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Drift Compression and Final Focus Options for Heavy Ion Fusion

Hong Qin and Ronald C. Davidson
Princelon Plasma Physics Laboratory, Princeton University, Princetor, NJ 08543

John J. Barpard
Lowrence Livermore Nationol Loboratory, Livermore, CA 94550

Edward P. Lee
Lawrence Berkeley Nutional Leboratory, Berkeley, CA 94720

A drift compression and final focus lattice for heavy jon beams should focus the enfire beam
pulse onte the same focal spot on the target. We show that this requirement implies that the drift
compression design needs to satisfy a seif-similar symmetry condition. For un-neutrnlized beams,
the Lie symmetry group onalysis is applied to the worm-fluid model to systematically derive the
self-similar drift compression solutions. For neutrolized beams, the 1D Vlasov equation is solved
explicitly and families of self-similar drift compression solutions are construcied. To compensate for
the deviation from the seif-similar symmetry condition due to the transverse emittance, four time-
dependent magnets are introduced in the upsirenm of the drift compression such that the entire
beam pulse can be focused onto the the same focal spot.

PACS numbers: 289.27.Bd 41.85.C%,41.85.Ew

1. INTRODUCTION

Recently, a warm fluid mode] has been developed
to study the longitudinal dynamics of drift compres-
sion [1, 2]. It was shown that a self-similar solution
with parabolic density profile can be used for drift
compression, and a pulse shaping technique has also
been demonstrated so that any initial pulse shape
can be shaped into a parabolic one which can then be
self-similarly compressed. The effects of beam com-
pression on the transverse dynamies were realized to
be significant [2, 3]. Because the space-charge lorce
increnses as the beam is compressed, a larger focus-
ing foree is needed to confine the beam in the trans-
verse direstion, and a non-periedic quadrupole lat-
tice along the beam path is necessary. Another im-
portant issue is that the drift compression and final
[ocus lattice should work for the entire heam pulse,
which may have different perveance and emittance
for different slices. Heavy ion fusion designs require
that different slices are focused onto the same foeal
spot at the target. In this paper, we study these
basic questions of drift compression wiwd final {ocus
{1-7]. In the transverse direction, a set of envelope
equations is adopted. For the longitudinal dynamics,
a set of warm fAuid equations is used to model un-
neutralized beam compression, and the 1D Vlasov

equation is used for the neutrafized beam compres-
sion.

This paper is organized as follows. In Sec. II,
starting from the basic equations and the require-
ment that the eniire benm pulse is focused onto
the same focal spot at the target, we show that
it is necessary to develop a self-similar drift com-
pression scheme in the longitudinal direction. The
self-similar drift compression solutions are derived
in Sec. TIT for un-neutralized beams by applying the
Lie group symmetry analysis to the warm fluid equa-
tions. In Sec. IV, the 1D Vlasov equation is solved
explicitly to construct selFsimilar drift compression
solutions for neutralized benms. In Sec. V, we
demonstrate that the entire beam pulse can be com-
pressed and focused onto the same focal spot at the
target with the help several time-dependent magnets
at the upstream of drift compression when there is
a small deviation from the perfect self-similar sym-
metry due to the tronsverse emittance.

II. SELF-SIMILAR DRIFT COMPRESSION

For each slice in a bunched beam, the fransverse
dynamics in a quadrupole lattice is described ap-



proximately by the transverse envelope equations:
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where a, b, K, £z, and £, are functions of s and Z.
Here Z is the longitudinal coordinate for diflerent
slices, and it enters the equations only parametri-
cally. Note that £ is not in general the Cartesian
coordinate in the z direction. A suitable choice for
Z is the Lagrangian coordinate in the z direction.
In the definition of K(s, Z), the quantity A{s, Z) is
the line density determined by the longitudinal dy-
namics, whose governing equations will be studied in
Secs. ITI and IV. It is not difficult to design a drift
compression and final focus labtice to focus one slice
of the beam onto the target. However, for different
slices the line density and emittance may depend on
5 in different manners. A lattice design for one slice
may not be able to transversely confire other beam
slices and focus them onto the same focal spot at
the target. Actuanlly, most of the other slices cannot
be focused at all due to the mismatch induced by
the different s-dependences of the current and emit-
tance. A fixed drift compression and final focus lat-
tice will be able to focus the entire beam pulse onto
the same focal spot only if the current and emittance
of all the slices depend on s in the same manner.
Using the language of symmetry group theory, this
condition is equivalent to the statement that a, &, A,
£z, and g, for different Z are generated by the same
solution of Eqs. (1) and {2) for one particular value
of Z through a one-parameter group transformation
admitted by Egs. (1} and (2), i.e.,
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Here, § is the parameter characterizing the 1D group
transfortation. For example, it is easy to checl that
the following scaling group

( {a, b} [3, Z(6)] ) =( 2J{u,b} [s, Z(0O} )
{\ &z gy} s, 2(6)] 6*{A, ez, ey bs, 2(0)]
()
is o symmetry group of Egs. (1) and (2). In other
words, starting from a matched and focused solu-
tion for one slice, we obtain a family of matched
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and focused solutions for different slices if we scale
up a and b by =& factor of §, and A, 2., e, by fac-
tor of 2. We call such solutions self-similar because
every field quantity for different slices has the same
s-dependence. For example, the ratio of line density
between different slices is s independent,
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Furthermore, hecause s is conserved by the one pa-
rameter group transformation, it can be demon-
strated [B] that the s-dependence and the Z-
dependence of A(s,Z) are separable Ms, %) =
Ap{s)h(Z). Since the line density during drift com-
pression is determined by the longitudinal dynamies,
the first astep in designing a drift compression and fi-
nal focus system is to find the self-similar drift com-
pression solutions in the longitudinal direction. The
functions Ay(s) and h{Z)} will be determined from
the symmetry groups of the governing equations for
the longitudinal dynamies.

I, SELF-SIMILAR DRIFT COMPRESSION
FOR UN-NEUTRALIZED BEAMS

We adopt a one-dimensional warm-fluid model
[1, 3] to describe the longitudinal dynamies of drift
compression for un-neutralized beams. In the beam
frame, the warm-fluid equations for the lina density
Aft, z), longitudinal low veloeity uo (¢, z), and longi-
tudinal pressure p-(t,z) are given hy

a0
2+ 2wy =0, (6)
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where the g-factor model for the longitudinal elec-
tric field is used with eF. = — (ge¥ /) 8A/8z and
g = 2ln{ry/ry). Here, e is the charge, ry, is the
wall radius, and r; is the beam radius. We treat
g and ry as constants for present purposes. In the
space-charge-dominated regime, the g-factor model
adopted here is consistent with the result recently



derived by Davidson and Startsev [9]. We also allow
for an externally applied focusing forece F, = —k.z.

As discussed in Sec. II, in order to focus the entire
beam pulse onte the same focal spot on the target,
it is necessary to find & seifsimilar drift compres-
sion solution admitted by the nonlinear hyperbolic
partial differantial equation (PDE) system (6)-{B).
The systematic method for finding similarity solu-
tions (group-invariant solutions) for PDEs is the Lie
group symmetry analysis, which will be applied here.
Two types of point symmetries can be used to gen-
erate similar solutions for PDEs. The first type is
classical point symmetry, which transfers a solution
of the PDEs into another solution. The second type
is non-classical point symmetry, under which a so-
lution is invariant. In general, the symmetry groups
of both types are determined by the corresponding
infinitesimal generators. The determining equations
for the classical point symmetry are linear and algo-
rithmically solvable, and the infinitesimal generators
form a Lie algebra; on the other hand, the determin-
ing equations for the non-classical point symmetry
are nonlinear and not algorithmically solvable, and
the infinitesimal generators do not form a Lie alge-
bra. Once the symmetry groups ate found, the sim-
ilarity solutions can be derived in a straightforward
manner {8, 10].

With the help of the symbolic computation tool
Mathematica and the MathLie package [11], the in-
finitesimal penerators of the classical point symme-
try of the PDE system (6)-(8) are found to be a 41
Lie algebra
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Here, £k = k. /my?, § is the parameter charncterizing
the Lie symumetry group, and % (i = 1,2,3,4) are
arbitrary real constants. For every set of choices of
ki, the PDE system reduces to an ordinary differ-
ential equation (ODE) system, and there is a simi-
larity solution. T'he sell-similar solution defined in
Sec. II requires that 1 is an invariant of the symmetry
group transformation, and therefore corresponds to
ky = 0. Thus, the self-similar solutions generated by
the classical point symmetry lorm a 3D vector space.
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Some of the self-similar solutions are the desired self-
similar drift compression solutions. As an example,
let’s consider the case of ky = ka = 0, ka = sine,
and &y = cosa. The reduced ODE system can be
easily integrated, and the solutions are found to be

Cos ¥

Ao cos{a 4 t/K) ’
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The velocity tilt is a linear function of z, and the
density and pressure profiles are flat, The maximum
compression ratio is

Ar cos o
Ao cos{a+tp/E) (11)

For a given compression ratio and & maximum value
of tolerable velocity tilt, we can always choose ap-
propriate values for &, @, and iy to achieve the goal.
In this case, the compression is achieved by both the
external bunching force and the velocity tilt.

For the non-classical point symmetry group, the
determining equations are nonlinear and difficult to
solve for ganeral solutions. Here, we list three non-
classical infinite small generators without derivation.

Case (1) corresponds to a self-similar drift com-
pression solution with fat-top density and pressure
profiles and a linear velocity tilt. Its infinitesimal
generator is

%(A!uzrpzzt:z) =(Gr'u,_=y0r011) . (12)

The self-similar solution is the same as Eq. (10), even
though the symmetry group is not a classical one,

Case {2) corresponds to a self-similar drift com-
pression solution with a flat-top density profile, a
parabolic pressure profile, and a linear velocity tilé
[1]. Its infinitesimal generator is

d u; 2ps
E(‘\ru:tp;:t'»") ""( |? — 011)-

] E]
=z

(13)

Case (3) corresponds to a sell-similar drift com-
pression solution with a parabolic density profile,



double-parabalic pressure profile, and a linear ve-
locity tilt [1]. Tts infinitesimal generator is

d 27 U
E(/\,T&:,Pmtr z)= (- r‘(t) — 2y
4ps
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In the present analysis, we will focus on Case (3)
only. It is essy to show that ¢, A/ [1— 2%/22(2)],
us/z, and p./ [1- 22/25('{.)]2 are the invariants of
the group transformation. It is can then be demon-
strated {8] that Au(t) = A/ [1— 2%/2}()] , w(t) =
—uz/z, and pu(t) = po/ [1 - 22/22(t)]" are fune.
tions of ¢ only. Substituting the definitions of Ay{t)
and p.p(t) into Eqs. {6) and (8), we find that the
z-dependence drops out, and

dAy  v=p

E‘ - —b')nb U, (15)
dp:b Uzb _
It -—33 =, =0 {16)
When the equation
dzg
E + Ueh = 0 (17)

is sntisfied, the v-dapendence also drops out of the
momentum equation (7), giving

dv b eag 2Ny
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Bgs. (15) - (18) form a coupled ordinary differential

equation (ODE) system. Remarkably, these equa-
tions recover the longitudinal envelope equation

=0. (18)
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whera 5 = fct, K| = 3N,e’g/2my° 52" is the el-
fective longitudinal self-field perveance, and & =
(dri=zip. f,/m'y‘{ﬁ"l:'N[,)lf' iz the longitudinal emit-
tance for the parabolic seli-similar drlft eompression
solution. The solutions for Au(£), z(t), and pop(t)
can be obtained by solving the longitudinal envelope
equation (19) numerically.

1V, SELF-SIMILAR DRIFT COMPRESSION
FOR NEUTRALIZED BEAMS

In this section, self-similar drift compression for
neutralized beams is studied using the 1D Vlasov
equation

af

R
where we have neglected the external bunching force,
and the space-charge force is assumed to be com-
pletely neutralized by the background plasma. Of
course, the general solution of Eq. (20} is a function
of twe trivial invariants — the Lagrangian coordi-
nate =z — v.t and the velocity v;, i.e.,

f(tl'z‘l U:) = f(U,z -

However, a elass of self-similar drift compression so-
lutions can be more easily construcied using another
familiar conserved quantity [12]

(20)
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2 7 (t) ) z 1?
T s 0| @

where z(t) satisfies the envelope equation
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The solution to Eq. (23) is
() = (200 + =z3t)® + viot? (24)

where 2, = (dz,/dt),_g and vrg is an effective ther-
mal speed. Let’s consider the class of distribution
f{x). The line density is

A= [ dv. f(x) = "“‘”T" dv f[z V ~aZ)?]
/ ol 7!
where Z = z/z,(i), V = zyu/(zpovmo), and o =

zpz; / (zpovT0). Defining

() = ‘“”‘(’;’;Ufw, Joo = f av f(v?),
W) = & f AV 2+ (V —aZ)] , (26)



we can cast A(f, z) into the self-similar form

Aty 2) = M(0R(Z2) . (27}
A simple calculation shows that the velocity profile
is linear,

w=g [dn w0 =02, (8)
Te design & drift compression scheme, we would like
to know which kind of distribution function ean gen-
erate the desired line density profile. This question
is answered by the following inversion theorem. For
a given sell-similar line density profile in Eq. (27},
the corresponding distribution function is

1 As(t)zs(t) [ OA(Z%) dZ2

—. (20
T ozourn Jy 02% /72 _ 4 (29)
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As an application of the inversion theorem, we con-
sider the family of setf-similar line density profiles

Amﬂ=ammf)={hwﬂ—ﬁw.25L

0, Z>1,
(30)
A straightlorward caleulation shows that
0, x>1,
(31)

where ['(n) is the gamma function. ¥or n = 1 and
A~ 1 - 22 the distribution function f ~ T—x
whan y € 1. Forn=1/2and A~ vV1—-2Z% fisa
fat-top function of y. For n < 1/2, the distribution
function diverges near x = 1. Ancther family of self-
similar line density profiles that are useful for drift
compression design is

Aty 2) = M{t)R(2%) = { «\n(i)(l{}:- 22;),1 .Z <1,

(32)
The inversion theorem gives

1 As()=a(e) 3n—1/20{1/2~2)
% t-a.uu:'n [\/7??1}( nolf 1"(1—'.’.|r11)l
e F(Ld-2md - 2mn), x <1
0, x>1,

flx) =

{33)
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where F(%,% —2n; % - 2n; x) is the hypergeometric
function. The distribution function f{x) in Eq. (33)
is well-defined [or arbitrary n, and this family of so-
lution allows for arbitrarily flat line density profiles
when 2n > 1.

V. TRANSVERSE DYNAMICS

¥or the entire beam pulse to be focused onto the
same focal spat on the target, the self-similar sym-
metry condition {4) need to be satisfied. In Secs. III
and IV, we have constructed longitudinal compres-
sion solutions where the symmetry condition is sat-
isfied for the line density. It is difficult to guaran-
tee the symmetry condition for the transverse emit-
tance, due to the complex dynamical behavior of
the transverse emittance when the beam is longi-
tudinally compressed and transversely subject to a
non-periodic focusing lattice and final focus mag-
neis. However, in most heavy ion fusion systems, the
transverse emittance is small. The deviation from
the self-similar symmetry condition due to the trans-
verse emittance can be treated as a perturbation.
We can then deliberately impose another perturba-
tion to the system to cancel out the perturbation due
te the un-symmetric tranaverse emittance. The per-
turbation introduced to cancel out the un-symmetric
emittance effect will be four fime-dependent mag-
nets. First, a drift compression and final foeus lat-
tice is designed for the central slice {Z = 0), and
then four quadrupole magnets at the beginning of
the drift compression are replaced by four time-
dependent magnets whose strength varies around
the design value for the central slice. The time-
dependent magneis essentially provide a slightly dif-
ferent focusing lattice for the different slices. For
example, for the line density profile
As, Z) = M)l = 2/ (s)) (34)
the self-gimilar symmetry condition implies that the
solution to the transverse envelope equations for all
of the slices ean be scaled down from that of the
central slice according to

da db
{al bv 'é?y a}[sv Z] -

P o Ob
vV 1—=2/z;(s){a, b, Ts? E}[sf 0],

(35)



provided the emittance is negligible or scales with
the perveance according to (ez,&,) o 1 — 2/z3(s).
However, the emittance in general is small bui not
negligible, and does not scale with the perveance.
In fact, during adiabatic drift compression or pulse
shaping for an initially isothermal beam, the emit-
tance scales with the beam size, ie., &, o a and
gy  b. Qur solution to this difficulty is to vary
the strength of the [our magnets in the very begin-
ning of the drift compression phase for different z
such that the desired scaling helds at the end of the
last magnet. In a recently published paper {7}, we
demonstrated this technique using the parabolic lon-
gitudinal drifé compression scheme for a typical un-
neutralized heavy jon fusion beam. We considered a
5% beam with 2.43 GeV kinetic energy, and 5.85m
initin! beam half length. The beam was compressed
by a factor of 21.8 to reach 2254 A average final cur-
rent, and then the entire beam pulse was focused
onto & foeal point 1.2mm in radius at the target.

Vi. CONCLUSION

We have studied the drift compression and fi-
nal focus options for heavy ion fusion. Two of the
most important requirements of the drift compres-

&

sion and finzl focus systems were considered, First
of all, a large compression ratio nesds to be achieved.
Equally important, the entire beam pulse needs to
be focused onto the same focal spot at the target.
These two requirements determine many of the ba-
sic features of such systems. We demonsirated thet
it is pecessary to use a sell-similar drift compres-
sion scheme. For un-neutralized beams, the Lie sym-
metry group analysis was applied to the warm-fluid
madel to systematically derive the self-similar drift
compression solutions. For neutralized beams, the
1D Vlasov equation was solved explicitly and fam-
flies of self-similar drift compression solutions were
constructed. To compensate for the deviation from
the self-similar symmetry condition due to the trans-
verse emittance, four time-dependent magnets were
introduced in the upstream of the drift compression
region such that the entire beam pulse can be fo-
cuzed onto the same foeal spot. The self-similar lon-
gitudinal drift compression scheme, combined with
the non-periodic, time-dependent lattice design, pro-
vide the essentinl elements of a leading-order drift
compression method. The next-step investigation
will be focused on second-order effects, such as emit-
tance growth during drift compression, and the two-
way coupling between the longitudinal and trans-
verse dynamics.
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