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ABSTRACT OF THE DISSERTATION

Power and Adaptation to
Climate Change

by

Paul Grether Stainier
Doctor of Philosophy in Environment and Sustainability
University of California, Los Angeles, 2024
Professor Alan Irwin Barreca, Co-Chair

Professor Michael L. Prelip, Co-Chair

The extent to which climate change will exacerbate already growing inequality, both
across and within locations, is an open question. The power that people have, or lack, to
adapt to a warming climate is central to this issue. This dissertation includes three studies
on potential climate adaptations. In the first, my coauthors and I study whether heat-
induced use of energy-intensive adaptation technologies, such as air conditioning, can lead
to financial distress. We test for this possibility with data from California on electricity use
and disconnections, a consequence of utility bill non-payment. We find that hot weather
increases electricity expenses in the current billing period and the relative risk of discon-
nection 51 to 75 days later. In the second study, my coauthors and I examine the impact
of temperature-related crop losses on household diets in rural India, a setting with a high
prevalence of small family farms. High temperatures during the growing season reduce crop
yields, but it is unclear how these losses affect household diets. While we find no significant
impact of heat on average calorie or iron consumption in the subsequent year, the num-

ber of extremely malnourished households increases. We also find suggestive evidence that
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households adapt to heat-induced losses of home-grown calories by purchasing more food,
which helps to explain the lack of aggregate impacts. In the third study, I analyze worker
responses to climate change. Past work in this area has largely focused on the on-the-job
effects of extreme weather on environmentally exposed workers and potential short-term
adaptations. Little is known about long-term adaptations, such as changing occupations.
Well-documented challenges to occupational mobility, especially between occupations with
different task requirements, suggest that this adaptation strategy may be prohibitively costly
for many workers. Using individual-level panel data from France, I find that historically,
inter-exposure mobility rates are low. The task composition of high exposure jobs provides

a partial, but incomplete, explanation for this labor market segmentation.
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Introduction

In the past two decades, economists have become increasingly interested in understanding
the impacts of extreme weather events. While rooted in a broader study of the relationship
between natural resources and the economy, the pace of this work has increased due to
impending climate change (Carleton and Hsiang, 2016). Two important developments have
made this research possible. First, advances in computational power have allowed researchers

to use large datasets, important for identifying signals in noisy real-world data.

Second, applied economics has become increasingly interested in, and adept at, identifying
causal relationships. The “credibility revolution” refers to the field’s heightened emphasis
on causal inference based on careful research design. At the core of this methodology is
a desire to emulate, as closely as possible, the randomized experiment framework used in
the natural sciences. This approach entails either running experiments or mimicking them
where administering one would be impossible or unethical (Angrist and Pischke, 2010). In
the latter case, economists exploit “natural quasi-experiments,” such as a minimum drinking
age. For example, Carpenter and Dobkin (2009) measures the effect of drinking on mortality
in young adults. The authors exploit the fact that in the US, right after turning 21, people
drink more alcohol. By comparing mortality rates immediately before and after this birthday,
they estimate the impact of this increased drinking on mortality. The assumption here is
that, within a narrow enough age range (e.g., 1 month on either side of 21), people are the

same other than having received the “treatment” of being legally allowed to drink.

The economics literature on the causal impact of heat on workplace injuries typifies the

strengths of this methodology. Characterizing an injury as “caused” by the heat, usually an



indirect contributing factor, is a difficult task. For example, heat-related dehydration can
decrease worker attentiveness, resulting in a fall from a ladder and a fractured wrist. The
direct cause of this injury, and the only one listed on an official report, would be “fall from
ladder.” So, counting the number of injuries where heat is listed as the direct cause, such
as heat stroke, would vastly undercount the actual number of injuries caused by heat (Park
et al., 2021). However, counting the number of injuries that happen on hot days would lead

to an overestimate, as the worker may have fallen even if it were cold.

To tackle this question, applied microeconomists use a combination of big administrative
datasets and causal inference. Big datasets, such as workers’ compensation records as in Park
et al. (2021) or Dillender (2021), allow researchers to isolate relatively small signals from
surrounding noise. Workplace injuries are a relatively rare occurrence: the mean number
number of injuries per zip code-day in California is 1, with a median of 0 (Park et al., 2021).
Therefore, a 10 percent increase in injury risk due to a day above 100°F, as found in Park
et al. (2021), represents just a single additional injury every 10 days. Identifying this effect
with qualitative methods, or even with a smaller dataset, is difficult. However, a dataset
that includes millions of injury records, with spatial and temporal granularity (e.g., zip code

by day) and diversity (e.g., 21 years and all of California), is well-suited to this task.

To identify causality, environmental economists exploit the fact that, holding climate
constant, weather is effectively “randomly assigned” to a given location and date (Deschénes
and Greenstone, 2007). By controlling for average levels of heat and injuries across loca-
tions and over time, researchers isolate these random heat fluctuations and corresponding
fluctuations in injuries. Estimating the relationship between these two sets of fluctuations
identifies the causal effect of heat on injuries. Using this methodology, the field has esti-
mated the causal effects of heat, cold, and precipitation on a vast a array of outcomes, such
as mortality (Deschénes and Greenstone, 2011), learning proficiency (Park et al., 2020), and

energy use (Auffhammer and Mansur, 2014).

These methods can be particularly useful for policy evaluation. We may intuitively



know that heat makes one more likely to fall off a ladder, and a qualitative account can
provide more than enough anecdotes to substantiate that intuition. The role of applied
microeconomics is to establish the size of this relationship. Understanding how much injury
risk increases due to a day above 100°F allows one to calculate the costs of heat-attributable
injuries, including workers’ compensation payments, lost productivity, and lost quality of
life for workers. With this estimate, a policymaker can then balance these costs against the
potential costs (primarily to firms but also to workers, for example through reduced wages) of
a policy such as California’s 2006 Heat Illness Prevention Standard, which mandates breaks

and access to water when the temperatures rise above 80°F (Riley et al., 2012).

One critique of the credibility revolution is that its insistence on causal inference limits
its ability to study “potentially important but slow-acting mechanisms” (Deaton, 2024).
Climate change is exactly one such mechanism. Clean causal inference often relies on short-
run weather variation, thereby limiting applied microeconomists’ ability to research the
potential effects of slow changes in the climate. The most commonly accepted approaches
in this field make it difficult to account for long-term adaptations to climate change. For
example, as the climate gets warmer and standards of living rise, historically cooler or poorer
areas might increasingly adopt air conditioning (AC) technologies. This increased adoption

could mitigate the impacts of heat on social outcomes in the future.

The costs of adaptation make anticipating the extent to which people will adapt difficult.
Installing or running the AC costs money. How individuals balance these costs with the
benefits of thermal comfort will determine how much they protect themselves from the heat.
Importantly, both the need and the ability to adapt to extreme heat vary substantially across
people within the same location. For example, past work shows that workers in climate-
exposed industries decrease the amount of time they work on hot days. In contrast, workers
in non-exposed industries, such as law, do not need to, as they work in climate-controlled
offices. However, not all exposed workers can necessarily adapt in this way, as some may not
have sufficient control over their schedules (Graff Zivin and Neidell, 2014). Understanding

these multiple determinants of adaptation, both across and within geographies, is important



to anticipating the total costs of climate change and designing policies to protect those most

vulnerable to extreme weather events.

Several complementary approaches attempt to bridge the gap between causal estimates
based on short-run weather variation and projections of climate change-induced damages.
One such strategy studies specific technological or behavioral adaptations. For example,
Barreca et al. (2016) finds that the effect of heat above 80°F on mortality in the US declined
by 75 percent over the course of the 20™" century, almost exclusively due to increased AC
use. This finding, combined with projections of future levels of AC use, can be used to
predict potential changes in the temperature-mortality relationship in the future. Another
approach estimates the temperature-mortality relationship as a function of local wealth and
climate (Carleton et al., 2022). In doing so, the authors proxy for any adaptations that
might result from slowly shifting climates or rising incomes. They combine their results with
sub-country projections of future wealth and climate to calculate climate change-induced
mortality. However, they must make the relatively strong assumption that the temperature-

mortality relationship is a deterministic function of wealth and climate.

With the “long differences” approach, researchers most directly mimic climate change by
estimating the effects of long-term changes in the climate and long-term changes in outcomes.
Researchers have used this method for outcomes such as crop yields (Burke and Emerick,
2016) and worker sectoral allocation (Liu et al., 2023). Burke and Emerick (2016) calculate
5-year average temperatures and yields in counties in the American Midwest for two time pe-
riods centered around 1980 and 2000. They take the differences in the average temperatures
and crop yields between these two periods, then estimate the relationship between these dif-
ferences. Causal interpretation of results using this approach requires stronger assumptions
than when exploiting short-run variation in the weather. Here, a key assumption is that,
within each state, there are no time-varying unobservables affecting crop yields that are
correlated with long-term changes in average temperature. While the authors substantiate

this assumption for their case, it may not always hold true for other outcomes of interest.



These approaches all suffer from a common limitation of applied microeconomics research:
a reliance on quantitative methods that limits questions to those where data exist. For
example, Barreca et al. (2016) uses mortality records dating back to 1900, a luxury that
exists for few outcomes of interest. In addition, Carleton et al. (2022) includes no data from
the poorest parts of the world, including the entire continent of Africa. Importantly, there are
many areas that are projected to be poorer in 2100 than the poorest region included in their
study. Therefore, for their future climate damage projections, they need to extrapolate the
temperature-mortality relationship as a function of wealth and climate to these regions. This
limitation motivates turning to qualitative disciplines to supplement one’s understanding of
the potential costs to climate adaptation. While the methods I employ in this dissertation
are firmly rooted in applied microeconomics, the questions I ask are inspired by ethnographic

studies that highlight potential barriers to adaptation (Blanchette, 2020; Hatton, 2020).

This dissertation includes three studies that contribute to the literature on the costs of
climate adaptation, and how they might differ within the same location. Each study focuses
on a different geographical context and social outcome: energy use and financial distress
in California, food availability in rural India, and worker welfare in France. In all three
studies, I use applied microeconomics methodologies to answer questions relevant to the

distributional costs of climate change.

Study 1

The first study examines how low-income households in California change their energy use
in response to extreme heat. AC protects people from the worst effects of heat, such as
increased mortality (Barreca et al., 2016) and decreased learning ability (Park et al., 2020).
However, the costs of increased AC use during heat spells may cause financial distress. To
test this possibility, my coauthors and I match over 13 million bills from 300,000 low-income
households with contemporaneous weather data at the zip code level. In line with past work

(Auffhammer and Mansur, 2014), we find that households consume more electricity when it



is unusually hot. This increased energy use results in higher energy bills, providing a cost
of this adaptation in dollar terms. For example, a day with a maximum temperature above

100°F increases a household’s monthly energy bill by around $3.

The above story, however, misses the fact that households may differ in their power to
afford these unusually high energy bills. Many people would hardly notice a $3 increase per
day above 100°F. However, for low-income households, these additional costs can be enough
to cause financial hardships. We use disconnection events, which refer to households being
disconnected from their utility for non-payment, as a measure of financial distress. We find
that heat during a particular billing period increases disconnections when the corresponding
bill is due. A day above 100°F leads to 6.2 additional disconnections per 100,000 bills, an

increase of 2.5% relative to the baseline risk of disconnection.

This finding highlights the strength of applied microeconomics. Even knowing that heat
increases energy bills, it might be hard for many to believe that this effect is large enough to
cause financial harm. With over 13 million energy bills, we harness enough statistical power
to identify a meaningful but quantitatively small effect: 6.2 more disconnections per 100,000

bills. This increase would likely be difficult to identify using qualitative methods.

This study shows the importance of within-geography analyses of climate adaptation. For
high-income Californians, the effect of temperature on energy bills provides an estimate of
how much people are willing to pay for thermal comfort. In contrast, for low-income house-
holds, such an analysis would understate their true willingness to pay for protection from the
heat. First, increased energy bills alone do not account for the costs of a disconnection, which
can cause significant emotional and financial distress (Harrison and Popke, 2013). Second,
households may be under-utilizing their AC, relative to their true thermal preferences, to
avoid increased costs. Third, households may be making other tradeoffs, such as shrinking

their spending on food, to meet their energy demands (Bhattacharya et al., 2003).



Study 2

In the second study, my coauthors and I estimate the impacts of extreme heat during the
growing season (June-December) on diet quality in rural India. Relative to the low-income
households in California, people here have even less power to adapt to extreme heat. In 2012,
air-conditioning ownership in India was only 12 percent, with even lower rates in rural areas
(Pavanello et al., 2021). In addition, the prevalence of small family farms means that hot
weather, which decreases crop yields, is a direct threat to their sources of food and income
(Taraz, 2018). Despite these challenges, households may still have options to respond to heat
shocks, for example by using savings to purchase foods. The magnitude of these responses

is an important determinant of the impacts of heat on welfare in rural India.

We study this question using 300,000 rural households’ responses to India’s National
Sample Survey (NSS) from 2003 to 2012. We pair these responses with weather data at
the district-year-season level. Despite its negative impacts on crop yields, we find no effect
of extreme heat during the growing season on aggregate calorie or iron consumption in
the subsequent year. We also find evidence to suggest that, in response to a heat-induced
decrease in home-grown food consumption, households purchase more foods than usual. This
response helps explain why we see no effects of heat on aggregate measures of diet quality.
However, not all households have the power to adapt in this way: while extreme heat does
not increase the number of households experiencing undernourishment, it does increase the

number of households experiencing extreme undernourishment®.

This study, which benefited from the advice of public health and climate science re-
searchers, illustrates the strengths of interdisciplinary work. My co-advisor, Professor Pre-
lip, a public health expert with a background in nutrition, helped design our initial research
question. He suggested that we include iron in our analysis due to high rates of iron de-

ficiency in India (Sharma et al., 2020a). Iron is largely absent in past economics work on

"'We define a household as experiencing undernourishment if it consumes below 100 percent of its recom-
mended levels of dietary intake, and extreme undernourishment as below 80 percent.



diet quality in rural India, which usually focuses on calories or macronutrients (Deaton and

Dreze, 2009).

This absence exemplifies how applied microeconomics can prioritize questions based on
data accessibility rather than theoretical importance. The NSS provides conversion tables
to translate food items into calorie values, but these tables omit iron. Instead, motivated by
Professor Prelip’s advice, I manually added iron values for 150 food items to these tables. If
had drawn inspiration only from past economics work, this extra effort would not have seemed
worthwhile. Including iron allowed for a more nuanced analysis of household responses to
heat. For example, we find suggestive evidence that, although households increase food

purchases after a hot growing season, the foods they purchase are low in iron.

A second way that this chapter benefits from interdisciplinary engagement is in its treat-
ment of climate projections. The first two studies in my dissertation both include projections
of how increased heat due to climate change will affect the outcomes of interest. In the first
study, we use an ensemble of 22 climate models to generate projections of how the tempera-
ture distribution in 2080 and 2099 will differ from the baseline period of 2000 to 2019. Then,
assuming that the temperature-disconnections relationship will remain the same in the fu-

ture, we calculate an estimate of climate change-induced increases in energy disconnections.

Despite its many limitations, the above process represents a relatively sophisticated ver-
sion of how applied microeconomists incorporate climate projections into their work. As
recently as 2020, papers have used a single model to calculate climate projections (Garg
et al., 2020b). As an example of a more involved approach, the Climate Impact Lab, an
interdisciplinary group led by economists, uses 21 models and estimates “surrogate models”
to fill in the under-represented tails of the climate projection distribution (Carleton et al.,
2022). However, this method’s computational intensity and multiple complicated assump-

tions decrease the likelihood of its widespread adoption.

My methods in study 2 are more sophisticated than usual for economics but still relatively

easy to implement. I create a projection ensemble of 190 members from 26 models to calculate



a more comprehensive picture of the potential spread of climate damages across, and within,
climate models. In addition, I focus on mid-century projections (2030 to 2049) as opposed
to late-century ones (2080 to 2099). I do so because mid-century projections are more likely
to motivate relevant adaptation policy today, in part because end-of-century ones include far
more uncertainty. For near-future projections, however, within-model variability is a more
substantial portion of the total uncertainty, heightening the importance of using multiple

members of the same model (Schwarzwald and Lenssen, 2022).

The difference in the treatment of climate projections between the two studies is thanks
to advice from two climate scientists: Professor Karen McKinnon and fellow IoES PhD stu-
dent Will Krantz. Professor McKinnon helped me grasp the importance of within-model
projection variability. For example, CanESM5 is one of the 26 Coupled Model Intercom-
parison Project Phase 6 (CMIP6) models I use to calculate the projected increase in the
percentage of rural Indian households experiencing extreme iron undernutrition in 2030 to
2049. Within this single model, which includes 50 members, the variance in this increase is
0.11, a third of the size of the variance across the full 190-member ensemble. Will Krantz
shared code and technical knowledge that allowed me to quickly implement the ideas from
my discussions with Professor McKinnon. As I continue to work in this space, I hope to

push economists to include larger climate model ensembles in their work.

Study 3

Labor Market Power and Climate Adaptation

My third study concerns a setting where the power to adapt can take on a more opposi-
tional nature: the labor market. In the first two studies, the key determinant of adaptation
potential has been access to resources to decrease one’s vulnerability to heat. If a household
can afford to run its AC, it does so and pays the bill. In the labor market, however, there

is a disconnect between these costs and benefits. While employers bear the costs of adapta-



tions, such as running the AC, workers reap the most direct benefits in terms of health and
thermal comfort. In theory, employers may also benefit by mitigating heat’s effect on worker
productivity (Cachon et al., 2012). However, business pushback to California’s proposed
heat illness prevention regulations for indoor workers suggests that firms may not see these
productivity benefits as worth the costs of climate control (Kuang, 2024b). The realized level

of adaptation is therefore likely the result of negotiations between employer and employee.

Competitive market theories of economics are poorly equipped to analyze adaptation
decisions in settings involving power dynamics (Deaton, 2024). In the theoretical competitive
market, employers must pay “compensating differentials” (e.g., higher wages) to make up for
workplace disamenities such injury risk or exposure to the elements (Rosen, 1986). Without
a compensating differential for a disamenity, workers would choose work in other occupations
or firms with lower levels of that disamenity. From this perspective, identifying differences
in realized levels of adaptation across firms is of relatively limited interest, as firms with low
levels of adaptation must be compensating for it in some other (perhaps unobserved) way.
For example, if a firm does not pay for AC in its factory, then it might pass on those savings

to its employees who are working in more uncomfortable conditions.

Firms investing in sub-optimal (from the worker’s perspective) levels of adaptation due to
high labor market power, however, could motivate policy interventions to protect vulnerable
workers. Economic theory suggests that firms with labor market power can set compensation
at levels lower than worker productivity, resulting in suboptimal levels of employment and
output, hurting both employees and consumers (Berger et al., 2022). In addition, firms may
not fully realize the benefits of climate control, such as increased productivity and reduced
workers’ compensation payments. Therefore, firms with labor market power may be investing

in suboptimal levels of adaptation, even from their own perspective.

Policymakers have different options to address this issue. If one believes that employees
better understand the mutual benefits of climate control, then one might adopt policies that

help equalize bargaining power between them and their employers (e.g., by supporting the
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formation of unions). Another option is to adopt mandatory heat prevention protocols in
the workplace, as currently exist in several US states (OSHA, 2024). For some stakeholders,
simply identifying disparities in adaptation ability might be enough to justify a redistributive
policy intervention. However, many economists and policymakers think in terms of aggregate
welfare. In order to get broader buy-in for policy making from this group, quantifying labor

market power, and the degree to which it constrains climate adaptation, is important.

Empirical Difficulties of Studying Labor Market Power

In Porkopolis, Alex Blanchette describes working at “Dover Foods,” a meatpacking company
in the Great Plains, alongside “Raul,” a Cuban immigrant whose family lives in Miami. Raul
was in construction, but after the industry’s collapse in 2008, he could not find work in Miami,
an issue exacerbated by his limited English proficiency. He was recruited by “Grensome
Meats,” another meatpacking plant in the Great Plains, at a job fair in Miami. After his
stint there ended, he found work at Dover Foods (Blanchette, 2020). Raul’s case exemplifies
the difficulty of grasping and measuring “his” labor market. Doing so is an important first
step in studying the balance of power between him and his prospective employers. Measuring
the labor market power of local employers in the Great Plains misses the fact that his labor
market should include meatpacking jobs in Miami. In addition, measuring the labor market
power that he and his fellow meatpacking workers face omits his ability to work in other

occupations.

In quantitative studies, the first challenge is defining the contours of a particular labor
market. In economics, many recent studies have done so at the occupation-location level
(Azar et al., 2019). In practice, even this deceptively simple definition requires some diffi-
cult decisions. Standard geographical units (e.g., state or county) tend to poorly represent
labor markets. For example, Kansas City straddles the Kansas-Missouri border. Instead,
researchers typically use “commuting zones,” which more likely represent local economies

(Marinescu et al., 2021). These zones are difficult to delineate, especially given how many
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people commute large distances to their jobs. Choosing the granularity of occupations to
use can be equally challenging. Take too coarse a definition, and one runs the risk of pool-
ing together workers who do vastly different tasks (e.g. “Sales” could mean telemarketers
or highly technical sales representatives for a software firm). But overly granular defini-
tions risk separating largely overlapping groups of workers (e.g., sales associates vs. sales

representatives).

This occupation-location definition of the labor market offers several relatively straight-
forward options to quantitatively measure labor market power. One option, employer market
share, measures the proportion of employees hired by a single firm in an occupation-location.
For example, if Walmart hires half of the cashiers in a commuting zone, it has a market share
of 50 percent. Often, in order to match it with available data on wages, researchers calculate
an aggregate measure of employer market share at the occupation-location level. This mea-
sure, called the Herfindahl-Hirschman index (HHI), is the sum of the squares of the market
shares of all firms in that labor market. Many recent studies have documented the negative
effects of HHI on wages, providing evidence that is consistent with the existence of significant

market power (Marinescu et al., 2021).

Recent work has also begun to use the concept of “outside occupation options,” which
refers to the jobs that workers might take outside of their current occupation. This approach
addresses some issues with defining the labor market at the occupation-location level. For
most occupations (other than, say, brain surgeons or professional athletes), it is highly
unlikely that workers are limiting their job search to a single occupation. Researchers have
measured this idea in multiple complementary ways, including with task composition (i.e.,
which occupations have similar tasks to a worker’s current occupation?) (Macaluso, 2023),
worker characteristics (i.e., which occupations do similar employees work in?) (Caldwell and
Danieli, 2024), and worker transitions (i.e., which occupations are workers in this current
occupation likely to transition into?) (Schubert et al., 2022). This concept approaches the
reality of a local, individually-relevant labor market that can still be measured quantitatively

and at scale. However, even this more sophisticated approach to defining labor markets
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misses much of the nuance from an anthropology text like Porkopolis.

After arriving at a relatively satisfactory definition of a labor market, an applied mi-
croeconomist can only study labor market power at that level if the necessary data exist.
For example, Rode et al. (2023) studies how workers worldwide respond to extreme heat
by decreasing their time at work. These wage losses from this decreased work represent a
“willingness to pay” (WTP) to avoid extreme heat in the workplace. The authors use the
WTP, alongside socioeconomic and climate projections, to calculate climate change’s cost to
worker well-being in dollar terms. An important assumption in this study, that the authors
note is likely untrue, is that workers have the power to set their own schedules on a daily
basis (Rode et al., 2023). However, incorporating measures of workers’ control over their
schedules would require data that do not exist. This paper exemplifies the difficulties of

incorporating a thorough analysis of power into quantitative climate adaptation work.

Sometimes bridging the gap between important questions and existing data entails lever-
aging advances in computational power and software to create one’s own dataset. For ex-
ample, Schubert et al. (2022) defines outside occupation options using job transitions by
collecting data from 16 million online resumes. The authors combine these occupational
transition data with occupation-by-location wage data to create a measure of the local qual-
ity of outside occupation options. Then, using an instrumental variables regression, a causal
inference tool commonly used in applied microeconomics, they find that a 1% increase in the
wages in a worker’s outside occupation options causes a 0.1% increase in their current wages
(Schubert et al., 2022). This result highlights the importance of underlying labor market
conditions in determining worker compensation. It also showcases the promise of combining

careful causal inference with high computational power.

As I describe above, the usual challenges of quantitative research are accentuated when
one seeks to study labor market power. These difficulties result in a gap in the economics
literature that motivate turning to other disciplines to better understand power dynamics be-

tween workers and employers. In Porkopolis, anthropologist Alex Blanchette undertakes an
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ethnographic study of workers in meatpacking plants. He describes how meatpacking firms
recruit laborers with low employment prospects, including refugees, formerly incarcerated
people, and undocumented immigrants. By immersing himself in the plant, he learns that
many of his fellow workers, such as Raul, lack competitive alternative employment oppor-
tunities. The resulting power imbalance between them and their employer means that they
face harsh working conditions without adequate pay (Blanchette, 2020). Texts and concepts
such as these, combined with the economics literature on climate adaptation, inform the

questions I ask in this third study.

The Study

In my third study, I test the potential for workers to respond to climate change by switching
occupations, from ones exposed to the elements (“high exposure”) to ones that are not (“low
exposure”). This study fills a gap in the literature on potential worker responses to climate
change, which is largely limited to short-term responses, such as working less on hot days
(Graff Zivin and Neidell, 2014). Tt also contributes to long-standing debates on the degree
of segmentation that exists in our labor markets (Reich et al., 1973; Eichhorst et al., 2017).
Labor market segmentation, which refers to the division of workers and jobs into distinct
“segments,” reduces the set of jobs a worker can access, thereby enhancing employer power.
Qualitative work can document instances of segmentation, such as Blanchette’s description of
meatpacking workers having few other employment prospects (Blanchette, 2020). However,
quantitative measures of labor market segmentation, while complicated by the challenges

outlined above, are important for designing appropriate policy interventions.

Segmentation between high and low exposure occupations will contribute to the overall
consequences of climate change on inequality, in both its wage and non-wage forms. On the
one hand, if high exposure workers are unable to transition to low exposure occupations, then
climate change will likely widen already-existing inequality between these sets of workers. On

the other hand, if such transitions are common, then low exposure workers, while insulated
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from the direct effects of extreme weather, may still see climate-induced wage decreases as
more workers seek to move to these jobs. These spillover consequences are more likely to
affect lower-wage low exposure occupations, whose workers are more similar to those in high

exposure work (Maestas et al., 2017).

I test how often workers transition between high exposure and low exposure occupations
using administrative data from France from 2011 to 2019. This dataset is particularly well-
suited to this analysis. First, it allows me to track individual workers, and their occupational
transitions, over time. Second, as it is compiled from responses to a mandatory employer
survey, it is highly representative of the whole labor market. Other datasets that could be
used to quantify labor market segmentation, such as the online resumes used in Schubert
et al. (2022), underrepresent many workers who often engage in high exposure work, such as
those without a bachelor’s degree (Maestas et al., 2017). Third, this dataset is a roughly 1 in
12 (all workers born in October) sample of all employees for the vast majority of occupations
in France, providing me with a very large sample. I observe a median of 2,100 workers leaving
each of the 368 occupations I study, allowing me to test for within-occupation differences in

occupational mobility.

I find a high degree of segmentation between high and low exposure labor markets. By
my preferred definition, high exposure workers only make up 9% of the jobs in France.
However, 49% of worker transitions out of one high exposure occupation result in a move
to another high exposure occupation. Skill requirement differences cannot fully explain this
segmentation. For example, I show that occupations involving more manual tasks are more
likely to be high exposure. However, the segmentation between high and low exposure

occupations persists even when controlling for occupations’ degree of manual intensity.

Finally, I analyze how the ability to transition to low exposure work differs between
workers within the same high exposure occupation. I find that, among workers leaving a
high exposure occupation, relatively high earners (after controlling for characteristics such

as age, gender, and experience) are 23% more likely to transition to a low exposure occu-
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pation than are low earners. This finding suggests that, as the planet warms, high-paid
high exposure workers will more likely be able to switch to low exposure work than their
lower-paid counterparts. It also emphasizes the importance of future labor market research

at the sub-occupation level.

Sometimes, correlational analyses are key to broaching topics where data availability
limits causal inference. One methodological inspiration of my third study is Chetty et al.
(2014), which documents intergenerational mobility in the US. The authors show strong het-
erogeneity in mobility across the country and summarize the characteristics of high-mobility
areas. They answer a hugely important question despite noting that their “descriptive anal-
ysis does not identify the causal mechanisms that determine upward mobility” (Chetty et al.,
2014). Indeed, their primary goal seems to be to thoroughly document an existing issue in
order to spur future, possibly causal, research on the topic (Chetty et al., 2014). My moti-
vation for this third study is similar to theirs. I cannot, due to data constraints, conduct a
causal analysis of how workers will react to a changing climate. Instead, I describe histori-
cal segmentation between high and low exposure occupations as a first step in anticipating
potential worker responses in the future. In addition, I hope to pursue and inspire future

research on factors that cause this segmentation.
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High Temperatures and Electricity Disconnections for

Low-Income Homes in Californial

! This chapter is coauthored with Professors Alan Barreca and R. Jisung Park and has been published in
the journal Nature Energy. The citation is: Barreca, A.; Park, R.J.; Stainier, P. (2022). High temperatures
and electricity disconnections for low-income homes in California. Nature Energy, 1-13.
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2.1 Introduction

Poor households face a unique set of tradeoffs when adapting to extreme heat events. They
may need to temporarily incur higher energy expenses by using home cooling technologies,
like air conditioning, to protect their health (Anderson et al., 2013; White, 2017; Barreca
et al., 2016; Isen et al., 2017; Deschénes and Greenstone, 2011). Past studies have inves-
tigated whether households reduce consumption of necessities, like food, to pay for high
energy bills (Snell et al., 2018; Bhattacharya et al., 2003; Cullen et al., 2004; Beatty et al.,
2014; Frank et al., 2006; Nord and Kantor, 2006). Less is known about whether the financial
distress causes households to miss paying important bills altogether. In particular, nonpay-
ment of an energy bill can lead to a household being disconnected by their utility provider.
Sociological interviews suggest that the cost of disconnection includes significant material
hardship in the short term as well as any associated costs of reconnecting service (Harrison
and Popke, 2013; Hernandez, 2016; Heflin et al., 2011). Defaulting on energy debt may also
cause longer-term harm, like limiting access to credit or adding to the cumulative stresses of
poverty (Mullainathan and Shafir, 2013; Kishiyama et al., 2009; Evans, 2016; Schofield and
Venkataramani, 2021).

Here, we estimate the relationship between temperature, electricity expense, and elec-
tricity disconnections using administrative data from California from 2012 through 2017.
Our data come from Southern California Edison (SCE), a major utility that serves over 15
million people in a 50,000 square-mile area of central, coastal, and southern California. The
overwhelming bulk of the accounts in our sample was enrolled at some point in the California
Alternate Rates for Energy (CARE) program, which provides a subsidy of around 30 per-
cent for qualifying low-income households (Southern California Edison, 2017a, 2012a, 2017b,
2012b). SCE employs a tiered pricing plan, but these tiers have varied historically with
minor differences for CARE customers (Southern California Edison, 2017a, 2012a, 2017b,
2012b; California Public Utilities Commission, 2009). Time of use pricing is relatively rare

in our sample period since SCE had only begun piloting an opt-out time of use pricing plan
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in 2016 (Southern California Edison, 2019).

This research innovates on existing work in two key ways. First, this disconnection
analysis adds to the broader energy insecurity literature (Jessel et al., 2019; Brown et al.,
2020; Hernandez and Bird, 2010; Bednar and Reames, 2020; Agbim et al., 2020), but more
specifically complements the sociological and economic studies that investigate bill juggling
strategies and difficult consumption choices that households face with higher energy bills.
National survey data suggests that 14 percent of U.S. households receive a shut off or delivery
stop notice at some point during the year, but information on the frequency of actual discon-
nections is typically not collected (Energy Information Administration, 2018). Qualitative
studies featuring in-depth interviews of low-income households find that fear of disconnection
is a significant psychological stressor (Harrison and Popke, 2013; Hernandez, 2016). Quanti-
tative analyses find that high energy bills lead to less food consumption, something referred
to as the heat or eat tradeoff (Snell et al., 2018; Bhattacharya et al., 2003; Cullen et al., 2004;
Beatty et al., 2014; Frank et al., 2006; Nord and Kantor, 2006). Analysis of disconnections is
largely absent from such studies, with the exception of one study from Australia, likely due
to the dearth of available disconnection data (Longden et al., 2022; National Consumer Law

Center, 2020).

Second, our estimates help reveal the timing between extreme heat events and disconnec-
tion risk. To the extent that temperature affects disconnections through energy expenses,
disconnections are likely to be delayed since bills are typically not considered overdue until
a few weeks after the close of a billing period (Southern California Edison, 2013a). Fur-
thermore, existing policies - including in our study area - often prevent utilities from dis-
connecting homes when the day’s temperature is above 100°F (Southern California Edison,
2020). Higher expenses in one billing period could increase the cumulative risk of default
in subsequent months or simply cause intertemporal shifts that expedite an impending dis-
connection. Temperature could also affect disconnection risk for other reasons than energy
expenses, such as lost labor income or health-related costs (Barreca et al., 2016; Graff Zivin

and Neidell, 2014).
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Our estimates show that hot weather in one billing period leads to higher disconnections
later on. In particular, each additional day with a maximum temperature of 95°F in one
billing period causes the relative risk of disconnection to increase by 1.2 percent 51-75 days
after the close of that billing period. Higher electricity expenses themselves appear to be
a likely contributor. We find electricity expenses increase by 1.6 percent in the current
billing period with each additional 95°F day. The disconnection timing matches the energy
provider’s policy to disconnect no sooner than 53 days after a bill is issued, which is usually
just after the close of the billing period (Southern California Edison, 2013a). We further
document the importance of energy expenses as a determinant of disconnections. We show
that both expenses and disconnections increase dramatically after 26 periods on the CARE
program, right when a portion of households are disenrolled from the CARE subsidy as part

of the two-year eligibility verification process (Southern California Edison, 2014a).

2.2 Estimates of the Temperature-Disconnection Relationship

Table 2.1 presents the means and standard deviations of our key variables broken down by
season of year. Energy consumption is strongly seasonal. The average bill amount is nearly
$50 higher in the summer than in the spring months. This suggests that higher temperatures
are strongly predictive of electricity use in our low-income population, which is generally
consistent with existing studies’ findings on the temperature-energy relationship (Deschénes
and Greenstone, 2011; Auffhammer and Mansur, 2014; Auffhammer et al., 2017; Barreca,
2012; Aroonruengsawat and Auffhammer, 2011). The mean of the disconnection variable is
246 disconnections per 100,000 bills or about 0.25 percent on each bill. Disconnections are at
their lowest in the summer, highlighting the need to account for lags between when energy
expenses are incurred and when bills are delinquent. Temperatures are relatively high in our

sample area, with an average daily maximum temperature of 77°F.
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Table 2.1: Summary Statistics: SCE and PRISM

Full Season
Means Sample Winter Spring Summer Fall
Bill Amount 72.79 68.29 55.34 101.64 65.47
Electricity used (kWh per cycle) 531.55 476.24 451.56 688.64 508.40
Disconnections per 100,000 bills 245.93 245.67 275.20 211.24 250.95
Bills on CARE 0.74 0.74 0.74 0.74 0.74
Bills on FERA 0.01 0.01 0.01 0.01 0.01
Accounts Ever Disconnected 0.043
Accounts Disconnected 2 or More Times 0.021
Disconnections for Disconnected Sample 2.54
Daily Maximum Temperature (F) 77.25 67.87 76.22 87.35 77.31
Days with Max Temperature <60F 2.06 6.16 0.68 0.00 1.51
Days with Max Temperature 60F-70F 6.68 12.01 7.48 0.41 7.01
Days with Max Temperature 70F-80F 9.51 9.10 12.42 6.52 9.91
Days with Max Temperature 80F-90F 7.45 3.14 6.85 11.57 8.26
Days with Max Temperature 90F-100F 3.85 0.14 2.36 9.18 3.62
Days with Max Temperature >100F 0.88 0.00 0.34 2.57 0.55
Daily Precipitation (inches) 0.03 0.06 0.01 0.00 0.02
Standard Deviations
Bill Amount ($) 85.00 71.13 70.03 108.53 75.9
Electricity used (kWh per cycle) 397.07 325.02 316.59 513.28 349.69
Disconnections per 100,000 bills 4,953.08 4,950.38  5,238.71 4,591.27  5,003.22
Bills on CARE 0.44 0.44 0.44 0.44 0.44
Bills on FERA 0.12 0.12 0.12 0.12 0.12
Accounts Ever Disconnected 0.20
Accounts Disconnected 2 or More Times 0.14
Disconnections for Disconnected Sample 2.85
Daily Maximum Temperature (F) 9.63 5.59 5.75 7.20 7.93
Days with Max Temperature <60F 4.32 6.15 1.61 0.03 3.42
Days with Max Temperature 60F-70F 6.63 5.06 5.89 1.92 6.66
Days with Max Temperature 70F-80F 6.45 5.13 5.58 8.14 4.67
Days with Max Temperature 80F-90F 6.00 3.44 4.81 6.87 4.90
Days with Max Temperature 90F-100F 5.81 0.58 3.37 7.54 4.50
Days with Max Temperature >100F 2.88 0.00 1.49 4.87 1.55
Daily Precipitation (inches) 0.05 0.07 0.02 0.01 0.03
Number of Bills 13,329,955 3,339,091 3,618,488 3,449,100 2,923,276

Notes: This table has the means of our key variables for 2012-2018. Winter includes December-February,
Spring March-May, Summer June-August, and Fall September-November. There are a total of 299,225
accounts in our sample. Accounts were selected based on whether they ever enrolled in the California
Alternate Rates for Energy (CARE) or Family Electric Rate Assistance Program (FERA) low-income

subsidy programs.
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Before examining impacts on disconnections, we first show that hot weather causes higher
electricity use for this low-income sample. Figure 2.1A illustrates estimates from a model
where the natural log of electricity usage is the outcome. The model controls for the current
bill period’s temperature as well as a set of additional control variables to address con-
founders. The model’s estimates should be interpreted as the impact of one additional day
at a given temperature, relative to a day at 75°F, in the current billing period on the current
billing period’s usage. Our model uses a cubic spline that allows the temperature-electricity
relationship to vary flexibly along the temperature distribution because the spline has mul-
tiple pieces (Smith, 1979). We preserve the variation in daily temperatures by calculating
the daily value of each spline piece before summing up to the billing period. By controlling
for zip code by calendar-week fixed effects and billing period date fixed effects, our key es-
timates are driven by unpredictable year-to-year variation in temperatures for a given zip
code and time of year. In addition, the model includes household fixed effects to address

time-invariant differences in household electricity consumption behaviors.

We find that our sample of low-income households increase energy use when there are
more hot days in a given billing period. For example, each additional 95°F day causes elec-
tricity use to increase by 1.2 percent that billing period, or about 8.26 kWh based on the
summer average of 688.64 kWh. These findings are consistent with previous studies which
find a U-shaped temperature-energy relationship in California’s general population (Aroon-
ruengsawat and Auffhammer, 2011) and the U.S. more broadly (Deschénes and Greenstone,
2011; Auffhammer et al., 2017; Barreca, 2012). Differences in cooling efficiency (e.g. window
vs. central air conditioning) could mask important disparities in household welfare due to
indoor thermal comfort. In a global analysis, one study finds that the relationship between
temperature and electricity is generally flat for low-to-middle income countries, and other
energy sources exhibit an L-shaped relationship with higher demand at colder temperatures
only (Rode et al., 2021). One study examines the effect of temperature on electricity con-
sumption in Mexico (Davis and Gertler, 2015), finding a similar pattern to the U.S. studies

including ours here. These studies illustrate that the relationship between temperature and
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energy use varies by different climates, housing characteristics, appliance penetration, and

local infrastructure.

Figure 2.1B estimates a similar model with bill amount in current dollars as the outcome.
Each additional 95°F day causes bill amounts to increase by $1.60 on a baseline average of
$101.64 during summer months, or about 1.6 percent. The relative increase in expenses is
slightly higher than the relative increase in energy consumption. This finding is likely due to
SCE’s tiered pricing plan, where rates increase when total consumption over a billing period

exceeds the baseline level for that area (California Public Utilities Commission, 2009).

Figure 2.1C uses a binned temperature model, as opposed to the spline, for log electricity
usage. These binned models are relatively popular because of their ease of interpretation
and certain flexibility in functional form (Dell et al., 2014). The findings are qualitatively
similar to the spline model. One additional day with temperatures between 90 and 100°F
causes electricity use to increase by 1.0 percent that billing period. One additional day above
100°F causes a 2.0 percent increase in electricity use. Figure 2.1D presents the binned model
for bill amount and produces similar estimates to the spline. Each day above 100°F causes

electricity expenses to increase by $2.92.
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Figure 2.1: Effect of Temperature During Current Billing Cycle on Electricity Usage and

Bill Amount
Panel A shows the change in the log electricity usage for each additional day at a given temperature relative
to 75°F in the current billing cycle with a spline temperature model. Panel B shows the change in the
bill amount (current $) for each additional day at a given temperature relative to 75°F in the current
billing cycle with a spline temperature model. Dashed lines are 95% confidence intervals centered on the
estimated coefficient. Panel C shows the change in the log electricity usage for each additional day at a given
temperature in the current billing cycle with a binned temperature model with days between 70 and 80°F
as the omitted category. Panel D shows the change in the bill amount (current $) for each additional day
at a given temperature in the current billing cycle with a binned temperature model with days between
70 and 80°F as the omitted category. Brackets are 95% confidence intervals centered on the estimated
coefficient. All models include billing start date, zip by calendar week, age of account, and individual
account fixed effects, as well as precipitation controls. Standard errors are clustered at the zipcode level.
Panels A and C include 13,311,787 observations, and B and D include 13,329,871 observations. There are
fewer observations in a and ¢ because we drop zeros and negative values for energy consumption when we
convert to logs. There are fewer observations in A and C because we drop zeros and negative values for
energy consumption when we convert to logs.

24



We next quantify the relationship between temperature in the current billing cycle and
subsequent disconnection probabilities. Figure 2.2A presents the estimates from several tem-
perature spline models where the outcomes are disconnection indicators at 25-day intervals
into the future from the close of the current billing period (1-25 days, 26-50 days, ..., 126-
150 days into future). We also estimate impacts of temperature on disconnection during
the current bill period. Across the different model outcomes, the largest relationship exists
between high temperatures in the current period and disconnections 51-75 days later. One
additional 95°F day causes an additional 3.0 disconnections per 100,000 bills. Given an av-
erage disconnection rate of 246 per 100,000, this effect size represents a 1.2 percent increase

in the relative risk of disconnection.

Figure 2.2A illustrates that colder temperatures appear to have little effect on discon-
nection risk, which could be explained by the facts that very few homes use electricity for
heating in our study area and there are relatively few cold days. Data from the 2019 Califor-
nia Residential Appliance Saturation Study suggests that only 13 percent of households in our
setting use electric central furnace space heating, and 4 percent use heat pumps(Energy In-
sights USA, 2020). In contrast, 68 percent of households in SCE territory have central air
conditioners, and 18 percent have room air conditioners, suggesting that electricity use for
cooling is higher than for heating (Energy Insights USA, 2020). Appendix Figures Al and
A2 illustrate each estimate separately with confidence intervals, including one placebo check
where we estimate the relationship between the current billing period’s temperature and
disconnections 1-25 days prior to the start of the billing period. There is no discernable
relationship observed in the placebo test, suggesting our model appropriately controls for

confounders tied to climatic differences by zip code.

Figure 2.2B illustrates the effect of a 95°F day across time periods, but with confidence
intervals. By construction, the effect size at 51-75 days is the same as the estimated effect at
95°F presented in Figure 2.2A. We do not observe any statistically meaningful effects outside
of the 51-75 day window indicating that hot weather causes an increase in cumulative risk

as opposed to simply shifting disconnections forward or backward in time.
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The large effect observed 51-75 days after the close of the billing period is consistent with
homes failing to pay the bill in which the hot weather occurred. In the case of non-payment
on a bill, SCE’s policy is to disconnect approximately 53 days from the date the bill is
presented (Southern California Edison, 2013a). In practice, customers can appeal the bill
amount, arrange for partial payment and/or enroll in balanced payment plans, which might
delay disconnections beyond the 53 days. Appendix Figure A3 presents an analysis where
we break out exposure into 10-day windows that supports our main findings by showing that

the effects are concentrated in the 51-60, 61-70, and 71-80 day windows.

Figure 2.2C also plots the estimated effects of temperature on disconnections 51-75 days
later for the spline model with confidence intervals. Figure 2.2D shows the estimates are
similar when we use a binned temperature model that captures the number of days in a
given temperature range during the current billing period. For example, one additional day
with max temperature between 90-100°F in the current billing period causes disconnection
risk to increase by 2.9 disconnections per 100,000 bills 51-75 days later. Each day above
100°F causes an additional 6.2 disconnections per 100,000 bills, equivalent to a 2.5 percent

increase on the mean risk in the full sample.

26



A) All Periods, Full Temperature Range B) All Periods, 95°F

Disconnection (x100,000) Disconnection (x100,000)

I R

60 70 80 90 100

Temperature 0\3‘&‘\\ \/’Zb 26,60 6\,‘1‘3 1%/\06 \Q\/\"L‘J ,\7,6’\%
‘ 51-75 days later ————- Other periods ‘ Days After Current Cycle
C) 51-75 Days Later (Spline) D) 51-75 Days Later (Binned)
Disconnection (x100,000) Disconnection (x100,000)

104

8

60 70 80 % 100 <60 6070 7080  80-90  90-100 100
Temperature Temperature

Figure 2.2: Effect of Temperature on Subsequent Disconnection Risk

Panel A shows the temperature response function from several different models, each quantifying the
relationship between temperatures in the current billing cycle on disconnections at various time periods in
the future. The disconnection time periods include 1-25, 26-50, 51-75, 76-100, 101-125, and 126-150 days
after the current billing cycle closes as well disconnections in the current billing period. We omit confidence
intervals for clarity. Panel B shows the change in disconnections due to one day at 95°F relative to 75°F for
different time periods. Brackets are 95% confidence intervals centered on the estimated coefficient. Panel
C shows the temperature-response function from a single model correlating temperature in the current
billing cycle with disconnections 51-75 days after the close of the billing cycle with a spline temperature
model. Dashed lines are 95% confidence intervals centered on the estimated coefficient. Panel D shows
he temperature-response function from a single model correlating temperature in the current billing cycle
with disconnections 51-75 days after the close of the billing cycle with a binned temperature model with
days between 70 and 80°F as the omitted category. Brackets are 95% confidence intervals centered on
the estimated coefficient.  All models include billing start date, zip by calendar week, age of account,
and individual account fixed effects, as well as precipitation controls. Standard errors are clustered at the
zipcode level. In Panel B, the models include (in order from current cycle to 126-150 days after current
cycle) 13,329,871, 13,237,428, 12,993,175, 12,758,335, 12,522,895, 12,393,882, and 12,170,748 observations.
For C and D the sample size is 12,758,335 billing-period observations.
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We can also put the magnitude of the effect into the context of our sample, using our
binned estimates for 90-100°F and >100°F days in Figure 2.2D for ease of exposition. The
average billing period experiences 3.85 days 90-100°F and 0.88 days above 100°F (see Ta-
ble 2.1). Based on our binned estimates for 90-100°F (2.880) and >100°F days (6.157),
hot weather accounts for an additional 0.00016506 disconnections in the average account-
cycle ((3.85%2.880 + 0.88%6.157)/100,000) or about 2,200 disconnections for our sample of
13,329,955 bills. Only 4.3 percent of accounts in our sample ever experienced a disconnection,
or 12,931 out of the 299,225 accounts. There were a total of 32,783 disconnections, with each
of these accounts experiencing 2.54 disconnections on average. As such, our estimates sug-
gest that hot weather, categorized as days above 90°F, explains 6.7 percent (2,200/32,783)

of all disconnections in our sample.

Appendix Figure A4 tests the sensitivity of our results to changes in our model. We drop
the household fixed effects in case these controls are oversaturing the model. We add one
lag and one lead of our temperature variables to account for potential serial correlation in
weather. We use daily mean temperature in place of daily maximum temperature to better
account for diurnal temperature swings. We drop billing cycles with unusual start and end
dates in case these observations are adding measurement error to the temperature variables.

In all tests, estimates are nearly identical to our preferred model.

2.3 Change in Disconnection Risk After Losing the CARE Sub-

sidy

Energy expenses are one potential channel underlying the relationship between temperature
and disconnection risk, though we cannot rule out other channels, like lost labor income
or added health costs. To further assess the relevance of the energy expense channel, we
consider whether disconnection risk changes after accounts disenroll from the CARE program
for plausibly idiosyncratic reasons. We exploit the fact that the utility company provides

existing CARE customers with a notice to recertify their eligibility after two years on the
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program, and customers have 45 days from the notice to recertify (Southern California
Edison, 2014a). This verification process leads to an acute drop in CARE enrollment after

the 26th bill, something we quantify in a regression discontinuity framework.

Before estimating the regression discontinuity Equation 2.3, we first illustrate the basic
changes in CARE enrollment, electricity use, expenses, and disconnection risk around the
26th bill. As illustrated in Figure 2.3A, there is a discontinuous drop in CARE enrollment
after the 26th bill. Figure 2.3B shows there is little observable change in energy consumption
after the 26th bill outside of the regular cyclicality. Figure 2.3C illustrates that energy
expenses also follow a similar seasonality to energy consumption. However, there is a jump
in energy expenses after the 26th bill due to the fact that electricity prices increased (from

losing the CARE subsidy) and consumption changed little.

Figure 2.3D illustrates the dramatic increase in disconnection risk as of the 28th bill.
There is little change in disconnection risk at the 27th cycle since the accounts have yet to
be presented with their first non-CARE bill. The increase in disconnections in the 28th bill
occurs before the 27th bill is even past due, suggesting that the increased expense might
expedite the disconnection process for those households already carrying an overdue balance
and on the margin of missing a payment. This contrasts with our temperature-disconnection
analysis (Figure 2.2) where we observe a 51-75 day delay, or about two to three billing periods

delay, from when the bill period closes to when households are disconnected.

Tables 2.2 (CARE enrollment and energy use) and 2.3 (bill amount and disconnection)
estimate the regression discontinuity Equation 2.3, which captures the shift in outcome after
the 26th billing period and controls for a rich set of fixed effects to address the seasonality
observed in Figure 2.3. For this regression discontinuity analysis, we restrict the sample
to the 12 bills before and after the 26th bill to avoid capturing longer-term changes in
household behavior that might confound our estimates. In our core model, we find that
CARE enrollment declines by 13.63 percentage points after the 26th cycle. Electricity usage
declines by only 0.3 percent. While energy use changes little, bill amounts are $2.33 higher
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Figure 2.3: Means in Outcomes Since Starting CARE, RD Sample
Panel A shows mean CARE enrollment by number of bills since first enrolled in CARE. Panel B shows
mean log electricity usage by number of bills since first enrolled in CARE. Panel C shows mean energy bill
(current $) by number of bills since first enrolled in CARE. Panel D shows mean disconnection (x100,000)
by number of bills since first enrolled in CARE. The vertical line is drawn at the 26th billing period. We
top code the billing periods at 50, since relatively few accounts exceed this amount of time in our sample
(Jan 2012-August 2017). We omit the first three periods on CARE to aid in the illustration.
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after the 26th period due to the increase in electricity prices. There are two possible, and
mutually inclusive, explanations as to the unresponsiveness of consumption to such a large
price change. First, energy consumption is a basic necessity for which households likely
exhibit limited price sensitivity in the short run, as suggested by existing studies (Reiss and
White, 2005; Burke and Abayasekara, 2018; Deryugina et al., 2020). Second, households
may have been relatively unaware of being dropped from the CARE program. This seems
plausible given a number of accounts re-enroll in CARE after billing period 28 as illustrated

in Figure 2.3A.

Disconnections increase by 72.4 per 100,000 bills after the 26th cycle, which is a much
larger effect compared to our temperature-disconnection findings. Above, we found that
each 95F day caused energy expenses to increase by $1.60 and the disconnection risk to
increase by 3.0 accounts per 100,000 bills 51-75 days later. One possible explanation is that
disconnection risk is increasing at an increasing rate in the size of the shock to expenses.
With hot weather, the measured increase in expenses may have been spread over more
households with varying levels of baseline financial distress. In the regression discontinuity
analysis, the increased expenses of $2.33 only impacted the 14 percent of households that
were disenrolled from CARE, suggesting an average increase of $16.64 for those households

losing the subsidy ($2.33/0.14).

Tables 2.2 and 2.3 also presents a series of robustness checks. We assess sensitivity to
choice of temporal bandwidth by shrinking the bandwidth to 9 billing periods (column 2)
and 6 billing periods (column 3) around the 26th billing period. We assess whether the
results are sensitive to dropping the 27th billing period, something that is more relevant for
the disconnection analysis given the non-CARE bills had not been presented yet (column
4). We restrict the analysis to accounts that never closed, to assess whether disenrolling
from CARE affected the sample population (column 5). We provide estimates without the
household fixed effects (column 6). And, weather controls are added to our core model in
one test (column 7). In nearly all cases, the qualitative conclusions are unchanged. When

we shrink the bandwidth to 6, the effect size for disconnections decreases, the standard error
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increases, and the estimate is no longer statistically significant. However, this is likely due to
the fact that smaller bandwidths put more weight on the 27th bill. The effect size is larger
for disconnections when we drop the 27th billing period. Appendix Figure A5 tests whether
households are more vulnerable to higher temperatures after the 26th bill, however the large

confidence intervals around the estimates preclude learning meaningful lessons.
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2.4 Change in Disconnections Using 2080-2099 Weather Projec-

tions

We provide a back-of-the-envelope calculation of possible changes in electricity usage and
disconnection risk that would occur if today’s weather resembled projected weather for the
2080-2099 period. We use RCP scenario 8.5 output from 22 climate models from Climate
Model Intercomparison Project phase 5 (CMIP5) (Taylor et al., 2012) and calculate the
within-model changes in the distribution of daily temperatures for our sample area from a
base period of 2000-2019. We preserve the daily variation in temperature by calculating the

spline values at the daily level before aggregating to the monthly and annual level.

These calculations cannot be used to definitively project the effects of climate change for
several reasons. Household energy appliance penetration rates, energy efficiency, incomes,
and relative prices of essential goods and services might change. The climate change models
themselves include uncertainty. Some households might adjust their behavior due to new
expectations regarding the frequency of hot weather, potentially saving more for summer
months or improving insulation in their homes. Households could become more vulnerable
in the future with greater climatic variability or compounding hazards (e.g. wildfires co-
inciding with heat waves). Nonetheless, these calculations provide a stylized illustration of
the potential financial strain on low-income households caused by weather-related changes

holding all else constant.

Figure 2.4A shows the annual changes in log electricity usage for every CMIP5 model
(gray lines) and the average across all models for each year (black line). On the average,
we project a 9.1 percent increase in electricity usage between the 2000-2019 and 2080-2099
time periods. We project an increase in disconnections of 30.25 per 100,000 on average each
billing cycle (2.4B). This represents a 12 percent increase for our low-income population
by 2080-2099 relative to our sample average (30.25/246). Given there are approximately
1.2 million accounts on CARE in SCE territory (Southern California Edison, 2017d), this

translates into 363 more disconnections each month or 4,356 more disconnections each year
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in this population alone.

The year-to-year variation within each model (gray lines in Figure 2.4A) highlights the
importance of considering peak demand when assessing the impact of climate change on
energy systems. This finding complements existing analyses that show that energy sup-
ply might be constrained during heat waves, at the same time that energy demand peaks
(Auffhammer et al., 2017; Sathaye et al., 2013; Burillo et al., 2017; Ke et al., 2016; Brockway
and Dunn, 2020). However, our study focuses on a low-income population whereas existing

studies focus on the general population.

These annualized projections mask important seasonality in usage and disconnections.
Figure 2.4B projects changes for each calendar month assuming that billing periods cor-
respond to the calendar month and the disconnections occur three calendar months later
(as opposed to 51-75 days later). For this figure, we take the difference in the projections
between the 2000-2019 and 2080-2099 periods for each model. We see that usage increases
by about 20 percent on average during the summer on average across the 22 models. Dis-
connections increase by over 45 per 100,000 in the late summer and early fall on average, or

an 18 percent increase over the baseline risk.
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Figure 2.4: Climate Change Projections by Month and Year

Panel A shows the projected change in log electricity usage by year compared to 2000-2019. Panel B shows
the projected change in disconnections (x100,000) by year compared to 2000-2019. Panel C shows the
projected change in log electricity usage for each month in 2080-2099 compared to 2000-2019. Panel D
shows the projected change in disconnections (x100,000) for each month in 2080-2099 compared to 2000-
2019. The data from these projections comes from 22 CMIP5 models (RCP 8.5), restricted to the two
CMIP model grid points in Southern California Edison’s service area. The changes in daily temperatures
are calculated using each model’s own output for the 2000-2019 period as the baseline. We then multiply
the change in daily temperatures by the estimates in Figures 2.1 and 2.2. The solid black line is the average

across all models and years and the gray lines represent the average for each model.
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2.5 Discussion

The results from this study show that hot weather causes financial strain on low income
households, as evidenced by an increase in electricity expenses and subsequent electric-
ity disconnections. The theoretical link between temperature and disconnections operates
through multiple channels, though we focus our attention on electricity expenses. Financial
strain may also be exacerbated by reduced labor income or added morbidity risk due to hot
weather (Barreca et al., 2016; Graff Zivin and Neidell, 2014). We present additional evi-
dence to support the expense channel. We show that households experience higher expenses
and far more disconnections due to abruptly losing the CARE subsidy after an automatic

eligibility verification at two years on the CARE program.

With regards to climate change, the projected increase in summer temperatures at the
end of the century could increase electricity expenses and disconnection risk for our low-
income population. Our back-of-the-envelope calculation suggests a 12 percent increase in
disconnections if today’s weather resembled the projected weather for 2080-2099, though this
calculation should be interpreted with caution since we do not account for future changes in
energy efficiency, among other things. In addition to an expected increase in summer tem-
perature, summer variability from year-to-year might also impact low income households to
the extent that financial distress is increasing in the size of the shock to expenses. Analyzing
interannual variability in summer temperature projections, as done in one recent study,55
represents an area where advances in climate science would help assess the financial stressors
of climate change. Year-to-year variability is also important due to issues related to peak
energy demand (Auffhammer et al., 2017; Sathaye et al., 2013; Burillo et al., 2017; Ke et al.,
2016; Brockway and Dunn, 2020).

Our findings are consistent with emerging evidence that some sub-populations may be
adversely affected by hot weather in ways that are masked in more aggregated analyses
(Park et al., 2020; Kim et al., 2021; Heilmann et al., 2021). This appears to be true even

in highly developed economies such as the U.S. We find that currently routine heat events
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cause significant financial distress for poorer households that manifests in electricity discon-
nections. The immediate costs of these disconnections include significant material hardship,
one potential reason why disconnection durations themselves are generally short (Harrison
and Popke, 2013; Herndndez, 2016; Heflin et al., 2011; Southern California Edison, 2014a).
The experience of electricity disconnection itself, even if brief, may have lasting psychological
costs (Harrison and Popke, 2013; Hernandez, 2016). The heightened salience of disconnec-
tion risk may lead low-income households to reduce their energy consumption during hot

weather events in the future, which could lead to higher morbidity risk.

There are two broad categories of policy response that could be employed to reduce energy
burdens related to extreme heat events. One policy response may be to reduce the price of
energy, including subsidies like California’s CARE program. A concern with such subsidies
is that they might lead to more energy consumption, which could hinder efforts to curb
aggregate greenhouse gas emissions. While theoretically possible, existing research suggests
that energy consumption responds little to price changes in the general population (Reiss and
White, 2005; Burke and Abayasekara, 2018; Deryugina et al., 2020; Labandeira et al., 2017,
Zhu et al., 2018), and could be even less so for the low-income population. Time-of-use rates
could be used to reduce financial distress while also encouraging intraday demand shifting
to when solar power is more plentiful (Dutta and Mitra, 2017). Another policy response
is to incentivize the adoption of energy efficiency technologies or better insulation, such as
intended with California’s 1977 Title 24 building codes (Novan et al., 2022; Chuang et al.,
2022; Kotchen, 2017). This may be especially relevant in Los Angeles County where people
tend to live in older homes that are less energy efficient (Fournier et al., 2019). Principal-
agent problems due to high rates of rentership in low-income populations may call for a more

nuanced policy response that targets landlords (Myers, 2020; Energy Insights USA, 2020).

Policymakers may have dual goals of improved indoor thermal comfort and reduced finan-
cial burdens, which could require multifaceted policies. Technological solutions that improve
cooling efficiency or provide access to air conditioning could improve thermal comfort but

the impact on energy expenses is unclear since households might use the cooling technology
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considerably more (Greening et al., 2000). Energy subsidies, though they could reduce ex-
penses, might do little to improve thermal comfort to the extent that low-income households
possess inferior cooling technology or lack access to air conditioning altogether (Chen et al.,

2019).

2.6 Methods

Electricity Data

The electricity data come from Southern California Edison (SCE), which serves approxi-
mately 15 million people in Southern California, including much of the greater Los Angeles
area. SCE provided a sample of accounts from 300 zip codes with the most low-income
households in absolute numbers. Appendix Figure A6 illustrates the map of the sample zip
codes. This is a climatically diverse area which helps with statistical power when control-
ling for time trends. The California Energy Commission defines 16 Climate Zones across
California based on temperature, weather, and energy use patterns (California Energy Com-
mission, 2022). The zip codes in our sample cover eight of these 16 zones, highlighting the
large degree of spatial variation in temperature across SCE territory which spans coastal,
inland, and desert climates. Appendix Figure A7 illustrates the daily max temperature for
four different zip codes in our sample area for only August of 2015. For example, the average
temperature in the city of Palm Springs (located inland in the desert) is over 20 degrees

higher than in the city of Santa Monica (located on the coast).

SCE provided us with a random sample of households that enrolled in the California
Alternate Rates for Energy (CARE) or the Family Electric Rate Assistance (FERA) subsidy
programs between 2012 and 2018. The sampling procedure was restricted to those accounts
who were present for one year to increase the sample size. The original sample included up
to 1,000 accounts per zip code for the 2012-2018 time period for a total of 299,799 accounts.

Though we sampled accounts present for one year, we dropped 574 accounts with fewer than
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12 bills (due to irregular billing period lengths) to help facilitate the use of account fixed
effects in our core empirical model. Our final sample includes 299,225 accounts. SCE was
unable to provide disconnection data after August of 2017, so we also dropped bills that

started after that point.

We have information on the electricity usage in kilowatt-hours (kWh) and expense
amount in current dollars for each billing period. The data have specific disconnection
dates for each account. We also have information on which billing periods the accounts
were enrolled in CARE or FERA, though CARE is by far more common. Accounts in our
low-income sample are on FERA for fewer than 1 percent of all bills (Table 2.1). We observe
the zip code of residence and billing period start and end dates, which we use to match to

daily weather data.

Sampling on CARE accounts is a good approach to identifying low-income households.
Unlike other social insurance programs, the CARE program has an excellent takeup rate
among the target population (Currie, 2006). In 2017, an estimated 84 percent of eligible
households enrolled in CARE (Southern California Edison, 2017d). The household income
cutoff for CARE is set at 200 percent of the poverty line. For example, a four-person house-
hold with two children earning $49,200 or less (in 2017) would qualify for CARE (South-
ern California Edison, 2017a). Households who earn one dollar over the cutoff would no
longer qualify for CARE, but they would qualify for the FERA program with incomes up
to 250 percent of the poverty line (Southern California Edison, 2017a). The CARE subsidy
is generally close to 30 percent every year of our sample, though the exact amount varies
depending on the consumption tier, e.g. baseline vs. 101-400 percent of baseline, which is
itself a function of the Climate Zone (Southern California Edison, 2012b,a, 2013c,b, 2014c,b,
2015b,a, 2016b,a, 2017b,a). The FERA subsidy was either much smaller during our sam-
ple period, i.e. 12 percent in years 2015-2017, or only covered certain tiers of consumption
(Southern California Edison, 2012¢, 2013d, 2014d, 2015¢, 2016¢, 2017¢). Accounts in our
sample were much more likely to be on CARE than FERA. The accounts in our sample were

on CARE for 74 percent of bills, but only on FERA for 1 percent of bills (see Table 2.1).
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SCE attempts to keep billing periods to approximately one month, though the length
varies because meters are not typically read on the weekends. The billing periods last between
27 and 34 days in 98.7 percent of bills. In rare cases where the bill dates start on a weekend
or holiday, we reassign the start date to the previous Friday or non-holiday weekday if Friday
is a holiday (e.g. Thanksgiving), which affects 1.1 percent of bills. Most accounts with the
same billing start date have the same end date. In order to mitigate potential confounders
tied to unusual bill lengths, we assign approximately 2.6 percent of bills with unusual lengths

to the modal bill length for a given billing start date.

We drop the first 3 bills after an account opens since SCE’s disconnection policy effectively
precludes disconnection so early on. SCE’s policy is to disconnect no sooner than 53 days
from the date the bill is presented (Southern California Edison, 2013a). We do not have
data on reconnection dates, but households that are disconnected are usually reconnected
very quickly. According to an SCE report on August 2018 disconnections, 85 percent of
all customers disconnected were reconnected within 24 hours (Southern California Edison,

2018).

Weather Data

We use PRISM data that covers SCE’s service area (as well as the rest of the contiguous U.S.)
with a 4x4 kilometer grid of model-predicted daily weather conditions. The key variables
include maximum temperature and precipitation. We assign a PRISM point to a zip code if
the point falls within the zip code boundaries. The average area of zip codes in our sample is
95.9 square kilometers, though half the zip codes are less than 22.5 square kilometers. There
are 62 zip codes that do not contain a PRISM point, so we assign the nearest PRISM point
to the zip code’s centroid. The PRISM data are better than weather station observations
for this analysis because of the excellent spatial coverage, which has been shown to closely
mirror weather station observations when there are overlap between PRISM points and

stations (Walton and Hall, 2018; Auffhammer et al., 2013). Our empirical model includes
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date fixed effects, causing the estimates to be powered by differences in temperature across
coverage points on the same day. There are over 1,600 PRISM points for the 300 zip codes
in our sample area. Even drawing from weather stations in and around SCE’s service area,

there are only some 60 official weather stations.

We aggregate the days’ temperature over the duration of the billing period for a given
zip code. We use a nonlinear spline function of the day’s maximum temperature in our core
empirical model, though we also show results using binned categorical temperatures (e.g.
days with maximum temperatures above 100°F). We calculate the nonlinear daily function
value of the spline (or bin) at the PRISM point prior to aggregating to the zip-billing period
level to preserve the daily variation in temperature. For a given billing period, we assign the
weather from the bill start date to the day before the bill’'s end date, which is necessary to

avoid double counting on the days billing periods change.

Contemporaneous impact of temperature on electricity use

Our empirical model relies on unpredictable weather variation for a given zip code and time
of year consistent with the emerging climate-economics literature (Dell et al., 2014). Before
assessing impacts on disconnection, we first estimate the following empirical model with

electricity use and bill amount as outcomes:

Yhzt - ﬁf(TMAth> + Xhzt + Wh + Qzy + Pt + €pat (21)

where Y is either the natural log of electricity use (kWh) or the bill amount in current
dollars for household h in zip code z for the billing period starting on year-month-day t.
f(TMAX) is a cubic spline function in the daily temperatures in zip code z and billing
period with start date t. The cubic spline has separate pieces determined by knots at
40, 60, 80, and 100°F (Smith, 1979). We construct the value of each piece at the daily
level before summing up to the billing cycle to ensure our estimates capture daily variation

in temperatures. In our analysis, we set 75°F as the reference category. Specifically, we
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calculate the difference between a given temperature and 75°F for each piece of the spline
and then multiply that difference by the piece’s parameter value. Because there are multiple
pieces, this spline model is more flexible than the popular Cooling Degree Days approach,
which imposes a linear relationship between temperature and electricity consumption above
a given baseline temperature and a null relationship below that baseline. We favor the spline
model as a means to improve statistical power compared to the binned model that is popular
in the weather-economics literature (Dell et al., 2014), though we estimate the latter as a

robustness check.

X controls for account age fixed effects in billing periods with a topcode of 24 periods
(4, 5, 6, ..., 24, >24 periods). As mentioned in the Data section, we drop the first three bills
for each account. X also controls for rainfall (days with 0.01-0.50 inches of rain and over 0.5
inches of rain, respectively), though rainfall is relatively infrequent in this area (Table 2.1).
Rainfall is included as a control to account for the possibility that people’s behaviors change

on rainy days in ways that might be tied to electricity consumption.

We have household fixed effects (w) to account for households entering and exiting our
sample in ways that might be tied to the households’ electricity consumption. Zip-code-
by-calendar-week fixed effects () mitigate potential confounding effects from differences
across zip codes, like climate type and housing characteristics, that might be spuriously
correlated with electricity consumption patterns. Zip-code-by-calendar-week fixed effects
also address seasonal changes in energy consumption that might be spuriously correlated
with other behavioral factors or baseline characteristics. For example, zip codes with a larger
proportion of school-age children at home during summer vacation may exhibit different
seasonality. These fixed effects, which are common in the climate-economics literature, are
each unique indicator variables that absorb any potential confounder, whether measurable
or unmeasurable, that is fixed or constant at the given dimensions (Dell et al., 2014). We
assign the first seven days of the year to week 1, the next seven to week 2, and so on up
until week 52; any remaining days are included in week 52. We control for bill start date

fixed effects (p) to help improve precision and avoid spurious time-series correlation between
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energy outcomes and temperature. Standard errors are clustered at the zip code level to

account for serial correlation within zip codes.

Impulse response function: Impact on disconnections

To assess impacts on disconnection risk, we rely on an impulse response function that traces

out disconnection risk over time after the billing period is over (Jorda, 2005). We estimate:

Yhzt = 6pf(TMAXZt) + Xi];zt + wi + agw + pgf? + elf)thﬂ (2 2)

where p=10,1,2,...,6

where Y is an indicator variable (equal to 0 or 1) if household h was disconnected in time
period t+p, which is p periods after the close of the billing period t. The model controls
are identical to (1), with temperature representing exposure during the billing period t. The
disconnection outcome periods (p) are broken out into 25-day period intervals after the close
of the current billing period up to 150 days later, i.e. days 1-25, 26-50, 51-75, ..., 126-150
days after the billing period t has ended. Appendix Figure A3 estimates an impulse response

function using a 10-day window as a robustness check.

We expect the effects to be largest 51-75 days later since SCE’s policy is to disconnect
approximately 53 days from the date the bill is presented (Southern California Edison,
2013a). In practice, customers can appeal the bill amount, arrange for partial payment or
enroll in balanced payment plans, which might delay disconnections beyond the 53 days.
To the extent that high energy bills expedite disconnections for households already carrying

large overdue balances, we might see impacts sooner than 50 days.

Equation 2.2 is similar to a linear projection model, which is a popular approach for
estimating effects of a shock over time (Jorda, 2005). However, we do not control for lagged
weather in our core model in the interest of improving power (Choi and Chudik, 2019). We

test the robustness of this modeling approach by controlling for one previous and one future
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billing periods’ weather in a robustness check (Appendix Figure A4).

We estimate the contemporaneous impacts of temperature on disconnection risk in the
current billing cycle as well. SCE’s policy is to not disconnect homes when the day’s tem-
perature is above 100F (Southern California Edison, 2020). As a result, hot weather could
simply decrease disconnections in the current period and displace them into subsequent pe-
riods. We also estimate a placebo test to verify that temperatures in the current billing

period are unrelated to disconnections 1-25 days prior to the temperature realization.

Regression discontinuity model: Disenrollment from CARE after 26 bill periods

With Equation 2.2, we cannot isolate whether temperature influences disconnection risk
through energy expenses or some other channel, like lost labor income. To isolate the effects
of energy expense, we exploit a feature of the CARE program. The utility company provides
existing CARE customers with a notice to recertify their eligibility after two years on the
program, and customers have 45 days from the notice to recertify (Southern California Edi-
son, 2014a). This verification process leads to an acute drop in CARE enrollment probability
after the 26th bill, which is unlikely to coincide with a drop in income that might indepen-
dently increase disconnection risk. If anything, we might expect households to increase their
labor hours to offset the increase in prices, which would understate the importance of the

energy expense channel.

To quantify how the change in CARE status might affect disconnection risk, we estimate

a regression discontinuity design of the following form:

Yha = WBILLp,y + ABILLy,(BILLp,; > 26) + 0(BILL,; > 26) 23
2.3

p p p
+wy, +af, 4+ p; + €,

where BILL is the running variable measuring the number of periods from the current

billing periods to the 26th billing period. (BILLj,; > 26) is an indicator for whether the
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current billing period is greater than 26, when the chance of CARE disenrollment goes
up. Similar to Equation 2.1, we include zip-calender-week, billing date, and household fixed
effects. We do not control for account age fixed effects in Equation 2.3, however, since account
age is strongly correlated with billing periods on CARE. Equation 2.3 does not control for
weather, though we add temperature as a control in a robustness check. Appendix Figure

A5 takes this a step further and interacts temperature with the (BILLyp.; > 26) dummy.

We focus on four main outcomes (Y') for this analysis, all measured in the cycle ¢ for
household h. First, we estimate Equation 2.3 on the probability of CARE enrollment to
validate the assumption that CARE enrollment drops discontinuously after the 26th billing
period. Second, we estimate Equation 2.3 on log electricity usage to explore whether house-
holds might reduce energy consumption in a way that would dampen disconnection risk.
Third, we quantify impacts on energy expense in order to assess the magnitude of the added
expense. Finally, we estimate effects on disconnection probability. We focus on contempo-
raneous disconnection risk for ease of interpretation, though we do not expect disconnection
risk to increase immediately after the 26th cycle due to the delay between usage and invoic-
ing. Unlike with Equation 2.2, the regression discontinuity approach is not ideally suited for

estimating an impulse response function since there is only one break in time.

For this analysis, we restrict the sample to the 15th through 38th bill after CARE enroll-
ment, or a bandwidth of 12 bills around the 26th bill. We drop accounts that are enrolled
in CARE as of January 2012, the first month in our sample, since we cannot determine
their CARE enrollment date. These sampling restrictions leave us with 130,076 accounts
and 2,106,662 bills. The regressions naturally drop a small number of observations due to

multicollinearity, depending on the controls included in the model.

Figure A5 tests whether households are more vulnerable to higher temperatures after the
26th bill. We present the main effect of temperature as well as the modified effects after
the 26th bill on the probability of disconnection 51-75 days into the future. The hypothesis

is that temperature shocks after the 26th bill are more expensive, and therefore, should
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increase disconnection risk further. The estimates are inconclusive due to large confidence
intervals. The main effect of temperature is similar to our core estimates in Figure 2.2C,
though the standard errors are larger. There is no differential effect of temperature after the
26th bill, however these estimates have large confidence intervals. Future work should test

this hypothesis over a longer time period and broader geography for more statistical power.
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The Effects of Hot Weather on Rural Indian Diets!

3.1 Introduction

Rural households in developing countries, like India, are vulnerable to extreme heat due to
their reliance on home-grown foods for both sustenance and income (Taraz, 2018). Existing
research documents that temperatures above 85°F are particularly harmful to crop yields in
India (Garg et al., 2020b). Crop losses could impact household welfare across several dimen-
sions, though household nutrition is a primary outcome of interest given the downstream
costs. Poor nutrition can have an impact on long-term health (Sharma et al., 2020b), hu-
man capital accumulation (Georgieff, 2020), psychological well being (Pailler and Tsaneva,
2018), and labor productivity (Thomas et al., 2006). Crop losses are likely to harm house-
hold nutrition, which is determined by both the quantity of calories as well as the nutrient
and mineral composition of these calories. However, directly measuring the impacts of tem-
perature extremes on household nutrition is an important endeavor because the magnitude
of the effect could be mitigated by adaptation. Households could decrease the amount of
calories they eat or consume cheaper, less nutritious calories. Households might also spend
down savings or decrease non-food purchases to avoid cutting food expenditures. In order
to add insights into the magnitude of these adaptation strategies, we use survey responses
from over 300,000 households in rural India to estimate the impact of extreme heat on food

consumption choices and diet quality.

IThis chapter is coauthored with Professors Manisha Shah and Alan Barreca. The coauthored paper does
not include climate projections, which I conducted alone.
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We measure food consumption using India’s National Sample Survey (NSS), a nationally
representative repeated cross-section of Indian households, from 2003 to 2012 (the last year
that includes detailed food consumption). The NSS includes questions on the consumption of
roughly 150 food items, which we convert into household-level calorie and iron consumption.
We use calories because they feature, along with macronutrients, as the traditional measure
of nutrition in past studies, which also use the NSS (Carpena, 2019; Deaton and Dréze, 2009).
We use iron because iron deficiency is endemic to rural India. India’s National Family Health
Survey 4 (NFHS-4), run in 2015 and 2016, found that 59 percent of children below 5, 58
percent of breastfeeding women, and 53 percent of all women were anemic, caused in part
by iron deficiency (IIPS and ICF, 2017).% Iron is particularly important during pregnancy,
as pregnant women need more iron than usual, in part because some of it is diverted to
their fetus. Iron deficiency during pregnancy is linked with increased maternal mortality,
preterm births, low birthweight, and decreased human capital accumulation in children.? In
adults, anemia lowers energy levels, labor productivity, and mental health (Marcus et al.,

2021; Thomas et al., 2006).

We estimate the impact of temperature during the growing season on food consumption
in the subsequent year, which would presumably be when households either consume or sell
their production. Also, by focusing on nutritional outcomes in the subsequent year, our
estimates abstract from heat’s impact via more contemporaneous channels such as labor
productivity. Our treatment variable is the frequency of days in a given temperature bin,
e.g., days between 90 and 100°F, for the growing season (June-December). The unit of
observation for this variable is the district and year. To address potential confounders, our

key control variables include district and year fixed effects. The core estimates are identified

2 Anemia, when a person lacks healthy red blood cells for the transport of oxygen, is a common clinical
proxy measure for iron deficiency. Anemia has multiple causes, including iron deficiency, genetic factors,
gastrointestinal diseases such as hookworm, postpartum hemorrhage, and folate or B12 deficiencies. This
multitude of factors, and their frequent overlap, makes it difficult to assess exactly how much anemia is
caused by iron deficiency (Chaparro and Suchdev, 2019).

3Breastmilk is low in iron, so newborn infants rely on iron stored during the fetal stage for the proper
development of organs, including the brain (Georgieff, 2020).
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by unpredictable temperature swings across growing seasons for a given district. We also
control for rainfall shocks, which can have a meaningful effect on crop yields and food
consumption (Carpena, 2019). Our preferred specification includes state specific time trends
to control for correlated differences in warming and nutrition over time between states. We

show that the results are robust to including district specific time trends as well.

There are two important findings from our research. First, although extreme heat de-
creases crop yields, we find no statistically significant impact of extreme heat on total house-
hold caloric or iron consumption, and we can rule out large effect sizes. However, we find
important distributional impacts, with an increase in the number of households that qual-
ify as extremely malnourished, in terms of both calories and iron. For example, one day
above 110°F increases the fraction of households consuming less than 80 percent of the rec-
ommended caloric intake by 0.36 percentage points, an increase equivalent to 3.1 million
people. On average, households in our sample experienced 0.6 days above 110°F per growing

season, with 10 percent of households experiencing over 2 such days.

Second, we find suggestive evidence that households respond to crop losses by purchas-
ing more food, though these purchased foods may be relatively low in iron. We estimate
our model separately for home-grown calories, purchased calories, home-grown iron, and
purchased iron. We find that heat during the growing season causes home-grown calorie
consumption to decline but leads to a commensurate increase in purchased calories, ex-
plaining why we find no impact of heat on total calories. However, we find that iron from
purchased foods does not increase alongside calories. This finding implies that households
respond to heat shocks by sacrificing the quality of their diet to maintain the quantity of

calories consumed.

This paper makes three main contributions. First, we add to a growing literature on
heat’s impact on food consumption by considering adaptations. Heat’s impacts on yields
are well documented (Taraz, 2018), but the crop losses are difficult to translate into societal

welfare losses without understanding how households respond. We consider the impacts
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of weather shocks on home-grown and purchased foods separately, something that is largely
absent from the literature but important in rural contexts (Jayasinghe et al., 2017). We show
that households purchase more foods in response to heat shocks. In doing so, households
may be cutting into savings or sacrificing non-food purchases or investments (e.g. human
capital).

Second, we capture important distributional effects. Past papers on nutrition tend to
focus on aggregate measures, such as total calorie consumption or diet composition (e.g.,
percentage of calories from fruits vs. grains). By using low-consumption thresholds (e.g.,
consumption below 80 percent of recommended levels of calories), we capture important

distributional impacts that aggregate measures miss.

Third, we make methodological contributions to measuring diet quality. Our work em-
phasizes the need to include micronutrients and minerals when estimating climate change’s
impact on diet quality. Although it is particularly important in rural India, iron rarely fea-
tures in past economics studies on diet quality in the area (Carpena, 2019; Deaton and Dreze,
2009). The NSS provides tables to convert food quantities into calories and macronutrients
such as protein and fat. In this project, we use the raw nutritional data that the NSS tables
reference, allowing us to directly measure iron consumption (Gopalan et al., 1989). We add
to previous work that shows that calorie consumption and diet composition are affected by
droughts in Mexico (Hou, 2010) and India (Carpena, 2019) and rainfall and temperature
shocks in Nigeria (Dillon et al., 2015) and Tanzania (Randell et al., 2022).

3.2 Data

National Sample Survey (NSS)

The National Sample Survey (NSS) is a nationally representative repeated cross-section of
Indian households. We use Schedule 1 of the NSS, which includes detailed household-level

consumption data. Our dataset consists of 8 rounds of the data (rounds 59-64, 66, and 68),
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spanning 2003 to 2012 (National Sample Survey Office, 2012).* Each household response
details the consumption records of roughly 150 food items, separated into home-grown and
purchased foods, over the previous 30 days. It also includes the number of meals that 1)
household members eat outside of the home and that 2) non-household members eat in the
home. Following past work, we use these numbers to adjust our food consumption figures
(NSS, 2014). Note that the survey does not measure exactly how much food was eaten, as
some could be lost during the cooking process or wasted after preparation. It also does not
indicate who, within the household, consumed specific foods. These consumption measures
therefore indicate household-level food availability for intake, rather than intake itself. The
survey also includes all household members’ basic demographic information. The dataset
includes 314,425 households, with a total of 1,599,551 people, across 575 district-areas that

we construct to be geographically consistent over the entire time frame.

Nutritional Outcomes

In order to generate the main outcomes of interest, we translate the detailed food con-
sumption data from the NSS into household-level caloric and iron consumption. We obtain
each food item’s caloric value from nutritional value tables provided by the NSS. The NSS-
provided tables do not include the iron content of foods, resulting in iron being excluded
from previous analyses (Deaton and Dreze, 2009; Carpena, 2019). These NSS-provided ta-
bles, however, are based on a dataset from Nutritive Value of Indian Foods (Gopalan et al.,
1989), which does include iron. We use tables from this original source to create two vari-
ables: daily per capita calories consumption and daily per capita iron consumption. These

variables are both right-skewed and roughly log normal, so we take their log.

We generate four additional dependent variables to estimate the distributional impacts
of extreme heat on food consumption. We match the NSS data with individual-level di-

etary requirements from Nutrient Requirements and Recommended Dietary Allowances For

4Rounds 65 and 67 do not include household food consumption questions.
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Indians, and then aggregate requirements to the household-level (ICMR, 2010). We calcu-
late calories and iron adequacy percentages by dividing each household’s consumption by its
recommended intake levels. Using these percentages, we create dummy variables indicating
whether household-level caloric or iron consumption is below 100 percent or 80 percent of
the recommended levels. In addition, we create analogous dummy variables for thresholds

ranging from 50 percent to 150 percent.

We use these threshold dummy variables to assess how extreme heat affects households
at different points in the nutrient adequacy distribution. In our preferred definition, we label

”

a household below the 100 percent threshold as experiencing “undernourishment,” and one
below the 80 percent threshold as experiencing “extreme undernourishment.” Our results
are robust to defining extreme undernourishment with thresholds between 50 and 80 percent
adequacy. An increase in the percentage of households below the 100 percent threshold
indicates households being pushed from adequate dietary availability to undernourishment,
and an increase in the percentage of households below the 80 percent threshold indicates
households being pushed from undernourishment to extreme undernourishment. Because
each household only answers the survey once, after treatment, we are unable to investigate
distributional effects by separating households into groups by baseline food consumption

levels. In addition, as we only have household-level food consumption we are unable to tell

exactly who, within the household, is consuming sub-adequate levels of calories or iron.

Table 3.1 shows average levels of nutrient consumption across the households in the
sample (for the full distribution of nutrient consumption, see Appendix Figure B2). The
average per capita daily caloric consumption is around 2150 kCal/person-day, roughly the
recommended amount of caloric intake, and the average calorie adequacy percentage is 103
percent. Fifty-one point five percent of households consume below 100 percent the recom-
mended amount of calories, and 20.6 percent of households consume less than 80 percent of
the recommended level of calories. Iron consumption, with an average of 16 mg/person-day,
is often lower than needed. The average iron adequacy percentage is 86.9 percent. Sixty-

seven point nine percent of households consume less than 100 percent of their recommended
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level of iron, and 50.4 percent of households consume less than 80 percent of it. These statis-
tics illustrate two main points. First, focusing on average levels of food consumption masks
significant heterogeneity in diet quantity and quality across households. Second, focusing

only on calories would lead one to miss how low iron consumption is in rural India.

The NSS separates foods into home-grown and purchased items. We use this distinction
to construct four more dependent variables: iron and calories from home-grown foods versus
from purchased foods. Around 65 percent of households consume some amount of home-
grown foods, and about 27 percent of iron (4.39 mg/person-day) and 28 percent of calories

(603 kCal/person-day) come from home-grown foods.

Weather Data

We use weather data from the ERAS5 reanalysis model (Copernicus Climate Change Service,
2012), which includes hourly temperature and precipitation across a 31km by 31km grid
covering the entire globe (Hersbach et al., 2020). For each day and gridpoint, we calculate the
maximum temperature and total precipitation. Following Garg et al. (2020b), we separate
weather into growing season (June to December) and non-growing season (March to May).
We assign temperature to each district-year-season as follows. For each gridpoint-year-
season, we count the number of days within distinct 10 degree temperature bins ranging
from below 70°F to above 110°F. We then average these temperature bins across all the
gridpoints within each district. For the 18 small districts that do not contain any ERAS
gridpoints, we assign them the nearest ERA5 grid-point to their respective centroid. Table
3.1 summarizes the average number of growing season days within each temperature range
and the rainfall shock variable. It shows that, on average, India is hot: households in our
sample experience an average of 109 days between 80 and 90°F, 51 days between 90 and
100°F, 8 days between 100 and 110°F, and 0.6 days above 110°F during the seven month
growing season. Figure 3.1 (full year) and Appendix Figure B1A (growing season) map the

number of days per year with maximum temperature above 100°F for each district. They
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highlight the vast climatic diversity across India: the number of days per year with maximum
temperature above 100°F ranges from 0 to above 140. About 25 percent of households in our
sample reside in districts with no growing season days above 100°F over our study period.
We also construct a “rainfall shock” control variable, which we describe in the Appendix, as

is done in Shah and Millett Steinberg (2017).
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Table 3.1: Summary Statistics: NSS and ERAS

Mean SD

Daily calories (kCal/capita) 2,149 571.34
Calories adequacy percentage (CAP) 103.20 30.06
CAP <100% (dummy) 51.51 49.98
CAP <80% (dummy) 20.64 40.48
Daily iron (mg/cap) 16.00 7.07
Iron adequacy percentage (IAP) 86.91 40.56
IAP <100% (dummy) 67.00  46.69
AP <80% (dummy) 50.36 50.00

Daily calories from home (kCal/capita) 602.70 751.58
Daily calorie purchases (kCal/capita) 1,538.69  759.10

Daily iron from home (mg/capita) 4.39 6.49
Daily iron purchases (mg/capita) 11.53 6.95
Growing season days >110°F 0.59 1.71
Growing season days 100-110°F 7.65 11.00
Growing season days 90-100°F 50.61 34.23
Growing season days 80-90°F 109.26 44.01
Growing season days 70-80°F 33.23 26.98
Growing season days <70°F 12.66 35.26
Growing season rainfall (m) 1.24 0.65
Growing season rainfall shock 0.11 0.65
Number of Districts 575

Number of Observations 314,425

This table shows means and standard deviations of our outcome vari-
ables from 2003 to 2012 and weather variables from 2002 to 2011 (be-
cause we focus on the impacts of the previous year’s weather). Diet
quality variables are from the NSS and are winsorized within a sur-
vey round at the 1st and 99th percentiles. The adequacy percent-
ages represent the percentage of recommended calories or iron that a
household consumes. Weather variables are from ERAB, and this ta-
ble only includes growing season (June to December) weather. The
non-growing season (March to May) summary statistics are in Table
B1. We do not include January and February in either season be-
cause they contain very few hot days. The rainfall shock takes on a
value of 1 if rainfall in a given district-season-year exceeds the 80th
percentile of its historical distribution (defined as 1979-2012) of rain-
fall for that district-season, and a value of -1 if rainfall is below the
20th percentile of the historical distribution (0 otherwise).
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Figure 3.1: Yearly Days with Tmax >100°F | 2002-2011
This figure shows the average yearly number of days greater than or equal to 100°F in each district from
2002 to 2011. Temperature data are from ERAS.
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3.3 Empirical Strategy

Our main empirical strategy is as follows:
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(3.1)
where N is a nutritional outcome for household A in district d in state s during month m

of year y. Tj is the number of days in 10 degree temperature bin j in district d during

W—t,g9
year y — t’s growing (¢ = 1) and non-growing (g = 0) seasons. P is the rainfall shock for
this year and last year, separated by growing season. X}, is a set of household-level controls,
including religion, caste, head of household education, and household composition by age
group and gender. When the outcome variable is a nutrient adequacy threshold (e.g., below
100 percent of recommended levels of calories), we replace household composition with total
household size. District fixed effects (v4) account for district-level differences in nutrition
and temperature. For example, if wealthier districts are warmer, then without these fixed
effects our estimates would pick up a spurious correlation that shows that heat is associated
with better nutritional outcomes. Year fixed effects (7,) account for any yearly India-wide
differences in temperature that may be correlated with differences in nutrition, and month
fixed effects (7,,) improve precision by controlling for India-wide seasonality in nutrition. We
include state-specific yearly trends (o) to control for any state-specific changes in nutrition
that may be spuriously correlated with warming over time. Our results are robust to district-
specific yearly trends as well. €j4m, is a household-specific error term. The standard errors
are clustered at the district level to account for any correlation between the error terms
of households in the same district. For example, all households in a district with a more
iron-rich staple crop (such as wheat) might experience bigger swings in iron consumption

due to heat compared to households in other districts.

In the Results section, we focus on the effect of last year’s growing season temperature

(the 65_171) on this year’s nutritional outcomes. We do so because weather during the most
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recent growing period (June-December) likely has meaningful effects on a household’s crop
yields and income this year (Garg et al., 2020b). In turn, these effects could reduce food
consumption. However, we include this year’s weather and last year’s non-growing season

weather as controls.

3.4 Results

We estimate equation 3.1 to test how heat impacts total household-level caloric and iron
consumption. Figure 3.2 plots the coefficient estimates from the previous year’s growing
season temperature, for the dependent variables log of daily calories per capita (Panel A),
and log of daily iron per capita (Panel B). The coefficients document the effect of one day in
the corresponding temperature bin relative to a day below 70°F. We multiply the dependent
variables by 100 so that the coefficients can be interpreted as percentage changes. Despite
heat’s impact on yields®, Panel A shows that heat in any range does not impact caloric
consumption. Panel B shows a statistically significant decrease in iron consumption for all
bins above 70°F, with the exception of the noisy above 110°F bin. These estimates range
from 0.16 to 0.21 percent decreases in iron consumption.® The effects are small, as a 0.21
percent decrease corresponds to an average of around 0.03mg less iron per person per day,
equivalent to the amount of iron in 3g of uncooked rice (where one serving size is 45g). In

addition, the magnitudes do not increase with temperature.

Next, we consider whether extreme heat affects the number of households in relation to
key nutritional adequacy thresholds. In Figure 3.3, Panel A we graph coefficient estimates
for the effect of the previous year’s growing season weather on the percent of households
below 100 percent calories adequacy. In Panel B we plot them for the percent of households

below 100 percent iron adequacy.” Panel A shows there is no effect of heat on the percentage

5See Appendix Figure B3 for details.
6See Table 3.2 columns 1 and 2 for the coefficient numbers.

7See Table 3.2 columns 3 and 5 for the coefficient numbers.

60



of households who consume 100 percent of their recommended level of calories. Panel B
shows that temperatures between 80 and 100°F increase the percentage of households who
consume below 100 percent of their recommended level of iron. However, the effect does
not get stronger with higher temperatures. These figures suggest that extreme heat during
the previous growing season does not push households from adequate dietary availability to

undernourishment.

In contrast, we find that extreme heat does significantly increase the percentage of house-
holds in extreme undernourishment. In Figure 3.3 Panels C and D, we use the 80 percent
adequacy threshold.® These graphs show that temperatures above 80°F increase the percent-
age of households who consume less than 80 percent of their recommended caloric or iron
intake. A day above 110°F pushes 0.36 percent of households into extreme caloric undernour-
ishment and 0.35 percent into extreme iron undernourishment. These percentage changes
correspond to an increase of 3.1 million people and 3.0 million people per day above 110°F,
respectively, out of rural India’s 2012 population of 871 million (World Bank, 2024). These
results suggest that extreme heat does exacerbate the diet quality of households already

experiencing undernourishment, pushing many into extreme undernourishment.

Next, we show that this distributional pattern is consistent across multiple adequacy
thresholds. We estimate equation 3.1 for the percentage of households below calorie and
iron adequacy thresholds ranging from 50 percent to 150 percent. We plot the effect of a
previous year’s growing season day above 110°F on these outcomes in Figure 3.4. Panel
A shows that extreme heat does not increase the percentage of households below calorie
adequacy thresholds of 90 percent and above. However, the percentage of households below
80 percent, 70 percent, and 60 percent adequacy does increase due to extreme heat. While
there is no statistically significant effect on the percentage of households below the 50 percent

threshold, this is in large part due to the infrequency of this outcome: only 1.4 percent of

8See Table 3.2 columns 4 and 6 for the coefficient numbers.
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Figure 3.2: Calorie and Iron Availability

Panel A shows the change in 100 times the log of per capita daily consumption of calories for each additional
day at a given temperature during last year’s growing season relative to a day below 70°F. The coefficients
can be interpreted as percentage changes. Panel B shows the same relationship for iron. We match
household-year-month nutritional outcomes with weather data at the district-year-season level. All models
include 10°F temperature bins from 70-80°F. to above 110°F for this year and last year’s growing season
(June to December) and non-growing season (March to May). They omit the <70°F bins so the coefficients
can be interpreted relative to this temperature range. The models include district, month, and year fixed
effects, state time trends, rainfall shocks, demographic (religion, social group, and head of household
education) and household composition controls. Standard errors (error bars represent the 95% confidence
interval) are clustered at the district level to account for any inter-district correlation of the error terms.
All regressions include household-level outcomes from 2003-2012. The model in panel A includes 314,424
observations, and panel B includes 313,790 observations. These coefficients correspond to those in Table
3.2, columns 1-2.

households ever fall below this threshold.” Panel B graphs the corresponding coefficients
for different iron adequacy thresholds. Similar to calories, extreme heat does not push
households below thresholds ranging from 100 percent to 150 percent iron adequacy, but

does increase the percentage of households below thresholds ranging from 50 percent to 90

percent.

9See Appendix Figure B2 and Appendix Table B2 for summary statistics.
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Figure 3.3: Calorie and Iron Undernourishment

Panel A shows the change in the percentage of households consuming below 100 percent of the recommended
level of calories, based on household composition, for each additional day at a given temperature during
last year’s growing season relative to a day below 70°F. Panel B shows the same relationship for the 100
percent iron threshold. Panels C and D show the same as A and B, respectively, but for the 80 percent
threshold. We match household-year-month nutritional outcomes with weather data at the district-year-
season level. All models include 10°F temperature bins from 70-80°F. to above 110°F for this year and last
year’s growing season (June to December) and non-growing season (March to May). They omit the <70°F
bins so the coefficients can be interpreted relative to this temperature range. The models include district,
month, and year fixed effects, state time trends, rainfall shocks, demographic (religion, social group, and
head of household education) and household size controls. Standard errors (error bars represent the 95%
confidence interval) are clustered at the district level to account for any inter-district correlation of the
error terms. All regressions include household-level outcomes from 2003-2012. All models include 314,425
observations. These coefficients correspond to those in Table 3.2, columns 3-6.
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Figure 3.4: Calorie and Iron Adequacy Thresholds

Panel A shows the change in the percentage of households below different calorie consumption thresholds,
between 50 percent and 150 percent, for each additional day above 110°F during the previous growing season
relative to a day below 70°F. Panel B shows the same as Panel A, but for iron consumption thresholds. We
match household-year-month nutritional outcomes with weather data at the district-year-season level. All
models include 10°F temperature bins from 70-80°F to above 110°F for this year and last year’s growing
season (June - December) and non-growing season (March - May). They omit the <70°F bins so the
coeflicients can be interpreted relative to this temperature range. The models include district, month, and
year fixed effects, state time trends, rainfall shocks, and demographic controls (house size, religion, social
group, and education). Standard errors (error bars represent the 95% confidence interval) are clustered
at the district level to account for any inter-district correlation of the error terms. All regressions include
household-level outcomes from 2003-2012. All models include 314,425 observations.
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Potential Mechanisms

First, we examine a potential adaptation mechanism. If households experience a shock to
their home-grown sources of food, such as a local weather shock, they may respond by
purchasing more food. We test this hypothesis by estimating equation 3.1 for home-grown
and purchased foods separately. We estimate these regressions as levels rather than logs

since 35 percent of households consume no home-grown foods.

In Figure 3.5, we provide suggestive evidence for this adaptation mechanism. Panel
A plots the coefficient estimates from the previous year’s growing season from equation 1,
for the dependent variable daily calorie consumption from home-grown foods per capita.
Panel C plots them for daily calorie consumption from purchases per capita (See Table 3.2
columns 7 and 8 for the coefficient numbers). The coefficients from Panel A suggest that
households consume fewer home-grown calories as a result of hotter temperatures. They
consume 2.5kCal per person per day fewer calories due to a single day between 100 and
110°F relative to one below 70°F, and 4kCal (slightly more than 1g of uncooked rice, where
one serving is 45g) per person per day fewer for a day above 110°F. Panel C shows that
households purchase more calories after a hot growing season. A day between 100 and 110°F
increases purchased calories by 1.9kCal per person per day and a day above 110°F increases
them by 5.3kCal per person per day. Figure 3.5 points to an important yet understudied
agricultural household adaptation to heat: households compensate calorically for these home-

grown losses by purchasing more food.

However, these additional purchased calories are not iron-dense. On average, calories that
households in our sample purchase contain 24.1 percent less iron than home-grown calories.
Figure 3.5 Panel B plots coefficient estimates for daily iron from home per capita, and Panel
D plots them for daily purchased iron per capita.!® Figure 3.5B shows that temperatures
above 70°F decrease home-grown iron consumption, with estimates ranging from -0.020 to

-0.027 mg/person-day. Similar to Figure 3.2B, the effect does not increase with temperature.

10Gee Table 3.2 columns 9 and 10 for the coefficient numbers.
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Panel D shows that, despite increasing calories consumption, households do not experience
an increase in iron consumption. The point estimates are all statistically insignificant and
very close to 0. This finding suggests that faced with shocks to consumption, households

tend to adapt by focusing on replacing their lost calories with foods that are not rich in iron.
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Figure 3.5: Sources of Calories and Iron

Panel A shows the change in per capita daily calorie consumption from home-grown foods for each additional
day at a given temperature during last year’s growing season relative to a day below 70°F. Panel C shows the
same relationship for per capita calorie consumption from food purchases. Panels B and D show the same
relationships as panels A and C, respectively, but for iron. We match household-year-month nutritional
outcomes with weather data at the district-year-season level. All models include 10°F temperature bins
from 70-80°F to above 110°F for this year and last year’s growing season (June to December) and non-
growing season (March to May). They omit the <70°F bins so the coefficients can be interpreted relative
to this temperature range. The models include district, month, and year fixed effects, state time trends,
rainfall shocks, demographic controls (religion, social group, and head of household education), and controls
for household composition. Standard errors (error bars represent the 95% confidence interval) are clustered
at the district level to account for any inter-district correlation of the error terms. All regressions include
household-level outcomes from 2003-2012. The model in panel A includes 314,425 observations, panel B
includes 314,425, panel C includes 314,425, and panel D includes 314,425. These coefficients are the same
as in Table 3.2, columns 7-10.
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Extreme heat could affect household diets through several different channels. One pos-
sibility is that extreme heat’s negative impact on yields (Taraz, 2018) decreases available
food for households to consume. Other possible mechanisms include heat’s effects on phys-
iological well-being (Carleton et al., 2022), fertility (Barreca and Schaller, 2020), and labor
force participation and productivity (Somanathan et al., 2021). By analyzing the difference
in the effects of extreme heat based on its timing (i.e., during the growing season vs. the

non-growing season), we test which mechanisms are most likely.

First, we test for the possibility that extreme heat pushes households into extreme un-
dernourishment primarily due to its effect on crop yields. If crop yield reductions are a key
mechanism, then extreme heat during the non-growing season, which we confirm does not
affect yields!!, should not affect our nutritional outcomes. In Appendix Table B11, we show
the coefficient estimates for last year’s non-growing season weather for all of our nutritional
outcome variables. None of the coefficients are statistically significant at conventional levels
apart from 2 exceptions: 1) days above 90°F decrease the percentage of households below
the 80 percent calories threshold, and 2) days above 110°F decreases consumption of home-
grown iron. These coefficients are also generally closer to 0 than the coefficient estimates
for last year’s growing season. This suggests that temperatures during the previous growing
season are more important determinants of household food consumption this year, consistent

with the hypothesis that heat’s impact on yields is driving the results.

Next, we consider other channels through which heat might impact food consumption.
Heat in the prior period could change a household’s capacity to gain income through labor,
for example through decreased health (Carleton et al., 2022) or a change in a woman’s cur-
rent likelihood of being pregnant or raising an infant (Barreca and Schaller, 2020). Extreme
heat can also decrease labor supply and labor productivity, which would have direct impacts
on income (Somanathan et al., 2021). These reductions in labor participation could then

translate into decreased food consumption in the period after a heat shock. We test the

1Gee Appendix Table B13 for details.
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fertility channel by estimating regressions with the number of children and number of house-
hold members as outcomes. These regressions are identical to our main specification but
do not include household composition controls. Appendix Figure B4A plots the coefficient
estimates for the impact of last year’s growing season temperature on the number of children
present in a household. Panel B plots the coefficients for the dependent variable house size.

They show no effect of heat on either outcome, which helps rule out the fertility channel.

In addition, if non-agricultural mechanisms are important, we would expect to see impacts
of heat on nutrition during the entire prior year, not just during the previous growing season.
While we cannot fully rule out other effects of heat in the previous growing season on
labor income or health, the limited effects of non-growing season weather suggest that the

agricultural mechanism is the strongest.
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Robustness tests

We test the validity of our model through a series of robustness checks that we present in the
Appendix. First, in Table B3 we show that our results do not change much when including
district-month and year-month fixed effects. These fixed effects account for the possibility
that each district, and each year, has a unique seasonality in nutritional outcomes. For
example, wealthier districts may have a better ability to smooth consumption across the year,
whereas poorer districts may see food consumption decrease as time from the most recent
harvest increases. The coefficient for a day above 110°F increases for most outcomes, but the
other temperature coefficients are largely the same. This consistency is unsurprising, because

our identifying variation is driven by district-year, not monthly, variations in weather.

Second, we show in Table B4 that replacing state-year with district-year trends results
in qualitatively similar coefficients. Third, we test the effect of removing this year’s weather
as a control. Table B5 shows that we find similar results qualitatively to our main specifica-
tion, though many of the coefficients are smaller. One explanation for this difference is the
correlation between temperatures across years, which could lead to bias in the coefficients
without controlling for this year’s weather. Fourth, we show that our results are robust to
the inclusion of different rainfall variables (Tables B6, B7, and BS8). Fifth, we ensure that
they are robust to calculating per capita consumption by weighting children as half or a
third of an adult, as in past work (Deaton, 1997). Table B9 shows the results for children
weighted as half-adults, and Table B10 for children weighted as third-adults. They show that
the results are similar to our main specification, though the outcomes in levels (columns 3-6)

are slightly bigger, as are the mean outcomes.

Last, we also present the coefficients for the current year’s growing season weather from
our main specification in Table B12. In columns 1-6, we see no effects of hot weather this year
on overall calories or iron consumption. However, in columns 7-10, we find that hot weather
in the current year’s growing season decreases home-grown calorie and iron consumption,

and it increases purchases of calories and iron by a similar magnitude. This finding may
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possibly be due to contemporaneous changes in health or labor productivity. For example,
home-grown crops likely require more effort to prepare than purchased foods. Therefore, in

periods of extreme heat, households may choose to purchase more foods to reduce effort.

We are unable to analyze two important connections between household food consump-
tion and individual health outcomes due to the nature of our data. First, we cannot take
waste (during cooking or after), different preparation styles, or combinations of foods into
account. It is possible that levels of waste differ after a heat shock, as households may
waste less when less food is available. The survey does not indicate what foods were eaten
when, which matters as iron absorption depends partly on the presence of vitamin C in
the same meal (Lane and Richardson, 2014). Second, we are unable to say anything about
intra-household allocation of resources, which are notoriously biased against female children
in India (Kaul, 2018; Azam and Kingdon, 2013). It is also possible that this allocation is
actually sensitive to weather. For example, families may decide to shift food away from the

parents and to the children during difficult periods.

3.5 Discussion

Understanding household responses to rising temperatures is a key aspect of designing cli-
mate adaptation policy. Our findings suggest that, on average, rural Indian households have
been able to mitigate the loss of calorie consumption. They do so by purchasing more food
than normal in order to compensate for losses in home-grown foods. Importantly, these
households may face significant longer-term consequences that we cannot observe. We find
that these increased food purchases, as measured by calories, do not come with a concurrent
increase in iron from purchased foods, a key mineral in the rural Indian context. Households
may be purchasing cheaper, less nutritious foods to make up for caloric losses, leading to
losses in diet quality. In addition, prior research documents that poor rural households often
lack access to credit or other means of smoothing consumption across periods in response to

income shocks (Castells-Quintana et al., 2018). Along with our findings, this suggests house-
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holds may be sacrificing non-food purchases, or reducing long-term investments in human

capital.

In addition, many households, such as those without savings, may be unable to afford the
costs of such a response. This constraint is especially binding for the poorest households, who
are likely to already have low levels of food consumption. We find evidence that households
near the lowest quintile of calorie consumption (around the 80% adequacy threshold) do

actually consume fewer calories overall subsequent to a hot growing season.

Studying the costs and barriers to adaptation, alongside the first-order effects of extreme
weather events, is important for two reasons. First, these costs should be included in assess-
ments of damages from climate change, such as when calculating the social cost of carbon.
Second, this knowledge can help policymakers respond to climate change by developing or
extending social programs to lower barriers to adaptation. For example, programs that help
buffer crop losses, such as already-existing workfare (e.g., India’s National Rural Employ-
ment Guarantee Scheme) or microfinance programs, may become increasingly important as
the climate becomes warmer. Policymakers could also choose to directly assist those who
cannot adapt, for example by distributing food in areas which have recently experienced

extreme heat.

3.6 Extension: Climate Projections

I calculate projections for increases in the percentage of households experiencing extreme iron
undernourishment for 2030 to 2049 relative to 2000 to 2019 under the Shared Socioeconomic
Pathway 3-7.0 scenario (SSP3-7.0). I show that the within-model, or “internal,” variability
accounts for roughly 20 percent of the total uncertainty within SSP3-7.0 projections. Not

5" percentile of damages that is 12 percent

including this source of uncertainty leads to a 9
lower in magnitude than when including all model members, and a worst-case scenario that
is 27 percent lower. This result shows the importance of including multiple members per

model in projection ensembles, which economists rarely do. Doing so is low in additional
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computational and time costs relative to previous methods which include many fewer climate

model members.

Motivation

In 2015, a team of economists and climate scientists published an article describing economists’
use of climate projections (Burke et al., 2015). In it, they stress the importance of accounting
for model uncertainty (i.e., the uncertainty that exists between different models) in climate
projections, something that economists at the time rarely did. For example, in the 188 eco-
nomics studies they survey, the median number of climate models used is 2. They then show
that failing to use more than one model often understates the probability of worst case (and
best case) scenarios (Burke et al., 2015). Though a full review of recent literature is outside
the scope of this analysis, my sense is that economists today have improved in this respect.

Many papers include multi-model ensembles in their climate projections.

However, there is an additional source of uncertainty that economists have largely ignored.
This source, referred to as internal variability, comes from the natural, non-linear processes
that drive the climate (Deser et al., 2012). A common tactic to assess its magnitude is to
use multi-member ensembles of the same climate model that all have slightly different initial
conditions (McKinnon and Deser, 2018). Schwarzwald and Lenssen (2022) show that internal
variability’s contribution to total uncertainty is especially large for early and mid-century
climate damage projections and for impacts driven by nonlinear relationships. Both of these

conditions are met here.

Data and Methods

To illustrate the typical process in climate economics, I briefly recap the methods from
Chapter 2 of this dissertation. First, researchers choose a climate scenario (e.g., SSP3.70)

or two, and create an ensemble of around 20 model projections, usually picked for ease of
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access.'? This ensemble rarely, if ever, includes more than one member per scenario-model.
Researchers then calculate the difference in the temperature distribution between a reference
period (e.g., 2000 to 2019) and a period in the future (e.g., 2080 to 2099). By multiplying this
difference by the damage function estimated in the paper, researchers then present estimates

of the climate-change induced changes in the outcome of interest.

Here, I download daily temperature projections for India’s growing season (June-December)
from 204 model members across 30 models from Coupled Model Intercomparison Project
Phase 6 (CMIP6). I chose these models, listed in Appendix Table B14, based on their
availability on the Pangeo server, an online open-access collection of models maintained by
Google. T only include projections from the SSP3-7.0 scenario, thereby ignoring scenario
uncertainty. I do so to focus on the relative contributions of internal variability and model
uncertainty to total uncertainty. For a more comprehensive account of all three sources
of uncertainty in economic projections of climate damages, see Schwarzwald and Lenssen
(2022). While I focus on projections for 2030 to 2049, I also compare them to end of century
projections. Therefore, I drop ensemble members that end before 2100, resulting in a final

ensemble of 190 members across 26 models.

In addition to incorporating many more model members, I focus on different outcomes
than in Chapter 2. In Chapter 2, we report the mean impact of climate change on discon-
nections for 2080 to 2099 (though we graph them for the whole century). Instead, here I
focus on the upper tail of potential damages for the middle of the century. From a policy
perspective, understanding the upper tail of potential damages is important in order to be
prepared for the potential worst case scenario. As I show, incorporating as many members

as possible is important to characterizing these extreme, low-probability scenarios.

I focus on the middle of the century because adaptation policy is likely more meaningful

for time periods closer in the future.!® In part, this is because climate damage projections

12Tn the case of Chapter 2, we chose a set of projections that my undergraduate thesis advisor’s graduate
student at the time, Duo Chan, had been using.

13Climate mitigation policy, on the other hand, is more likely to benefit from longer-term thinking. Because
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become much more uncertain further into the future. For example, Schwarzwald and Lenssen
(2022) finds that the uncertainty in heat-induced increases in mortality in the US for 2070 to
2099 is over 6 times larger than for 2040 to 2069. The authors’ calculation is based solely on
the uncertainty in the warming levels due to uncertainty in future emissions pathways and
the challenges of modeling a system as complex as our climate. This warming uncertainty is
compounded by fact that the relationship between temperature and the outcome of interest
could be significantly different by the end of the century, even absent policy interventions
(Carleton et al., 2022). Focusing on a time period in the near future increases the importance
of internal variability. In the Schwarzwald and Lenssen (2022) mortality projections, internal
variability is 56 percent of the total uncertainty for 2010 to 2039, 12 percent in 2040 to 2069,
and only 3 percent in 2070 to 2099.

Working with climate scientist Will Krantz made incorporating so many climate models
possible. When calculating climate projections for the Los Angeles area in Chapter 2, I had
to first open the entire model, which requires significant space and memory (the .nc file for
a single daily temperature CMIP5 projection is over 3GB). Even using UCLA’s Hoffman2
cluster, the process was cumbersome and time-consuming enough that including 190 climate

model members would have been prohibitively costly.

Here, as recommended by Will Krantz, I use the Python function zarray, which allows me
to load in the portion of the dataset I am working with (India, 2000 to 2100, June-December)
in a user-friendly way. In Chapter 2, I had to 1) identify the correct latitudes and longitudes
for Southern Califonia, and 2) measure time by the number of days since January 1st 1800.
The latter task was complicated by the fact that models alternated in their treatment of leap
years. zarray, combined with another function called regionmask, allowed me to subset the
models by year and country, thereby reducing the potential for human error. In addition,
because I did not need to load the entire dataset, I was able to work with the data entirely

on my laptop.

of the slow-moving response of the climate to greenhouse gas emissions, curbing emissions today can have a
meaningful effect on end-of-century warming.

76



I present all damage projections below relative to a reference period of 2000 to 2019.
Importantly, I calculate future changes in the temperature distribution for each ensemble
member relative to its own projections for 2000 to 2019. Doing so corrects for any within-
member average biases in temperature, ensuring that I am comparing the spread in the
projected change in temperatures across members, rather than the spread in temperatures

themselves.

I calculate projections of climate change-induced increases in extreme undernourishment
as follows. First, for each model member I calculate the pixel-year number of days in each
10°F temperature bin from < 70°F to >110°F (and >100°F for expositional purposes) for
the growing season. I calculate the district-year temperature distributions using functions
from Schwarzwald and Lenssen (2022) that assign each pixel to districts based on their
spatial overlap. Using 2020 Indian population data (Tiwari, 2020), I calculate India-wide
district population-weighted average temperature distributions for each ensemble member
and year.'* For each ensemble member, I calculate the difference in its temperature distri-
bution in each year from 2020 to 2100 and the average distribution for my baseline period
of 2000 to 2019. Finally, I multiply these temperature distribution changes by my damage

function estimates from equation 3.1 and Table 3.2 Column 6.

To simulate results using methods from Chapter 2, I also present damage projections
using an ensemble with a single member per model. I use the “rlilplfl1'®” member, which
we use in Chapter 2. Six models from the full ensemble do not include rlilplfl members

that end in 2100, so this rlilp1fl ensemble only includes 20 models.

4Note that, in cases where temperature bins are not used to estimate the damage function (e.g., a cubic
spline), one would need to first assign damage projections to each district-year before taking the average.
Because in this case the damage function is just a linear combination of temperature bins, calculating the
damage projections before or after taking the India-wide average produces identical results.

15This naming convention is common to all models, and this name refers to the realisation (ensemble
member), initialisation method, physics, and forcing.
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Results

First, I present yearly changes in the temperature distribution. In Figure 3.6, I plot the
projected change in the number of growing season (June-December) days above 100°F (“hot
days”) per year relative to the mean from 2000 to 2019. In Panel A, I plot all 190 ensemble
members from 2020 to 2100 in grey. I plot the mean change in hot days, weighted by the
inverse of the number of members per model, in red. For the year 2100, the weighted mean
change in hot days is 13.8, with a range from below 0 to above 45. In Panel B, I plot the 20
rlilp1fl members in grey, with the mean across these members in red. The mean change in

hot days across the rlilplfl models in 2100 is 15.1, with a range from below 0 to 32.2.

Comparing the same member’s position in the overall distribution between Panels A and
B illustrates the importance of using multiple members per model. In both panels, I plot
the rlilp1fl member of CanESMS5, which projects 32.2 more hot days in 2100 than in the
baseline period, in blue. Panel B shows that this member projects the highest increase in
hot days for 2100 among all rlilp1fl models. In contrast, Panel A includes many members
that project higher increases in 2100 than does CanESM5 rlilplfl. Many of these hotter
members are from CanESM5, but 5 are from 4 other models. The rlilplfl ensemble assigns
a probability of zero to the event of over 32.2 more hot days in 2100 than in the baseline
period. In contrast, the full ensemble assigns this event a non-zero probability. Therefore,
only considering a single member per model may understate the chance of low-probability

extreme events.

Next, I consider heat-induced changes in the percentage of households below 80 per-
cent iron adequacy (“households experiencing extreme iron undernourishment”). I multiply
changes in the temperature distribution for each year, relative to 2000 to 2019, by the dam-
age function estimates from equation 3.1 and Table 3.2 Column 6. Figure 3.6 Panels C and
D show these changes for all members and for rlilp1fl members, respectively. In 2100, the
full ensemble projects a weighted mean (plotted in red) increase in households experiencing

extreme iron undernourishment of 7.2 percentage points, with a range across members from
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3.6 to 11.1. The mean projected increase in 2100 for the rlilplfl ensemble is 6.9, with a
range from 3.6 to 10.1. Once again, the rlilplfl ensemble understates the most extreme

scenarios.
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Figure 3.6: Projected Change Relative to 2000-2019

This figure shows the projected change relative to 2000 to 2019 in two variables: the number of growing
season (June-December) days above 100°F (Panels A and B), and the heat-induced percentage of households
below 80% iron adequacy (Panels C and D). The numbers in C and D are determined by calculating, for
each ensemble member, the change in each temperature bin for each year’s growing season, and then
multiplying this change by the damage function estimates from and Table 3.2 Column 6. Panels A and
C include the full ensemble of 190 members across 26 models in grey, and the weighted (by %, where n is
the number of members per model) mean across members in red. Panels B and D plot the 20 members of
the rilip1fl ensemble, and the mean in red. In all panels, the blue line represents the rlilplfl member of

CanESMS5.
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Economists generally calculate average changes over longer periods in the future rather
than for a single year. In part, this preference is due to the yearly variability of projections,
as exemplified by CanESMb5’s rlilp1fl member in Figure 3.6. In some years this ensemble
member is near the very top of the distribution, and in others it is closer to the middle.
This variability makes understanding the bigger picture by looking at a single year difficult.
Therefore, I calculate average temperature distributions, and subsequent increases in extreme

iron undernourishment, for two periods: middle (2030 to 2049) and late (2080 to 2099).

Projections nearer in the future require more careful consideration of within-model vari-
ation. Figure 3.7 shows the sources of uncertainty in the projected increase in households
experiencing extreme iron undernourishment. I limit this analysis to the 5 models with at
least 10 members with daily temperature projections until 2100. This choice balances having
enough members per model to calculate internal variability with having enough total models
to calculate model uncertainty. I show in Appendix Figure B5 that including the 10 models
with at least 5 members results in qualitatively similar results. Following Schwarzwald and
Lenssen (2022), for each time period, I calculate internal variability by 1) calculating the
variance in damages within each model, then 2) averaging across these variances. I calcu-
late model uncertainty by 1) calculating the mean damages for each model, then 2) taking
the variance across these model means. Panel A plots the total uncertainty for each time
period, broken up by model and internal sources. Total uncertainty for this given scenario is
much larger for the late period (2.5) than for the middle period (0.6). Panel B, which plots
percentage contributions of each source of uncertainty, shows that this growth is due to an
increase in model uncertainty. While internal variability is 20% of the total uncertainty in
the middle period, it is only 3.3% for in the late period. These findings are consistent with
Schwarzwald and Lenssen (2022), which shows that internal uncertainty is more significant

in earlier projections across a variety of settings.
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Figure 3.7: Climate Projection Uncertainty

This figure graphs the contributions to the uncertainty in the warming-induced changes, relative to 2000
to 2019, in the percentage of households below the 80% adequacy thresholds for iron and calories. Panel A
graphs uncertainty in levels, with uncertainty for estimates for the 2030 to 2049 period in the bar on the
left, and for the 2080 to 2099 period on the right. Panel B graphs the percentage of uncertainty contributed
by each source. These calculations include the 5 models with at least 10 members for daily temperature in
the SSP3-7.0 projection scenario: CanESM5, EC-Earth3, IPSL-CM6A-LR, MPI-EMS1-2-HR, and MPI-
ESM1-2-LR. The model uncertainty is calculated as the variance across the model means, and the internal
variability is calculated as the mean of the within-model (across members) variance.

Next, I demonstrate the importance of considering variation across model members.
In Figure 3.8, I plot the spread in the projected increase in the percentage of households
experiencing extreme iron undernourishment across ensemble members for 2030 to 2049.
The geren box-and-whisker plot includes the full ensemble, and the purple one includes the
rlilp1fl ensemble. The plots include the median (middle line in white), the 25 and 75%
percentiles (the box), the 57 and 95" (the whiskers), and any individual values outside
these percentiles (circles). For the full set of models, the median projected increase in
the percentage of households experiencing extreme iron undernourishment is 1.43, which
corresponds to 13 million people, using India’s 2022 total rural population of 909 million

(World Bank, 2024). The median for the rlilplfl projections is similar, at 1.36 percentage

points.

However, the extremes differ substantially. The r1ilp1fl ensemble’s 95" percentile (2.12)

is 12 percent smaller than the full ensemble’s (2.42), and its maximum (2.22) is 27 percent
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Figure 3.8: Climate Change: Households Below 80% Iron Adequacy

This figure shows the spread in projections of the warming-induced changes, relative to 2000 to 2019, in the
percentage of households below the 80% adequacy thresholds for iron for 2030 to 2049. The projections are
calculated for each ensemble member by multiplying its projected change in the temperature distribution
by the damage function estimates from and Table 3.2 Column 6. The green box-and-whiskers plot includes
all 190 ensemble members, and the purple one includes the 20 rlilplfl ensemble members. The plots
includes the median (middle line in white), the 25" and 75" percentiles (the box), the 5!* and 95" (the
whiskers), and any individual values outside these percentiles (circles).

smaller than the full ensemble’s (3.03). Therefore, focusing only on the rlilplfl members
would largely underestimate the probability of the most extreme scenarios, which include up
to 27.5 million people being pushed into extreme iron undernourishment. In Appendix Figure
B6A, I show that this underestimate is less extreme for end of century projections: for the late

period, the rlilp1fl ensemble’s maximum is only 5 percent smaller than the full ensemble’s.

In Figure B6B, I show the damage projections for extreme calorie undernourishment.

Discussion

In this section, I show the importance of incorporating multiple members from the same

climate model in economic damage projections. Doing so is especially important when
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calculating projections closer into the future, which is more likely to be useful for designing

adaptation policy.

There are some limitations to this approach. The first is that it is difficult to anticipate
future changes in the relationship between temperature and the outcome of interest. As
the case of extreme iron undernourishment exemplifies, it is sometimes unclear whether this
relationship will ameliorate or worsen. On the one hand, households could become more
resilient to extreme heat events, for example through increased income or the adoption of
more heat resilient crops. On the other hand, it is possible that there is a non-linear and
increasing relationship between crop yield damages and household diet quality. For example,
a household may be able to withstand the crop losses from a growing season with 5 days
above 100°F, but not those from one with 10 such days. Heat may also threaten household
capacity to respond to yield losses, for example through direct impacts on health. Therefore,
it is important to approach these damage projections with caution and understand that the

true numbers may lie above or below the projected range across all models.

In addition, these projections do not take into account the uncertainty in the damage
function I estimate for 2003-2012. Instead, they just take the point estimates of the damage
function. I do so in order to focus on the importance of incorporating multi-member ensem-
bles in damage projections. In future work, however, economists (including myself) should
also include the uncertainty of their damage function estimates in their projections of future

damages.

The second concern is that different models perform better in different parts of the
globe. For example, some models might be worse at incorporating how a shift in global
mean temperature will influence the Indian monsoon, and therefore are worse at projecting
temperature changes in the Indian subcontinent. If this is the case, then it might be better to
ignore these models for this exercise. While true in theory, doing so is difficult in practice and
involves a deeper understanding of the physics behind our climate system than an average

climate economist possesses (Goldenson et al., 2023). Even among climate scientists, there

84



is hardly a consensus about which models are “good” at certain tasks. Therefore, unless
such a consensus emerges in the future, climate economists should continue to include all

possible models.

There are other approaches to communicating climate projections that are becoming
popular among climate scientists. The first is to measure local changes in terms of “warming
levels” rather than in terms of time (Rahimi et al., 2024). For example, one could count
the projected number of growing season days in India above 100°F at a 5.4°F (3°C) higher
global mean temperature than pre-industrial levels. The appeal to this approach is that
it allows one to avoid details about when exactly this warming level will be reached. It
also abstracts away from emissions pathways, which are difficult to predict. However, this
approach poses some difficulties for economists for whom thinking in terms of time is central

to inter-temporal cost-benefit analysis.

Another option is the “storyline” approach, which involves a detailed description of one
or more single physically consistent climate projections. For example, one could pick the
scenario which represents the 95" percentile of potential damages to household diet quality.
This approach allows for easy exposition of the joint risks of multiple changes in regional
climate. For example, one could focus on the co-occurrence of both extreme heat and drought
or the instances of multiple hot days in a row (rather than just the total number of hot days
in a period). Proponents of this approach note that it helps to easily communicate the risks
associated with climate change in a salient way to non-experts, thereby strengthening their
ability to make informed policy decisions (Shepherd et al., 2018). As climate economists
continue to incorporate damage projections into their work, it is worth considering these
alternative approaches. However, for now, the easiest way to improve our process is to

incorporate all possible projections into our analyses.
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Occupational Mobility and Climate Adaptation:

Evidence from France
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4.1 Introduction

The extent to which climate change will exacerbate economic inequality is a growing concern.
A future with more frequent extreme weather events theoretically threatens the welfare of
environmentally exposed workers, who already have below average wages (Xiao, 2023b). Past
work in this area has largely focused on the on-the-job effects of extreme weather on exposed
workers and short-term adaptations. However, little is known about long-term adaptations
for workers, such as changing occupations. In addition, the potential spillover effects of
adaptations to non-exposed workers, who might themselves have low socioeconomic status,
have received little attention. In part, this lack of attention is due to a dearth of reliable
data with sufficient granularity to analyze the relationships between occupational mobility
and environmental exposure. To help assess climate change’s effects on the labor market, I
use individual-level panel data from France to study occupational mobility’s potential as an

adaptation strategy.

As the climate gets warmer, workers and firms will seek to adapt. Workers in climate-
exposed occupations' will suffer losses in productivity (Adhvaryu et al., 2020), safety (Dil-
lender, 2021), and comfort (Graff Zivin and Neidell, 2014). The extent of these losses, and
how much they increase inequality between high and low exposure occupations, depend on
workers’” ability to adapt to changing climatic conditions. These adaptations can fall into
three main categories: 1) workers could alter their schedules or working conditions?, but
remain in the same occupation, 2) households of high exposure workers could engage in

intra-household substitution®, or 3) workers could change occupations. Past research on

IThe effects of climate change on workers will transcend industrial boundaries. In France, I find that
no industry is completely devoid of workers in high exposure occupations, and 11 industries out of 36 have
at least 5 percent of their workers in high exposure occupations. How climate change will affect entire
industries, for example by increasing demand (e.g., electricity for air conditioning), is outside the scope of
this paper. Here, I focus on the consequences of climate change for on-the-job utility, worker adaptations,
and the spillover effects of these adaptations.

2This category includes workers either pushing their firms to make safety investments such as purchasing
shade structures, or buying personal protective equipment, such as umbrellas, on their own.

3For example, households could reduce the amount of time members in exposed occupations work (includ-
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worker adaptation to climate change has focused on option 1. Workers in exposed industries
reduce the amount of time they work on unusually warm days (Graff Zivin and Neidell,
2014; LoPalo, 2020). Analyses of workers’ ability to mitigate heat exposure on the job show
mixed results, with some papers finding limited capacity for adaptation (Dillender, 2021),
and others finding evidence of it (Park et al., 2021). My study is the first quantitative analy-
sis, to my knowledge, of occupational mobility as a form of climate adaptation. My analysis
focuses only on worker-driven adaptations and their spillover costs to other workers, though

workers’ responses will likely influence firm responses to climate change as well.*

Occupational mobility based adaptation has important implications for climate change’s
effects on the entire labor market, not just on exposed workers. Theory suggests that as
the disutility of climate-exposed work increases, worker preferences will shift towards work
in climate controlled environments. This shift would increase labor supply in low exposure
occupations, possibly suppressing their wages. However, strong occupational mobility fric-
tions raise the possibility that workers may not be able to switch out of climate-exposed
work (Cortes and Gallipoli, 2017). Determining inter-exposure mobility rates is therefore
necessary to fully account for the spillover costs of climate change to low exposure workers,
which should be included in aggregate climate cost assessments. It is also important for
understanding the distributional costs of climate change, not just between high exposure
and low exposure workers, but also between more and less wealthy low exposure workers.
Due to the prevalence of low-skilled workers in high exposure work (Maestas et al., 2017),
low exposure occupations with more low-skilled workers (and lower wages) are more likely

to experience labor supply increases and wage suppression.

I study occupational mobility using 9 years of individual panel data from the Déclaration

Annuelle de Données Sociales (DADS) Panel, which is compiled from firms’ responses to

ing stopping work altogether) and increase it for other members. However, work considering this question
in China finds no evidence of intra-household substitution (Garg et al., 2020a).

4For example, if many workers are leaving high exposure occupations, firms could respond by increasing
compensation to retain workers. I leave an inquiry into these responses for future work.
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a mandatory survey. I merge these data with an index of environmental exposure at the
occupation level, which I construct from a survey of French workers. I show that “high
exposure” occupations, which I define in several specific ways, span a variety of industries
and skill requirements. I quantify occupational mobility between high and low exposure
occupations in two complementary ways. First, I calculate the probability of high exposure
workers remaining in high exposure work year after year. High persistence® in high exposure
work could reflect one of two phenomena, or both. On the one hand, it could mean that
workers rarely leave high exposure occupations, indicating that they are relatively attractive
(Cortes and Gallipoli, 2017). On the other hand, it could mean that, when they do change
occupations, high exposure workers rarely transition into low exposure occupations. To test
which explanation is more likely, I directly analyze occupational transitions. Specifically, for
each occupation, I calculate the percentage of its departing workers whose new job is low
exposure. In addition, I test for differences in inter-exposure mobility between workers in

the same occupation.b

This dataset has two main advantages that allow me to conduct these analyses. First,
the administrative nature of the data enables me to capture a more representative view of
the labor market than past work on the flow of workers between occupations. For example,
datasets that rely on scraped resume data are likely to underrepresent certain groups of
workers, such as those in manual occupations or without a college education (Schubert
et al., 2022). Because many high exposure occupations are manual in nature, having reliable
data on manual workers is crucial for this analysis. In addition, a worker’s education may
affect their ability to move from high to low exposure occupations. Therefore, having a
more representative sample of workers bolsters the external validity of these findings on
inter-exposure mobility, even just within France. Second, the size of the data is such that it

allows me to calculate reliable flows of workers between occupations on a relatively granular

5i.e., workers remaining in high exposure work for long periods of time.

6Specifically, I test whether relatively high-paid workers are more likely to transfer to low exposure
occupations than lower paid workers in the same occupation.
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level. For the 368 occupations I study, I observe a median of 2,100 departing workers.” The
size of this dataset is especially important for within-occupation analyses of inter-exposure
mobility.

This project has four important findings. First, I find that employment in high exposure
occupations exhibits strong persistence. For example, French workers in a high exposure
occupation have around a 77 percent chance of still being in a high exposure occupation 8
years later. I find that these rates increase slightly with age, from 75 percent for workers
in their thirties to 79 percent for workers in their fifties. Analyzing occupational transitions
reveals that this is not simply a question of workers staying in the same occupation. When
leaving a high exposure occupation, workers end up in a different high exposure occupation
49 percent of the time. This rate is surprisingly high since high exposure work, by my
preferred definition, only comprises around 9 percent of the overall labor market. These
findings suggest strong segmentation between the labor markets for exposed and non-exposed

workers, and that changing occupations is unlikely to be a viable adaptation strategy.

Second, I find suggestive evidence that job tasks are a partial, but insufficient, explanation
for this segmentation. I use data from the Occupational Information Network (O*NET) to
measure the relevance of 17 tasks, separated into 5 groups®, to each occupation. I show
novel evidence that an occupation’s exposure level is strongly and positively correlated with
its manual task intensity (both routine and non-routine). This finding suggests that human
capital, particularly in manual tasks, plays a role in persistence in high exposure work.
However, analyzing occupational transitions shows that the labor markets between high and
low exposure work are more segmented than those between high and low manual intensity

work. Persistence in high manual intensity work is lower than in high exposure work, and

"The number of workers I observe departing each occupation ranges from 23 (occupation code 441b
“Clergy”) to 28,431 (occupation code 542a “Secretaries”)

8Following past work from France, the groups I choose are non-routine analytical, non-routine interper-
sonal, non-routine manual, routine manual, and routine cognitive (Le Barbanchon and Rizzotti, 2020).
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only 38 percent of workers leaving a high routine manual occupation® end up in a different

high routine manual occupation.*’

In addition, I show that the low exposure occupations that high exposure workers often
transition into'! are disproportionately high in routine task intensity.'? I find that 29 percent
of jobs in these occupations are in the highest quartile of routine task intensity, compared
to 17 percent of jobs in all other low exposure occupations. Routine task-intensive jobs have
declined across Western Europe and the United States over the past few decades (Goos et al.,
2014; Autor and Dorn, 2013). This finding raises the possibility that low exposure opportu-
nities for high exposure workers have decreased over time, contributing to the present-day

segmentation.

Third, I show that any spillover effects of a climate shock to low exposure workers will
likely be concentrated on those in low wage occupations. I use inter-exposure mobility
rates to calculate how a climate shock that only directly affects high exposure workers would
propagate throughout the labor market. Past work shows that a worker’s outside occupation
options, defined as their job opportunities outside of their current occupation, affect their
current wages (Schubert et al., 2022). The same paper also shows that transitions between
occupations are a relevant measure of these outside occupation options. For each occupation,
I use the percentage of its high exposure outside occupation options (i.e., the probability that
a worker leaving a job in that occupation moves to a high exposure occupation) as a proxy

for its vulnerability to the spillover effects of a climate shock. For example, despite both

9Consistent with my definition of high environmental exposure, I define a “high” task intensity as 1.5
standard deviations above the mean across occupations, and close to 9 percent of jobs are in this category
for most tasks.

10 As noted in the previous paragraph, 49 percent of high exposure workers leaving their occupation remain
in high exposure work.

1 An occupation counts for the “often transitions into” category if either 1) at least 9 percent of its
incoming transfers are from high exposure occupations, or 2) it has at least 100 incoming workers who left
a high exposure occupation. Occupations in this category account for 53 percent of low exposure jobs and
85 percent of switches from high exposure occupations to low exposure ones.

12Routine task intensity is a measure of an occupation’s 1) intensity in routine tasks and 2) its lack of
intensity in non-routine tasks.
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being low exposure occupations, 22 percent of electrical equipment assemblers’ outside occu-
pation options are high exposure, compared to only 1.7 percent of cooks’ outside occupation
options. These numbers mean that electrical equipment assemblers are more vulnerable to
climate shock spillover effects, through their outside occupation options, than are cooks. I
show that, across low exposure occupations, workers in below median wage occupations are
nearly 5 times more vulnerable to these indirect effects than workers in above median wage

occupations.

Fourth, I find evidence for within-occupation differences in inter-exposure mobility. When
leaving their occupation, workers with relatively high wages for their occupation are more
likely to transfer to a low exposure occupation. For high exposure workers, a top decile
earner is 23 percent more likely to move to a low exposure occupation than is a bottom
decile earner. This observation suggests that better paid workers are more likely to be able
to adapt to climate change by changing occupations. For low exposure workers, a bottom
decile earner is 65 percent more likely than a top decile earner to transfer to a high exposure
occupation. Therefore, low earning low exposure workers are more vulnerable to the spillover
effects of a climate shock to high exposure occupations. These findings motivate future work
to understand workers’ vulnerability to climate change at levels even more granular than the

occupation.

This project contributes to two main literatures. First, it contributes to the occupational
mobility literature by documenting evidence of labor market segmentation, a policy-relevant
topic which has been of interest since at least the 1970s (Reich et al., 1973; Eichhorst et al.,
2017). I show that this segmentation is particularly strong between labor markets for exposed
and non-exposed workers. In addition, I add to a general understanding of outside occupation
options. I provide evidence that workers’ outside occupation options, as measured by worker
transitions, differ across workers within the same occupation in ways that matter for their
vulnerability to climate change. This project is also the first paper, to my knowledge, to
test the outside occupation options elasticity of wages in France, a country with a relatively

rigid occupational structure and strong worker protections. I find that a 1 percent increase
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in an occupation’s average outside options’ wages increases its own wages by 0.052 percent,
compared to 0.1 percent in the US (Schubert et al., 2022). I then show one way for future
research to use this elasticity, together with the composition of each occupation’s outside
options, to calculate how a climate shock’s effects would propagate throughout the labor

market.

Second, my study adds to the climate adaptation literature, which to date has focused
primarily on on-the-job adaptations and their costs to exposed workers and firms (Park
et al., 2021; Rode et al., 2023). Recent work considers long-term adaptation strategies for
firms (Xiao, 2023b), but I add to a sparse and largely qualitative literature on long-term
worker adaptations (Farbotko et al., 2022). In particular, I show that changing occupations
is unlikely to be a successful adaptation strategy in France. In addition, I provide suggestive
evidence that the automation of routine tasks could further dampen workers’ adaptation
prospects. The substitution of capital for labor for routine tasks has been used to explain
important phenomena such as labor market polarization and the rising college wage premium,
both in the US (Autor and Dorn, 2013) and in Europe (Goos et al., 2014). However, less is
understood about how this automation might affect workers” and firms’ climate adaptation
decisions. 1 show that low exposure job options for high exposure workers are particularly
high in routine tasks. The computerization of routine work might further decrease inter-
exposure mobility’s potential as a successful adaptation strategy, exacerbating inequality

concerns between high and low exposure workers.

4.2 Data

DADS All Employees Panel: Worker Job Spells

I create an individual-level panel of job spells using the Déclaration Annuelle de Données
Sociales (DADS), yearly linked employer-employee data compiled by the French National

Institute of Statistics and Economic Studies (INSEE). It is based on a mandatory survey of
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all employers, excluding the public sector. The Panel Tous Salariés (All Employees Panel)
is a subset of the DADS that only includes employees born in October, so it is roughly a
1/12 sample. Entries are at the employer-employee-year level and include the employee’s
age, gender, municipality of residence, department of birth, start and end dates (within the
calendar year), four digit occupation (PCS4) code, contract type, gross earnings, and hours

worked.

Following Marinescu, Ouss, and Pape (2021) and Le Barbanchon, Rathelot, and Roulet
(2021), T impose several restrictions on the data. I limit the sample to the years 2011 through
2019.13. T remove any job spells that are classified as secondary or are shorter than 6 months
long.'* T also remove any jobs spells in public sector jobs or occupations that are primarily
in the public sector.’® I restrict my sample to a single employment spell active on January
1st, per worker, per year. If a worker has more than one job spell listed for a given year, I
keep the one with the most hours in the year, then the highest monthly salary, and then the

latest end date within that year.

To focus on occupational transitions that are representative of a typical career trajectory,
I keep job spells for workers between the ages of 25 and 60. Younger workers are more likely

to be engaged in work that is not representative of their career or their typical inter-exposure

132010 is the first year that does not suffer from response-rate concerns for job codes. Commuting zone
definitions changed in 2010, and are consistent from 2011 onwards (Marinescu et al., 2021). Though 2020
data are available, I stop at 2019 to avoid changes in occupational mobility during the COVID-19 pandemic.

14This removal raises potential sample selection issues. For example, if a high exposure worker enters
temporary low exposure employment to reduce exposure, I will not capture that behavior, potentially un-
dercounting inter-exposure mobility. To include as many transitions between occupations as possible, I keep
workers in the sample even if they are missing years of full-time long-term employment. In the Appendix, I
show that my occupational transition results are robust to only including workers with observable full-time
long-term employment for all 9 years of my sample period.

15This includes PCS4 codes that start with 33 “public service executives”, 45 “administrative public service
occupations”, and 52 “public service agents”. Despite the data excluding the public sector, some job spells
still list these occupations. They are unlikely to be a representative sample of these occupations, leading me
to exclude these job spells.

16T drop the remaining 159 worker-years with more than 1 observation.
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mobility.!” T exclude workers from the end of their careers to avoid potential biases from
retirement. For example, a high exposure worker could decide to leave high exposure work
by retiring instead of by changing to a low exposure occupation. This worker would drop
out of my sample, potentially leading to an underestimate of inter-exposure mobility. In the

Appendix, I show that my results are robust to including workers between 18 and 67 as well.

The DADS does not record exhaustive data for self-employed workers (Harrigan et al.,
2021), so I exclude them from my analysis. I do so using the first digit of the 4-digit
PCS-ESE occupation codes which the DADS uses. The first digit of the PCS4 corresponds
to the following broad categories: 1) Agricultural and farming directors, 2) Independent
artisans, small business owners, and CEOs, 3) Managers and intellectuals, 4) Intermediate
professions, 5) Non-manual workers, and 6) Manual laborers. I exclude Agricultural and
farming directors, artisans, small business owners, and CEOs (categories 1 and 2) from my
analysis.'® Finally, as I am studying occupational transitions, I exclude workers I observe
for only one year. My analysis dataset includes 9.2 million observations for 1.6 million

individuals across 368 occupations from 2011 to 2019.

DADS Postes: Labor Market Metrics

I create aggregate labor market metrics such as employment, wages, and labor market con-
centration using the DADS Postes dataset. This dataset is derived from the same employer
survey as the DADS Panel, but it includes all employment spells and changes worker iden-
tifiers every year. Consistent with past work, I keep workers between 18 and 67 years old
(Marinescu et al., 2021). As with the DADS Panel, 1 limit my sample to 2011-2019, and I
keep a single primary employment spell, active on January 1st, per year for each individual.

[ calculate employment for each PCS4- commuting zone (CZ)-year as the number of individ-

17Take, for example, young workers who are lifeguards for a year after college before beginning work in a
bank. Including them would inflate my estimates of inter-exposure mobility.

18While not all workers in these two PCS1 categories are self-employed, many of them are. These occu-
pations are underrepresented in my sample, so I exclude them from my analysis.
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uals whose primary employment is in that PCS4, in that CZ, and in that year. I calculate
average hourly wages, which I convert to 2019 real terms, for each PCS4-CZ-year.! 1 also

calculate average yearly employment and hourly wages across France for each PCSA4.

CT-Individus: Occupational Climate Exposure

I create environmental exposure scores for each occupation using the Conditions de Travail
- Volet Individus (CT-Individus), a survey of French workers produced by INSEE and the
Direction de [’animation de la recherche, des études et des statistiques under the French
Ministry of Labor. I use the 2019 vintage, the only version available that includes questions
on exposure to heat or humidity on the job. The survey asks workers across most occupations
in France about their working conditions, including the following two questions: 1) Are you
exposed to heat on the job? (yes/no), and 2) Are you exposed to humidity on the job?
(yes/no).

I assign each occupation a heat and humidity score equal to the percentage of yes re-
spondents for each of these questions. There is an average of 42 respondents per PCS4. If
a PCS4 has fewer than 10 respondents?’, I assign it heat and humidity scores by using the
average exposure score across respondents in the same 3-digit occupation category, including

2! Figure C2 in the Appendix plots the correlation between exposure

that occupation itsel
scores at the PCS4 level and the PCS3 level, including those with between 1-10 observations
at the PCS4 level. As is clear, there is a strong relationship between the scores at the PCS3

and PCS4 levels.

I define the environmental exposure score for each occupation, #, as the minimum of its

YFollowing Marinescu, Ouss, and Pape (2021), I drop the bottom 5 percent and top 1 percent of hourly
wages in each year. Doing this ensures that no hourly wages are below the minimum wage and drops any
outliers. For the DADS Panel, I set wages outside of these thresholds to missing, but I retain the observations
for any analyses that do not involve wages.

20115 out of 368 occupations have fewer than 10 respondents, including 45 with 0 respondents.

21Even after this method, there remains 1 occupation (531b, municipal police officers) that is in the DADS
with no exposure score. I exclude it from this analysis.
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humidity and heat scores. I do this because, for some occupations, the humidity or heat
score is a function of the work tasks rather than of the environment within which the work
takes place. Table 4.1 shows example occupations, their humidity scores, their heat scores,
and their 0. It illustrates the importance of taking the minimum of the heat and humidity
scores for each occupation. For example, flight attendants have a heat score of 100, but a
humidity score of 10. This suggests that the heat the flight attendant respondents refer to
is likely a function of their job (e.g., heat from the hot meals that they serve), rather than
of any environmental conditions. I assign flight attendants a 6 of 10. In contrast, roofers,
who generally work outdoors, have a humidity score of 94 and a heat score of 100, so their
0 is 94. In the Appendix, I show that my results are robust to defining exposure as either

just the humidity score or just the heat score.

In my primary definition, I designate occupations with > 50 as “high exposure,” and
all others as “low exposure.”?? Table C1 in the Appendix lists all 47 occupations (out of 368)
that I classify as high exposure. Around 9 percent of workers are employed in high exposure
occupations. Low exposure workers are generally paid better than high exposure ones. The
median high exposure worker earns €15.5/hour (2019 value), compared to €19.2/hour for
the median low exposure worker. Ninety-five percent of high exposure workers in my sample

are 1mer.

22T choose 50 as my primary cutoff because this means that workers are more likely exposed than not. In
the Appendix, I show that my results are robust to using a cutoff of 40.
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Table 4.1: Example Exposure Scores (6)

Occupation Humidity Heat 6
Roofers 94 100 94
Agricultural Managers 69 85 69
Plumbers 82 62 62
Crane and Tower Operators 58 58 58
Cashiers 15 35 15
Flight Attendants 10 100 10
Butchers 52 9.7 9.7
Pharmacists 3.7 9.3 3.7

This table lists example occupations, their humidity score, their
heat score, and their exposure score (). The humidity and heat
scores are from the CT-Individus survey of workers. 6 is the min-
imum of these two scores.

O*NET: Occupational Tasks

I study the relationship between occupations’ environmental exposure and task composition
using occupation-level task scores from the Occupational Information Network (O*NET).
O*NET, the United States’ primary source of occupational information, administers na-
tionally representative surveys of workers and occupation experts. The surveys include
information on the task requirements and work environments of occupations, classified by
their Standard Occupation (SOC) code. I use 21 O*NET rounds from 2011 to 2019 to cal-
culate the various tasks involved in different French occupations.?® 1 assign each O*NET
occupation at the 8-digit SOC-code level a score, based on its average across surveys, for 17
tasks that fit into the following five task groups?!: 1) Non-routine analytical, 2) non-routine

interpersonal, 3) non-routine manual, 4) routine manual, and 5) routine cognitive.

I create a crosswalk between PCS4 and SOC-codes by matching job titles and descrip-
tions. In cases where there are multiple possible SOC matches for a given PCS4, I pick one

most likely occupation. In the Appendix, I validate this crosswalk by comparing scores from

23] use O*NET, rather than the CT-Individus, which also includes some job characteristics, because the
CT-Individus does not include all necessary questions to make it comparable to past job task papers. Past
work, including in France, has used O*NET (Le Barbanchon and Rizzotti, 2020)

241 present the specific makeup of each group in Tables C2 and C3.
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O*NET for tasks that are also included in the CT-Individus survey. I also verify that my
main results are robust to an alternative crosswalk that averages task scores across all poten-
tial PCS4-O*NET matches. T assign each PCS4 with task scores using my PCS4-SOC-code
crosswalk. Then, following Le Barbanchon and Rizzotti (2020), I normalize the scores, using
average yearly employment by PCS4 as weights, so that they have mean 0 and standard
deviation 1. I add up these normalized scores for each PCS4 within each of the five task

groups, then once again normalize the scores for each group.

4.3 Inter-Exposure Mobility

4.3.1 Methods
Persistence in High Exposure Work

To show differences in occupational exposure over the life course, I plot the distribution of
workers in high exposure work by age. I merge the All-Employees Panel with occupation-level
0 scores, then I calculate the percentage of workers in high exposure occupations (6 > 50)
for each age between 25 and 60. Next, I test persistence in high exposure work as follows.
First, I limit my sample to workers who are engaged in high exposure work at any point
and who are present for all 9 years of my data.2> Second, I calculate the percentage of these
workers who are still in high exposure work n years later, where n runs from 1 to 8. In
order to detect any differences in high exposure persistence over the life course, I repeat this

calculation separately for each age in year ¢, from 25-60.

Occupational Transitions

The persistence test combines two dimensions of occupational mobility: 1) worker occupation

departure frequency and 2) the probability of finding low exposure work when changing

251 do this to exclude workers who leave the labor market, potentially in response to climate exposure.
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occupations. If persistence is high, that could mean that at least one of these two dimensions
is low. However, the implications of each dimension being low are somewhat contradictory.
On the one hand, high exposure workers could leave their occupation at relatively low rates.
This could indicate that high exposure occupations are relatively attractive (Cortes and
Gallipoli, 2017). On the other hand, high exposure workers could leave their occupation at a
normal (or high) rate, but often switch into different high exposure work. This could indicate
one of two characteristics of high exposure work. First, it could mean that high exposure
workers generally have better job match quality in high exposure work, and so they choose
to stay in high exposure occupations. Second, it could mean that there are high barriers to
entry for low exposure work, and high exposure workers remain in high exposure work due

to a lack of options rather than by choice.

To test the reasons behind the persistence levels I observe, I focus directly on occupational
transitions. I define a transition between origin occupation o and destination occupation
p # o if an individual is in occupation o on January 1st, year ¢, and in occupation p on
January 1st, year t + 1. First, I test whether high exposure occupations do have lower rates
of worker departure. Second, I analyze the relationship between the exposure scores of a
transitioning worker’s origin and destination occupations. I calculate two statistics for each
occupation from the sample of workers who leave it: 1) the average exposure level of all the

destination occupations (,) and 2) the percent of transitions to low exposure occupations
(P(6, < 50)).

4.3.2 Results

Persistence in High Exposure Work

Figure 4.1 shows that workers of all age groups are engaged in high exposure work, including a
substantial fraction of middle-aged workers. As environmentally exposed work has relatively
low wages and requires physical fitness, one would expect the probability of engaging in high

exposure work to decline with age. I show that, initially, around 15 percent of 25 year olds
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are engaged in high exposure work. As expected, this percentage steadily declines to between
6.5 and 7 percent by around age 35. However, the percentage remains surprisingly constant
between ages 35 and 50, at which point it restarts a slow decline. This finding suggests that
either 1) a significant fraction of high exposure workers remain in high exposure work for
long periods of time or 2) different workers are frequently moving in and out of high exposure

work. My hypothesis is that the former explanation is more likely.

I test this hypothesis by analyzing how long workers remain in high exposure occupations.
Figure 4.2A graphs the percentage of high exposure workers from year t still employed in
high exposure work in years t + n, for n from 1 to 8. It shows that, on average, 77 percent
of high exposure workers are still employed in high exposure work 8 years later. Because
the probability of high exposure employment differs across the life cycle, it is possible that
persistence in high exposure work does too. I test this hypothesis in Figure 4.2B, where
I plot persistence against age on the x-axis. The y-axis is the percent of workers, out of
those in high exposure work in year ¢, still in a high exposure occupation in year ¢ + n.
Each line represents a different value of n between 1 and 8. It shows that older workers are
slightly more likely to remain in high exposure work: 93 percent of workers aged 50 in year
t remain in high exposure work one year later (f + 1), compared to 92 percent for workers
aged 25. This gap gets larger with n. 82 percent of workers aged 50 in year t are still in
high exposure work eight years later (¢ 4+ 8), compared to only 76 percent of workers aged
25. These percentages are quite high, and although my data do not allow me to explicitly
test the following hypothesis, they suggest that many workers likely remain in high exposure

work for multiple decades.
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Figure 4.1: High Exposure Work and Age

This figure shows the percentage of workers in high exposure occupations (6 > 50) by age. The sample
runs from 2011-2019, and I limit it to the 498,472 workers I observe for all 9 years.
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Figure 4.2: Persistence in High Exposure Work
Panel A shows the percentage of workers still in high exposure occupations (6 > 50) 1-8 years after being
in a high exposure occupation. Panel B graphs this percentage separately by age in year t. The sample
in both panels is limited to the 55,850 workers I observe for all 9 years (2011-2019) and who worked in a
high exposure occupation at least once between 2011 and 2018.
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Occupational Transitions

I test the reasons behind persistence in high exposure work by analyzing occupational tran-
sitions. First, I rule out that high exposure workers leave their occupations less frequently
than low exposure workers. I find that, on average, high exposure occupations have a de-
parture rate of 17.2 percent, compared to 16.4 percent for low exposure occupations. This
finding suggests that persistence in high exposure work is high because workers leaving a

high exposure occupation frequently move to a different high exposure occupation.

The data shown in Figure 4.3 confirm this hypothesis. In Panel A, I plot the exposure
level of each origin occupation, 6,, on the x-axis. I plot the average exposure level of all
destination occupations, 6, for workers leaving a given origin occupation on the y-axis.
Each dot represents a single PCS4 occupation, and its size represents average yearly national
employment from 2011-2019. The figure shows that as 6, increases, 0, increases alongside
it, meaning that workers leaving more exposed occupations end up in occupations which
are, on average, more exposed. For example, the average worker leaving an occupation
with 6, between 10 and 20 ends up in an occupation with 6, of 17. For workers leaving an
occupation with 6, between 60 and 70, 6, is 52. To put these values of 6, into perspective, I
compare them to the average exposure levels of occupations with similar wages to the origin
occupations.?® T find that workers leaving an occupation with 6, between 10 and 20 end
up in occupations with lower exposure than those with similar wages, and workers leaving

an occupation with 6, between 60 and 70 end up in occupations with higher exposure than

those with similar wages.

Panel B shows the relationship between 6, and the probability that 6, is below 50 (i.e., a
low exposure occupation). It shows that the vast majority of workers leaving low-exposure

occupations move to a different low-exposure occupation. It also indicates that while many

26First, I find the distribution of wages for occupations with § between 10 and 20. I find the 25" percentile
of wages for these occupations is €13.4/hour, and the 75" percentile is €20.7/hour. I then take the mean
exposure level of occupations with wages between these two values, which is 27.1. I repeat the same exercise
for occupations with @ between 60 and 70. In this case, the 25?"-75!" wage range is from 13.9 to 16.2 €/hour,
and the average 6 for occupations with wages in this range is 32.5
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Figure 4.3: Occupational Transitions and Climate Exposure
Panel A graphs the relationship between an occupation’s ¢, and the average ¢, of destination occupations

for workers leaving that occupation. Each dot represents a single occupation and its size is based on average
yearly employment from 2011-2019. Panel B graphs the relationship between an occupation’s 8, and the
percentage of transitions where 6, < 50. the data include 1,156,194 transitions from 2011-2019 across 368
occupations.

workers leaving a high exposure occupation find low exposure work in their next job, the

majority of workers leaving an occupation with 6 > 75 do not.

The data shown in Figures 4.2 and 4.3 indicate strong segmentation between high expo-
sure and low exposure labor markets. Workers in high exposure jobs tend to remain in them
for long periods of time. In addition, workers leaving high exposure occupations often find
new work in a different high exposure occupation. These observations suggest that chang-
ing occupations is a costly strategy with respect to climate change adaptation. These costs
could be due to the difference in job match quality between high and low exposure work for
high exposure workers, or they could be due to other barriers to entry into low exposure

occupations.

4.3.3 Exposure and Task Intensities

One potential reason for the high costs to inter-exposure mobility is that job tasks differ

between high and low exposure occupations. Task intensity (i.e., the extent to which a
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given task is relevant for a given occupation) can be related to worker occupational choice
in two main ways. First, workers might initially be attracted to jobs involving particular
tasks, either due to preferences or qualifications. In particular, jobs with certain tasks may
offer relatively high wages for low-skilled workers. For example, more manual jobs have a
higher risk of injury, which employers may compensate for with higher wages. Second, as
workers accrue job experience, they are more likely to stay in work that requires similar

tasks (Gathmann and Schénberg, 2010).

Manual Tasks and Exposure

In Figure 4.4, T plot novel evidence on the correlation between each occupation’s exposure
and its five O*NET task group intensities.?” One main finding stands out. High exposure
work is strongly manual. Panel A plots the relationship between an occupation’s routine
manual task intensity and its exposure. Each dot represents a percentile of routine manual
intensity and the corresponding average 6, controlling for the other four tasks and weighted
by average yearly employment. It shows that with a 1 standard deviation increase in routine
manual intensity, exposure increases by 6.8. Non-routine manual intensity (Panel B) shows
an even stronger coefficient of 9.3. These strong relationships are largely due to the lack of
outdoor occupations that are non-manual. For example, 97 percent of high exposure jobs
have an above-average routine manual intensity, and 100 percent of them have an above-
average non-routine manual intensity. In addition, 40 percent of jobs that are one standard
deviation above the mean in non-routine manual intensity are high exposure, compared to
only 2 percent of all other jobs.?® This finding suggests that workers with a preference for

more manual work?® are more likely to work in high exposure occupations. That being said,

2"Routine manual, routine cognitive, non-routine manual, non-routine analytical, and non-routine inter-
personal.

28These numbers are 28 percent and 4 percent, respectively, for routine manual jobs.

29Either because they prefer it outright to non-manual work or because it offers them higher compensation
than their other options.
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there is a significant number of jobs which are both highly manual and low exposure.
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Figure 4.4: Task Intensity and Exposure

This figure shows the relationship between an occupation’s different task intensities and its environmental
Panel A is for routine manual, Panel B for non-routine manual, Panel C for non-routine
interpersonal, Panel D for non-routine analytical, and Panel E for routine cognitive. All graphs control
for all other task intensities and are weighted by yearly national employment between 2011 and 2019. The

exposure (6).

data include 368 occupations.
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The strong relationship between manual tasks and exposure raises the concern that the
results in Figures 4.2 and 4.3 are just capturing workers staying in highly manual work for
long periods of time. To address this concern, I compare persistence in high exposure work
to persistence in work with high task intensities that proxy for manual labor. I define an
occupation as having “high” intensity in a manual task if its score is at least 1.5.3° Eight
point three percent of jobs are in high routine manual work, and 10 percent are in high
non-routine manual work. For each manual task group, I calculate the percentage of workers
still in a high intensity occupation n year later. I then plot these percentages against n to

compare them against persistence in high exposure work.

Figure 4.5A shows that workers stay in high exposure occupations for longer than they
stay in occupations with high levels of any other task intensity. 77 percent of high exposure
workers are still in high exposure work 8 years later, compared to 73 percent for non-routine
manual intensity and 72 percent for routine manual intensity. This gap is not very large.
However, it widens when restricting the sample to workers who change occupations sometime
during my sample period (2011-2019) (Figure 4.5B). For the “occupation changers” sample,
56 percent of high exposure workers are still in high exposure work 8 years later, compared to
36 percent for non-routine manual intensity and 45 percent for routine manual intensity. This
finding suggests that when changing occupations, high exposure workers move to a different
high exposure occupation at a uniquely high rate. Table C4 in the Appendix confirms this
hypothesis. Fourty-nine percent of workers leaving a high exposure occupation find work in
a different high exposure occupation, compared to just 38 percent for the closest task group

(routine manual).

30By construction, this is 1.5 standard deviations above the mean. 6 = 50 is also 1.5 standard deviations
above the mean 6 of 20.
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Panel A graphs worker persistence in occupations with high manual intensities (both routine and non-
routine) alongside environmental exposure. The red line represents high exposure, the blue line represents
high non-routine manual, and the green line represents high routine manual. For each task, the sample
includes all workers present for all 9 years of my data who ever work in an occupation that I label as high
in that task. An occupation has a high task intensity if its score is 1.5 standard deviations above the mean.
For 6, this corresponds to 50, and for the task groups, this corresponds to 1.5 (by construction). Panel B
shows the same comparison, but limits the sample to workers who have changed occupations at least once
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Figure 4.5: Persistence: Manual Intensity vs. Exposure

during my sample period.
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In sum, while it may offer some explanation, the distribution of tasks between high and
low exposure work is unlikely to fully account for the high degree of labor market segmen-
tation between them. Other factors such as professional networks, language proficiency, or
preferences for outdoor work may also play a role in explaining this persistence. In the Ap-
pendix, I show that workers without a bachelor’s degree, as well as foreign-born workers, are
disproportionately likely to work in high exposure jobs. Both groups also exhibit particularly
strong persistence in high exposure work. However, more work is needed to fully understand

the explanations for the segmentation between high and low exposure labor markets.

4.3.4 Low Exposure Options for High Exposure Workers

In this section, I characterize low exposure occupations that are popular destinations for high
exposure workers. While inter-exposure mobility rates are low, Figure 4.3 shows that many
workers leaving high exposure occupations do manage to find low exposure work. However,
it is unlikely that low exposure occupations receive high exposure workers equally. Under-
standing which low exposure occupations receive more high exposure workers is important
for two reasons. First, it can provide suggestive evidence on recent trends in inter-exposure
mobility. For example, in light of the growing automation of routine tasks and consequent
labor market polarization of the past few decades (Autor and Dorn, 2013), it is possible that
these low exposure options for high exposure workers have become more or less prevalent.
Second, it has important implications for how climate change might affect inequality within
low exposure occupations. For example, lower wage low exposure occupations may be more
likely to receive high exposure workers. If this is the case, then climate-induced occupational
mobility to low exposure work would suppress wages in these lower wage occupations more

than in the higher wage ones, exacerbating existing inequalities.

For the purpose of this exercise, I calculate each occupation’s routine task intensity (RTT).
This measure captures both an occupation’s intensity in routine tasks and its lack of intensity

in non-routine tasks. It is a common proxy for an occupation’s vulnerability to automation
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(Autor and Dorn, 2013). It is therefore useful to help understand how low exposure options
for high exposure workers have changed due to automation and how they may continue to

evolve in the future. I define RTT with the following equation:

RTI = RC + RM — NRA — NRI — NRM, (4.1)

where RC is an occupation’s routine cognitive score, RM is its routine manual score, NRA
is its non-routine analytical score, NRI is its non-routine interpersonal score, and NRM
is its non-routine manual score. Across all jobs in the DADS Postes sample, RTI has an

employment-weighted mean of 0 and a standard deviation of 2.7.

I separate low exposure jobs into two categories: those which high exposure workers
often transition into (“options”), and those which they do not often transition into (“non-
options”). Iinclude two criteria in this definition, and an occupation counts for the “options”
category if it satisfies either one. First, I check if at least 9 percent (the percentage of
high exposure jobs overall) of an occupation’s incoming transfers are from high exposure
occupations. However, this threshold excludes occupations that, despite receiving a large
number of high exposure workers, also receive too many low exposure workers to meet the
9 percent cutoff. For example, in my sample, 789 workers left high exposure occupations to
become “hand packers and packagers”, an occupation with an exposure score of 28. Despite
only making up 7.6 percent of transfers into this occupation, 789 is higher than the number
of incoming workers for 95 percent of low exposure occupations, including 34 that meet the
9 percent cutoff. To address this type of issue, I also include any occupations with at least
100 incoming transfers from high exposure occupations. Occupations satisfying at least one
of these criteria account for 52 percent of low exposure jobs and 85 percent of switches from

high exposure occupations to low exposure ones.

Table 4.2 presents the characteristics of occupations in three categories: 1) low exposure
“non-options”, 2) low exposure “options”, and 3) high exposure occupations. The 111 low

exposure occupations that are options for high exposure workers make up 47.6 percent of
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the labor market, compared to 43.4 percent for the low exposure occupations that are not.

The difference in wages between the “options” and ‘non-options” groups suggests that
inter-exposure mobility could increase inequality between low exposure occupations. The
mean wage for “options” jobs is €17/hour, compared to €22/hour for “non-options” jobs.
To the extent that it is possible, mobility from high to low exposure occupations will primarily
be concentrated in lower wage destination occupations. This increased labor supply could
suppress wages in the “options” occupations, widening inequality between them and the

“non-options” occupations.

One would expect high exposure occupations to be more similar to the “options” group,
as workers tend to find new work in similar occupations (Gathmann and Schénberg, 2010).
What is less clear is which exact characteristics they have in common, and-perhaps more
importantly-where they differ. I find that they are more similar in almost every characteristic
I test. They both have higher exposure, lower wages, higher manual task intensity, and lower

analytical and interpersonal task intensities than the “non-options” group.

However, one difference stands out. While high exposure occupations have low routine
task intensity, “options” occupations have relatively high routine task intensity. While only
14.6 percent of high exposure jobs, and 16.8 percent of “non-options” jobs, are in the highest
quartile of routine task intensity, 29.4 percent of “options” jobs are. This finding makes sense
in light of the fact that both high exposure work and routine work are more easily available to
low-skilled workers (Maestas et al., 2017; Autor and Dorn, 2013). In addition, occupational
exposure and routine cognitive task intensity are negatively correlated (Figure 4.4E). This
observation suggests that many of the job opportunities for low-skilled workers fall into one
of two buckets: 1) high exposure work with high manual intensity, and 2) low exposure work

with high routine cognitive intensity, and therefore high routine task intensity.
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Table 4.2: Low Exposure Options for High Exposure Workers

(1) (2) (3)

Low 6 Non-Options Low 6 Options High 6

Number of Occupations 210 111 47
Percent of Jobs 43.4 47.6 9.1

Percent of High to Low Transfers 14.9 85.1 -
Mean 6 10.2 25.6 69.4

Mean Wages (€/hour) 21.9 17.0 15.5
Routine Tasks (RTI) -1.1 0.89 0.67
Routine Manual (RM) -0.51 0.25 1.1
Routine Cognitive (RC) -0.20 0.20 -0.12
Non-Routine Analytical (NRA) 0.46 -0.33 -0.48
Non-Routine Interpersonal (NRI) 0.44 -0.30 -0.53
Non-Routine Manual (NRM) -0.50 0.19 14
RTT %ile > 75 16.8 29.4 14.6

RC %ile > 75 21.7 26.2 13.5

RM %ile > 75 4.3 28.2 97.6

NRA %ile > 75 44.0 12.3 0.3

NRI %ile > 75 41.7 12.9 7.0

NRM %ile > 75 6.1 31.9 65.6

This table characterizes occupations according to three groups. Column 1 includes the low exposure
(8 < 50) occupations that high exposure workers do not frequently transfer into (“non-options”).
Column 2 includes low exposure (@ < 50) occupations high exposure workers do frequently trans-
fer into (“options”). An occupation counts for the “options” category if either 1) at least 9% of its
incoming transfers are from high exposure occupations, or 2) it has at least 100 incoming workers
who left a high exposure occupation. Column 3 includes high exposure () occupations. All task
scores and exposure capture the mean level for the corresponding group. By construction, the task
scores, other than routine tasks (RT) have a mean of 0 and a standard deviation of 1. RTT is equal
to RC + RM - NRA - NRI - NRM, and has a mean of 0 and standard deviation of 2.7.
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As past work has extensively documented, routine work is on the decline in the United
States and many Western European countries. In France, for example, middle-wage jobs,
many of which have high RTI, saw an 8.6 percentage point drop in employment share from
1993-2010. The same paper finds that across Europe, a one standard deviation higher RTT
was associated with a 0.9 percentage point slower yearly growth rate (Goos et al., 2014). 1
confirm that routine intensive jobs have been declining in France in the period from 2011 to
2019. Figure 4.6A plots the employment share of occupations in the top quartile of routine
task intensity across France over time. It shows an overall decrease of around 1 percent in
this period. Panel B, which plots individual task intensities, shows that both a decrease
in the prevalence of routine cognitive tasks and an increase the prevalence of non-routine
tasks help explain this decline. Routine cognitive task intensity has consistently decreased
from 2011-2019, while non-routine analytical and non-routine interpersonal intensities have
grown over this period. Routine manual and non-routine manual tasks have evolved almost
identically, offsetting each others’ effects on changes in RTT over this period. These graphs
show that, even in a relatively short time frame, routine task intensive jobs have diminished

in prevalence in France.
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Figure 4.6: Task Intensity by Year

Panel A shows the employment share of occupations in the top quartile of routine task intensity (RTT)
from 2011 to 2019. Panel B shows different task intensities per year from 2011-2019. By construction, task
intensities have a mean of 0 and a standard deviation of 1 across the entire sample.

These observations have implications for both the past and the future of inter-exposure
mobility. First, they suggest that low exposure options for low-skilled workers have decreased
alongside the decades-long decline in routine task-intensive jobs. This observation may offer
some explanation for today’s low rates of inter-exposure mobility. Second, this decline in
routine task-intensive jobs is projected to continue into the future (Hensvik and Nordstrom,
2023). Together with the increasing disutility of environmentally exposed work in the future,
this projection paints a worrying picture for low-skilled workers. Because my data only cover
9 years, I cannot test for a causal relationship between the decades-long decline in routine
task employment and inter-exposure mobility. However, the importance of this link to the

future welfare of low-skilled workers motivates such an analysis in future research.

4.4 QOutside Occupation Options and Climate Shock Spillovers to

Low Exposure Workers

Estimates of climate damages to worker welfare generally focus on the direct effects to high

exposure workers. However, despite the strong segmentation between high and low exposure
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labor markets, there are likely to be considerable spillover effects to low exposure workers.
Understanding the nature of these spillovers and how they are distributed is important to
designing comprehensive climate adaptation policy. In Section 3, I discussed the potential
spillover effects of high exposure workers moving to low exposure occupations. Specifically,
I showed that the low exposure occupations that might see an increase in labor supply
from workers leaving high exposure jobs are predominantly low wage occupations. This
phenomenon could increase inequality between workers in low exposure occupations. In this
section, I illustrate a second channel through which climate shocks could affect inequality

between different low exposure occupations: workers’ outside occupation options.

I conduct a back of the envelope calculation to simulate the indirect effects of a climate
shock on low exposure occupations’ wages through their outside occupation options. Past
work shows that a worker’s outside occupation options, defined as their job opportunities
outside their occupation, influence their current wages. It also shows that observing the
flows of workers departing a given occupation provides a valid measure of the outside options
for workers in that occupation (Schubert et al., 2022). Figure 4.3 shows that certain low
exposure occupations have a larger percentage of high exposure outside occupation options
than others. This finding suggests that the indirect effects of climate change on low exposure
workers, through their outside occupation options, will not be distributed equally. If these
effects are concentrated on low wage low exposure destination occupations, then a climate

shock could indirectly widen inequality between different low exposure occupations.

This calculation requires an estimate of the influence of outside occupation options on
wages in France. France has a more rigid labor market with stronger worker protections than
the US, where past work estimates that a 1 percent increase in the wages of an occupation’s
outside options increases its own wages by 0.1 percent (Schubert et al., 2022). I would
expect this coefficient to be smaller in France due to its labor market conditions. Despite
the necessity of this calculation, it is not the focus of this project. In the Appendix, I describe
the methodology for this calculation and its results in detail. I find that in France the outside

occupation options elasticity of wages is 0.052 percent. This elasticity is a little more than
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half that found in the US. In the rest of this section, I use this elasticity to calculate the
indirect effects of a climate shock on the wages of low exposure occupations, through their

outside occupation options.

Methods

I calculate the indirect effects of climate changes on the wages of low exposure occupations,

through their outside occupation options, using the following equation:

NOCCS
Sp,mit
A(7<>U]<),7Zrzcl - Bl . A%OOI = 51 : A% Z To—p * Zm s Wp,mit) (42)
pFo ot

where Agw,,inq is the indirect wage change (in percentage terms) for each occupation,

! and S is the elasticity of

Ay, OO0l is the change in its outside occupation options index?®
wages to outside occupation options quality from equation C.4 in the Appendix. The second
equality holds from the definition of the outside occupation options metric from in equation
C.2 in the Appendix. Since I am interested in an aggregate assessment of indirect wage

impacts, 1 abstract away from local relative employment shares of each occupation in each

CZ (%) by setting them equal to one. Next, I assume that national-level occupational
p,

mobility flows (m,,%?) remain constant. So, workers’ outside occupation options indices
only change as a weighted average of the wage changes of those outside occupation options,

weighted by m,,,. Equation 4.2 reduces to

A%wo,ind = Bl : A% Z Wy * To—p, (43)
pFo

31This is equal to the average wages of a worker’s outside occupation options, weighted by a worker’s
probability of moving to that occupation given they are changing occupations. For more details, see equation
C.2 in the Appendix.

321,y is equal to the probability that a worker leaving a job in occupation o moves to occupation p. In
practice, this is equal to the product of two quantities: 1) the “leave share” of occupation o (the percentage
of workers who leave occupation o when they leave their job) and 2) the percentage of workers who move to
occupation p when leaving occupation o.
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The purpose of this exercise is not to predict actual wage losses to low exposure workers.
Rather, it is to calculate the losses to low exposure workers relative to the damages to high
exposure worker wages. Therefore, for this exercise, I assume a uniform 1 percent decrease in
high exposure occupations’ wages, and no decrease for low exposure wages. Using national-
level average wages for each occupation from 2011-2019, I calculate the resultant change in
OO as follows. First, I calculate each occupation’s baseline “national-level outside occupa-
tion options index” (OOIb%¢ = > 2o Wp - To—sp). Then, after applying the 1 percent wage
reduction for each high exposure occupation, I recalculate a new OOI5"* The percentage
change between OOI%*¢ and OO is Aq;OOI. By multiplying this by 3;, I get each oc-
cupation’s indirect percentage wage change due to a 1 percent decrease for all high exposure

occupations.

I compare the indirect effects on wages between occupations with average wages above

and below the median for low exposure workers.

Results

I find that the indirect impacts of climate change are substantially higher for low wage low
exposure occupations than they are for high wages ones. Figure 4.7A shows the distribution
of indirect wage shocks separately for low exposure workers above and below the median of
wages. For a 1 percent decrease in high exposure occupation wages, the median low wage
low exposure worker experiences a 0.0016 percent decrease in wages, compared to 0.00034
percent for the median high wage low exposure worker. The lower wage group experiences
higher losses in real hourly wages as well, despite having lower wages (Panel B). I calculate
aggregate hourly wage losses by multiplying the real hourly wage losses for each occupation
by its average employment from 2011-2019. I find that, despite earning less in general, below
median wage occupation aggregate losses are over twice as large (4,174 people-€ /hour vs.
1,739 people-€ /hour) as above median wage occupation aggregate losses. As I show in the

Appendix, the qualitative result of this exercise is robust to altering the assumptions used

118



A) % Wage Shock B) Wage Shock (€)

Density Density
600 3000
Wage Wage
400 Group 2000 Group
High H High
H Low Low
200 1000
0 0
0.00 0.01 0.02 0.03 0.000 0.001 0.002 0.003 0.004 0.005
Percentage Wage Shock Wage Shock (Euros)

Figure 4.7: Indirect Climate Shock Effects to Low Exposure Occupations

Panel A graphs the employment-weighted distribution of indirect wage percentage shocks after a 1% de-
crease in all high exposure occupations’ wages. I show the distribution separately for low exposure occu-
pations with above and below median wages. Panel B graphs the wage shock in 2019 €.

for the calculation.

Through the outside occupation options channel at least, climate change will likely act as
an inequality widener between low exposure workers. The magnitude of these losses, even to
the below median wage group, are not especially high. However, it is important to note that
outside occupation options are only one channel for spillovers of climate shocks to affect low
exposure workers. For example, this channel is separate from the movement of high exposure
workers into low-wage work, which is also likely to increase inequality between high and low
wage low exposure occupations. These findings motivate more research on climate spillovers
across the labor market, which are important to consider when designing climate adaption

policy for our labor markets.

4.5 Within-Occupation Differences

The analysis so far has focused on outcomes at the occupation level. However, workers
within the same occupation might have different probabilities of transitioning between high

and low exposure occupations. These differences may have important implications for climate
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change’s effects on inequality. For example, imagine two groups of workers in the same high
exposure occupation. Group 1 earns more than Group 2. Group 1 workers also have certain
qualities that make them more likely to be able to transfer to low exposure work. They will
be less vulnerable to the effects of climate change, which might widen inequality between

the two groups.

There are many characteristics which may influence both a worker’s wages and their
propensity to move from high to low exposure work. For example, workers who speak
French more proficiently®® might be more likely to earn higher wages (relative to the rest of
their occupation) and to be promoted to a low exposure occupation.?* Identifying hetero-
geneity in inter-exposure mobility based on each of these numerous possible characteristics,
or attempting to create an “index of inter-exposure mobility potential” using observable

demographic characteristics, is unlikely to be a fruitful approach.

Instead, I calculate the relationship between a worker’s propensity for inter-exposure
mobility and their position in their within-occupation wage distribution. This approach
has two advantages. The first is that it lends itself to a straightforward analysis of climate
change’s effects on economic inequality. Specifically, using this framework, I can easily
compare inter-exposure mobility differences between workers in the same occupation with
different levels of earnings. The second advantage is theoretical. As past work has argued, a
worker’s within-occupation relative earnings, after controlling for observable characteristics,

are a relevant proxy for a worker’s unobservable labor market abilities (Groes et al., 2015).

Groes, Kircher, and Manovskii (2015) (henceforth GKM) shows that these unobservable

33In the Appendix, I show that high exposure workers who are college educated or born in France are
more likely to transition to low exposure work than those who are not. The DADS Panel does not include
the education or nationality of workers, so I use a subsample of workers who applied to unemployment
benefits from the FH-DADS for the education and nationality analysis. The FH-DADS is not suitable for
this within-occupation analysis, however, as it 1) does not offer a representative view of the labor market
and 2) does not include enough observations per occupation.

34Importantly, many of these characteristics are unobservable in administrative datasets large enough to
conduct within-occupation analyses of occupational mobility. Additional examples include charisma, rapport
with one’s managers, dedication, and adaptability.
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labor market abilities, as revealed by a worker’s relative wage, are related to occupational
mobility outcomes. In Denmark, the setting of their study, the likelihood of changing oc-
cupations is highest for high earners and low earners within an occupation. High earners
within an occupation tend to move to occupations with higher average wages. In contrast,
low earners within an occupation tend to move to lower-paid occupations. This finding has
potential implications for inter-exposure mobility as well. High exposure workers moving to
a higher-paid occupation likely have more low exposure jobs available to them than those
moving to a lower-paid occupation. Figure 4.8 shows that there 91 low exposure occupations,
employing 20 percent of low exposure workers, with higher wages than the highest paid high
exposure occupation.®® However, 230 low exposure occupations are below this threshold, and
many are similarly paid to low wage high exposure occupations. Seventy-five low exposure
occupations and 40 percent of all low exposure employment are in occupations with wages

below the median for high exposure occupations of €15.6/hour.

35This is occupation 480b, “Merchant marine and fishing captains”, with an average wage of €23.3 /hour.
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Figure 4.8: Exposure and Wages
This figure shows the relationship between an occupation’s exposure level and its average yearly wages
from 2011-2019 (in 2019 €). Each dot represents a single occupation and its size is based on average yearly
employment from 2011-2019. High exposure occupations are in red, and low exposure occupations are in

blue. The data include 368 occupations.
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The distribution of wages across high and low exposure occupations and the findings

from GKM lead me to posit the following hypotheses:

Hypothesis 1: When changing occupations, high earners within their high
exposure occupation will be more likely to move into low exposure work than
low earners. This hypothesis follows from the idea that high earners tend to move into
higher paid work, which is more likely to be low exposure. If true, this finding would suggest
that occupational mobility based climate adaptation prospects are better for workers with

higher wages relative to others in their occupation.

Hypothesis 2: When changing occupations, low earners within their low ex-
posure occupation will be more likely to move into high exposure work than
high earners. This hypothesis follows from the same observations as Hypothesis 1. If
true, this would mean that low earning low exposure workers are more vulnerable to the
spillover effects of a climate shock than are high earning low exposure workers. If confirmed,
this finding would suggest that these spillovers would widen inequality not just between low

exposure occupations, as I show in Section 4, but within these occupations as well.

Methods

For this analysis I use the sample of individual worker panel data from the DADS Panel.
Following GKM, I restrict the sample to men in order to avoid capturing the impact of
fertility decisions on occupational mobility. The bulk of my analysis focuses only on workers
in, leaving, or moving into high exposure occupations, and 95 percent of workers in these
occupations are men. In the Appendix, I show that my results are robust to including women

in the sample.

I impose additional restrictions on the dataset to better match the Small Sample de-
scribed in GKM. I drop workers after their first absence from the DADS Panel, which

indicates that they were not employed on January 1% that year by a private company in a
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spell that lasted for at least 6 months.?® I also drop workers after their first year of missing
information on wages, occupation, firm, experience, or firm tenure. I then drop 9 occupa-
tions with fewer than 10 remaining observations in each year.3” After these restrictions, the

sample includes 3,727,121 observations for 777,715 men.

The main difference between my main sample and the Small Sample from GKM is that
their sample only includes workers for 15 years after they finish their education. Doing so
allows them to construct occupation and industry tenure variables and to ensure a consistent
distribution of labor market experience across the years in their sample. I do not do so, for
two reasons. First, it would preclude me from including older workers, whose occupational
mobility I am interested in capturing as well. Second, I do not have worker education

information, so I cannot reliably determine the age at which they finished their schooling.

I calculate each worker’s position within the distribution of wages for their occupation

and year as follows. First, I estimate the following regression:

1nwit = thﬁ —|— €itsy (44)

where w;; is worker i’s wage in year t.3® X is a series of controls including year fixed
effects, number of years of labor market experience (raw, squared, and cubed), age, and
firm tenure (raw and squared). I winsorize labor market experience and firm tenure at the
1 percent and 99 percent level. Relative to GKM, this regression lacks variables capturing
education and occupation or industry tenure. The DADS Panel does not include any of
these variables. However, for many workers, age and labor market experience together proxy
for years of education. GKM construct tenure variables by observing workers’ entire labor

market histories since finishing their education. Without education information, or reliable

36Following GKM, even if a worker reappears in the sample after an absence, I do not include these
subsequent years.

37These occupations have PCS4 codes 343a, 344c, 351a, 352b, 421a, 431c, 431e, 441b, and 562a.

38In constructing my original dataset, I set the bottom 5 percent and top 1 percent of wages within each
year to missing.
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data going far back enough, I cannot do so. Therefore, I can only include firm tenure, which

the DADS Panel provides, in equation 4.4.

I estimate this equation separately for each occupation and obtain residual wages for
each worker-year. These residuals more plausibly represent a worker’s non-observable labor
market abilities relative to others in the same occupation than do their raw wages. By
conditioning on observables such as firm tenure, age, and labor market experience, I ensure
that I am not just comparing workers at different stages of their careers. For example, a
high exposure worker with more experience might have higher wages and be more likely to
be promoted to a low exposure occupation. Consistent with GKM, however, I show that my
main results are similar when ranking workers within each occupation-year using raw wages.
This robustness check alleviates concerns that the results of this study are overly dependent

on the X;; variables.

I then use these within-occupation wage percentiles to test how occupational mobility
patterns and outcomes differ for workers within the same occupation. First, I replicate
analyses from GKM by plotting two outcomes as a function of a worker’s position in the
distribution of wages in his occupation-year. The first outcome is the probability of a worker
leaving his occupation. The second outcome is the probability of a departing worker mov-
ing to a higher “ranked” occupation. I rank occupations based on their average wages by
estimating the regression in equation 4.4 without a constant term. I take the coefficients on
the year dummies to indicate an occupation’s average wage for a given year, adjusted for
the characteristics of its workforce. I then rank the occupations within each year based on
these coefficients. I plot both outcomes separately for all occupations and for high exposure

occupations alone.

Next, I test the relationship between inter-exposure mobility and within-occupation rel-
ative earnings. To test Hypothesis 1, I only include workers leaving a high exposure occu-
pation. I plot these workers’ probability of moving to a low exposure occupation against

their position in their within-occupation wage distribution. I test Hypothesis 2 with workers
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A) All Occupations B) High Exposure Occupations
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Figure 4.9: Occupational Mobility vs. Relative Earnings

Panel A shows the probability that a worker leaves their occupation compared to their position in their
within-occupation wage distribution. The wage percentile is calculated within each occupation and year
based on the residuals from equation 4.4. The plot is a kernel smoothed local linear regression with a
bandwidth of 5 percentiles. 95 percent confidence intervals are shaded in gray. Panel B is the same as
Panel A, but limits the sample to high exposure occupations. The sample in Panel A includes 3,727,121
observations for 777,715 male workers, and Panel B includes 519,278 observations for 141,225 male workers.

leaving low exposure occupations. I plot their probability of moving to a high exposure

occupation against their relative earnings.

Results
Replication of GKM

First, I show how occupational mobility differs across the within-occupation wage distribu-
tion. Figure 4.9 Panel A shows that French workers at the high end of their within-occupation
wage distribution are the most likely to leave their occupation. The highest earners have a
30 percent chance of leaving their occupation, whereas all other workers have between a 15
percent and a 20 percent chance. As compared to Denmark, French workers at the low end
of the within-occupation distribution are relatively unlikely to change occupations (Groes
et al., 2015). In the Appendix, I discuss potential reasons for this difference. Panel B shows
that the same general shape holds for workers in high exposure occupations, with a slightly

sharper increase at the higher end than is the case for all occupations.
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Figure 4.10: Moving to a Higher Ranked Occupation vs. Relative Earnings

Panel A shows the probability of a departing worker changing to an occupation with a higher rank (in
the year of the switch). The wage percentile is calculated within each occupation and year based on the
residuals from equation 4.4. Occupation ranks are determined by comparing year dummy coefficients from
equation 4.4. The plot is a kernel smoothed local linear regression with a bandwidth of 5 percentiles. 95
percent confidence intervals are shaded in gray. The sample is limited to workers leaving their occupations.
Panel B is the same as Panel A, but limits the sample to high exposure occupations. The sample in Panel
A includes 668,479 observations for 349,982 male workers, and Panel B includes 81,333 observations for
60,363 male workers.

Despite the differences in low earners’ propensity to change occupations between France
and Denmark, the wage related outcomes for workers who do switch are remarkably similar.
Figure 4.10 Panel A shows that workers at the low end of their within-occupation wage
distribution tend to move to a lower ranked occupation, while high earners tend to move
to a higher ranked occupation. The observed range of probabilities of moving to a higher
ranked occupation runs from below 40 percent for the lowest earners to above 65 percent

for the highest earners. This range is slightly wider than that observed in Denmark (Groes

et al., 2015). Panel B shows that this pattern is the same for high exposure workers.

High to Low Exposure Mobility

Next, I show that high earners leaving a high exposure occupation are more likely to move
to a low exposure occupation. Figure 4.11A plots the probability that a leaving worker’s
new job is low exposure relative to his within-occupation wage percentile. It shows that this

probability is relatively stable between the 1% and 80™ percentiles, after which it begins a
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A) All High Exposure Occupations B) Split by Wage
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Figure 4.11: Moving to a Low Exposure Occupation vs. Relative Earnings

Panel A shows the probability that a worker leaves to a low exposure occupation compared to their position
in their within-occupation wage distribution. The wage percentile is calculated within each occupation and
year based on the residuals from equation 4.4. The plot is a kernel smoothed local linear regression with
a bandwidth of 5 percentiles. 95 percent confidence intervals are shaded in gray. The sample is limited to
workers leaving a high exposure occupation. Panel B shows the same graphs, with occupations separated
into occupations above and below the median of average wages for high exposure occupations. The sample
in Panel A includes 81,333 observations for 60,363 male workers. The blue line in Panel B (above the
median) includes 39,210 observations for 32,176 male workers. The green line in Panel B (below the
median) includes 42,123 observations for 34,669 male workers.

rapid increase. Whereas a leaver anywhere below the 80*® percentile of the wage distribution
has below a 50 percent chance of moving to a low exposure occupation, a leaver above the
90" percentile has a 59 percent chance. This non-linearity stands in stark contrast to the

relatively linear increase in a worker’s change in occupational rank with his place in the

within-occupation wage distribution (Figure 4.9B).

To ensure that a small fraction of occupations with extreme differences in inter-exposure
mobility are not driving this result, I calculate how many occupations display a similar
pattern. For the purpose of this exercise, I define “median earners” as those between the
40" and 60*" percentiles, and “high earners” as those above the 90'" percentile. For each
high exposure occupation, I test whether high earners are at least 10 percent more likely to
transition to a low exposure occupation than median earners when changing occupations. I
find that this is the case for 31 of 47 high exposure occupations making up 73 percent of

high exposure employment.
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This prevalent pattern can be explained by one of two possibilities, or both. The first
is the fact that, above a certain wage threshold, workers can only increase their wages
by switching to a low exposure occupation (See Figure 4.8). Once above this threshold, the
probability of moving to a low exposure occupations rapidly increases. The second possibility
is that these highest earners (above the 90" percentile) have unobservable characteristics
that their managers especially value. Workers with a better rapport with their managers
could be more likely to earn larger raises and therefore higher wages than observably similar
workers. They may also be more likely to be promoted into management roles, which are

more likely to be low exposure.

To help explore these potential explanations, I split high exposure workers into two
groups. Figure 4.11B replicates Panel A separately for workers in occupations with average
wages above (blue line) and below (green line) the median for high exposure workers.?
By definition, workers in the below median group have many high exposure options with
higher average wages than their current occupation. Therefore, if a lack of higher wage high
exposure options fully accounted for the heightened inter-exposure mobility among high
earners, [ would expect the pattern found in Panel A to be less true among this lower wage
group. However, high earners, even in low wage high exposure occupations, transition to low
exposure occupations at significantly higher rates than their lower wage counterparts. This
finding suggests that high earners’ unobservable characteristics provide at least a partial

explanation for their high inter-exposure mobility.

Regardless of the explanation, the strong within-occupation differences in inter-exposure
mobility have important implications. This evidence, which confirms Hypothesis 1, suggests
that the highest earners may have a stronger ability to adapt to climate change by changing
occupations. This raises concerns about how workers’ ability to adapt to climate change
might exacerbate existing inequality even within occupations. Many inquiries into workers’

ability to adapt to climate change are conducted at the occupation level. The findings

39T calculate these categories using the average national-level wages for men in high exposure occupations
from 2011-2019.
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presented in this section motivate future work at a more granular level. In addition, more
work is needed to fully understand the reasons behind the differences in inter-exposure
mobility across the earnings distribution. Designing optimal policies to aid those least able
to adapt to climate change on their own requires understand exactly which factors, at an

individual level, influence a worker’s ability to adapt.

Low to High Exposure Mobility

Figure 4.12A shows that low earning low exposure workers are more likely to move to a high
exposure occupation when changing occupations. While a worker in the bottom decile of
within-occupation earnings has a 8.1 percent chance of doing so, a worker in the top decile
only has a 4.9 percent chance. Panel B splits plots the graph in Panel A separately for two
groups, those in high average wage (above the median) and those in low average wage (below
the median) low exposure occupations. It shows, as discussed in Section 4.3, that workers in
low wage low exposure occupations are more likely to transition into high exposure occupa-
tions. It also shows that even within these low wage occupations, a worker’s percentage of
high exposure outside occupation options differs across the wage distribution. This pattern is
common across most low exposure occupations. For 237 occupations comprising 74 percent
of low exposure employment, a bottom decile earner is at least 1.5 times as likely to transfer

to a high exposure occupation than a top decile earner.
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A) All Low Exposure Occupations B) Split by Wage
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Figure 4.12: Moving to a High Exposure Occupation vs. Relative Earnings

Panel A shows the probability that a worker leaves to a high exposure occupation compared to their position
in their within-occupation wage distribution. The wage percentile is calculated within each occupation and
year based on the residuals from equation 4.4. The plot is a kernel smoothed local linear regression with
a bandwidth of 5 percentiles. 95 percent confidence intervals are shaded in gray. The sample is limited to
workers leaving a low exposure occupation. Panel B shows the same graphs, with occupations separated
into occupations above and below the median of average wages for low exposure occupations. The sample
in Panel A includes 587,146 observations for 316,446 male workers. The blue line in Panel B (above the
median) includes 352,054 observations for 200,669 male workers. The green line in Panel B (below the
median) includes 235,092 observations for 159,807 male workers.

This finding suggests that low earners will be more vulnerable to the spillover effects of a
climate shock than high earners within the same low exposure occupation. Table 4.3 shows
the percentage of high exposure destination occupations?® for 4 different groups of workers.
I split occupations into two groups: those above and below the median of average wages for
low exposure workers. Within these two groups of occupations, I show the percentage of
high exposure outside occupation options for those in the top and bottom deciles of within-
occupation earnings. Only 2 percent of the outside occupation options for top decile earners
in above median occupation are high exposure, compared to 6.2 percent for the bottom
decile of earners in these same occupations. For below median occupations, these numbers
are 8.2 percent and 11.6 percent. Therefore, as climate change affects the quality of high

exposure work, the spillover effects will likely increase inequality not just across low exposure

40This measure is slightly different than outside occupation options, as it does not include the leave share
of each occupation. However, it is still an important measure of an occupation’s relationship to high exposure
occupations.
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Table 4.3: Percentage of High Exposure Destination Occupations

Above Median | Below Median
Occupation Occupation
Top Decile Worker 2.0 8.2
Bottom Decile Worker 6.2 11.6

This table shows the percentage of high exposure destination occupa-
tions for 4 sets of workers: those in occupations with average wages
above and below the median for low exposure occupations, each split
into top and bottom decile earners within their own occupation.

occupations, but also within them.

4.6 Conclusion

In this paper, I show that high exposure work exhibits strong persistence: workers in high
exposure work remain in high exposure work for long periods of time. This finding indicates
strong segmentation between the labor markets for high exposure and low exposure work
and that the costs to inter-exposure mobility are higher than expected. Therefore, chang-
ing occupations is unlikely to be a successful adaptation strategy, exacerbating concerns
that climate change will widen existing inequalities between high and low exposure workers.
In addition, my findings suggest limited spillover effects of climate change to non-exposed
workers. However, to the extent that these spillovers occur, they will be more concentrated
in low wage occupations, and especially low wage workers in those occupations, increasing

economic inequality between low exposure workers.

This paper is just one step in assessing the multiple ways that climate change’s direct
effects on exposed workers can spillover to other parts of the economy. While I focus on
outside occupation options, there are other channels through which climate change could
have indirect effects on worker welfare. For example, decreased productivity of high exposure
workers could push firms to reallocate work, when possible, to more temperate climates, or
to substitute labor with capital (Xiao, 2023a). These firm-level adaptation decisions could

have important consequences for the local labor markets that see a resulting decrease in high
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exposure work. In addition, any climate-related costs that firms do incur might be passed on
to consumers. As high exposure work is involved in the production of many vital goods, such
as food and housing, this possibility could raise the financial burden faced by low-income

households.

More research on this topic is needed in other countries. The setting of my research
is France, a country that has experienced a unique economic trajectory over that last half
century. In most OECD countries, wage inequality has risen sharply. France is the major
exception: wage inequality has fallen by around 25 percent during that period (Bozio et al.,
2020). In 2019, earners in the top wage decile in France earned about 3.5 times more than
earners in the bottom decile, a below median ratio for the EU, and much smaller than the
US’ 6.3. Research credits this low and shrinking wage inequality to high coverage of workers
under binding collective agreements, a high and dynamic minimum wage, and progressive
payroll tax regimes (Bosch and Weinkopf, 2017; Bozio et al., 2020). French workers also
have relatively low occupational mobility: about two thirds the average level for European
workers (Bachmann et al., 2020). On average, they have high levels of labor market power,
likely dampening workers’ desire and ability to move between occupations at different levels
of environmental exposure. Therefore, changing occupations might be a more successful
adaptation strategy in other countries. However, the outside occupation options elasticity
of wages in France, which I show to be half the size compared to that for the US, is likely
near the bottom of the range for similar countries. This, in combination with the possibility
that low exposure occupations in other countries have a larger percentage of high exposure
outside options, suggests that spillover effects of climate change to low exposure workers

might be higher in other countries as well.
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Conclusion

In this dissertation, I explore three settings where climate change threatens human well-
being. In the first, my coauthors and I show that extreme heat increases financial distress
for low-income households in California. In the second, my coauthors and I show evidence
of heterogeneous dietary impacts of hot weather during the most recent crop growing period
in rural India. We find that those negatively affected are likely already worse off than those
who are able to adapt. In the third, I show that there exists a high degree of segmentation
between the labor markets for high and low exposure occupations in France. This finding

suggests that adapting to climate change by changing occupations will likely be difficult.

Together, these studies show substantial within-geography heterogeneity in climate im-
pacts. They suggest that the costs of adaptations to extreme weather events are, for some,
prohibitively high. Understanding the nature of these costs and how to mitigate them is an
important step in designing appropriate policy responses. In some cases, like the labor mar-
ket, crafting the right policies will require an understanding of the power dynamics between

different groups.

Future Work: Power Dynamics and Climate Adaptation

In March 2024, California Governor Gavin Newsom decided to yet again delay adopting heat
illness prevention regulations for indoor workers. California has had similar legislation for
outdoor workers since 2006, and there is evidence that heat can also affect indoor work-

ers (Park et al., 2021). The Newsom administration withdrew approval for the upcoming
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vote because it learned that the rule would be too expensive for state prisons. Workers in
California’s warehouses, manufacturing plants and restaurants will have to wait for legal
protections against heat exposure in order to accommodate the budgetary needs of prisons.
The California Division of Occupational Safety and Health (Cal/OSHA) has since decided
to revise the legislation with an exemption for prisons, a process that could take several
weeks (Kuang, 2024a). This law would be so expensive for prisons because it would require
significant infrastructure investments. California’s prisons, including many in the desert,
lack air conditioning, a growing problem under a warming climate (Kuang, 2024b). In order
to keep temperatures during heat waves at levels optimal for human health, prisons would

have to pay for prisoners’ comfort.

This dynamic represents an extreme version of the climate adaptation decision settings
that I am most interested in studying in the future: ones where the costs and benefits
of adaptation investments belong to different groups. These situations arise within the
labor market, but also in other settings such as landlord-tenant relationships and, indeed,
in correctional facilities. Power imbalances between these groups make it less likely for
mutually optimal levels of adaptation investments to materialize. For example, landlords
or firms with high market share are less likely to need to install air conditioners to retain

workers or tenants.

My interest in how power dynamics affect adaptation was spurred by the experiences of
food systems workers during the COVID-19 pandemic. Due to meatpacking firms’ reluctance
to slow down production for worker safety, over 50,000 meatpacking workers in the US
contracted COVID-19, with 250 deaths (Marks, 2022). During California’s wildfire season
of 2020, which coincided with the height of the pandemic, there were widespread accounts
of farmworkers laboring in smoky conditions without a mask (Mahoney, 2020). As reports
of these types of incidents multiplied, I sought to better understand why workers in such an
important industry seemed to have so little protection during this crisis, despite the costs of

some adaptations, such as providing masks to farmworkers, seeming relatively low.
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Through historical and ethnographic accounts of agricultural and meatpacking workers,
I learned that labor power dynamics might offer an explanation for this lack of protections.
The nature of these dynamics in the meatpacking industry, for example, has undergone a
cyclical evolution. In the early 1900s, the industry was dominated by a small number of large
firms that hired from an ever-growing pool of Eastern European immigrants. As described
in Upton Sinclair’s 1906 novel The Jungle, worker safety and pay were abysmal. By the
1970s, however, the industry was comprised of many small firms and a heavily unionized
workforce. Workers reaped the benefits of this new regime: wages for meatpacking workers
were 20 percent higher than those of the average factory worker (Schlosser, 2006). Today,
however, the industry is even more consolidated than in the era of The Jungle. Currently,
the four largest companies control over 80% of the product market (Bolotova, 2022). In
addition, meatpacking plants have broken worker unions through a combination of tactics
including relocating from urban areas to rural regions with low employment prospects, and
hiring Latin American immigrants, many of whom are undocumented. Meatpacking workers

today are paid 24 percent lower than the typical factory worker (Schlosser, 2006).

Climate adaptation is a form of worker compensation that differs from wages in some
important ways that motivate studying it separately. First, in theory, firms have more
flexibility to dictate levels of adaptation investments. In contrast to minimum wage laws,
heat illness prevention laws are relatively uncommon (OSHA, 2024). To the extent that
these laws do exist, they are also more difficult to enforce: while minimum wage violations
can be documented with pay stubs and rectified retroactively, these options are both more
complicated for heat protection. In California’s scattered farmlands and construction sites,
an understaffed Cal/OSHA has a limited ability to enforce its heat illness protections (Riley
et al., 2012). In addition, showing that an injury was caused by lack of heat protections is
difficult, thereby complicating any grievance process. Second, as I note in my introduction,
firms themselves may underestimate the benefits of climate control, whereas they are more
likely to understand the tradeoffs involved with setting wages. Enhanced power, for example

via stronger unions, might help workers enforce existing laws or bargain for adequate heat
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protections. Impending climate change only makes understanding these dynamics more

urgent.

As I learned, the intense power imbalances in the American food industry have deep
roots. Large-scale agriculture in the United States began with the labor of enslaved Africans
and Indigenous People (Reséndez, 2016). The 1935 National Labor Relations Act, which
grants the right to form unions, excludes agricultural workers from its protections.! Today,
an estimated 50% of farm laborers in the United States are working without proper legal
authorization (Hernandez and Gabbard, 2019). In addition, through the H-2A visa program,
which offers no pathway to citizenship, over 200,000 foreign workers obtain visas for seasonal
work under a specific agricultural employer (Luckstead and Devadoss, 2019). These workers’
legal status in the US is entirely dependent on working for the assigned employer, setting

the stage for the well-documented abuse of workers in the program (Stockdale, 2012).

The power dynamics between food workers and their employers are driven by structural
forces which extend far beyond the workplace itself. Agricultural producers face market
pressures such as overseas competition or food distributors with the ability to dictate prices.
These pressures require cost cutting, and hiring workers with few other options for employ-
ment helps keep labor costs low (Holmes, 2013). This situation makes addressing the power
imbalances at the workplace level difficult. Unions are one option that workers can typically
use to counteract firm power and demand better compensation. However, there is little scope
for farms to raise their wages, due to their thin profit margins. A farm with a unionized and
more expensive workforce, unable to raise its prices, becomes more likely to go out of busi-
ness (Kumar, 2020). Ultimately, workers who are most vulnerable to the effects of climate
change are suffering the combined weight of multiple complementary forces. My goal is to

understand where policy can help to alleviate some of these pressures.

As T see it, quantitative researchers can play in important role in this area. First, by

helping to understand how power dynamics causally affect adaptation decisions, we could

!By many accounts,