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“…we must become the best learners and discoverers of everything that is lawful and necessary 

in the world: we must become physicists in order to be able to be creators in this sense—while  

hitherto all valuations and ideals have been based on ignorance of physics or were constructed so 

as to contradict it. Therefore: long live physics! And even more so that which compels us to turn 

to physics—our honesty!” 

—Friedrich Nietzsche, Die fröhliche Wissenschaft (The Gay Science) 
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ABSTRACT OF THE THESIS 

 

                                 Coaxial Vacuum Gap Breakdown for Pulsed Power Liners 

                                         by 

                                                           Samuel Winget Cordaro  

                Master of Science in Engineering Sciences (Engineering Physics) 

 

University of California San Diego, 2018 

 

Professor Sergei Krasheninnikov, Chair 

 

Vacuum gap breakdown mechanisms for many geometries, such as sphere-sphere, plane-

plane, and point-plane, are well understood and documented.[13] To date, no detailed analysis of 

a coaxial electrode geometry has been performed. This work is motivated by the need to better 

understand the mechanisms by which breakdown initiation occurs in a coaxial gap over a few 
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nanoseconds to a few microseconds at tens of kilo-volts over gap sizes up to 1.5 mm, especially 

considering how common the use of a coaxial gap is in high voltage power lines of large pulsed 

power machines.  

Of specific interest is the evolution of the magnetic field in time and space along the gap 

and how asymmetries about the azimuth of this gap influence this evolution. Asymmetry in 

breakdown about the azimuth could be responsible for non-uniform distributions of voltage and 

current which could lead to early time scale instabilities of a load at the termination of a 

transmission line.  

 This work is relevant to larger pulsed power machines that presently make use of a µm 

high voltage coaxial vacuum gap in the power feed, such as the MagLIF [14] design on Sandia’s 

Z-machine. On these larger machines, the cathode gap power feed cannot be observed and is 

usually not directly monitored by diagnostic tools. Often a direct observation of vacuum gaps is 

not feasible, a comprehensive method to observe and influence the evolution of the magnetic 

field and current density would prove beneficial.
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Chapter 1: Background 

 

1.1) Breakdown Theory: Field Emission  

In field emission [1], electrons are drawn out of a metal surface by a high electrostatic 

field. It can be shown that at the surface of a metal electrode, a strong electric field can modify 

the potential barrier at that surface to such a level that electrons in an upper level close to the 

“Fermi” level will have a probability of passing through the barrier (vacuum). This passing 

through the barrier is known as a tunneling effect, and is experimentally seen as a breakdown, 

Figure 1. The electric fields required to produce such an effect are of order ~107 V/cm. Fields of 

this order are often seen at sharp points or surface irregularities of an electrode.  

 

 

 

 

 

 

 

 

 

Figure 1: Experimental Breakdown emission in a coaxial gap (left), Breakdown emission diagram, which 

depicts the lowering of the potential barrier by an external electric field. The curve labeled 1 

represents the energy of the system without a field, curve 2 represents the energy due to the field, 

and finally 3 represents the total energy of the system in the presence of the external electric 

field. 
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An expression for this breakdown emission can be derived if we consider a simple 

analytical model of a single electron moving from a metal plate in the +x^ direction, Figure 1. 

The electric field of such a system can be approximated as that of a point charge and an 

equipotential planar surface, which will denote our metal surface.  Following convention we can 

see our field lines are the same as those when a test charge +q exists at a distance of ( - x ) on the 

opposite side of our metal surface. Thus by Coulomb’s Law, 

 

𝐹(𝑥) =  −
𝑒2

4𝜋𝜖0(2𝑥)2       (1.1) 

And thus follows our, potential energy at any distance x is found as follows,  

                              

𝑊𝑒1 = ∫ 𝐹(𝑥)𝑑𝑥
𝑥

∞
= −

𝑒2

16𝜋𝜖0𝑥
     (1.2) 

Equation 1.2 has been graphed on top of our Figure 2, which can be seen as a parabola. When the 

effect of the external field is applied at right angles to our metal surface (cathode surface), we 

can determine the potential energy given to the electron, which is as follows.  

                              

𝑊𝐸 = −𝑒𝐸𝑥           (1.3)                                  

Again we graph this equation, on Figure 1, which is shown as a straight line. With this we can 

find the total energy of this system 𝑊𝑇; 

                                

            𝑊𝑇 = 𝑊𝑒1 + 𝑊𝐸      (1.4) 
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This total energy, 𝑊𝑇 , is also graphed on Figure 1, as a resultant curve of 𝑊𝐸  and 𝑊𝑒1. We see 

that this is reduction  Δ𝑊 results in a reduction of the barrier.  The value at which 𝑊𝑡𝑜𝑡𝑎𝑙 is 

maximized is found by determining where the gradient in the change in Work done/energy is 

zero thusly, 

𝑑𝑊𝑇

𝑑𝑥
=

𝑒2

16𝜋𝜖0𝑥𝑚𝑎𝑥
2 − 𝑒𝐸 = 0 

𝑥𝑚𝑎𝑥 = √
𝑒

16𝜋𝜖0𝐸
  

𝑊𝑇(𝑥𝑚𝑎𝑥) = −𝑒√
𝑒𝐸

4𝜋𝜖0
 

From this we find that the effective work function is as follows, 

𝑊𝑒𝑓𝑓 = 𝑊𝑠 − 𝑊𝑇(𝑥𝑚𝑎𝑥)   (1.5) 

𝑊𝑠: The work function of the surface  

At this point is it useful to begin determining the emission current density based on the 

effective work function (1.5). The emission/breakdown current is related to the temperature of 

the emitter as shown by the Richardson relation [2] for thermionically emitted saturation current 

density:       

𝐽𝑠 =
4𝜋𝑚𝑒𝐾2

ℎ3 𝑇2 exp [−
𝑊𝑠

𝑘𝑇
]   (1.6) 

                          e,m: electron charge and mass  

                               K: Boltzmann’s constant 

                                T: Absolute temperature 



4 

 

                            𝑊𝑠 : Work function of the surface 

Now we are able to combine our effective work function (1.5) and our current density equation 

(1.6) to find a modified current density due to electron emission.  

𝐽𝑠 =
4𝜋𝑚𝑒𝐾2

ℎ3
𝑇2 exp [−

𝑒

𝑘𝑇
(𝑊𝑠 − √

𝑒𝐸

4𝜋𝜖0
)]  

Here we have arrived on a function that is dependent mainly on Temperature, Electric 

field, and the work function of the metal, this is known as the Schottky’s equation[6]. For the 

experimental regime we are working in our temperature is room temperature, due to the fact that 

our current pulse is short (150ns) and our current and voltage relatively low (200-300 A, 25kV). 

So an emission current density equation that is based solely on the work function and the surface 

field is needed. This will be explored in the next section.  

 

1.2) Cold Field Electron Emission 
 

In 1928, Fowler and Nordheim derived a mathematical model that relates the applied 

electric field (F), the work function (𝜙) of the metal and the current density (J) of the emitted 

electrons [3] for a low temperature metal (~0 K). This derivation was closely related to work 

done by Oppenheimer [7] on the emission of electrons from the hydrogen atom influenced by 

high external electric field. The derivation is as follows.   

In a similar way to the previous section, we first consider the emission through a potential 

energy barrier, Figure 2. Here the potential energy of electrons that will attempt to tunnel 

through a potential barrier are plotted. The dotted line is the assumed step function version of the 
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potential energy of the electrons, with the curved line denoting a rounding of the potential energy 

at the sharp points due to the mirror image potential effect. Though it will be shown below that 

this rounding of the potential, which normally alters the emission coefficients significantly [6] 

for any non-zero external electric field with electrons whose incident energy is roughly equal to 

the kinetic energy of the electron motion normal to the emitter metal surface, is insignificant in 

strong field emission at room temperatures.  

 

 

   

   

 Figure 2: Potential barrier example  

This is done by solving the wave equation through a potential energy step (dotted line) in Figure 

2.  

                                    
𝑑2

𝑑𝑥2 𝛹 +  𝜅2(𝑊 − 𝐶 + 𝐹𝑥)𝛹 = 0         𝑥 > 0       (1)      

                                           
𝑑2

𝑑𝑥2 𝛹 +  𝜅2𝑊𝛹 = 0         𝑥 < 0                             (𝟐)   

                  Conditions: (1): Ψ & d Ψ/dx are continuous at x =  0 

                                          (2): x > 0 stream of electrons to the right only 

                      𝜅2 =  8𝜋2𝑚/ℎ2 

At low temperatures nearly all the electrons are distributed such that W < C, so that we pass 

through a zero of the coefficient of ψ. Where W is the energy incident to the left on a surface, 

and C is the increase in potential energy. Thus,  
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(−
𝐶 − 𝑊

𝐹
+ 𝑥) (κ2𝐹)

1
2 = 𝑦 

                             => (1):          
𝑑2

𝑑𝑥2
𝜳 +  𝒚𝜳 = 𝟎 

 This is just our basic wave equation which has solutions in terms of Bessel functions (O 1/3)[8] 

                                                𝜓 = √𝑦𝐽
±

1

3
 
(

2

3
𝑦

8

2)                                       (3)  

 Here we require that solution for which large y presents a wave traveling to the right. This 

allows us to rewrite (3) in terms of a second function of Hankel H2 [8]. 

                                                               𝜓 = √𝑦𝐻1

3
 

(2)
(

2

3
𝑦

8

2)                                        (4) 

                          y >>1 => 𝜓 ~ (
2

𝜋
)

1

2
 [(𝑦

1

4) (
2

3
)

1

2
exp (−𝑖 [

2

3
𝑦

8

2 −
5𝜋

12
)]                         (5) 

                                             y ⟶∞ => |𝜓|2  ~ 
𝐴

( 𝑊−𝐶+𝐹𝑋)
1
2

=
𝐴′

𝑣′
 

                                𝐴, 𝐴′: 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

                                                           𝑣: Velocity of electrons. 

                                       x < 0:  𝜓 =
1

𝑊
1
4

[𝑎𝑒𝑖𝜅𝑥√𝑤 + 𝑎′𝑒−𝑖𝜅𝑥√𝑤]                       (6) 

Now we examine  𝐻1

3

(2)
 as it passes back through x = 0 from large x through the zero of y. We 

find no ambiguity here for ψ, since it is represented by a power series of integral powers of y. In 

order to proceed with the normal asymptotic expansion for 𝐻1

3
 

(2)
(

2

3
𝑦

8

2) , over the valid range of 

−2𝜋 < arg (𝑦
8

2) <  𝜋, we assert that 𝑦 =  −𝑦 = 𝑦′𝑒−𝑖𝜋. The expansion about x = 0 is thus,        

                   X = + 0:      
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𝜓(0) = (
𝐶 − 𝑊

𝐹
)

1
2

𝑒−0.5𝑖𝜋(𝜅2𝐹)
1
6𝐻1

3

(2)
(𝑒−

3
2

 𝑖𝜋 2

3
𝜅 √𝐹  (

𝐶 − 𝑊

𝐹
)

3
2

)  

            (
𝑑𝜓

𝑑𝑥
)

0
=

1

2
(

𝐶 − 𝑊

𝐹
)

−
1
2

𝑒0.5𝑖𝜋(𝜅2𝐹)
1
6𝐻1

3

(2)
(𝑒−

3
2

 𝑖𝜋 2

3
𝜅 √𝐹  (

𝐶 − 𝑊

𝐹
)

3
2

)

− (
𝐶 − 𝑊

𝐹
)

1
2

(𝜅2𝐹)
1
6 𝜅(𝐶 − 𝑊)

1
2𝐻1

3

(2)′
(𝑒−

3
2

 𝑖𝜋 2

3
𝜅 √𝐹  (

𝐶 − 𝑊

𝐹
)

3
2

) 

We can simplify the previous equation by omitting any common factor by absorbing it into the 

emission coefficient |𝑎|2/|𝑎′|2, which is the only quantity of interest physically.     Thus we can 

write,  

𝐻1
3

(2)′
(𝑒−

3
2

 𝑖𝜋𝑄) = 𝑒
3
2

 𝑖𝜋 𝑑𝐻.033
(2)′

𝑑𝑄
(𝑒−

3
2

 𝑖𝜋𝑄) 

                                                                   𝑄 =
2

3
𝜅 √𝐹  (

𝐶−𝑊

𝐹
)

3

2
 

With this the equations of continuity for ψ and dψ/dx can be reduced to, 

                                𝑎 + 𝑎′ = 𝑊
1

4 (
𝐶−𝑊

𝐹
)

1

2
𝐻1

3

(2)′
(𝑒−

3

2
 𝑖𝜋𝑄)                                                          (7) 

            −𝑎 + 𝑎′ =
𝑖

𝜅𝑊
1
4

[
1

2
(

𝐶−𝑊

𝐹
)

1

2
𝐻1

3

(2)
(𝑒−

3

2
 𝑖𝜋𝑄) +

𝐶−𝑊

𝐹
𝜅 √𝐹

𝑑𝐻.033
(2)′

𝑑𝑄
(𝑒−

3

2
 𝑖𝜋𝑄)]                 (8)        

By definition of Hankel functions [8],  

                         𝐻1

3

(2)
(𝑒−

3

2
 𝑖𝜋𝑄) =  −

1

𝑆𝑖𝑛(
𝜋

3
)
 {𝐼−0.33(𝑄) + 𝑒

1

3
 𝑖𝜋𝐼0.33(𝑄)}                                  (9)     

Where 𝐼±0.33(𝑄) is a real function and can be decomposed as,  
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𝛼 + 𝑖𝛽 =  
𝐼−0.33

′ (𝑄) + 𝑒
1
3

 𝑖𝜋𝐼0.33
′ (𝑄)

𝐼−0.33(𝑄) + 𝑒
1
3

 𝑖𝜋𝐼0.33(𝑄)
          

With this, we can finally find a function, D(W), for the fraction of W electrons penetrating the 

boundary peak and emerging in the influence of an external field F. We do this by explicitly 

solving (7) and (8) using (9) in terms of 𝛼 + 𝑖𝛽. After a bit of rearranging and referencing [8] we 

find,  

𝐷(𝑊) =
|𝑎|2 − |𝑎′|2

|𝑎|2
 

=
4𝛽 (

𝐶 − 𝑊
𝐹 )

3
2

 √𝐹 

{𝑊
1
4 (

𝐶 − 𝑊
𝐹 )

1
2

+
𝐶 − 𝑊

√𝐹
𝛽

𝑊
1
4

}

2

+
1

𝜅2𝑊
1
2

{
1
2 (

𝐶 − 𝑊
𝐹 )

1
2

+ 
𝐶 − 𝑊

√𝐹
 𝜅𝛼}

2 

To calculate 𝛼 𝑎𝑛𝑑 𝛽, 

𝛽 =
√3
2

𝐼0.33
′ 𝐼−0.33 − 𝐼−0,33

′ 𝐼0.33

(𝐼−0.33 + 0.5𝐼0.33)2 + 0.75𝐼0.33
2  

Upon reference [8], we see that the numerator is the Wronskian of the Bessel Equation of purely 

imaginary argument, thus we have exactly that,  

𝐼0.33𝐼−0.33
′ − 𝐼−0,33𝐼0.33

′ = −
2𝑆𝑖𝑛 (

𝜋
3)

𝜋𝑄
 

For the denominator we say that Q>>1 and use the asymptotic expansion to find,  

|𝑆𝑖𝑛 (
𝜋

3
) 𝐻1

3

(2)
(𝑒−

3
2

 𝑖𝜋𝑄)|

2

~
3

4

2

𝜋𝑄
𝑒2𝑄 =>      𝛽~𝑒−2𝑄 
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Through the same process of using asymptotic values and expansions we are able to find that𝛼 =

1 , finally, 

𝐷(𝑊) =  
4 (

𝐶 − 𝑊
𝐹 )

3
2

 √𝐹𝑒−2𝑄 

{𝑊
1
2 (

𝐶 − 𝑊
𝐹 ) +} +

1

𝜅2𝑊
1
2

{
1
2 (

𝐶 − 𝑊
𝐹 )

1
2

+ 
𝐶 − 𝑊

√𝐹
 𝜅}

2             (10) 

When examining the denominator we can see that the terms independent of 𝜅 are dominant and 

thus the second term in the denominator is ignored. Upon substitution of Q we find, 

                                       𝐷(𝑊) =
4{𝑊(𝐶−𝑊)}

1
2

𝐶
𝑒−

4𝜅(𝐶−𝑊)
3
2

3𝐹                                (11) 

We are now in a position to calculate the electron emission from a cold metal, this is 

often referred to as Cold Field Emission (CFE). We begin by using the formula for the number of 

electrons N(W) incident on a surface of unit area per unit time, with a kinetic energy W that is 

normal to the surface. This has been calculated by Nordheim [9] using Sommerfeld’s theory 

[10], which is a general theory of relativistic Keplerian motion applied to the quantum theory of 

spectra.  

𝑁(𝑊) =
4𝜋𝑚𝑘𝑇

ℎ3
𝐿 (

𝑊 − 𝜇

𝑘𝑇
) 

𝐿(𝛽) = ∫
𝑑𝑦

𝑒𝛽+𝑦 + 1

∞

0

 

𝜇, the parameter of the electron distribution in the Fermi-Dirac statistics equivalent of the 

thermodynamic partial potential of an electron ~𝑓(𝐸) = {1 + [exp
(𝐸−𝐸𝑓)

𝑘𝑏𝑇
]}

−1

. Thus the 

emission current is given generally by,  
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               𝐼 =
4𝜋𝑚𝜖𝑘𝑇

ℎ3
∫ 𝐷(𝑊)𝐿 (

𝑊 − 𝜇
𝑘𝑇

) 𝑑𝑊                        (12)
∞

0

 

𝜖: 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 𝑐ℎ𝑎𝑟𝑔𝑒 

For low temperatures the integrand of 𝐿 {
𝑊−𝜇

𝑘𝑇
} is sensible only when 

𝑊−𝜇

𝑘𝑇
+ 𝑦 < 0 and is 

thus unity. In this temperature limit it is sufficient to approximate 𝑘𝑇𝐿 {
𝑊−𝜇

𝑘𝑇
} is 𝜇 − 𝑊 for 𝑊 <

𝜇 𝑒𝑙𝑠𝑒 𝑧𝑒𝑟𝑜. In general, W and 𝜇 are much greater than kT, and 𝜇 ≪ 𝐶. Therefore we can use 

our derived approximate solution for D(W) (11) above in (12).  

  𝐼 =
16𝜋𝑚𝜖

𝐶ℎ3
∫ {𝑊(𝐶 − 𝑊)}

1
2(𝜇 − 𝑊)𝑒−

4𝜅(𝐶−𝑊)
3
2

3𝐹 𝑑𝑊 
𝜇

0

 

It can be seen via inspection that the integrand is very large for the largest value of W, 

thus the integral can be approximated sufficiently as, 

𝐼 =
𝜖

2𝜋ℎ

𝜇
1
2

(𝜒 + 𝜇)𝜒
1
2

𝐹2𝑒−
4𝜅𝜒

3
2

3𝐹                                               (13) 

𝜒 = 𝐶 − 𝜇 

The 𝜒 value in (13) is the thermionic work function [11] that corresponds to a chosen metal’s 

properties. (13) can be rearranged in terms of current density J, by dividing the current by the 

emitting surface area (
𝐴

𝑐𝑚2), and express the work function in terms of volts and F in terms for 

the field strength volts per distance( V/cm). Thus, the emission current density can be written as,  

𝐽 = 6.2𝑥10−6
𝜇

1
2

(𝜒 + 𝜇)𝜒
1
2

𝐹2𝑒−
6.8𝑥107𝜒

3
2

𝐹                     (14) 
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Experimental results found by Fowler and Nordheim [3] suggest that electron emission in 

an external field is satisfactorily accounted for by (14).  

Further rearranging of (14) into a form more readily used and slightly updated, based on work by 

R.G. Forbes[12], allows us to make some useful simplifications.  

𝐽 = 𝑎𝜒−1𝐹2𝑃𝐹 exp (−
𝑏𝜒

3
2

𝐹
)                                     (15) 

𝑃𝐹 =
4𝜒

1
2𝜇

1
2

𝜒 + 𝜇
 

𝑎~1.541434𝑥10−6𝐴𝑒𝑉 𝑉−2 

𝑏~6.830890  𝑒𝑉−
3
2  𝑉 𝑛𝑚−1 

𝑃𝐹 is commonly known as the tunneling prefactor, and is usually of order unity and often ignored 

in the cold field emission theory referenced here.          

Before we proceed, it would be useful to consolidate all of the assumptions made in this 

derivation for reference later in this text.  

Assumptions:  

 The temperature of the emitting metal surface is taken to be 0K, such that no electrons 

with energies above the fermi energy exist in the metal, and that the fermi level will be 

the top most filled level with electrons. Its electronic charge distribution in the metal 

given by the Fermi-Dirac statistics.  
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 Electron-Ion and Electron-Electron interactions are neglected. Known as the free 

electron approximation 

 The emitting surface is taken to be rather smooth, such that irregularities are small 

compared to the width of the potential barrier (i.e. the size of the gap). Quantum 

Mechanical Tunneling [6,7] across the barrier occurs only if the uncertainty in the 

position, Δ𝑥, of the electron is of order the barrier width i.e. 𝑥 =
𝜒

𝐸𝑒
 

 The potential barrier near the surface in the vacuum region consists of a potential due to 

the applied electric field, known as an image potential. This potential exerts an image 

force by the Coulomb attraction towards the surface of an electron outside, due to the 

induced charge inside of the metal. 

 

 1.3) Fowler-Nordheim Plot 

As shown in the previous section, the Fowler-Nordheim equation (15) determines the 

total number of electrons that tunnel through the potential barrier at the surface per unit area, also 

known as the emission current density. In order to use this analytical function experimentally, we 

must rearrange the terms slightly. Much like how we put our emission current in terms of current 

density, we will return to our original convention of current rather than current density, and we 

will now change our electric field strength coefficient to something that is measureable.  

𝐹 = 𝛽𝑉 

𝐼 = 𝐽𝐴 

Where A is the emitting surface area in 𝑐𝑚2, 𝛽 is the field enhancement factor in 𝑐𝑚−1(rather 

the ratio of the field at the surface to the anode-cathode voltage) and V  is the anode-cathode 
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voltage. The field enhancement factor is determined by the geometry of the emitter.  Substituting 

these into (15) we find,  

𝐼 = 𝑎𝜒−1𝛽2𝑉2𝑃𝐹 exp (−
𝑏𝜒

3
2

𝛽𝑉
)                                                (15.5) 

If we take the log of both sides and slightly rearrange some terms,  

log (
𝐼

𝑉2
) = −

(2.9669𝑥107)χ
3
2

𝛽𝑉
+ log (𝑎

𝛽2

𝜒
) 

A curve can be obtained by plotting log (
𝐼

𝑉2) versus 
10000

𝑉
 which in most cases yields a straight 

line, and is known as a Fowler-Nordheim (FN) plot.  Taking the slope of this line gives, 

                                      𝑚 = −
2.9669𝑥103𝜒

1
2

𝛽
                                                                               (16) 

What is immediately interesting about this result is that our slope is only dependent on the 

known value of our work function (which is a determined factor for materials in NIST database), 

and the enhancement factor. This means that this enhancement value can be calculated 

experimentally. 

1.3.1) Physical Meaning of Enhancement Factor 

 When discussing cold field emission theory [25] it is assumed that all electrons escape by 

a wave function based mechanical tunneling through an electric field lowered energy barrier, via 

states near in energy to the fermi energy level. For electrons, this is described by the Schrödinger 

equation, and has been derived explicitly in Chapter 1.1-1.2. 
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 Consider now an electron traveling in a wave state k towards the mechanical barrier 

(potential barrier) at the emitter surface, then the probability that the electron will escape is𝐷𝑘. 

Each wave state k has a small contribution from the incident current density,𝜁𝑘, approaching the 

barrier from the inside with a contribution of 𝜁𝑘𝐷𝑘to the emission  current density,  

𝐽 = Σ𝑘(𝜁𝑘𝐷𝑘).                                                     (17) 

When comparing equation (17) to the emission current equation in the (15.5), it can be 

seen that as 𝛽 increases, the emission current increases. An increase in current emission thus 

means an increase in the probability that an electron will tunnel through the mechanical 

(potential) barrier. Experimentally this increase in enhancement factor, and thus tunneling 

probability will be evaluated in the following chapters.  

1.4) Existing Breakdown Geometry Data  

In the early 50’s and 60’s, lots of experimental work was carried out on high voltage 

breakdown [26-32], generally centering on simple electrode geometry; point-plane, sphere-

sphere. In an experimental paper by M. Okawa [13], the principles derived in the above section 

were put into practice experimentally to great effect. It was shown how the enhancement factor 

can be calculated from FN plots and plotted for a very large array of geometries that had not 

been tested previously, Figure-(3). Based on the theory outlined in the previous section, the FN 

plots (Figure-(4)) yield a rather straight line that can be used to determine the enhancement 

factor (Figure-5, 6). Figure 5,6 show a comprehensive trend in enhancement factor versus gap 

size for many different geometries. For simple geometries like sphere-sphere, and rod-plane a 

straight forward trend of increase in gap size yields an increase in enhancement factor on 

average, till a threshold gap distance is met and the enhancement factor plateaus. Where as in the 
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more complex geometries, ring-ring and cylinder-plane, it is shown that enhancement factor 

follows a much more complex trend, with sharp increases and decreases as gap size changes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Experimental Geometries presented by M.Okawa [13] 
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Figure 4: FN Plots based on experimental results for Cylinder-Plane gap.  
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Figure 5:  Enhancement factor versus separation gap length for (a) Sphere-Sphere and (d) Rod-Plane.  

Figure 6: Enhancement factors versus separation gap length for (a)Sphere-Sphere, (b) Ring-Ring, and (e) 

Cylinder-plane.  
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The pertinent results found by M.Okawa are as follows; the enhancement factor 𝛽 m 

presents different values for the same gap length and for gap lengths that differ, as well as for 

different geometries. This means that breakdown initiation and thus current emission and 

probability of tunneling is influenced by gap size. Furthermore, the fact that the enhancement 

factor changes even in the same geometry and gap size would indicate that the surface area of the 

breakdown plays a role in the value of the enhancement factor. It was further shown upon 

inspection of the electrode surface after breakdown, that all breakdown traces are concentrated in 

a region with >90% of some maximum field strength, 𝐸 = 𝛽 (
𝑉

𝐺𝑎𝑝𝑠𝑖𝑧𝑒
). This region is known as 

an effective surface area, and is determined experimentally through direct measurement.  This 

allows one to take into account multiple formations of emission current, where previous work 

only considers a single breakdown point due to the geometry tested. These results will be 

referenced later in the text.  

Note, the graphs here are presented in 𝛽𝑙 which is determined by,  

𝛽𝑙 = 𝑁𝑆𝑒𝑓𝑓
𝑥  

where N is a form factor depending on the metal used, x is the average slope of field strength vs. 

gap length for each geometry. 𝑆𝑒𝑓𝑓 is the effective surface area of breakdown, which is 

determined via imaging of the electrode surface.  

1.5) Liner Loads on the Sandia Z-Machine  

High gain inertial fusion has eluded researchers for many years, and has lead to a robust 

amount of high energy density research and the development of many different approaches to 

fusion. One such approach, in the Z-pinch community, is the compression of a magnetized solid 
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liner filled with DT fuel combined with modular linear transformer driver pulsed power devices. 

Such an approach is more commonly known as magnetized liner inertial fusion (MagLIF) and 

was first described by Slutz, et al.[14]. This is currently being studied at the Sandia Z-Machine. 

The approach makes use of a hollow aluminum (or beryllium) cylindrical liner 

(h~10mm,D~6mm, W~300𝜇𝑚) which contains the DT fuel. External magnetic field coils that 

produce fields up to 𝐵𝑎𝑥𝑖𝑎𝑙~30T are applied prior to the main current pulse in order to reduce 

heat loss via electron-alpha particle transport, and help stabilize in inner liner wall Magneto-

Rayleigh Taylor instabilities (inherent in the hydrostatic MHD calculation for the z-pinch[]). 

Once the external magnetic field has penetrated the liner, radial compression is initiated via a 

current pulse (20MA,100ns). 

Of specific importance to this work is the way in which the liner is mounted to the 

cathode power feed in the Z-machine. Typically, the liner is fixed to the upper anode and then 

this entire unit is inserted into the cathode which is fixed to the power feed.  Once this step is 

completed a small azimuthal vacuum gap (~25𝜇𝑚) between the liner and the cathode remains, 

as seen in Figure-7.  The existence of this gap will be referenced and further explored in later 

chapters of this text.  
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Figure 7:  Solidworks drawing of the azimuthal gap in the Z-machine and MHD simulation of MagLIF 

stages. 

 

At this point it is now useful to outline a semi-analytical model of a few specific 

processes in MagLIF based entirely on calculations performed by R.D McBride [15].  The 

calculations below are based on Figure-8, where the system has been divided into three distinct 

regions, vacuum region, liner region, and fuel region.  As described in the MagLIF process 

above, a uniformly distributed axial magnetic field is in each region before the axial current is 
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turned on. The radius of each region is labeled according to region, with r being the total radius, 

𝑟𝐿 being the radius of the liner, and 𝑟𝑔 being the radius of the fuel.   

 

                             Figure 8: 2-D Slice of the Al liner of the MagLIF experiment. Where x is the center of 

the liner and the axis of compression 

 

The implosion of the liner and the fuel are driven by the pressure of the azimuthal 

magnetic field, which is supplied by the pulsed power driver of the Z-machine. Based on the 

cylindrical geometry the field generated in the vacuum regions is,  

                              𝐵𝑣 =
𝜇0𝐼𝑙𝑖𝑛𝑒𝑟

2𝜋𝑟
                             (1) 
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Here we assume that, like in our figure-8, that the azimuthal B-field is partially diffused into the 

liner wall, and can be described as such,  

                       𝐵𝐿 =
𝜇0𝐼𝑙𝑖𝑛𝑒𝑟

2𝜋𝑟𝐿
(

𝑟−𝑟𝑔

𝑟𝐿−𝑟𝑔
)

𝛽

                   (2) 

 Where 𝛽 is a found quantity based on the skin depth ,𝛿𝑠𝑘𝑖𝑛, of the material and is as follows. 

                𝛽 = max {1, |
ln(

1

𝑒
)

ln(
𝛿𝐼0−𝛿𝑠𝑘𝑖𝑛

𝛿𝐼0
)
|}                    (3) 

𝛿𝑠𝑘𝑖𝑛 = √
4𝜌𝑒𝜏𝑟

𝜋𝜇0
    

𝜌𝑒: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑛𝑒𝑟 𝑚𝑎𝑡𝑒𝑟 

𝜏𝑟: 𝑟𝑖𝑠𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑧𝑖𝑚𝑢𝑡ℎ𝑎𝑙 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 

𝜇0: 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑝𝑒𝑟𝑚𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒 

Some useful values have been provided in the table below.  

 

                                 Figure 9: Values calculated with 𝜏𝑟= 130 ns  

 

With this we are now able to consider liner dynamics and compression. To account for the 

compressibility of the liner, the liner is divided up into 𝑁𝑙𝑠 ≥ 20 concentric thin liner shells. We 

can write an equation of motion for each liner interface, as well as for the liner-fuel interface 
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(which is an internal interface) and the liner-vacuum interface (which is known as an external 

interface). The internal interfaces are assigned a mass, 𝑚𝑙𝑠 = 𝑚𝑙/𝑁𝑙𝑠. Where 𝑚𝑙 is the total liner 

mass. Each external interface has a mass of 𝑚𝑙𝑠/2.  In total there are 𝑁𝑙𝑖 = 𝑁𝑙𝑠 + 1 liner 

interfaces. The radial position of each liner interface,𝑟𝑙𝑖, are distributed over [𝑟𝑔 = 𝑟𝑙,𝑖=1, 𝑟𝑙 =

𝑟𝑙,𝑖=𝑁𝑙𝑖] with an initial radial interface position 𝑖 + 1, denoted by 

          𝑟𝑙,𝑖+1(𝑡0) =  √𝑟𝑙,𝑖
2 (𝑡0) +

𝑚𝑙𝑠

𝜋ℎ𝜌𝑙0
 (𝑖 = 1, … 𝑁𝑙𝑖 − 2).             (4) 

𝜌𝑙0: 𝑖𝑛𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑛𝑒𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

The center of mass radial position of the liner shell s is given by,  

   𝑟𝑙,𝑖+1(𝑡) =  √
[𝑟𝑙,𝑖=𝑠

2 (𝑡) + 𝑟𝑙,𝑖=𝑠+1
2 (𝑡)]

2
    (𝑠 = 1, … 𝑁𝑙𝑖).     (5) 

Here we have 𝑁𝑙𝑖 interfaces, and thus 𝑁𝑙𝑖 equations of motion. Thus, the equation of motion for 

the internal interface of the liner is given by 

�̇̇�𝑙,𝑖 =
𝑝𝑙,𝑠=𝑖−1 − 𝑝𝑙,𝑠=𝑖

𝑚𝑙,𝑠
 2𝜋𝑟𝑙,𝑖ℎ (𝑖 = 1, … 𝑁𝑙𝑖 − 1).         (6) 

Here 𝑝𝑙,𝑠 is the effective pressure in the liner shell, s.  The effective pressure is made up of the 

material pressure,𝑝𝑚𝑙,𝑠, azimuthal magnetic field pressure, 𝑝𝐵𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑙,𝑠, axial magnetic 

fieldpressure, 𝑝𝐵𝑎𝑥𝑖𝑎𝑙,𝑙,𝑠, and a pseudo-pressure from the artificial viscosity, 𝑞𝑙,𝑠. Similarly the 

equation of motion for the fuel interface is   

                   �̇̇�𝑔 =
𝑝𝑔+𝑝𝐵𝑎𝑥𝑖𝑎𝑙,𝑔−𝑝𝑙,𝑠=1

𝑚𝑙,𝑠
2

 2𝜋𝑟𝑔ℎ                          (7) 
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With,𝑝𝑔, being the gas pressure in the fuel region, and 𝑝𝐵𝑎𝑥𝑖𝑎𝑙,𝑔  an average axial magnetic field 

pressure in the fuel region, the equation of motions for the liner-vacuum interface region is 

 �̇̇�𝑙 =
𝑝𝑙,𝑠=𝑁𝑙,𝑠

−𝑝𝐵𝑎𝑧𝑖𝑚𝑢𝑡ℎ,𝑙,𝑣−𝑝𝐵𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑎𝑥𝑖𝑎𝑙,𝑣

𝑚𝑙,𝑠
2

 2𝜋𝑟𝑙ℎ      (8) 

Here ,𝑝𝐵𝑎𝑧𝑖𝑚𝑢𝑡ℎ,𝑙,𝑣, is the pressure of the azimuthal magnetic field at the liner-vacuum interface 

(𝑟 = 𝑟𝑙), 𝑝𝐵𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑎𝑥𝑖𝑎𝑙,𝑣
, is the pressure due to the average axial magnetic field in the vacuum 

region.  Where the magnetic pressure (in axial and azimuth) in all regions is just, 

                             𝑝𝐵(𝑟) =
𝐵2(𝑟)

2𝜇0
                               (9) 

 The fuel region is assumed to be isobaric  (𝛻𝑝 = 0), and for MagLIF the gas pressure tends to 

dominate the magnetic field pressure in the fuel region, thus the magnetic field in the fuel is the 

average axial field 

                       𝐵𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑎𝑥𝑖𝑎𝑙,𝑔
=

𝜙𝑎𝑥𝑖𝑎𝑙,𝑔

𝜋𝑟𝑔
2                            (10) 

                                          𝜙𝑎𝑥𝑖𝑎𝑙,𝑔: is the total axial magnetic flux in the fuel.   

In the liner region, it is assumed that 𝐵𝑎𝑥𝑖𝑎𝑙,𝑙(𝑟)/𝜌𝑙(𝑟) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, so for the associated axial 

magnetic pressure in the liner we use,  

                           𝐵𝑎𝑥𝑖𝑎𝑙,𝑙,𝑠 = 𝐵𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑎𝑥𝑖𝑎𝑙,𝑙

𝜌𝑙,𝑠

𝜌𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑙 
                                     (11) 

                          𝐵𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑎𝑥𝑖𝑎𝑙
=

𝜙𝑎𝑥𝑖𝑎𝑙,𝑙

𝜋(𝑟𝑙
2−𝑟𝑔

2)
                                                  (12) 

𝜙𝑎𝑥𝑖𝑎𝑙,𝑙: 𝑇𝑜𝑡𝑎𝑙 𝑎𝑥𝑖𝑎𝑙 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑙𝑢𝑥 𝑖𝑛 𝑙𝑖𝑛𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 
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𝜌𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑙: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑎𝑠𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛. 

𝜌𝑙,𝑠: 𝑚𝑎𝑠𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠ℎ𝑒𝑙𝑙 𝑠 

                          𝜌𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑙 =
𝑚𝑙

𝜋(𝑟𝑙
2−𝑟𝑔

2)ℎ
               (13) 

                                       𝜌𝑙,𝑠 =
𝑚𝑙𝑠

𝑉𝑙,𝑠
                         (14) 

                          𝑉𝑙,𝑠 = 𝜋(𝑟𝑙,𝑖=𝑠+1
2 − 𝑟𝑙,𝑖=𝑠

2 )ℎ       (15) 

𝑉𝑙,𝑠: 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠ℎ𝑒𝑙𝑙, 𝑠 

 For the magnetic pressure in the vacuum region due to the axial magnetic field, we use the 

average axial magnetic field. 

                             𝐵𝑎𝑥𝑖𝑎𝑙,𝑣 =
𝜙𝑎𝑥𝑖𝑎𝑙,𝑣

𝜋(𝑟𝑟𝑐
2 −𝑟𝑙

2)
                 (16) 

𝜙𝑎𝑥𝑖𝑎𝑙,𝑣: 𝑡𝑜𝑡𝑎𝑙 𝑎𝑥𝑖𝑎𝑙 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑙𝑢𝑥 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑎𝑐𝑢𝑢𝑚 𝑟𝑒𝑔𝑖𝑜𝑛. 
 

For the magnetic pressure in the liner and vacuum, due to the azimuthal magnetic field, we use,  

𝐵𝑎𝑧𝑖𝑚𝑢𝑡ℎ,𝑙𝑣 = 𝐵𝑎𝑧𝑖𝑚𝑢𝑡ℎ,𝑙(𝑟𝑙) = 𝐵𝑎𝑧𝑖𝑚𝑢𝑡ℎ,𝑣(𝑟𝑙) =
𝜇0𝐼𝑙

2𝜋𝑟𝑙
     (17) 

 which leads to,  

                              𝑝𝑎𝑧𝑖𝑚𝑢𝑡ℎ,𝑙𝑣 =
𝐵𝑎𝑧𝑖𝑚𝑢𝑡ℎ,𝑙𝑣

2

2𝜇0
=

𝜇0𝐼𝑙
2

8𝜋2𝑟𝑙
2 .           (18) 

Thus, we have a fully defined 1-D pseudo-analytical description of the equations of motion 

corresponding to our Figure-8.   This model is referenced closely in Chapter 4, and will aid in 
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proving the relevance to MagLIF that this text will outline in the following chapters, as was 

stated in Chapter 1.  

However, it is important to restate here that this is a solely 1-D calculation, and not 

directly relevant to the 3-D discussion that much of the data presented here covers. The way this 

will be resolved is that the inherent assumption in these calculations of uniform current 

distribution will be removed and the calculation in Chapter 4 will be made with an asymmetric 

non-uniform current distribution in a mirrored 1-D analogy to what is described above.  
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Chapter 2: Coaxial Gap Breakdown Machine 

An experimental system has been developed at the University of California San Diego to 

study the mechanisms and influences of coaxial geometry vacuum gaps. The basic design of the 

coaxial gap breakdown experiment was first developed by Dr. Bott-Suzuki, and a student, Cole 

Meisenhelder, from the National Undergraduate Fellowship (NUF) summer program in 2014. 

Initial results showed interesting optical images with azimuthal breakdown distribution, but with 

a few inconsistencies and several new problems to investigate with many parameters with which 

to work. Problems such as: what are the mechanisms responsible for the breakdown of a coaxial 

gap? Are breakdowns random about the azimuth? Can breakdown position be known without 

line of sight imaging? What effects does azimuthal distribution of breakdown have later in time 

on the early time evolution of the magnetic field, and how does it scale for pulsed power liners 

used on mega ampere (MA) machines, such as COBRA at Cornell University? The project has 

since been upgraded to answer such questions, and the full design and diagnostics will be 

described in detail in this chapter.   

2.1)  Electrode Design 

The Coaxial Gap Breakdown experiment consists of two aluminum electrodes: a hollow 

cylinder (𝑅𝑜𝑢𝑡𝑒𝑟 = 6.09 mm-anode), with an inserted solid cylinder, with radii from 25𝜇𝑚 −

1.5𝑚𝑚, and all 5cm in length. Both are attached to 3-D electric translational mounts so as to 

ensure the electrodes are parallel to one another (Figure 10) before and after vacuum pressure 

(<105𝑇𝑜𝑟𝑟) is achieved.  
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Figure 10: Aluminum electrodes attached to 3-D electronic translational mounts. 

 

The electrodes are machined in-house. Each electrode has a surface finish with features 

of order  ~5-10𝜇𝑚 as shown in Scanning Electron Microscope (SEM) surface profile images 

(Figure -11a,b), taken at the Nano3 Cleanroom Facility on the UC San Diego campus. The 

surface finish here indicates a potential for multiple field enhancement points, as is required in 

the cold field approximation. It is important to note that while the electrodes used for this work 

are cleaned following machining, they are not further polished or treated. 
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Figure 11 (a): 330𝜇𝑚 gap electrode SEM image 
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Figure 11 (b): 1150𝜇𝑚 gap electrode SEM image.  
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2.2) Circuit Design 

The implemented experimental circuit follows the simple charging circuit design shown 

in Figure-12.  Standard resulting Current (240A, 150ns) and Voltage (25kV) profiles are shown 

in Figure-13. The circuit is triggered via custom made trigatron switch [16] Figure-14.  

 

 

Figure 12: Pulsed power charging circuit diagram. 

 

 

 

 

 

 

 

Figure 13: Standard operating current and voltage pulses 
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Figure 14: Trigatron design 

 

2.2)  Rep-Rate Upgrade 

In a push to generate a statistically relevant amount of data, the experimental machine 

was upgraded to a repetition rated machine that fires and collects data at 0.076 Hz (i.e. 1 shot 

every 13 seconds).  This was achieved by linking together all components required to trigger and 

collect data in the system and consolidating them into one tower, or command center, as seen in 

Figure-14. The tower consists of: Two oscilloscopes, high voltage power supply, high voltage 

signal generator, two relay switches, two DG535 signal generators, and two linked computers 

(XP legacy & Windows 7 Machine).  The command center is fully automated via a custom Java 

program that utilizes the Robot Class [17] to integrate and control programs such as: IEEE 

Signal Express, a Custom HP oscilloscope data collection software, XP custom printer port 

triggering program. The automation process is described by the flow chart in Figure-15.  
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Figure 14: command center- Master control tower for coaxial gap break down rep-rated machine. 
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Figure 15: Automation Flow Chart for a single iteration, arrows denote direction of communication. 
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2.3)  Diagnostics 

The vacuum gap was monitored by several diagnostics. Current was measurement via 

Pearson coil (model 6585, 1.5 ns rise time), and a pair of high voltage probes (Pintek-HVP-

39pro) monitored the HV at both the high voltage and ground side of the electrodes. Time-

integrated optical images are taken along the electrode common axis on every shot, and the 

current density in monitored by an array of magnetic (dB/dt) probes as described in the next 

sections. 

2.3.1) Magnetic Field Probes 

Magnetic field probes are made using semi-rigid coaxial cable (rg405/u). The cable is cut 

to the dimensions specified in Figure 16. The inner wire of the coaxial cable is wrapped in a 

kapton layer to ensure that each loop does not touch and prevent any breakdown between them. 

The area of each loop is made in the same fashion by wrapping the loops around an uncut semi-

rigid coaxial cable of diameter 3.56 mm. The number of loops on each probe is determined by 

the operating conditions of the experiment. In this case, it was determined that for the Coaxial 

Gap Breakdown machine (220 A, 25 kV, 130 ns) a three loop probe at a radial distance of 2-

4mm was the optimal setup. Furthermore, it is important that the connection of the loop to the 

outer shielding of the coaxial cable is sound as this reduces noise of the measured magnetic field 

signal. 

Probes are calibrated through direct area measurement of the coils on each probe, with 

final sensitivity of each probe determined by a short circuit on the CGB machine. Starting with a 

known short circuit current pulse and known location of the center of B-dot probes with respect 

to the center of the electrode setup before the shot, we can calculate the expected magnetic field 
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signals for each probe. Comparing the expected signals to those of the measured signals (Figure 

17) we find that generally the measured signals match closely with both the current trace and the 

expected signals. Upon closer inspection, we find that the percent difference away from expected 

values of each probe is less than five percent. These percent difference values are then added to 

the calculated calibration factor of each probe to ensure a complete and accurate calibration. This 

small percent difference indicates that the direct area measurement is rough yet sufficient alone 

to calibrate accurate B-dot probes. 

 

Figure 16:  Magnetic Field probe dimensions. 
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Figure 17:  typical measured short circuit current and magnetic field calibration signals. 

 

 



38 

 

2.3.2) Triangulation Technique 

Through experimentation on the CGB, a comprehensive method to determine the exact 

location of breakdown in a coaxial gap has been developed using an array of magnetic field (B-

dot) probes. To do this, we first calculate the magnetic field at peak current, by using  

                                                  𝑉𝑔𝑒𝑛 = −𝑁
𝑑𝜙

𝑑𝑡
→ 𝐵 =

1

𝐴𝑁
∫ 𝑉𝑑𝑡,                                               (19) 

where V is the measured voltage generated by the magnetic field flux through a loop of area A, 

and N is the number of loops. Then, we take the calculated magnetic field for each B-dot probe, 

and use it to calculate the distance away (R) the breakdown occurred from the probe by use of 

Equation (20) at peak current (I). 

                                                           ∮ 𝐁 ⋅ 𝑑𝐋
𝐶

= 𝐼𝑒𝑛𝑐 → 𝑅 =
𝜇𝐼

2𝜋𝐵
                                                      (20) 

By generating three circles with origins located in the center of the corresponding B-dot 

loop of each probe, and radii corresponding to the different distance away from breakdown (R) 

for each probe, the intersection of these three circles can be observed and thus triangulate the 

absolute position at which the breakdown has occurred. When the triangulation data are overlaid 

on corresponding time integrated optical images, it is observed that the triangulation method 

determines the exact position where the breakdown has occurred. The accuracy of the 3 probe 

triangulation method means that the technique can be used to determine the exact position of a 

single breakdown in a coaxial gap even when time integrated axial optical emission imaging is 

not possible.  

In order to maximize the effective mapping area of a coaxial gap, a minimum of three B-

dot probes placed at 90◦ intervals around the circumference of the anode (Figure 18) are needed. 
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The distance away from the anode each probe is placed is determined by the experiment and the 

sensitivity of the probes. Due to the location of the B-dot probes with respect to the vacuum gap, 

the probes do not read magnetic field signals generated by the radial current vectors of the 

breakdown. 

 

 

 

 

 

 

Figure 18:  Standard Magnetic field probe placement on CGB machine.  

2.3.2.1) Triangulation Technique-Nine Probe Array 

The three probe array accurately determines the location of a breakdown about the 

azimuth of the gap, and hence the centroid of the breakdown current. This array is readily 

extended to include two additional axial positions (i.e. along the current direction through the 

electrodes), each with three probes to give a total of 9 probes, Figure 19. When applying the 

triangulation technique for each zone, we are able to map the evolution of the current density 

over the duration of the current pulse (150 ns) and as the pulse travels along the length of the 

electrodes (92 mm), effectively tracking the evolution of the current density distribution on either 

side of the vacuum breakdown in time and space [20].   
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Figure 19:  B-dot array zones labeled on the CGB experiment. 
 

Chapter 2, in part, a reprint of the material as it appears in “Two dimensional 

triangulation of breakdown in a high voltage coaxial gap” S.W. Cordaro, S. C. Bott-Suzuki, L.S. 

Caballero Bendixsen, in Review of Scientific Instruments, 86,073503 (2015). The thesis author 

was the primary investigator and author of this paper.  
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Chapter 3: Experimental Results  

3.1) Initial Results 

Early investigation on the CGB experiment shows azimuthal distribution of breakdown in 

a coaxial gap at a gap size of 900 𝜇𝑚 over six shots via end on optical imaging, Figure 20. 

Subsequent optical measurements at various gap sizes showed similar results, and indicated a 

reoccurring pattern of asymmetry in azimuthal breakdown. 

 

 

 

 

 

 

Figure 20: Azimuthal distribution of breakdown in 900𝜇𝑚 coaxial gap, over four separate shots. 

 

3.2) Illustration of Triangulation Technique  

To illustrate this technique, an analytical calculation of the triangulation method has been 

performed on a single breakdown occurring at the 90˚ probe side. Each of the three probes is set 
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with at an R value away from the center of the CGB that is measured optically after the shot. 

Furthermore, it is assumed that all of the current is distributed through the single breakdown 

point only as shown in the time integrated optical imaging. In order to accurately simulate a 

current pulse from the CGB, an approximation fit was performed on a typical operating current 

trace. With this approximated current signal, the peak magnetic field was then calculated using 

the peak current value and distances the probe center was located from the middle of the 

breakdown (Table I). The calculated magnetic field values were then used to simulate what the 

magnetic field trace would look like for each probe (Figure 21). 

 

Figure 21: Analytical curves for a breakdown at the 90˚ position. 
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Table 1: Analytical and measured values of shot no.34 

From Figure 21, it can be seen that the 90◦ probe reads the largest magnetic field, 

followed then by the 180˚ probe and the 270˚ probe. The analytical probe readings were then 

overlaid atop experimental probe readings from a shot in which breakdown only occurred at the 

90˚ probe side (Figure 22). The resultant figure shows in general that all three probes have the 

same form and magnitude as analytical calculations, with a maximum error of 13%. 

 
Figure 22: Experimental vs. analytical magnetic field and current, shot no. 34. 
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The triangulation technique was then performed on the measured magnetic field signals 

corresponding to shot no. 34, with the calculated distance away from breakdown values in Table 

I. The corresponding positioning circles were then overlaid atop time resolved optical imaging 

for the shot (Figure 23) accurately lining up with the exact position at which the breakdown 

occurred. The differences in distances and peak magnetic field in Table I are not an issue if the 

probe placement away from the experiment is known from either careful placement or optical 

imaging before the shot. Furthermore, because these distances are a known quantity, the probe 

placement about the azimuth is irrelevant as it does not affect the triangulation technique. 

Though, it should be noted that placing probes closer than 30˚ from one another makes the 

resultant images more difficult to interpret. 

 

 

 

 

 

Figure 23: Experimental vs. analytical magnetic field and current, shot no. 34. 

 

The technique is then applied to the signals shown in Figure 24, where the 90˚ probe and 

180˚ probe are greater than that of the 270˚ probe. Applying now the triangulation technique to 

the measured peak magnetic field values, the corresponding distances are found away from 

breakdown where each probe is located (Table II). With these calculated values, three circles can 

be generated and overlaid atop their corresponding probe centers in the shot-specific time 
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integrated optical image (Figure 25(b)). As seen from the triangulation cartoon, the centroid of 

the breakdown was accurately determined by the technique. 

Table 2: Analytical and measured values of shot no.45 
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Figure 24: Experimental vs. analytical shot magnetic field and current, shot no. 45. 

 

Figure 25: Visualization of breakdown triangulation shot no. 45. 
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3.2.1) Nine Probe Triangulation  

The array geometry used here is given in Figure 26. A set of 3 probes are spaced at 120˚ 

around the azimuth and separated by 30 mm along the axial direction. The exact location of each 

probe relative to the electrodes is recoded via the spatially calibrated optical images. The zones 

are labelled Zone 1 (close to the high voltage connection), Zone 2 (at the position of the coaxial 

vacuum gap) and Zone 3 (close to the ground connection). Using a triangulation technique for 

each zone, we are able to map the evolution of the current density over the duration of the 

current pulse (150 ns) and as the pulse travels along the length of the electrodes (92 mm).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Coaxial gap experiment with b-dot array zones labeled. 

 

To illustrate this, we take the case where a breakdown occurs at the 270˚ position of a 400 𝜇𝑚 

gap. In Figure 27, the time integrated optical images show the location of the breakdown for this 

shot, and Fig. 3 shows the raw magnetic field probe data for all probes along with the current 
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trace. Note how the magnetic field probe signal generally follows the trend of the current, and is 

expected, but with different magnitudes observed between probes at different azimuthal 

locations. Analysis of the probe data for each zone is carried out using an in-house data analysis 

program which uses the probe location and the measured field strength to construct a circle of a 

radius consistent with the total current recorded. A smaller circle for a given probe indicates that, 

on average, the current density is flowing closer to that probe than one with a larger calculated 

circle radius. In the ideal case, all probe circles overlap at a single position, as was observed in 

the previous section. The plots on which the circles are overlaid on the probe position are 

referred to as triangulation plots. 
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Figure 27: Time-integrated optical image of vacuum gap breakdown for a 400  𝜇𝑚 gap, showing the 

location of the breakdown at 270˚ 
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Figure 28: Magnetic field traces, 400 𝜇𝑚 gap, Al linear-breakdown at 270˚. 

 

To simplify the analysis for all three zones, triangulation plots are calculated every 10 ns 

during the current drive and compared to the optical image of the electrodes (Figure 29). 
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Figure 29: Triangulation matrix, the color of each zone corresponds to the azimuthal position, as in Figure 

28. Red-90˚, Blue-180˚, Green-270˚. 

 

The triangulation plots show distinct behaviors between each zone. In Zone 1, 100 ns, the 

magnetic field probes indicate the current density is in the 90˚–180˚ region, closer to the smaller 

red and blue circles and further from the larger green circle. In Zone 2, at the same time, the 

current density has shifted towards the breakdown position at 270˚ (blue and green circles are 

small, and red ones are large). In Zone 3, the current density returns to the 90˚–180˚ region seen 

in Zone 1. These distinct offsets remain constant throughout the 50 ns duration as seen in the 

matrix above. Where the three probe circles overlap at a single position, it is possible to exactly 

locate the current density. This can be seen, for example, in Zone 2 at 140 ns which corresponds 

to the optical image location of the breakdown. Often, only an approximate location is possible 

as outlined here. Which represents some distribution of the current density biased in a particular 

direction. However, even this highlights significant motion and non-uniformity for different 

electrode setups. 
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3.3) Quadrant Mapping 

In order to better understand how the magnetic field evolves from shot-to-shot, a method 

was devised in which the coaxial gap time integrated image is broken into a standard quadrant 

system with Quadrant 1 always centered at the breakdown position (Figure 30). This simplifies 

the discussion and accentuates large motions of the average current density position throughout 

the current drive timescale. 

 

 

 

 

 

 

 

 

Figure 30: Coaxial gap quadrant overlay; 400 𝜇𝑚, PD-3.03 mm, 25 kV 
 

Combining the quadrant system with the triangulation method yields a quadrant map of 

the magnetic field evolution, taken at 10 ns intervals during the current drive. Figure 30 shows 

the result of applying this methodology to a shot with a 400 𝜇𝑚 gap and a 3.03 mm penetration 

depth of the cathode in the anode that has a breakdown around 90. The resulting plot is given in 

Figure 31. 
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Figure 31: Quadrant mapping, corresponding to Figure 30: note, the use of 1,2,3,4 is 

chosen since the current distribution is never in say 1.5, it is either in 1, or 1 and 2. Etc.  

Zone 2 is the simplest, since this is the location of the breakdown across the gap, and this 

region is defined as Quadrant 1. Therefore, it can be seen that Zone 2 stays at Quadrant 1 

throughout the experiment. In Zone 1, the current density remains in Quadrant 2 from 100 ns to 

150 ns. In Zone 3, a transition of the current density from quadrant 3 to quadrant 4 is observed 

between 130 ns and 140 ns. From this individual quadrant map plot, a persistent offset in current 

density is observed in the presence of an asymmetrical breakdown in the gap. The motion of the 
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current density observed at locations up and down stream of the breakdown, and does not 

correspond to its azimuthal location. 

3.4) Electrode Penetration Depth Effect on Uniformity  

The quadrant mapping was applied to 50 shots in 4 geometries: a 400 𝜇𝑚 gap with 

penetration depths of 3.03 mm and 6.33 mm and a 900 𝜇𝑚 gap with penetration depths of 3.72 

mm and 9.88 mm. The quadrant mapping method, which shows all 50 shots in this run, also 

shows a change between the two penetration depths. At PD = 3.03 mm, the current density can 

occupy any of the 4 quadrants in both Zones 1 and 3. There is also some limited motion between 

quadrants during the experiment; these are denoted by the horizontal lines between quadrants, 

and they indicate non-uniformity. It is noticeable that the current density does appear uniform at 

any time for these shots, even far from the breakdown position (e.g. in Zone 1 or 3 which are 

30mm away). When the penetration distance is increased to PD = 6.33 mm, there is distinct 

difference in behavior. Most notably, transitions in Zone 3 and Zone 1 are constrained to 

quadrants 3 and 4 in Zone 3, and constrained to quadrants 3, 2 and 1 after 100 ns in Zone 1. 

Again, there is a persistent changing non-uniformity on either side of asymmetric azimuthal 

breakdowns over 50 shots and across the length of the electrodes and tens of nanoseconds 
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Figure 32: Quadrant maps for 400 𝜇m gaps at different penetration depths. 
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The results of analysis for 900 𝜇𝑚 gap shots are shown in Figure 33. At penetration 

depths of 3.72 mm and 9.88mm, the quadrant mapping shows several interesting features. 

Firstly, note that there are now vertical lines for all times examined in both Zones 1 and 3. This 

denotes that for many shots, the current density was distributed, but not uniformly, around the 

electrode; i.e., occupying all 4 quadrants at the same time. This was not seen for the smaller gap 

size. It is important to note here, that at no point in the evaluation of the triangulation matrices 

for the quadrant mapping (for all shots described in this work) was a perfectly uniform current 

distribution observed. Additionally, there are more transitions occurring as the current density 

moves around the electrode. For smaller penetration depths, these occur almost entirely from 

Quadrant 4 to Zone 1. It appears here that the current density is either uniform or offset close to 

the position of the breakdown in Quadrant 1. For larger penetration depths, whilst uniform 

current density is also observed at all times, there is also significantly more motion of the current 

density between all quadrants. This suggests that the position of breakdown has less effect in 

influencing the offset of the current density.  
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Figure 33: Quadrant maps for 900 𝜇𝑚 gaps at different penetration depths. 
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3.5) Fowler Nordheim Plots-Enhancement Factors 

Recovery of electrical data on every shot allows for the characterization of the 

breakdown process through calculation of the Fowler Nordheim (FN) enhancement factor, as 

shown in Chapter 1, for each case. This describes the likely breakdown voltage of an electrode 

set over and above that, expected as a result of the material work function alone. As shown in 

Chapter 2, the electrodes are unpolished, and so we expect values of the enhancement factor to 

be relatively large. Following the procedures described in Chapter 1, measurements are taken of 

the rising edge of the voltage trace before breakdown, These values for each shot are taken and 

plotted as log (
𝐼

𝑉2) against (
1

𝑉
). The resulting graph yields a line, and the slope of this line gives 

a value M (Eq. 16) which is a function of the material work function (4.05eV for Aluminum), 

and the enhancement factor, for that respective geometry. It can be directly examined how the 

FN enhancement factor changes for our geometries. Figure 34 shows the FN plots for a 730 𝜇𝑚 

gap at a penetration depth of 2.53 mm, the corresponding enhancement factor is plotted in Figure 

35 for three penetration depths.  
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Figure 34: FN plot for 730 𝜇𝑚 gap at a penetration depth of 2.53 mm, with linear fit. 
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Figure 35: Enhancement Factor for 730 𝜇𝑚 gap at various penetration depths. 

 

The enhancement factors shown in Figure 35, are averaged over 50 shots per penetration 

depth, with error bars show. At first glance, one can see that the enhancement factor changes 

nominally between 2.53mm and 3.34mm penetration depths, while at 5.76mm penetration depth 

we see that the enhancement factor varies substantially. At a penetration depth of 5.76mm, 

11.5% of the electrodes surface area is inside of the coaxial gap, as opposed to 5.06% 

(PD=2.53mm) or 6.68% (PD=3.34mm). This significant increase in surface area could be the 

reason for the extreme variation of the enhancement factor. When inspecting optical images for 

each penetration depth, no noticeable difference can be discerned. A more in-depth comparison 

is made in the next section.  
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3.6) Comparison of Enhancement Factor and Quadrant Mapping 

The quadrant mapping technique and the F-N analysis were applied to 50 shots in each of 5 

geometries: a 400 𝜇𝑚 gap with penetration depths of 3.03 mm and 6.33 mm and a 900 𝜇𝑚 gap with 

penetration depths of 3.72 mm and 9.88 mm, as well as gaps of 330 𝜇𝑚, 730 𝜇𝑚, and 1150 𝜇𝑚 at 

penetration depths of 2.53mm (DP1), 3.34mm(DP2), 5.76mm(DP3).  The corresponding graphs are 

presented below. 
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Figure 36: 330 𝜇𝑚 gap FN and Quadrant maps 
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Figure 36 shows the FN and quadrant analysis for a 330 𝜇𝑚 gap at three penetration depths. For 

DP1 we see that the enhancement factors is on average 0.291±0.230(V/A)eV, as we increase to 

DP2 we see the average enhancement factor decreases slightly 0.289±0.250(V/A)eV. Upon 

increasing to DP3, we see the enhancement factor increases to 0.678±0.171(V/A)eV, which is 

twice as large as the first two penetration depths. When considering the quadrant map we note 

that as in our initial quadrant mapping covered in 4.5 for the 900 um gap, we see vertical lines 

and horizontal lines here in each of our depth penetrations. It is especially interesting when we 

first compare DP1 and DP2—in addition to the similar enhancement factors for each—we see 

that the quadrant mapping for each are also remarkably similar. Both exhibit a full distribution 

among quadrants in Zone 1, which shows a (1,2) quadrant asymmetry that dominates in early 

time that branches into quadrant 3 late time and quadrant 4 for full quadrant distribution at peak 

current rise time (150ns). In addition both have a zone 3 that is identical, with probability of 

distributing current in all four quadrants but not uniformly every shot, as indicated by the 

horizontal transition lines. 
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Figure 37: 400 𝜇𝑚 gap FN and Quadrant maps 

 

Figure 37 shows the variation in both the enhancement factor and the quadrant mapping 

resulting from the change in the penetration depth from 3.03 mm and 6.33 mm for a 400 lm gap. 

For the smaller penetration depth, we see an average enhancement factor 0.152± 0.056 (V/A)eV 

with the larger depth being, on average, 0.373 ±0.123 (V/A)eV. This is a difference of a factor 

of 2.45. The quadrant mapping method, which shows all 50 shots in this run, also shows a 

change between the two penetration depths. At PD = 3.03 mm, the current density can occupy 

any of the 4 quadrants in both Zones 1 and 3. There is also some limited motion between 

quadrants during the experiment. It is noticeable that the current density does not look uniform at 

any time for these shots. When the penetration distance is increased to PD = 6.33 mm, there is 
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distinct difference in behavior. Most notably, transitions in zone 3 and Zone 1 are constrained to 

quadrants 3 and 4 in zone 3, and constrained to quadrants 3, 2 and 1 after 100 ns in Zone 1. 

Again, there is a persistent changing non-uniformity on either side of asymmetric azimuthal 

breakdowns over 50 shots and across the length of the electrodes and tens of nanoseconds. 
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Figure 38: 730 𝜇𝑚 gap FN and Quadrant maps 

 

Figure 38, shows the resulting analysis for 730 𝜇𝑚 at the three penetration depths. For DP1, we 

see that the enhancement factor is on average, 0.434± 0.0238(V/A)eV. As we increase to DP2, 

our enhancement factor barely changes, only increasing to an average of 0.439 (V/A)eV, with no 

marketable deviation over 50 shots. Increasing to DP3, we see an average decrease to 
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0.366±0.379 (V/A)eV, with a standard deviation more than the average enhancement factor. 

When looking at the quadrant mapping for this shot, one can immediately notice some 

interesting behaviors. For DP1, DP2, and DP3 zone 3 shows a persistent distribution about all the 

quadrants for all shot. When looking at Zone 1 for all shots, we see that both DP1 and DP2 have 

current asymmetries around 80-90ns, before returning to current distributed in all quadrants.  

Where as in DP3, Zone 1 has current distributed about all 4 quadrants for the duration of the 

current pulse.  
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Figure 39: 900 𝜇𝑚 gap FN and Quadrant maps 

 

The results of analysis for 900 𝜇𝑚 gap shots are shown in Figure 39. At penetration depths of 

3.72 mm, the enhancement factor has an average value of 0.6113± 0.257(V/A)eV, several times smaller 

than the factor for the 400 𝜇𝑚 gap shots at similar depths. When the penetration depth is increased, 
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however, the variation in the enhancement factor is very small, with and average value of 0.473± 0.253 

(V/A)eV. This is similar to the values of the larger penetration depth for smaller gaps. The quadrant 

mapping shows several interesting features. Firstly, note that there are now vertical lines for all times 

examined in both Zones 1 and 3. Additionally, there are more transitions occurring, as the current density 

moves around the electrode. It appears here that the current density is either uniform or offset close to the 

position of the breakdown in Quadrant 1. For larger penetration depths, whilst uniform current density is 

also observed at all times, there is also significantly more motion of the current density between all 

quadrants. This suggests that the position of breakdown has less effect in influencing the offset of the 

current density. 
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Figure 40: 1150 μm gap FN and Quadrant maps 
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 Figure 40 shows the final gap size FN and quadrant map analysis. We can see that at DP1 we have an 

enhancement factor of 0.167± 0.00736(V/A)eV, with a very small standard deviation.   As we 

increase to DP2, we have a stark increase of enhancement factor to 0.398 ± 0.310(V/A)eV, with a large 

standard deviation. As we increase to DP3, we have a decrease in enhancement factor of 0.212± 

0.015(V/A)eV. Upon inspection of the quadrant mapping we immediately see a difference 

between the three penetration depths. Notably, when looking at Zone 1for DP1 we see 

asymmetry that persists throughout the duration of the shot, with a 20 ns interval in which the 

current distributes to all quadrants. For DP2, and DP3, we see similar distributions and 

movement across all zones.  

Chapter 3, in part, a reprint of the material as it appears in “Time and Space resolved 

current density mapping in three dimensions using magnetic field probe array in a high voltage 

coaxial gap” S.W. Cordaro, S. C. Bott-Suzuki, in the Journal of Applied Physics 122, 213303 

(2017). The thesis author was the primary investigator and author of this paper.  
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Chapter 4: Conclusions and Beginnings of a Pseudo-

Analytical Framework 
 

Through experimentation on the coaxial gap breakdown machine, we have been able to 

answer many of the questions set out in the beginning of this text. The answers to these are 

outlined below.  

4.1) Mechanisms of Breakdown 

 The electrodes used in this experiment have a surface finish on order of ~5-10𝜇𝑚 as 

shown in Scanning Electron Microscope (SEM) surface profile images (Figure 11 (a, b)). The 

electrodes are cleaned, but not polished or treated. This surface finish indicates points for 

increased field enhancement. This also allows for the electrodes to fall into the regime of one of 

the assumptions we have made in Chapter 1 on Cold Field Enhancement, that the emitting 

surface is rather smooth, such that irregularities are small (<10-20𝜇𝑚.) compared to the width of 

the potential barrier (gap size).   

 The electrodes are under vacuum (~105 𝑇𝑜𝑟𝑟), and subject to 25kV, 240A-150ns. This 

indicates that the electrodes are at room temperature, and not subject to any resistive heating due 

to the short current pulse and relatively low current. This puts the emitting metal surface in the 

regime of our Cold Field Enhancement approximation, of T ~ 0K. 

With the last two approximations in Cold Field Enhancement being purely mathematical 

constructs to allow for closed solutions as found in Chapter 1, we can say that our experiment, 

and the mechanisms causing the breakdown of our coaxial gap are well described by the Cold 

Field Enhancement Theory.  
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4.2) Persistence of Asymmetry in a Coaxial Gap 

In this text, we have shown that asymmetries in the azimuthal breakdown position have 

an influence on the asymmetric current distribution in time and space. These asymmetries in 

current density can be influenced by changes in the gap size and the penetration depth, and have 

been measured experimentally as a function of time and space by use of the 9-probe triangulation 

technique and quadrant mapping, as shown in Chapter 3. It is important to note, that at no point 

in the experiment does the current density become completely uniform, even when all probes 

indicate current is in all quadrants for any of the gap sizes or penetration depths.  This can be 

seen if we look back at Figure 29, specifically at Zone 1,3 at 150ns. We see that the probe circles 

are in all quadrants but the radii of the circles are different by many percent, which indicates 

non-uniformity.   

4.3) Enhancement Factor Correlation to Gap Size and Current 

Distribution 

Looking at Figure 41 we can see that for gaps 400, and 330, we have an increasing 

average enhancement factor as we increase in penetration depth greater than 3.34 mm. For 730, 

900, and 1150 um gaps we see an increase in average enhancement factor before 3mm and a 

decrease after 3.34mm. If we plot field enhancement versus gap length for each penetration 

depth, we can see a “global” trend. In DP1, as gap length increases, enhancement factor 

increases until the gap size exceeds 900𝜇𝑚. In DP2, again we see a similar trend, an increase in 

field enhancement as gap size increases until the gap size exceeds 900𝜇𝑚. In DP3, we see an 

overall decrease in field enhancement factor as gap size increases.  
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When correlating enhancement factor to asymmetry growth or decay, it is not very 

straight forward to say anything definitively. Some interesting features are useful to point out, 

that occur after a penetration depth greater than 3.34mm occurs.  In the 330 𝜇𝑚 gap we see that 

Zone 1 becomes noticeably more distributed about all four quadrants. In the 400 𝜇𝑚, zones 1,3 

become significantly less uniform. In the 730 𝜇𝑚 Zone 1 becomes significantly more evenly 

distributed, with no distinct asymmetries.  For the 900 𝜇𝑚 we see an increase in asymmetry of 

current distribution in Zone 1,3. For 1150 𝜇𝑚 we see no real change in current distribution.  In 

order to better understand these results, a more in depth study is required, and will follow.  
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Figure 41: Enhancement Factors for all gap sizes 
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Figure 42: Enhancement Factors for all gap sizes 

 

 

4.4) Comparison to Previous Work  

To see where this work stands with similar geometries, we compare to the work by M. 

Okawa presented in Chapter 1. Firstly, to get the graph into the proper form for comparison we 

must take into account that M. Okawa used mm size gap sizes as well as not using the form 

factor used in the Fowler Nordheim approach also described in Chapter 1. This amounts to 

dividing our gap length by one thousand, and multiplying our y-axis by one thousand. The result 

is shown in Figure 43. 
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Figure 43 shows a few interesting similarities between the coaxial gaps in each 

penetration depth and the data from M.Okawa on the listed geometries. It is readily seen that the 

coaxial gap data for all penetration depths is larger in field intensification than any of the listed 

geometries. This could be caused by the increased surface area in the coaxial gap coupled with 

the significantly smaller gap length. The field intensification generally increases as the gap 

length increases. When constrained to DP1 and DP2, the field intensification magnitude is most 

similar to Ring-Ring and Sphere-Sphere geometries. The trends seen in the Cylinder-Plane 

geometry slightly decreases in intensification factor as gap length increases is also seen in DP3. 

These similarities would indicate that the coaxial gap field intensification factors are well within 

the appropriate regime, and add to the existing data. 
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Figure 43: Enhancement Factors for all gap sizes 

 

 

 

4.5) Application to Sandia Z-Machine 

Recalling the findings in Chapter 1.6, the equation of motion for the liner was found (8). 

Expanding on the 1-D pseudo-analytical derivation and combining results of asymmetry in 

current distribution in the coaxial gap (liner), it can begin to be understood how these effects 
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might cause issues. Assuming that the vacuum gap for a MagLIF experiment breaks down in a 

similar way to the observation in our experiment, the current density will be non-uniform around 

the liner surface (in the azimuthal direction). Our results show that non-uniformity can persist 

30mm from such a breakdown, which is much longer than liner height, and so the liner is driven 

non-uniformly.   

To begin, mirror the 2-D image and the 1-D model about the y-axis as shown in Figure 

45. From here, the data presented in Chapter 3 on the asymmetries found in a coaxial gap is 

applied to our simplified z-liner image to calculate the acceleration of the liner (2.5.8).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: 2-D slice of the Z-liner 

 

The following experimental and idealized parameters [20-24] presented in Table 3, as 

well as a current split across the load from the right hand side it is 44% of the total, and 56% 

from the left hand side for an example, are used to calculate the liner acceleration. It is important 

to note that only the acceleration of the liner is considered, since it is the only equation of motion 
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that is dependent on current, as well as taking current magnitude to be that of peak current. The 

resultant values are presented in Table 4. 

 

Table 3:  Experimental and Idealized parameters for the MagLIF experiment.  

Applied 

Axial 

B-Field  

Total 

Peak 

Current 

 

Liner 

Radius 

Fuel 

Radius 

Fuel 

Pressure 

Liner 

outer 

Radius 

Mass 

density  

Liner 

Liner 

Pressure 

 

Liner 

Height 

30 T 18 MA 0.465mm 2.325 3GBar 3.48mm 428 

mg/cm 

2.4 

MBar 

7.5mm 

 

 

Table 4: 1D calculation, asymmetric current. 

 Left Hand Side Right Hand Side 

Liner Acceleration:   �̇̇�𝑙  3.75𝑥109
𝑚2

𝑠2
 2.24𝑥109

𝑚2

𝑠2
 

 

 

 When looking at Table 4, it is readily apparent that the LHS accelerates inward 67% 

faster than the RHS, and this is only with a 4% difference in current from LHS to RHS. This 

result can be exaggerated if the current considered in the MagLIF experiment has more wildly 

varying current percent differences between the LHS and RHS as was observed in Chapter 3 for 

the CGB experiment. The results are shown in Figure 44, for current percent differences ranging 

from 1% - 56%.   
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Figure 45: Liner acceleration for various % Current differences. 

 

If the MagLIF experiment follows a similar trend of having asymmetries throughout the 

duration of the current pulse—even with percent differences as small as 1% from the LHS and 

RHS—the LHS will still accelerate 1.73% faster than the RHS. If the behavior of the current is 

similar in the MagLIF experiment as to the CGB experiment, asymmetric acceleration due to 

asymmetric current density distribution could prove detrimental to the overall success of the liner 

compression phase due to its strong dependence on current symmetry, which has been shown in 

the CGB machine to never be uniform. However, it is important to note that the liner 

compression phase is stabilized by the gas compression phase because of the pressure in the fuel 

and the external applied axial field.  

4.6) Final Thoughts  

Future studies will focus on extended parameter scans of the gap size and the penetration 

depth, as well as increasing the current to see how the technique scales with mega ampere 

currents and above. Further studies will also include electrode materials and surface imaging 

before and after shots to determine the change in the FN enhancement factor as a function of 
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breakdown surface area. Finally, a computational model will be developed to describe and 

analytically determine the method for asymmetric distribution of current as a probabilistic 

distribution function. Once a three dimensional computational model has been accurately 

created, re-applying them to MagLIF level currents and gap sizes will likely yield detailed 

information pertaining to liner compression asymmetry.  

 Chapter 4, in part is currently being prepared for submission for publication of the 

material by S.W Cordaro and S.C Bott-Suzuki. The thesis author was the primary investigator 

and author of this material.  
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