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ABSTRACT
We investigated the underlying architecture of planetary systems by deriving the distribution of planet multi-

plicity (number of planets) and the distribution of orbitalinclinations based on the sample of planet candidates
discovered by theKepler mission. The scope of our study included solar-like stars and planets with orbital peri-
ods less than 200 days and with radii between 1.5 and 30 Earth radii, and was based onKepler planet candidates
detected during Quarters 1 through 6. We created models of planetary systems with different distributions of
planet multiplicity and inclinations, simulated observations of these systems byKepler, and compared the prop-
erties of the transits of detectable objects to actualKepler planet detections. Specifically, we compared with
both theKepler sample’s transit numbers and normalized transit duration ratios in order to determine each
model’s goodness-of-fit. We did not include any constraintsfrom radial velocity surveys. Based on our best-fit
models, 75-80% of planetary systems have 1 or 2 planets with orbital periods less than 200 days. In addition,
over 85% of planets have orbital inclinations less than 3 degrees (relative to a common reference plane). This
high degree of coplanarity is comparable to that seen in our Solar System. These results have implications for
planet formation and evolution theories. Low inclinationsare consistent with planets forming in a protoplan-
etary disk, followed by evolution without significant and lasting perturbations from other bodies capable of
increasing inclinations.

Subject headings: methods: statistical – planetary systems – planets and satellites: general – planets and satel-
lites: detection

1. INTRODUCTION

Knowledge of the architecture of planetary systems can
provide important constraints and insights into theories of
planet formation and evolution. For instance, planetary sys-
tems with a high degree of coplanarity or alignment, such as
the Solar System, are consistent with the standard formation
model of planets forming in a protoplanetary disk. Addition-
ally, planetary systems with inclined or misaligned orbitscan
be indicative of past events that increased eccentricitiesand
inclinations (e.g., Kozai oscillations by outlying perturbers,
resonant encounters between planets, or planet-planet scatter-
ing). Consequently, information on planetary multiplicity and
the distribution of inclinations can reveal fundamental events
in the lives of planetary systems as well as test theories of
planet formation and evolution.

Because of observational biases, it may be difficult to re-
liably assess the underlying multiplicity of planets and their
inclination distributions. Planets may go undetected if they
have masses/radii below detection limits or if they are non-
transiting (for the case of transit surveys). As for inclinations,
mutual (or relative) inclinations between planets in the same
system have only been measured in a limited number of cases
or indirectly constrained. Examples include the planets orbit-
ing the pulsar PSR B1257+12 (Konacki & Wolszczan 2003),
the planets GJ 876 b and c using radial velocity and/or as-
trometric data (Bean & Seifahrt 2009; Correia et al. 2010;
Baluev 2011),υ And planets c and d using astrometric and
radial velocity data (McArthur et al. 2010), using transit tim-
ing/duration analyses to constrain inclinations in the Kepler-9
system (Holman et al. 2010), Kepler-10 system (Batalha et al.
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2011; Fressin et al. 2011), and Kepler-11 system (Lissauer
et al. 2011a), and analyzing transits of planets over starspots
for Kepler-30 (Sanchis-Ojeda et al. 2012).

However, there now exists substantial knowledge about a
large sample of planetary systems that can be used to statis-
tically determine the underlying number of planets in each
system and their relative orbital inclinations. In particular, the
haul of planetary candidates cataloged by theKepler mission
(current count is over 2,300; Borucki et al. 2011a,b; Batalha
et al. 2012) provides a large trove of systems to study. These
Kepler detections are termed planetary candidates, because
most of them have not been formally confirmed as real plan-
ets by independent observations such as radial velocity detec-
tions or successful elimination of false positive scenarios. We
will refer to Kepler planetary candidates interchangeably as
planetary “candidates” or “planets.”

In the present study, we use the latestKepler catalog of
planetary candidates (identified in Quarters 1 through 6) re-
leased by Batalha et al. (2012) to constrain the underlying
multiplicity and inclinations of planetary systems discovered
by Kepler. By “underlying,” we are referring to our esti-
mate of the true distributions free of observational biases. In
our analysis, we create thousands of model populations, each
obeying different underlying multiplicity and inclination dis-
tributions. These planetary systems are subject to artificial ob-
servations to determine which planets could be transiting and
detectable byKepler. The detectable planets and their proper-
ties are compared to the observed sample to determine each
model’s goodness-of-fit to the data. Our results show that
the underlying architecture of planetary systems is typically
thin (low relative inclinations) with few planets with orbital
periods under 200 days. Similarly, other statistical studies
have been performed to constrain multiplicity and/or inclina-
tions using different methodologies or data sets (e.g., Lissauer

http://arxiv.org/abs/1207.5250v3


et al. 2011b; Tremaine & Dong 2012; Figueira et al. 2012;
Fabrycky et al. 2012; Weissbein et al. 2012; Johansen et al.
2012). Our analysis improves on previous work by including
all availableKepler quarters, extending to 200-day orbital pe-
riods, and fitting models to observables such as normalized
transit duration ratios that contain information on mutualor-
bital inclinations; these improvements lend to a deeper inves-
tigation of the intrinsic distributions of planetary systems.

This paper is organized as follows. Section 2 provides de-
tails on how we created model populations including choice
of stellar and planetary properties. Section 3 describes how
we determined detectable, transiting planets from our simu-
lated populations as well as our methods for determining each
model’s goodness-of-fit compared to observations. Section4
presents our main results with analysis of our best-fit models.
Section 5 includes comparisons of our results with the Solar
System and with previous work. Lastly, Section 6 summarizes
the main conclusions of our study.

2. CREATING MODEL POPULATIONS

This section describes our methods for creating model pop-
ulations. Each model population consists of approximately
106 simulated planetary systems from which we determine
planets detectable byKepler. In total, we created thousands
of model populations obeying different underlying planet (1)
multiplicity and (2) inclination distributions.

2.1. Stellar Properties

Each model population’s planetary systems have host stars
with parameters drawn from a distribution of stellar proper-
ties. For each simulated system, we randomly drew a star
from a subset of the quarterly KIC (Kepler Input Catalog;
Brown et al. 2011) CDPP (Combined Differential Photomet-
ric Precision) lists1 (Christiansen et al. 2012). There is a sep-
arate list per quarter, because each file only lists targets ob-
served that quarter and their corresponding CDPP noise lev-
els over 3, 6, and 12 hours. These quarterly lists also include
basic KIC parameters (unchanging in the quarterly lists) for
each observed star such as itsKepler magnitudeKp, effective
temperatureTeff, surface gravity parameter log(g), and radius
R∗.

We created a subset of the KIC CDPP lists in the following
manner. First, we collected the KIC CDPP lists for Quarters
1 to 6 (Q1-6). Not all stars are observed each quarter and
we counted a total of 189,998 unique stars observed at some
point during Q1-6. Next, we filtered this list of unique stars
such that we only included stars that were observed under the
“exoplanet” program, have nonzero values forR∗ and CDPP
entries, and obey the following restrictions:

4100 K≤ Teff ≤ 6100 K,

4.0≤ log(g [cm s−2]) ≤ 4.9, (1)
Kp ≤ 15 mag.

These stellar cuts allowed us to consider the brighter main-
sequence stars with well-characterized properties in the KIC
(consistent with those in Howard et al. 2012). With such fil-
tering, we were left with a KIC subset of 59,224 remaining
unique stars, which is roughly one-third of the original list of
unique stars. For each star in this KIC subset, we calculated
median CDPP values over 3, 6, and 12 hours from all the val-

1 http://archive.stsci.edu/pub/kepler/catalogs/

ues available in the Q1-6 lists. We also used each star’s sur-
face gravity parameter log(g) andR∗ values, which are com-
mon across the Q1-6 KIC CDPP lists, to calculate each star’s
mass. Finally, we recorded each star’s observing history over
Q1-6 as indicated by the quarterly KIC CDPP lists.

Our subset of the KIC with 59,224 stars was the catalog
from which we randomly picked stellar hosts (with their cor-
responding properties) for each simulated planetary system.
In the next subsections, we describe how we chose physical
and orbital parameters for the planets in each system.

2.2. Planet Period and Radius Distribution

We assigned values for the period and radius of each simu-
lated planet by drawing from debiased distributions. To create
such debiased distributions, we started with the observed sam-
ple ofKepler candidate planets (orKepler Objects of Interest;
KOIs) and converted it to a debiased sample of planets using
detection efficiencies. First we will discuss how we filtered
the KOI catalog, and then we will discuss the calculation and
application of detection efficiencies.

Our observed sample of KOIs is based on the February
2012 release (Q1-6) by Batalha et al. (2012) consisting of
2,321 planetary candidates in 1,790 systems. We only consid-
ered a subset of this KOI catalog by applying the following
filters. First, we only considered planet candidates with pos-
itive values for their entries: we removed any planet candi-
dates with negative values of the orbital period because such
candidates are only based on a single transit (Batalha et al.
2012), and we also removed KOI 1611.02, the circumbinary
planet also known as Kepler-16b (Doyle et al. 2011), because
many of its entries in the catalog have negative values. This
cut left us with 2,298 remaining candidates. Next, we filtered
out any planetary candidates with host stars that did not obey
Equation (1) for consistency with the simulated stellar popu-
lation. This step filtered out about half of the sample; 1,135
candidates remained. Lastly, we made additional cuts based
on planet radius, period, and SNR:

P ≤ 200 days,
1.5 R⊕ ≤ R ≤ 30R⊕, (2)
SNR(→ Q8)≥ 11.5.

These specific cuts were performed in order to choose a sam-
ple of planetary candidates with period, radius, and SNR that
are unlikely to be missed by theKepler detection pipeline. It
is necessary to choose a sample with a high degree of com-
pleteness because we want to compare this sample to simula-
tions, which are normally 100% complete. For orbital pe-
riods, a range extending to 200 days ensures that multiple
transits are likely to have been observed during Q1-6, which
covers approximately 486.5 days. For planet radii, the lower
bound onR of 1.5 R⊕ was chosen because the sample of ob-
served planets with radiiR . 1.5 R⊕ has much lower detec-
tion efficiencies (e.g., Howard et al. 2012; Youdin 2011). For
SNR, we required a SNR≥10 for Q1-6, which corresponds to
SNR≥11.5 for Q1-8 by assuming that SNR roughly scales as√

N, whereN is the number of observed transits. This scal-
ing is performed because the SNRs of observed KOIs have
been reported for Q1-8, not Q1-6, in Batalha et al. (2012). To
investigate incompleteness issues, we have also repeated all
analyses in this paper for SNR cuts of 15, 20, and 25.

Now we discuss how we calculated detection efficiencies,
and how they were used to debias this filtered sample of plan-
etary candidates. Following the formalism of Youdin (2011),
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for any given planet the net detection efficiencyη is the prod-
uct of (1) the geometrical selection effectηgeom and (2) the
Kepler photometric selection effectηphot. The geometrical se-
lection effect is due to the probability of transit as planets with
longer periods or larger semi-major axes will have a lower
probability of crossing in front of the disk of the star as seen
from Kepler, and is calculated asηgeom = R∗/a, wherea is
semi-major axis. TheKepler photometric selection effect is
due to the photometric quality of the star for detecting plan-
ets with specified radius and period. Consequently,ηphot is
a function of both planetary radius and period. For a planet
with radiusR and periodP, we calculatedηphot as the fraction
of stars that can detect such a planet with SNR≥10 (see Sec-
tion 3.1), based on the KIC sample obtained in the previous
section. Lastly, we calculated the net detection efficiencyas
η = ηgeomηphot.

We applied the above methods for obtaining detection effi-
ciencies to our KOI subset of observed planetary candidates.
For each candidate planet (or detection) in our KOI subset,
we calculated its net efficiencyη given its observed periodP
and radiusR. Sinceη is the ratio of the number of detectable
events to the number of actual planets, the inverse ofη is equal
to an estimate of the actual number of planets represented by
each detection. After we calculated the value of 1/η for each
detection in our KOI subset, we created debiased, binned his-
tograms forP and R representing an estimate of the actual
number of planets perP or R bin. The normalized versions of
these histograms are given in Figure 1. We used these discrete
distributions representing debiased planet periods and radii in
order to randomly select values for each simulated planet’s
period and radius.

Our methods of obtaining photometric detection efficien-
cies (ηphot) are the same as the methods described in Howard
et al. (2012) used to obtain binned (inP andR) efficiencies
that were later analytically fit by Youdin (2011), except for
the following differences. First, we applied these methodsto
Q1-6 data (previous work used Q2 only). Second, we avoided
any loss of information that can occur during the binning pro-
cess and/or the power law fitting process by skipping those
steps and directly calculating the detection efficiency foreach
individual KOI candidate in our filtered sample. Third, we
calculated SNR differently by actually using each KIC star’s
observing history during Q1-6 (e.g., not all stars are observed
each quarter) as well as some other minor differences; our
methods for calculating SNR are detailed in Section 3.1.

2.3. Planet Multiplicity Distribution

We chose to represent the multiplicity distribution of sim-
ulated planetary systems–the distribution of the number of
planets per star–by either a delta-like distribution, a modified
Poisson distribution, or a bounded uniform distribution. All
distributions are described by a single parameter. We did not
consider other distributions such as an exponential distribu-
tion, which may result in a bad fit to the data (Lissauer et al.
2011b). All stars in our model populations are assumed to
have at least 1 planet, and so our study cannot directly address
the question of planet occurrence.

A delta-like distribution is a discrete distribution described
by a single parameterD. If the parameterD represents an in-
teger value, than all planetary systems following this distribu-
tion will haveD planets each. If the parameterD does not rep-
resent an integer value, then each planetary system can have
either⌊D⌋ (floor function) or⌈D⌉ (ceiling function) planets.
For instance, a model population withD = 3 means that all of
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Figure 1. Observed and debiased distributions of orbital peri-
ods and radii for a subset (Equation (2)) of the planets de-
tected byKepler. The top plot for orbital period shows a
distribution for 0−200 days divided into 60 equal-sized bins.
The observed distribution shows increasing planet frequency
at shorter periods, mainly due to the greater geometric prob-
ability of observing transiting planets at shorter periods. The
bottom plot for planet radius shows a distribution for 1.5−30
R⊕ divided into 30 equal-sized bins.

its planetary systems have 3 planets per star, and a model pop-
ulation withD = 4.75 means that 25% of its planetary systems
have 4 planets and 75% of its planetary systems have 5 plan-
ets. As a result,D also represents the mean number of planets
per system. This is the same as the “uniform” distribution
used by Lissauer et al. (2011b).

A modified Poisson distribution described by parameterλ
is a discrete distribution that is equivalent to a regular Poisson
distribution with mean valueλ, except that we ignore zero val-
ues. Therefore, by using a modified Poisson distribution we
restrict the regular Poisson distribution so that values picked
from the distribution must be greater than 0 (so that each plan-
etary system must have at least 1 planet). As a result, the mod-
ified Poisson distribution is not strictly Poisson since itsmean
value is different fromλ, hence the name “modified Poisson.”
Mathematically, the regular Poisson distribution can be writ-
ten as

P(k) =
λke−λ

k!
, (3)

which gives the probability of obtaining a discrete valuek
from such a distribution.
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A bounded uniform distribution is represented by a single
parameterλ. For each planetary system, first a modified Pois-
son distribution (as defined above) with parameterλ is used
to draw a valueNmax (maximum number of planets). Second,
a discrete uniform distribution with range 1−Nmax is used to
draw a value representing the number of planets in that sys-
tem.

We varied the values of the parameterD for the delta-like
distribution and the values of the parameterλ for the modi-
fied Poisson and bounded uniform distributions. In total, we
exploredD = 2− 7 andλ = 1− 6, each with intervals of 0.25,
resulting in a total of 63 possibilities for the multiplicity dis-
tribution.

2.4. Planet Inclination Distribution

We chose the inclination distribution in each planetary sys-
tem to be one of three possibilities: an aligned inclinationdis-
tribution, a Rayleigh distribution, or a Rayleigh of Rayleigh
distribution, as also used by Lissauer et al. (2011b).

An aligned distribution is the straightforward case where
relative inclinations in the system are 0◦. This is the same as
a perfectly coplanar system.

A Rayleigh distribution is a continuous distribution de-
scribed by a single parameterσ, which determines the mean
and variance of the distribution. Its mathematical form is

P(k) =
k
σ2

e−k2/2σ2

, (4)

which gives the probability density function for a valuek from
this distribution.

A Rayleigh of Rayleigh distribution, with a single parame-
ter σσ, means that we draw from two Rayleigh distributions
for each planetary system. First, the given parameterσσ de-
fines the first Rayleigh distribution from which we draw a
value forσ for each planetary system. Second, the drawn
value ofσ is then used to define the second Rayleigh distribu-
tion from which we draw values for the inclinations of planets
in that system. This allows for the possibility that planetary
systems in a particular model population have Rayleigh incli-
nation distributions with different mean and variance.

We variedσ for the Rayleigh distribution andσσ for the
Rayleigh of Rayleigh distribution with the same range of val-
ues: 1−10◦ with intervals of 1◦, as well as values of 15◦, 20◦,
and 30◦. In total, all possibilities for the 3 inclination distri-
butions added up to a total of 27 possible inclination distribu-
tions.

2.5. Other Planetary Parameters

So far we have defined the distributions used in drawing the
orbital periods, radii, multiplicity, and orbital inclinations of
simulated planetary systems. Now we discuss all other rel-
evant planetary parameters: planet mass, orbital semi-major
axis, eccentricity, and longitude of the ascending node.

To determine planet massM, we require anM(R) relation
to convert from radius to mass. First, we used (M/M⊕) =
(R/R⊕)2.06, which is a commonly-used power law derived by
fitting to Earth and Saturn (Lissauer et al. 2011b). Results
given in this paper are based on this relation. Second, we
obtained an alternateM(R) relation by fitting to masses and
radii of known transiting exoplanets. ThisM(R) relation is a

broken log-linear fit given as

log10

(

M
MJup

)

= 2.368

(

R
RJup

)

− 2.261 (5)

for

(

R
RJup

)

< 1.062,

log10

(

M
MJup

)

= −0.492

(

R
RJup

)

+ 0.777 (6)

for

(

R
RJup

)

≥ 1.062.

This fit is plotted in Figure 2, along with data of known transit-
ing exoplanets, the (M/M⊕) = (R/R⊕)2.06 relation by Lissauer
et al. (2011b), and aR(M) log-quadratic fit by Tremaine &
Dong (2012). Our 4-parameter fit is a better match to the data
than the 1-parameter prescription of (M/M⊕) = (R/R⊕)2.06

(improvement inχ2 from 48.1 to 28.8), and this is not sim-
ply due to the addition of model parameters (F-test at 99.96%
confidence level).

In contrast to the fit by Tremaine & Dong (2012), our fit is
anM(R) function and not aR(M) function and hence is use-
ful for cases that require assigning masses corresponding to
particular radii (i.e., our fit does not have an ambiguity where
some values ofR have multiple corresponding values ofM,
which makes it impossible to select a unique mass for a given
radius). In addition, our fit covers the full range of parameter
space in radii; the fit by Tremaine & Dong (2012) has a maxi-
mum radius value of about 1.3 Jupiter radii. We have repeated
the analysis described in this paper using our fittedM(R) re-
lation in Equations (5)-(6), and we find essentially the same
results as when we used (M/M⊕) = (R/R⊕)2.06.

Each planet’s semi-major axis is determined using the or-
bital period and Kepler’s Third Law. For eccentricity, we
assumed that all planets have circular orbits.Kepler candi-
dates do not show evidence for large eccentricities (Moor-
head et al. 2011), but we note that even moderate eccentrici-
ties (<0.25) could affect transit durations in a manner similar
to that caused by differences in inclinations of up to a few de-
grees. For the longitude of the ascending node of each planet’s
orbit, we drew an angle from a uniform distribution with val-
ues between 0◦ and 360◦.

Now we have described all relevant stellar and planetary
parameters to build a fictitious planetary system. In the next
subsection, we describe stability constraints placed on these
systems.

2.6. Stability Requirements

The first stability constraint is Hill stability, and we describe
our implementation using the following example. In the con-
struction of each planetary system, we add a first planet with
its parameters chosen according to the methods already de-
scribed. If the system’s assigned multiplicity is greater than
one, we add a second planet. The second planet is accepted
only if it is Hill stable with the first planet, which occurs when

∆ =
a2 − a1

RH1,2
& 3.46, (7)
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Figure 2. Known transiting planets (triangles) and three different mass-radius relations (colored curves). See Section 2.5 for
details.

wherea is the semi-major axis andRH1,2 is the mutual Hill
radius defined as

RH1,2 =

(

M1 + M2

3M∗

)1/3 a1 + a2

2
, (8)

(e.g., Gladman 1993; Chambers et al. 1996). Here,M repre-
sents mass and subscripts 1 and 2 denote the inner and outer
planets, respectively. If the second planet is not acceptedbe-
cause it violates Hill stability with the first planet, then the
second planet has its radius and orbital period (or equiva-
lently, mass and semi-major axis) re-drawn until Hill stabil-
ity is satisfied. We require that all adjacent planet pairs sat-
isfy this Hill stability requirement. The assumption that ad-
jacent planet pairs should be Hill stable is reasonable; outof
the 885 planet candidates located in multi-planet systems de-
tected during Q1-6 of theKepler mission, only two pairs of
planets are found to be apparently unstable by Fabrycky et al.
(2012) on the basis of numerical integrations using nominal
mass-radius scalings and circular orbit assumptions.

Following the methods of Lissauer et al. (2011b), we im-
posed a second stability constraint that any adjacent planet
trio (any three neighboring planets) must satisfy

∆inner pair of trio+∆outer pair of trio≥ 18. (9)

As described for the example above for Hill stability cases,if
the constraint in Equation (9) is not satisfied, a planet’s prop-
erties are re-drawn until this stability requirement is fulfilled.

For the creation of multi-planet systems, we added planets
to each system one at a time, where successful addition of
a planet occurred when it fulfilled both stability criteria de-
scribed above. For systems with a large multiplicity, at times
it was not possible to satisfy stability constraints given our pe-

riod range and therefore we allowed a maximum of 1000 at-
tempts per star before discarding it. Therefore, in rare cases,
some model populations have a slightly lower number of plan-
etary systems.

2.7. Summary

To summarize this section: we have described the steps
taken to assemble various model populations, each consisting
of about 106 planetary systems. Each of these model popula-
tions follows different combinations of (1) multiplicity and (2)
inclination distributions. Taking all combinations of theval-
ues for the tunable parameters in these distributions, there are
a total of 1,701 possibilities. Our goal is to take these model
populations, run them through synthetic observations, andsee
which planets are transiting and detectable. The properties of
these detectable planets will then be compared to the actual
observedKepler planets to determine which model produces
acceptable fits. This allows us to determine the nature of un-
derlying multiplicities and inclinations. In the next section,
we discuss how we evaluate these model populations.

3. EVALUATING MODEL POPULATIONS

We describe our methods for evaluating each model popu-
lation: (1) determining detectable, transiting planets, and (2)
comparing them to the observedKepler planets using statisti-
cal tests.

3.1. Determining Detectable, Transiting Planets

For each model population, we determined which of the
planets in each planetary system weretransiting. From the
group of transiting planets, we determined which transiting
planets weredetectable based on SNR requirements. The fol-
lowing paragraphs describe these methods.
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For each planetary system, we evaluated whether any of the
planets were transiting. First we picked a random line-of-sight
(i.e., picking a random point on the celestial sphere) from the
observer to the system, and the plane normal to this line-of-
sight vector determines the plane of sky. We then computed
the planet-star distance projected on the plane of sky (e.g., see
Winn 2010). The minimum in that quantity is theimpact pa-
rameter, which we normalized by the stellar radius. A planet
transits when its impact parameter is less than 1.

We calculated the SNR of transit events in order to deter-
mine whether or not each transiting planet would have been
detectable during Q1-6 of theKepler mission. To do so, first
we randomly picked a MJD (Modified Julian Date) between
the first and last cadence mid-times of Q1-6 by using the dates
provided in theKepler Data Release Notes2 (DRN) 14 and 16.
We assumed that the planet transited on this randomly-picked
date, and we explored backwards and forwards in time us-
ing the planet’s orbital period in order to determine the dates
of all transits during Q1-6. Next, we eliminated any transits
that occurred in the gaps between quarters; such gaps are nec-
essary to roll the spacecraft 90◦ to keep its solar arrays il-
luminated. In addition, not all stars are observed each quar-
ter, for instance, due to CCD module failure. As a result, we
used the planet’s host star observing log that recorded all ob-
served quarters (see Section 2.1), and eliminated any transits
that occurred in quarters where the host star was not observed.
Next, we eliminated a small fraction of remaining transits in
a random fashion to account for a 95% duty cycle because of
observing downtimes (e.g., breaks for data downlink). After
accounting for these issues, all remainingN transits for this
planet were then counted and used to calculate the detection
SNR as

SNR =

(

R
R∗

)2 √
N

σCDPP
, (10)

where the first fraction represents the depth of the transit and
σCDPP represents an adimensional noise metric (quadratically
interpolated to the transit duration length using the set ofmea-
sured {3-hr, 6-hr, 12-hr} CDPP values) for the planet’s host
star (see Section 2.1). If the SNR is at least the value of the
SNR threshold for detection (SNR≥10), then the transiting
planet is labeled as detectable.

3.2. Comparing to Observations

Here we describe how we evaluated each model popula-
tion’s goodness-of-fit when compared to observations. All
model populations are distinct from each other due to the
different parameter values chosen for their underlying mul-
tiplicity and inclination distributions. To evaluate how well
each model population matches the observations, we com-
pared them using 2 observables: (1) observed multiplicity
vector and (2) observed distribution of normalized, transit du-
ration ratios. These observables were computed for both the
simulated planets and the KOI candidates.

We discuss these 2 types of observables in greater detail.
The multiplicity vectorµ represents the number of systems
observed withj transiting planets, wherej = 1,2,3,4,5,6,7+.
In other words, the multiplicity vector describes how many
systems are observed to have a single planet, how many sys-
tems are observed with 2 planets, etc. Systems with 7 or more

2 The DRN are available for download from MAST at
http://archive.stsci.edu/kepler/data_release.html.

planets are placed in the same multiplicity category:j = 7+.
The normalized, transit duration ratioξ is defined as (e.g.,
Fabrycky et al. 2012)

ξ =
Tdur,1/P1/3

1

Tdur,2/P1/3
2

, (11)

where the transit durationTdur is normalized by the orbital pe-
riod raised to the 1/3 powerP1/3. Subscripts 1 and 2 represent
any pair of planets in the same system where 1 denotes the
inner planet and 2 denotes the outer planet. Aj−planet sys-
tem has a total ofj( j − 1)/2 pairs. We decided to fit to values
of ξ because they contain information on mutual inclinations
of observed multi-planet systems. For instance, coplanar sys-
tems tend to have values ofξ > 1, because the inner planet’s
impact parameter is smaller and hence its normalized transit
duration is longer. Fabrycky et al. (2012) used the observed
Kepler distribution ofξ to determine that the observed mutual
inclinations are low at 1.0-2.3◦.

We calculated the (µ, ξ) observables for the subset of KOIs
previously obtained in Section 2.2. We also calculated the (µ,
ξ) observables for each model population by considering all
detectable, transiting planets.

Our next step was to obtain a statistical measure of each
model population’s goodness-of-fit to the observed population
by calculating a test statistic and its corresponding probability.
A larger probability indicates a better match to observations.
To compare multiplicity vectorsµ, we performed chi-square
tests, which are appropriate for discrete data. Chi-square
tests are valid when the chi-square probability distribution
is a good approximation to the distribution of the chi-square
statistic (Equation (12)). As shown by theoretical investiga-
tions, the approximation is usually good when there are at
least 5 discrete categories and at least 5 values in each cate-
gory for the model population’sµ (e.g., Hoel 1984). These re-
quirements may not always be satisfied in our case, and so we
also perform a randomization method to calculate chi-square
probabilities, as described below. To compareξ distributions,
we performed Kolmogorov-Smirnov (K-S) tests, which can
be used for continuous data. K-S tests have no restrictions on
sample sizes, and are also distribution-free and so therefore
can be applied for any kind of underlying distribution of the
comparison samples (e.g., Stuart & Ord 1991). These tests
are described in more detail below.

The chi-square test used for comparing multiplicity vectors
uses a chi-square statisticχ2 computed as (e.g., Press et al.
1992)

χ2 =
∑

j

(O j − E j)2

E j
, (12)

whereO j represents an observed quantity, in this case the
number of observed planetary systems withj planets,E j rep-
resents an expected or theoretical value, in this case the num-
ber of simulated planetary systems withj detectable planets,
and j represents the index of the multiplicity vector (i.e., 1 for
1-planet systems, N for N-planet systems, etc.) being summed
over. Scaling was performed to adjust the model multiplicity
vector such that

∑

O j =
∑

E j. Large values ofχ2 represent
worse fits and larger deviations betweenO j andE j quantities,
meaning it is not likely theO j values are drawn from the pop-
ulation represented by theE j values. For comparison between
each model population’s expected values and observed values,
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we only consideredj indices whereE j 6= 0 (noting the appear-
ance ofE j in the denominator of Equation (12)). Since we
must ignore categories withE j = 0, we note that there may be
cases (i.e., for the delta-like multiplicity distribution) where a
given model population with only 1-planet and 2-planet sys-
tems may yield a lowχ2 even though it is in factnot a good
match to the data, e.g., because it does not predict any 3+
planet systems that are actually observed. Model populations
based on delta-like multiplicity distributions do not provide a
good match to the data (Section 4). Consequently, we will not
consider them further and none of theχ2 probabilities pre-
sented in this paper suffer from this issue.

We computed two chi-square probabilities for each calcu-
lation of the statistic in Equation (12). First, the standard chi-
square probability is an incomplete gamma function that can
be computed with knowledge ofχ2 and the number of degrees
of freedom. For our case, the number of degrees of freedom
is equal to the number of indices withE j 6= 0 subtracted by 1
(to account for the scaling constraint). This standard proba-
bility function is a good approximation as long as the number
of bins or the number of values in each bin is large. Given that
some higher-j categories in our multiplicity vector may have
low numbers, we performed a second calculation of the chi-
square probability using a more robust randomization method
(e.g., Good 2006). In this method, we determined how often
we could pick a new distribution from the model distribution
with χ2

new,model (comparing new and model distributions) that
was worse than theχ2

obs,model (comparing observed and model
distributions). In practice, we randomly picked 10,000 times
per model population and the fraction of them that yielded
χ2

new,model> χ2
obs,model represented the chi-square probability.

We found that in most cases, there was reasonable agree-
ment between the chi-square probabilities from the standard
function and from the randomization method. The chi-square
probabilities quoted later in this paper are those obtainedfrom
the randomization method.

For the K-S test used for comparingξ distributions, we
calculated the K-S statistic and the standard K-S probability
(e.g., Press et al. 1992). The K-S statisticD is the maximum
difference of the absolute value of two distributions givenas
cumulative distribution functions, or

D = max|ON1(ξ) − EN2(ξ)|, (13)

whereON1(ξ) represents the observed cumulative distribution
function ofξ values,EN2(ξ) represents the expected or model
cumulative distribution function, andN1 andN2 is the num-
ber of ξ values for the observed and expected distributions,
respectively. The significance or probability ofD represents
the chance of obtaining a higher value ofD, and can be cal-
culated with knowledge ofD and the number of pointsN1
andN2. This test is valid even with an unequal number of
points, i.e.,N1 6= N2. We note thatN2 can vary significantly
between model populations and this can affect the reliability
of the calculated probability, such as when comparing a prob-
ability obtained from one model population to the probability
obtained from another model. This is most pertinent for cases
with large differences inN2 (i.e., between model populations
with small and large multiplicities), where a poor fit is harder
to discern when there are fewer model valuesN2 to compare
to observed values. This issue can manifest itself as outliers in
our results for model populations with fewer number of plan-
ets per system. As we will show, we do not find any evidence

of such outliers in our results.
In the next section, we describe our calculations of these

probabilities to evaluate the match between each model pop-
ulation and the data.

4. RESULTS

In this section, we present the results for the fit between
each model population and the KOI subset that obeys Equa-
tions (1) and (2), and these results are illustrated in Figures
3−5. We do not show any results incorporating the delta-like
multiplicity distribution because it does not provide a good
match to the data. We will describe each of these figures in
turn.

Figure 3 shows the probabilities resulting from theχ2 test
that compared the observed and model multiplicity vectors
(number of 1-planet systems, number of 2-planet systems,
etc.). Most models can be ruled out with 3−sigma confidence,
and these tend to be systems with many planets and low in-
clinations or systems with few planets and high inclinations.
On the other hand, models that are consistent with the data in-
clude systems of few planets with low inclinations or systems
of many planets with high inclinations; this degeneracy is ev-
ident in the upward slopes in Figure 3. This degeneracy or
upward trend is seen because the intrinsic populations corre-
sponding to the observed transits can take a variety of forms:
from few planets that are well-aligned to many planets with
larger inclinations. The degeneracy exists because systems
with many planets and large inclinations are detected by tran-
sit surveys as systems with few planets and small inclinations.
Models with a bounded uniform multiplicity distribution and
a Rayleigh of Rayleigh inclination distribution appear to pro-
vide a better fit (higherχ2 probabilities) than other models.

Figure 4 depicts the probabilities from the K-S test that
evaluated the fit between the observed and modelξ (Equa-
tion (11)) distributions of multi-planet systems. The distribu-
tion of ξ values is used to gauge the extent of coplanarity or
non-coplanarity in multi-planet systems. This diagram shows
that higher probabilities are obtained for models with low-
inclination distributions. Nearly all models with a Rayleigh
σ or Rayleigh of Rayleighσσ parameter greater than 3◦ can
be ruled out with 3−sigma confidence. None of the models
with perfectly aligned (coplanar) systems provide acceptable
fits. The best fits with highest probabilities are Rayleigh or
Rayleigh of Rayleigh inclination distributions withσ,σσ = 1◦.
The probabilities in this figure appear to be relatively indepen-
dent of the underlying multiplicity distribution (evidentin the
long vertical columns of blue colors), because theξ distribu-
tion probes the relative inclination between any pair of planets
in a system and is independent of the multiplicity or number
of planets. As a result, we find that the K-S test is not very
sensitive to the underlying multiplicity model. Comparison
between Figures 3 and 4 shows that the degeneracy evident
in Figure 3 is broken when considering Figure 4 as well–by
also examining Figure 4, we see that only systems with fewer
planets and lower inclinations are consistent with the data.

Figure 5 illustrates the combined probabilities from Figures
3 and 4. The combined probability is the product of theχ2

and K-S probabilities. We make the assumption that these
two probabilities are independent. This product of two prob-
abilities is shown in Figure 5, from which it is evident that
most models can be ruled out as unacceptable fits. Degenera-
cies present in both Figures 3 and 4 are broken when the data
in these figures are combined in Figure 5. The best fits are
models with lower inclinations and lower multiplicities, and
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Figure 3. Diagram showing probabilities fromχ2 tests that evaluated the goodness-of-fit of various models with respect to planet
multiplicity. Each square on this grid represents a different model, and each square’s color depicts the probability (the higher the
probability, the better the fit). The x-axis shows theunderlying inclination distribution, and can be aligned (Al.), Rayleigh (Ra.),
or Rayleigh of Rayleigh (RR.). For Al., the number given is the inclination, or 0◦. For Ra. and RR., the numbers indicate theσ
or σσ parameter (in degrees) for the distribution. The y-axis shows theunderlying multiplicity distribution, and can be modified
Poisson (Po.) or bounded uniform (BU.). For Po, the number given isλ of the Poisson distribution and represents approximately
the mean number of planets per system. For BU., the number given isλ of the Poisson distribution from which the maximum
number of planets is drawn. This plot can be approximately divided into 4 quadrants, where in each quadrant the y-axis hasthe
number of planets per system increasing to the top and the x-axis has inclinations increasing to the right.
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Figure 4. Same as Figure 3, except this diagram shows K-S probabilities of ξ distributions. These probabilities represent the
goodness-of-fit of various models with respect to orbital inclinations.
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Figure 5. Same as Figure 3, except this diagram shows combined (multiplied) probabilities fromχ2 and K-S tests. These proba-
bilities represent the overall goodness-of-fit of various models to theKepler sample.
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in particular, the fits with a bounded uniform distribution in
multiplicity and a Rayleigh or Rayleigh of Rayleigh distribu-
tion in inclination are most consistent with the data.

4.1. Overall Best-Fit Models:
Few Planets and Low Inclinations

As seen in Figure 5, the overall best-fit models with
the largest combined probabilities are models with low-
multiplicity bound uniform distributions (represented byλ)
and with low-inclination Rayleigh (represented byσ) or
Rayleigh of Rayleigh (represented byσσ) distributions. The
best-fit model with a bounded uniform and Rayleigh distri-
bution hasλ = 2.50 andσ = 1◦. The best-fit model with a
bounded uniform and Rayleigh of Rayleigh distribution has
λ = 2.25 andσσ = 1◦. There are no qualitative differences be-
tween the quality of these two fits. Based on these two best-fit
models, we find that 75-80% of planetary systems have 1 or
2 planets with orbital periods less than 200 days. In addi-
tion, over 85% of planets have orbital inclinations less than
3 degrees (relative to a common reference plane). These re-
sults represent our best estimate of the underlying distribu-
tions ofKepler transiting systems for the parameter space ex-
plored here (Equations (1) and (2)). Assuming that theKepler
sample is representative, these distributions also describe the
architecture of planetary systems in general.

We analyze the best-fit model with a bounded uniform
(λ = 2.25) and a Rayleigh of Rayleigh (σσ = 1◦) distribution in
greater detail. First, in Figure 6 we plot the underlying mul-
tiplicity and inclination distributions. The first and second
rows of the figure show the first and second steps of picking
multiplicity and inclination values from the distributions. The
plots in the bottom two rows show the resulting histograms
of values picked from these distributions. Second, we show
the comparisons between the best-fit model and the data. Ta-
ble 1 compares the numbers of observed transiting systems
to the numbers of detected transits from the best-fit model.
There is a reasonable match in each multiplicity index and an
overall match probability of 25.2%. Figure 7 illustrates the
comparison between the distribution ofξ values fromKepler
observations and the distribution ofξ values from simulated
detections using the best-fit model. The numbers in each bin
have been normalized to enable comparison, and the match
between distributions has a probability of 27.5%. Taken to-
gether, the probabilities from each fitted observable (χ2 prob-
ability for the multiplicity fit and K-S probability for theξ
distribution fit) are multiplied to yield a combined probability
of 6.9%.

The low inclinations in our best-fit models have interest-
ing implications for planet formation and evolution theories.
Our findings that these systems are relatively coplanar (at least
out to 200 days) are in favor of standard models that suggest
planet formation within a protoplanetary disk. In addition,
strong influences by external perturbers such as Kozai pro-
cesses, scattering, or resonances are not likely to play a ma-
jor, lasting role given that these systems do not generally have
high, excited inclinations. Theories of planet formation and
evolution can be tested against the architecture of planetary
systems illuminated by theKepler mission.

4.2. Effects of False Positives and Search Incompleteness

The results of our study do not take into account the exis-
tence of false positives that mimic real planet transit signals in
the KOI dataset. For theKepler sample released by Borucki

Table 1
Multiplicity Vector:

Number of Systems withj Detectable Planets

Name j = 1 2 3 4 5 6 7+

Observed 542 85 24 4 1 1 0

Best-fit 540.6 92.9 19.1 3.6 0.6 0.2 0.0

Comparison of the multiplicity vector between observations and
one of two best-fit models, here withλ = 2.25 andσσ = 1◦ (see
Section 4.1). Theχ2 probability for this match is 25.2%.

et al. (2011b), Morton & Johnson (2011) estimated that false
positive probabilities were generally low at. 10%, and an
analysis using binary statistics by Lissauer et al. (2012) esti-
mated that∼98% of the multi-planet systems are real. For the
latestKepler sample released by Batalha et al. (2012), Fab-
rycky et al. (2012) discussed how∼96% of pairs in multi-
transiting candidate systems are likely to be real planets using
stability arguments. For the purposes of our study, we as-
sumed that all planetary candidates are real. We expect that
the existence of false positives can potentially affect thefit be-
tween multiplicity vectors (e.g., Table 1), particularly for the
case of singly transiting systems where the actual population
may actually have lower numbers than reported due to false
positives. We do not expect that false positives will signif-
icantly influence the fit between normalized transit duration
ratios (e.g., Figure 7) since such ratios are only computed for
multi-planet systems, which we expect to be a higher-fidelity
sample than singly transiting systems.

To determine the effect of false positives on our results, we
repeated the entire analysis described in this paper for two
cases. In the first case, we removed all false positives de-
scribed in the literature (Howard et al. 2012; Batalha et al.
2012; Fabrycky et al. 2012; Santerne et al. 2012; Ofir & Drei-
zler 2012; Colón et al. 2012); a total of 35 false positives were
removed from the KOI table. Since we base our debiased pe-
riod and radius distributions on the observed sample, we cre-
ated new model populations and repeated our analyses. In the
second case, not only did we remove all known false positives
but we also added simulated false positives to our artificial
populations. For each population of planetary systems, we
added enough false positives (all single-planet systems) such
that false positives represented 10% of all planets. The prop-
erties of the simulated false positives (e.g., radius and period)
were based on the properties of known false positives. We
then repeated all of our analyses for these populations. In
both cases, we found that our results of intrinsic distributions
were almost identical in terms of the typical number of plan-
ets per system as well as their inclinations. Accordingly, we
do not expect that the effect of false positives will appreciably
change our results.

Another effect that can impact our results isKepler search
incompleteness. TheKepler team is currently investigating
the completeness of the pipeline by inserting artificial transits
into the pipeline and determining their recovery rates. Batalha
et al. (2012) suggested that the KOI catalog released in 2011
by Borucki et al. (2011b) suffers from incompleteness issues
because the planet gains seen between the 2011 and 2012 cat-
alogs cannot be completely explained by the longer observa-
tion window, and that it is possible the 2012 catalog still suf-
fers from some incompleteness issues. This can affect our
results in terms of the comparison between the observations
and our model’s computed observables, and we expect that its
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Figure 6. One of two best-fit models for multiplicity (left column) and inclination (right column). The multiplicity distribution is
a bounded uniform distribution: for each planetary system (1) we draw a valueNmax from a modified Poisson distribution with
λ = 2.25, and (2) we choose the number of planets by uniformly picking a value between 1 andNmax. The resulting distributions
of multiplicities are shown in the bottom plots. The inclination distribution is a Rayleigh of Rayleigh distribution: (1) for each
planetary system we draw a value forσ from a Rayleigh distribution with parameterσσ = 1◦, and (2) for each of its planets we
draw a value for inclination from a Rayleigh distribution with parameterσ. The resulting distributions of inclinations are shown
in the bottom plots.
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Figure 7. Comparison of theξ distribution between observa-
tions and one of two best-fit models, here withλ = 2.25 and
σσ = 1◦ (Section 4.1). The quantityξ is sensitive to orbital
inclinations in multi-planet transiting systems. The K-S prob-
ability for this match is 27.5%.

impact is a function of SNR and other parameters. The im-
pact of incompleteness will be better known after theKepler
team’s detailed study of pipeline completeness is finished,and
pipeline completeness is expected to improve in the future
with pipeline upgrades that are already underway (Batalha
et al. 2012).

To investigate the reliability of our results given incom-
pleteness issues, we have repeated all simulations and anal-
yses described in this paper for higher SNR thresholds of 15,
20, and 25. In all cases, we find that our conclusions regarding
low intrinsic inclinations are the same and that theKepler data
favors low-inclination distributions. However, we find that
the best-fit multiplicity distribution rises towards larger num-
bers of planets as we increase to higher SNR thresholds. This
can be explained as follows. For a given population of plane-
tary systems, by imposing higher and higher SNR thresholds
on the detectability of its transiting planets, planets in two-
planet systems are more likely to be missed than planets in
one-planet systems. This is because the outer planet in two-
planet systems tends to have a larger orbital period than the
planet in one-planet systems, and therefore the outer planet in
two-planet systems will exhibit fewer transits and have lower
SNR. Consequently, the ratio of observed one-planet to two-
planet systems should rise with higher SNR thresholds for de-
tectability. This effect is seen in our synthetic populations, but
is not seen in the observedKepler data, where the ratio of ob-
served one-planet to two-planet systems remains near 6:1 for
SNR∼10 to SNR∼25 for the radius and period regime con-
sidered here. As a result, the best-fit multiplicity distribution
rises with increasing SNR thresholds in order to match the
data. This curious trend in the data suggests that perhaps there
are many single-planet systems missing in the KOI table. If
this is the case, then our multiplicity determinations serve as
an upper limit regarding the typical number of planets per sys-
tem. The best way to test this is to repeat this analysis in the
future when the KOI tables are less biased and more complete.

5. COMPARISON WITH THE SOLAR SYSTEM
AND WITH PREVIOUS WORK

We compare the results of our study with the properties of
planets in the Solar System as well as with some relevant pre-
vious studies.

5.1. Results Are Consistent With the Solar System

Based on the underlying multiplicity distribution of our
best-fit models, 75-80% of planetary systems have 1 or 2 plan-
ets with orbital periods less than 200 days (see Section 4.1).
In comparison, the Solar System has 1 planet, Mercury, with
an orbital period less than 200 days. Accordingly, our best-fit
multiplicity distributions are consistent with the Solar System,
if we extrapolate the results of our study to planetary radiiless
than 1.5 Earth radii. Note that our analysis is agnostic about
the number of planets with larger orbital periods or different
radius/mass regimes than considered here; recall that these
limits are due to the parameter space constraints imposed by
our study and defined in Equations (1) and (2). More data and
extension of this study to longer orbital periods and smaller
planetary radii are warranted before any definitive multiplic-
ity comparison can be made with the Solar System.

Based on the underlying inclination distributions of our
best-fit models, over 85% of planets have orbital inclinations
less than 3 degrees (see Section 4.1), suggesting a high degree
of coplanarity. This is compatible with the inclinations seen
among the planets in the Solar System, if we allow ourselves
to extrapolate beyond the period and radii limits of our study.
In the Solar System, 7 out of the eight planets (or 87.5%) have
inclinations less than 3 degrees relative to the invariableplane,
with Mercury as the exception.

5.2. Comparison with Previous Studies

Lissauer et al. (2011b) investigated the dynamical proper-
ties of multi-planet systems in the KOI catalog announced
by Borucki et al. (2011b). They also presented a detailed
analysis of the inclinations ofKepler planetary systems. To
accomplish this, they created a host of planetary models
following different planet multiplicity and inclination distri-
butions, determined which of those planets were transiting
and detectable, and compared the resulting transit numbers
with the observed transit numbers to determine each model’s
goodness-of-fit. Differences between their methods and ours
include different methods for obtaining debiased period and
radius distributions, different radius and period parameter
ranges, an observedξ distribution that was used as a fitted ob-
servable in our study, and different data sets (we used the most
recently released KOI data set; Batalha et al. 2012). From
their results, Lissauer et al. (2011b) ruled out systems with
small numbers of planets and large inclinations as well as
systems with large numbers of planets and small inclinations,
which we also found to be inconsistent with the data (see Fig-
ure 3). In addition, they found a degeneracy in their results
between underlying distributions of inclination and multiplic-
ity; the number of planets per system could be increased if the
inclination was also increased and still provide good fits tothe
data, also seen in our Figure 3. Ultimately they discounted the
case of thick systems with many planets by invoking results
from radial velocity surveys that suggested low inclinations
(see discussion in Fabrycky et al. 2012). In our study, we
were able to reject that scenario because it provided poor fits
to the observedξ distribution (see Figure 4).

Tremaine & Dong (2012) applied a general statistical model
to Kepler data as well as to radial velocity surveys to analyze
the multiplicity and inclination distributions. They concluded
thatKepler data alone could not place constraints on inclina-
tions, and acceptable possibilities ranged from thin to even
spherical systems. Systems with large rms inclinations could
be fit by the data as long as some of them had a large number
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of planets. However, when jointly analyzing bothKepler and
radial velocity data, they were able to place constraints onin-
clinations to show that mean planetary inclinations are in the
range 0− 5◦. These relatively low inclinations are consistent
with our results showing how models with lower inclinations
provided better fits to the data.

Figueira et al. (2012) determined underlying inclination
distributions by applying information from both HARPS
(High Accuracy Radial Velocity Planet Searcher) andKepler
surveys. They assumed that if the HARPS andKepler sur-
veys share the same underlying population, then the differ-
ent detection sensitivities of these two surveys with theirde-
tected samples of planets should allow determination of the
underlying inclinations. To do so, they created synthetic pop-
ulations of planets with a given multiplicity distributionas
previously determined using HARPS data, and planets were
given various inclination distributions (aligned, Rayleigh, and
isotropic). Each model’s goodness-of-fit was determined by
comparing the frequency of transiting systems with theKe-
pler sample. They found that the best fits were obtained using
models with inclinations prescribed by a Rayleigh distribution
with σ ≤ 1◦. In our study, we used a different data set based
on the latest release by Batalha et al. (2012), we fit for an
additional parameter (the intrinsic multiplicity distribution),
and we fit to an extra observable (the resultingξ distribution).
Given that, our overall results are in agreement since we also
found that low inclinations with a Rayleigh parameterσ ∼1◦

are consistent with the data.
Fabrycky et al. (2012) presented important properties

of multi-planet candidates in the KOI catalog released by
Batalha et al. (2012). They found that almost all of these
systems are apparently stable (using nominal mass-radius and
circular orbit assumptions), which reinforces the high-fidelity
nature of these multi-planet detections. In addition, theyde-
rived the mutual inclinations of observed planets using the
distribution ofξ from theKepler sample, which we used in
our study as a fitted observable. They found that mutual in-
clinations are constrained to the range of 1−2.3◦ for observed
planets, and concluded that planetary systems are typically
flat. Our analysis is different and has some advantages in that
we considered underlying planet multiplicity and inclination
models, ran them through synthetic observations, and fitted
the models’ results to observed transit numbers andξ distribu-
tion. Our study agrees with the conclusions of Fabrycky et al.
(2012) that planetary systems tend to be relatively coplanar to
within a few degrees.

Weissbein et al. (2012) implemented an analytical model
and investigated an intrinsic Poisson distribution for planet
multiplicity as well as coplanar and non-coplanar assumptions
for inclinations using a Rayleigh distribution. They foundthat
none of their choices for multiplicity and inclination distribu-
tions produced numbers of transiting planet systems match-
ing theKepler data. This is generally consistent with our re-
sults, where we find that combinations of Poisson multiplicity
distributions and Rayleigh inclination distributions produce
some of the poorest fits. They suggested that the disagree-
ment between their results and the data could be potentially
explained if planet occurrence is not an independent process
and is instead correlated between planets in the same system,
where the existence of one planet may affect the existence of
additional planets.

Johansen et al. (2012) used a different approach than some
previous authors. They created synthetic triple planet sys-
tems by assuming they could be based off of observedKe-

pler triply transiting systems. They determined which of their
synthetic planets could be transiting and observable, and then
calculated the resulting number of singly, doubly, and triply
transiting systems to compare with the actual number of tran-
sits in theKepler data. They also repeated these steps for
different inclinations. From fitting to observed doubly and
triply transiting systems, they found low mutual inclinations
of . 5◦. Although our methods are different, such low mutual
inclinations are compatible with our findings that these sys-
tems are intrinsically thin. In addition, Johansen et al. (2012)
found that numbers of transiting two-planet and three-planet
systems can be matched by underlying three-planet systems,
but they underproduced the number of transiting single-planet
systems. To investigate this further, we have repeated our en-
tire analysis by considering systems with only one or three
planets. We find that we are not only able to reproduce the
numbers of transiting two-planet and three-planet systems, as
did Johansen et al. (2012), but also the number of single planet
systems. Of course, by considering only systems with one and
three planets we are not able to match the number of systems
with four transiting planets or greater.

6. CONCLUSIONS

We have investigated the underlying distributions of multi-
plicity and inclination of planetary systems by using the sam-
ple of planet candidates discovered by theKepler mission
during Quarters 1 through 6. Our study included solar-like
stars and planets with orbital periods less than 200 days and
with radii of 1.5−30 R⊕. We created model populations rep-
resented by a total of two tunable parameters, and we fitted
these models to observed numbers of transiting systems and
to normalized transit duration ratios. We did not include any
constraints from radial velocity surveys. Below we list the
main conclusions of our study.

1. From our best-fit models, 75-80% of planetary systems
have 1 or 2 planets with orbital periods less than 200 days.
This represents the unbiased, underlying number of planets
per system.

2. From our best-fit models, over 85% of planets have or-
bital inclinations less than 3 degrees (relative to a common
reference plane), implying a high degree of coplanarity.

3. Compared to previous work, our results do not suffer
from degeneracies between multiplicity and inclination. We
break the degeneracy by jointly considering two types of ob-
servables that contain information on both number of planets
and inclinations.

4. If we extrapolate down to planet radii less than 1.5
Earth radii, the underlying multiplicity distribution is con-
sistent with the number of planets in the Solar System with
orbital periods less than 200 days. If we also extrapolate to
beyond 200 days, we find that the underlying distribution of
inclinations derived here is compatible with inclinationsin the
Solar System.

5. Our results are also consistent with the standard model
of planet formation in a disk, followed by an evolution that
did not have a significant and lasting impact on orbital incli-
nations.

Continued observations by theKepler mission will improve
the detectability of new candidate planets covering a larger
swath of parameter space, especially to longer orbital periods
and smaller planetary radii. We anticipate that future statisti-
cal work will further boost our understanding of the underly-
ing architecture of planetary systems.
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