the best
expression available to describe the cell current-potential relationship. In
most of these analyses (though not all, for example, ref. 24), the irreversibili-
ties associated with electrochemical reactioné are neglected; hence, it is not
made clear how to relate specifically the measured cell potential to the cell
current. It is the purpose of this section to illustrate clearly how to apply
the current-potential equation to experimental data.

The following discussion will treat the reaction of semiconductor elec-
trons with electrolyte species. An analogous treatment can be used to
describe reactions with semiconductor holes. We will not address activity

coeflicient corrections in this work. For the electrochemical reaction



223

ka t .
O+ne-7 R [5-1]
kgt

the current-potential relationship is

= kaexpl(1 = B)nfVISE ~ ko exp( - fnfV) 2lc, [5-2]

where surface concentrations are used, f = T?F-;:, and

C.
V=EF+ U,?.,—-n:ffzi:s",..,ln[ ;:"] —Adp — Adgp — Adys . [5-3]

The potential of a platinurﬂ wire, intimately contacted to the semiconductor,
with respect to a reference electrode is the measured cell potential £. The
bracketed term in Eq. [5-3] represents a Nernst expressioh for the reference
electrodé. denoted henceforth as Ufdr- The cell ohmic potential drop is
represented by Adp. The potential differences across the space-charge
regions in the semiconductor near the metal-semiconductor and
semiconductor-electrolyte interfaces are denoted by A®yg and Adgz , respec-
tively. The symbol A proceeding $y¢ and $s55 refers to spatial differences;
hence Adys is the value of the electric potential at the metal. side of the
metal-semiconductor space-charge region less the value of the electric
potential at the semiconductor side of the space-charge region. Similarly,
Adsz is the value of the electric potential at the semiconductor side of the
semiconductor-electrolyte space-charge region less the value of the electric
potential at the electrolyte side of the space-charge region. Therefore, the
potential difference between a platinum wire contacted to the semiconduc-

tor and a SHE, corrected for ohmic drop and potential differences across the
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space-charge regions, is represented by V. The potential difference across
the diffuse portion of the semiconductor-electrolyte double layer in the elec-
trolyte is usually very small and is neglected in this work. (2)
At equilibrium, i = 0, and Eg. [6-2] reduces to
1 ks 1 CoCe-

TE —— — o o— ———— 5“’4'
P = orlng—+ ooin— | | [5-4]

or

_1 P gy s BT, 000 5-5
F’V“!—n (ud + nulP —pul) + poy In v [5-5]

In Eq. [5-5], we have made use of the following dilute-solution expression for

the electrochemical potential {25,26)

y = ul* + RTlne; + 2, Fd . [5-6]

The first two terms on the right side of Eq. [5-8] represent purely chemical

contributions. The superscript 9 denotes a reference state of infinite dilu- -

tion in an aqueous phase. Since the rate constants are related to the stan-
dard hydrogen electrode, the superscript 0,P% is required to denote the stan-
dard state electroéhemical potential of the electrons in platinum, the elec-
trode material used in the SHE. Equation [5-5] can be combined with Eq. [5-

3] to yield the measured equilibrium cell voltage

1 RT . Co
FD’ = :’T([J.% +tnuls - ud) + —‘E-lna + p.:.'.ﬂ —u)s+ RTlnc‘_ [5-7]

+ F(Adyg + Mg — US)

where u?* represents the standard-state electrochemical potential of
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electrons in the semiconductor.
Under most equilibrium conditions, a Boltzmann expression can be
used to relate ionic concentrations to potential diferences within a conduct-

ing phase: (27)

c,-=clfexp( - fAdsE) , [5-8]

c?2 =cPexp( - fAdys) [5-9]

where the superscript b,s denotes the bulk semiconductor. When Egs. [5-8]
and [5-9] are inserted into Eq. [5-7], A®sz and Adygs cancel. The cell voltage

can then be represented by

FE*1 = (/J.:;P' + RTlnc.Pf) - ([J.:;‘ + RTlnc::’ ) [5-10]

1, RT Co%?
+ —(ud +nuls —ph) + —In on

1
(cm,)?
+( %#21, - ply, —pl) + Rﬂnﬁ :

The first line on the right side of Eq. [5-10] represents the potential
difference between the platinum contact and the bulk semiconductor. The
second line represents the potential difference across the semiconductor-
electrolyte interface. The last line indicates that a hydfogen reference elec-
trode has been assumed. This is the same expression that is obtained if the
cell potential is expressed by summing the potential differences between the
various phases at equilibrium. (28) Equation [5-10] can be further simplified

by canceling the semiconductor terms (denoted with superscript s) and pla-
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tinum terms (denoted with superscript Pt). As is expected, the open-circuit
cell potential is independent of the semiconductor phase.

It is important to note that the potential difference across the space-
charge region near the metal—semiconductor contact, A®ygy, had to be
included in order to develop rigorously the cell-potential expression. This
term is often neglected in semiconductor-electrode analyses. Adyg is also a
function of cell polarization; for a uniformly doped semiconductor, a
Schottky barrier analysis may suffice. It is also possible to alter the dopant
concentration to minimize A®gys. (29) In general, the theory is well
developed for metal-semiconductor contacts, and we will only address the

semiconductor-electrolyte contact.

Evaluation of the Minority-Carrier Concentration

Althoﬁgh the treatment we present in this section for the solution to
the minority-carrier transport is approximate, its steady-state counterpart
has proved to be a valuable tool for the description of many PEC systems.
More complete discussions of the full equations governing electron, hole, and
ionic transport can be found elsewhere. (24,30) In order to develop the full
cell current-potential relationship, the relation between the cell current and
Adys is required, and Gauss' law must be incorporated to solve for Adgz and
for the surface overpotential associated with the charge-transfer reaction
across the Helmholtz layer. With extrinsic semiconductors, usually the
depleﬁon approzrimation can be used to simplify the evaluation of Adgg,
resulting in a parabolic potential distribution across the space-charge
region. (cf. ref. 2, BEq. [5-23]) The potential drop across the Helmholtz layer is

usually assumed to vary linearly. (cf. ref 23, Eqgs. [5-29] and [5-30])
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The three régions of interest in this analysis, the electrolyte, the sem-
iconductor space-charge layer, and the neutral semiconductor are shown in
Fig. 5-1. The semiconductor is represented by a space-charge region for
0 <z <w and an electrically neutral region for z >w.

The space-charge region is modeled as an equilibrated reservoir of
minority carriers {electrons in a p-semiconductor, holes in an n-
semiconductor). Since small concentration and potential variations across
the thin space-charge region give rise to large gradients in concentration
and potential and large, opposing diffusion and migration fluxes, the equili-

brium assumption is invoked. A flux balance on the region yields

" .
- 2=+ [ I(t)ae~o%dz = N|, =y +vs(c¥ —c?) . [5-11]
ziF (s

The first term is related to the flux of minority carriers into the region by
electrochemical reaction. For holes, 2; =1 and for electrons, z; =—1.
Anodic currents are taken as positive in this‘ work. The second term
represents generation by illumination. The flux of minority carriers out of
the region, N|; -,. is obtained by solving the continuity equation for‘the
minority carrier in the semiconductor. The last term in Eq. [5-11]
represents a very approximate treatment for surface recombination. The
surface-recombination term is similar to a Shockley, Hall, Read surface-
recombination model (31,32) if the energies of the trap sites are located near
midgap, the hole and electron capture cross sections are identical and the
Charge carriers are at low concentration.

In Gartner's treatment, surface recombination is neglected, and the
minority-carrier concentration is set to zero at  =w. The Gartner model

begins to fail for systems with negligible space-charge widths, or small
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potential drops across the space-charge region. Including the recombina-
tion term and a non-zero minority-carrier concentration at z =w
represents additions to the Gartner model which appear in Dewald’s work
and improve the analysis of PEC cells. (13)

The one-dimensional equation of continuity for the description of the

minority-carrier transport within the bulk semiconductor is

dc _ 3% c-ct —az
3 D 322 - + I{t)aa - [5’12]

Migration terms are not included in the continuity expression since the
majority-carrier concentration is assumed large and invariant, thus acting
as a supporting electrolyte and reducing the effect of the electric field on
minority-carrier transport. This is usually a 'good assumption for extrinsic
semiconductors. The simple bulk recombination model, which makes use of
the carrier lifetime T is analogous to the simple surface-recombination
model used in Eq. [5-11] and embodies the same assumptions. The exclusion
of the electric fleld eflects and the use of a simple recombination model are
more valid for low level injection situations. In general, the treatment we
present is analogous to the ideal-diode analysis, in which both of these
assumptions are made. (33,34,35) |

The boundary conditions and initial condition are

c(t®)=c?, | [5-13]

c(t.w)=c¥ . [5-14]

c(0,z) = ctn¥(z) . : ' [5-15]

The first boundary condition states that the minority-carrier concentration
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reaches its bulk value for large distances from the interface. This boundary
condition is valid for semiconductor thicknesses substantially greater
\/;:5 , the characteristic length for this trz-_xnsport problem, also denoted by
L, the diffusion length. The second boundary condition sets the concentra-
tionatz=w. In the last condition, the initial concentration profile is sét
equal to the steady-state value for constant illumination. The full stead&-

state solution, with constant illumination intensity 7, is:

c(z)=cb® ~ a
oy
pa
- _([“"[":)e__.é::%. 3-5(8""!)—3—,2'”]
a ———

At zero current (i = 0) and no illumination (/ = 0), the minority-carrier con-
centration is equal to its bulk value for all z =w. For the problems solved in
this work. the interface was initially not illuminated.

The solution to the system of equations [5-12]-[5-15] can be combined
with Eq. [5-11] to yield c®. If the quasi-equilibrium assumption is invoked,
the charge carriers are assumed to be in translational equilibrium across
the space-charge region (9), and the surface concentration can be related to
c¥ by aBoltzmann factor c®¥/f = c¥exp(z; f Adsg).

Equations [5-12]-[5-15] can be non-dimensionalized with the following

deflnitions:

[5-16]

R e I

e e

e o o

A 1

B L VWU PRGN e Y

el
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¢= 22 [5-17]
o = ;t__ [5-18]
8=2 ;“'b - [5-19]
a=al [5-20]
AS= : [5-21]

2, F(vg + é)c"

6= I{t)aTe~ws ‘ [5-22]

cb

with these definitions, the problem can be restated as

8- "a—ag ~ 0 + $(8)e- [5-23]
B8(8,©) =0 [5-24]
8(8,0) = Bw [5-25]
8(0,¢) = Ae—¢ [5-28]

Equation [5-23] is a linear partial differential equation with constant
coefficients, and Eq. [5-28] prescribes the nonlinear initial condition. The
Laplace transform technique can be used to reduce Eq. [5-23] to an ordinary

differential equation:

if%-@(s R ARISEEUOTE [5-27]

where s is the Laplace transform variable and an overbar indicates a

transformed variable. The transformed boundary conditions are



232
B(=) =0, and [5-28]
CORE= | [5-29)

The solution to the system of equations [5-27]-[5-29] is

B= {(0“’ -\ _ __¢(s) ] Aoy B(s)e” X [5-30]

s s+1-a s+1-a?

The flux of the minority carrier at z = w , in Laplace space, is

ol z=w=—c°€-%-?; c=0 [5-31]
where

de I -A) #(s) \/ "‘____ ggs)a !

d¢ (¢=07 [ s+1~—a2} s+l s+1-a? ' [5-32]

The inversion of Eq. [5-31] yields N

z =w » Which can be used in Eq. [5-11] to
obtain the minority-carrier concentration c%?, ®% in dimensionless terms.

Combining the inverted expression for Eq. [5-31] with Eq. [5-11] yields

a8

®“‘-—0’1 d(‘ ( 0=02 [5‘33]

where ¢; and 03 are dimensionless groups introduced for convenience:

o = [5-34-]
oa(t) = - 1) [5-35]
. . . d®
The next portion of this work addresses the evaluation of -&? ¢=0 and 0%,
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Light impulse - The light flux function is shown in Fig. 5-2. In the limit of
vanishingly small pulse width Af, the Laplace transform of the light impulse
with area [, is ¢(s) = ¢, 'in dimensionless form. (ref 36, p. 65) Substituting

this value of ¢(s) into Eq. [5-32], and inverting yields
de ! & A
T{'— ¢=0= (7\"‘@"’)2 a[v;-"i' ederf (02) - [5-36]

11
+ P e° VL—+ ae®™@erf (a82) |- A — g ael®-10
i)

The inversions required to obtain Eq. [5-38] can be found in most Laplace

transform tables (ie. 37,38,39) after the translation properties of Laplace
- . d®
transform (ref. 36, pp. 60-61) are used on the function rralals

The concentration ®® can be found by substituting Eq. [5-38] into Eq.

[5-33]:

' 1 1 +
ew = Gz + 0;{Ae-? +edrf(0%) —e?
ol

L
1+o0,8"° v1—+ ederf (82)
)

1
+ ¢,a-® 71;{+ aea® (erf (a02) - 1) [6-37]

o2(0)
i W o e
For long times, ® ETAR or
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Figure 5-2. Impulse light-flux function.
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i

2 Pt (g + 2)

@w:...

[5-38]

which is the expected result in view of Eq. [5-16].

Light step - The light-step function is shown in Fig. 5-3. For this step func-

tion, ¢(s) = t—". Substituting this value of ¢(s) into Eq. [5-32] gives the fol-

A . d® i
lowing expression for E?- ¢=0°
d® 8w ~ ) ) vVo < A $o X
—ls=pg= ~ - —_———— 5-39
da¢ |¢=9 [ s . s(s+1—az)] s*+1-3 s{s +1—-a®) [ ]
Vs +1

The inversion of s(s_+T-_-a_3) is presented in the Appendix 5. The complete

inversion of Eq. [5-39] gives

0
d¢

¢=0=(A= @W)ev“' [71;- + aderf (0%) [5-40]

l B
+ ;::—1 [aerf (ao?)e(aa_x)o ~erf (9%’)] -\ - a‘:o_al [3(62—1)0 _ 1) .

Combining Egs. [5-33] and [5-40] yields
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Figure 5-3. Step light-flux function.
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1

1
1+0,e"° [vL—+ eberf (07)
0

L
ew = og + 04 )\e‘°[vl——+ elerf (02 ) —e®
o

A . .
o —1 “erf(aﬂz)e‘“z"”—erf(ﬂz)+a(1—e‘“a‘m]] .- [5-41]

For long times,

og+ % o
2 a+l ! [5-42]

1+0

or

TN P
Qv ziF o 1+al [5_43]
= .- L R
] —
c®(v, + T)

This agrees with Eq. [5-16] evaluated atz = w.

Periodic square-pulse illumination - The light source is depicted in Fig. 5-4.

The light source can be expressed by a Fourier series (40)

= 1 . [ine ] [5-44]

=7 +3 - 128
ty=1,+ ﬂ_(J° I")¢=1_§5_... 750 1%,

where the dimensionless half-cycle period is 8 = TZ Ifonly thei = 1 term is

kept in the summation, we can obtain a solution for sinusoidal illumihation.

Inverting and substituting Eq. [5-44] into Eq. [5-32] yields:

L I e s eTt o T TTIIRE W e R R S S S
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48
d¢

¢=0" [% (=0] [5-45]
step

- : o | _ Vs +1
¢ (s2+y)(s +1-a®) (sP+yf)(s +1-a?)

~

where 7; = *T and ¥, is the operator

Or
4(J, - [, )aTe-ws =
¥, = (o c‘;zj Y . [5-48]
r t=138, -
d® . I
The term E ¢=0 represents a light step to J,, given in Eq. [5-39]. The
Jutep . .

inversion of Eq. [5-45] is ouf.lined in Appendix 5. The result is

X
t e - f)a + 78 {1 ;‘0&2 sin(7;8) — cos(y,8) + e@® - 1® —erf (0‘9%)9(“2_ 1w

+ a( 17: x?) [cho_s(?'-;ﬂ) "szin(‘Yiﬂ)] +a [Xlsin(‘nﬂ) + chos(‘)qe)]}]

The -step solution, [%—(—?- ¢=°] , is expressed in Eq. [5-40]. The functions X|
step B

and X; are
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7 i i (- 1)1+lc 2k+195+3’”%
5-48
TV e S g ra e O el
and
e e s grees g
§ § I i [5-49]

j=0k

5
4

0 !(2k)!(j + 2k + -2—)

For long times, the exponential terms in Eq. [5-47] vanish, and the functions

X, and X, reach limiting values (see Appendix 5):

. L
Vi+tyg-1}|?
X, = (0 - ») [5-50]
27+ 1
| 20 +1)
1+ 92 +1
X = A (6 - ») [5-51]
2(yE + 1)
Inserting Eq. [5-47] into Eq. [5-33] yields 6% :
-0
Bw — Qwstep = 1 [ -——cos('y,ﬂ) - -—sm(')qe)]
1+ ale“’ V—+ ederf (62)
o 1-a? (219 _- Ty (a2 10
+ @177 77 . sin(y;0) — cos(y;0) + e —erf (a8?2 )e
1 t .

. &%ﬂlxlcos(ne)—Xzsin(7i0)]+a[X15in(7i0)+chos(7.;9)]}] [5-52)

where @W %P is represented by the mathematical expression of Eq. [5-41]. It

should be noted, however, that o, is a function of time.' Hence, ®% %P  which
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contains 03(8), will vary since I{t) changes periodically from I, to J,. For

a2(8) + a¢-: 1

1+0,

g,

long times, @wstep = . and the éxponential terms in Eq. [5-

52] vanish leaving the following long-time solution:

05(0) + —— v. [Ix
- a+1 Ty ¥y 1 X2 5-53]
8w = T70, T+o, [% cos(y;0) — > sm(y,-,ﬂ)] ‘ [
+ a 1-af sin(y;0) — cos(y,0)
@=DFr 7 7

+ & 17: o?) [X;cos(‘)’iﬂ) - Xzsin(‘riﬁ)] +a [Xlsin('y,-_ﬂ) + chos('yie)]}

To implement Eq. [5-53], the long-time representations for X; and X,
which are given in Egs. [5-50] and [5-51], should be used. The function ®%
attains a uniform and sustained periodic state. Since the system reaches a
periodic state, and the mathematical description is analytic and straightfor-

ward, this technique is promising as a convenient analytical tool.

Conclusion

Analytic solutions have been obtained for minority-carrier concentra-
tions at the semiconductor surface during pulse (Eq. [5-37]), step (Eq. [5-
41]), sinusoidal and periodic square-pulse (Eq. [5-52]) illumination of a
semiconductor-electrolyte interface. The anaiytical solutions can serve as
useful comparisons for more general modeling of the unsteady-state illumi-

nation of a semiconductor-electrolyte interface. In addition, the analytic
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solutions can be used to describe accurately the low level injection behavior
of wide band gap semiconductors commonly used in photoelectrolysis cells
and other photoelectrochemical systems. For these syétems, since the
periodic illumination of a photoelectrochemical cell results in a periodic
photoresponse, the analytic solutions are useful for the evaluation of system
physicochemical parameters. The periodic-illumination technique is analo-
gous to the traditional ecyclic chronopotentiometry and chronoamperometry
electrochemical techniques. In particular, the cycle period of the varying
light source can easily be édjusted to match the time constants of the pho-
toelectrochemical cell processes, which makes this technique a valuable

analytical tool for the investigation of semiconductor-electrolyte interfaces.
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Appendix 5

Inversion of Equation [5-40]

The only inversion needed to obtain Eq. [5-40] from Eq. [5-39] that is

not tabulated is presented below. Using the convolution theorem, (ref. 36,

p.83)

+1 s+1 ~
Lii=1L-1 = L- —37- ;28 [5a1
T [s(s+1 az)] ‘r [ ]° §- [(s+1—a2)]° [5A-1]
Making use of the translation property, the product of the inversions within
the integral can be evaluated:

e‘a

0 L
Lit= v—;dé' + [ ael@®- Werf (a2 )d8 [5A-2]
0 o ' |

o e

L
The first integral is erf (8% ). The second integral can be evaluated by the

integration by parts technique. The final answer is

i i
1_ T [-- erf (02) + aerf (a8 2 )ela® - 1)"] [5A-3]

Inversion of Equation [5-45]
In order to invert Eq. [5-45), partial fraction ezpansion is used:

.

Lit=L"1 [5A-4]

| (s + ¢ )(s +1-a?) ]
a [l—cxz—s 1

J(l—a2)2+7¢ l(s2+y) (s+1—cx2)

\

In the expanded form, the inversion of L7 ! can be evaluated to yield
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o (1-a?)
(1-a®PR+y?| »n

sin(y,8) — cos(y,8) + ele® -1 [5A-5]
The remaining term that requires inversion in Eq. [5-45] is

Vs +1

Lpl=L"1 5A-6
= R - (o4-6]
Using the convolution theorem, Lz! can be expressed as
° 1
1=t =t 1 ~do A-7
S N Ieryeroy i [(sawf) -¥8 - (5471

The inversion of the first factor in Eq. [5A-7] was completed in the develop-
ment of Eq. [5A-2]. The inversion of the second bracketed term in Eg. [5A-7]

is %—sin [7,; (o - 5)]. which can be expanded in order to express Lg! as
$ .

Lt=— %- [X,cos(‘nﬁ). —ngin(‘yiﬂ)]— %_[gacos(we) - Xysin(7,8) ] [5A-8]

where

° I I

X, =,{ Siﬂ(?'iﬂ)v:gdﬁn [5A-9]

xz-} () S b

= ] cos{y; Vn-'.; . [5A-10]

9 N 1

Xg = f sin(y,0)e(@® - Derf (a82)d6, and [BA-11]
0
9 - L

X = [ cos(7;8) e@® - Verf (a8? )db . ' [5A-12]
0

The functions Xg and X; can be integrated by making use of the integration
by parts technique. The task is somewhat arduous, and we will only outline

the treatment of Xg. The function X; can be dealt with in an analogous
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fashion.

To integrate X3 by parts, define

L
u = sin(y;0)erf (a82), then [5A-13]
1 1
~ ~c ) - o axl .~
du = |y;cos(y;0)erf (a8?) + sin{y,0) —\-7-——e“' 4lde . [5A-14]
i
Also define
dv = e®@®- 194§ then [5A-15]
g (ot - 1)8
= —, 5A-16
V= [ ]

8
X3 can be then be written as X3 = uv —f 'ud'u.!o , OT

(e - 109 . — 2
Xg = E&T:T—Sin(yie)erf (aB?) - aza_ 1 X, _ [5A-17]
0
7:

-l- (- d "~
o2 :_, 1 J cos(y;8)erf (ad? )ele® - 1049

The last term in Eq. [5A-17] can be integrated by parts again. For this
integration, sin(y;6) in Eq. [5A-13] is replaced with cos(v;0), and Eq. [5A-15]

is used again for the definition of v. Performing the integration, Eq. [5A-17]

becomes
(a® - 1)8 - i
Xg = —e-&-z—:—sin(y,-e)erf (ab?) - az"_‘_ —Xy [5A-18]
]
% ela® -1 ~ ~% % a
alsuwal ) cos(y;0)erf (a8 *) + az_lxa— ag_lxz

Equation [5A-18] can be solved algebraically for Xg. The resulting expres-
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sions for X3 and the function X, are:

X3 = 1 5 X e(:L- » sin(y;@)erf (ae%) ‘
1+ ‘_(az7:_ d “ | o)
- @%’i?e(“z‘lw cos(y;0)erf (aﬂé-) - aza_ T X, + (a:fi)g X
and
Al 1+ (a_}::)z_ " e"(:-—‘ ;’“ cos(y8)ert (ao:'l’f) [5A-20]
+ z-;z—‘é-—l?-?e(“a =~ 1P sin(y;0)erf (aﬂé-) - azti 1.?(2 - (azaz€1)a 1.

The functions Xg and X, can be placed into Eq. [5A-8] to yield Lz!. Lg!
and Lgz! (Eqgs. [5A-8] and [5A-4], respectively) can then be combined with Eq.

[5-45] to obtain %?— ¢=0-

A straightforward integration of X; and X; does not appear possible.
The integrands-ofvthése functions, however, can be expressed in a.power
series, which can be integrated to yield the expressions given in Egs. [5-48]
and [5-49]. For long times, the integral expressions for X, and X;, Egs. [5A-9]
and [5A-10], reach limiting values listed in Egs. [5-50] and [5-51]. (41)
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