
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title

Safe Control for Mobile Robots via Reference Governor Techniques

Permalink

https://escholarship.org/uc/item/79f4m63f

Author

Li, Zhichao

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/79f4m63f
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Safe Control for Mobile Robots via Reference Governor Techniques

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Intelligent Systems, Robotics, and Control)

by

Zhichao Li

Committee in charge:

Professor Nikolay Atanasov, Chair
Professor Massimo Franceschetti
Professor Sylvia Herbert
Professor Sonia Martinez Diaz
Professor Yang Zheng

2023

Copyright

Zhichao Li, 2023

All rights reserved.

The Dissertation of Zhichao Li is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

To my parents and wife. Thanks for their constant love and support.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . x

Acknowledgements . xi

Vita . xiii

Abstract of the Dissertation . xiv

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Related Works . 3

1.2.1 Graph Search Algorithms . 3
1.2.2 Safe Control and Trajectory Tracking . 4
1.2.3 Dynamics Learning . 7
1.2.4 Environmental Adaptive Motion Control and Planning 8

1.3 Overview . 9

Chapter 2 Safe Output Tracking via Reference Governor . 10
2.1 Problem Formulation . 10
2.2 Output Regulation without Constraints . 11
2.3 Safe Output Regulation via PBF . 13
2.4 Safe Output Tracking using a Reference Governor . 14
2.5 Evaluation . 20
2.6 Summary . 25

Chapter 3 Robust and Safe Autonomous Navigation for Systems with Learned SE(3)
Hamiltonian Dynamics . 26

3.1 Overview . 26
3.2 Problem Statement . 27
3.3 Learning SE(3) Hamiltonian Dynamics from Data . 29

3.3.1 Translation-Equivariant SE(3) Hamiltonian Dynamics Learning 30
3.3.2 Model Estimation Error as a Disturbance . 31

3.4 Stabilization of Hamiltonian Dynamics with Matched Disturbances 34
3.4.1 Passivity-based Control . 34
3.4.2 Robustness Analysis . 37

v

3.4.3 Safety Analysis . 39
3.5 Safe and Stable Tracking using a Reference Governor . 41
3.6 Application to Hamiltonian Dynamics in Rn . 45
3.7 Evaluation . 47

3.7.1 Evaluation of SE(3) Hamiltonian Dynamics Learning 49
3.7.2 Evaluation of Robust Safe Tracking Control of a Learned 2D Hexarotor

Hamiltonian Model . 49
3.7.3 Evaluation of Robust Safe Tracking Control of a Learned 3D Fully-

actuated Hexarotor Hamiltonian Model . 52
3.7.4 Evaluation of Robust Safe Tracking Control of a Learned 3D Quadrotor

Hamiltonian Model . 54
3.7.5 Evaluation of Our Approach against Unmodeled Noise 56

3.8 Summary . 57

Chapter 4 Environment Aware Safe Tracking using Planning and Control Co-Design . 59
4.1 Overview . 59
4.2 Directional Metric and Motion Prediction . 60

4.2.1 State-Dependent Directional Metric . 60
4.2.2 Trajectory Bounds Estimation for LTI System . 62
4.2.3 Trajectory Bounds Estimation for Unicycle-like Nonlinear Systems 65

4.3 Dynamic Safety Margin using SDDM . 68
4.3.1 DSM from Ellipsoid Trajectory Bounds . 68
4.3.2 DSM from Reachable Set Approximation . 69
4.3.3 DSM for Adaptive Control Law . 70
4.3.4 Evaluation of Dynamic Safety Margin . 71

4.4 Safety Aware Planning . 74
4.4.1 Costmap Design . 75
4.4.2 Planner Edge Cost Design . 76
4.4.3 Evaluation of Costmap Designs . 78

4.5 Safe Tracking via Reference Governor . 79
4.5.1 Governor Control Policy Design . 80
4.5.2 Governor Control Policy Extension for Moving Obstacles 82

4.6 Evaluation . 86
4.6.1 Hardware Overview. 86
4.6.2 Software Architecture . 87
4.6.3 Experiment Setup and Parameters . 88
4.6.4 Baseline Comparison . 89
4.6.5 Hardware Demonstration in Clutter Unknown Environment 91
4.6.6 Moving Obstacles Experiments . 92

4.7 Summary . 94

Chapter 5 Concluding Remarks . 97
5.1 Conclusion . 97
5.2 Future Work . 97

vi

Appendix A Proofs of Chapter 2 . 98

Appendix B Proofs of Chapter 3 . 101
B.1 Proof of Theorem 3 . 101

Bibliography . 106

vii

LIST OF FIGURES

Figure 2.1. The structure of the reference-governor controller . 15

Figure 2.2. A mobile robot with omnidirectional wheels . 20

Figure 2.3. Simulation result of output-tracking control of an omnidirectional mobile
robot navigating in an unknown environment . 22

Figure 2.4. Simulation result of output-tracking control of an omnidirectional robot in
an unknown environment . 23

Figure 3.1. Architecture of SE(3) Hamiltonian neural ODE network 32

Figure 3.2. Structure of the reference-governor tracking controller 41

Figure 3.3. Dynamics learning using SE(3) Hamiltonian neural ODE network for
hexarotor . 46

Figure 3.4. Comparison of position prediction errors between our method vs. GP model 48

Figure 3.5. Path tracking comparison our approach vs. GP-MPC 48

Figure 3.6. Safe navigation of a hexarotor system using learned model in a warehouse 51

Figure 3.7. Tracking error of a hexarotor system . 52

Figure 3.8. Tracking controller performance for hexarotor in warehouse simulation
with the ground truth model subject to a disturbance 53

Figure 3.9. Safe navigation of quadrotor system using learned model in a warehouse . 55

Figure 3.10. Tracking error of a quadrotor system . 56

Figure 3.11. Robustness result against unmodeled noise. 57

Figure 4.1. Directional metric vs symmetric metric . 61

Figure 4.2. Trajectory bounds comparison between a Euclidean metric and a quadratic
norm based SDDM . 65

Figure 4.3. Cone shape reachable set prediction for closed-loop unicycle system 67

Figure 4.4. Corridor Simulation . 71

Figure 4.5. Output peak curve along trajectory . 72

viii

Figure 4.6. Simulation of the robot-governor system navigate in an environment with
circular obstacles . 73

Figure 4.7. Snapshot of the robot-governor system navigating a cluttered maze 74

Figure 4.8. Simulation of robot-governor path following controller in C-shape environ-
ment . 75

Figure 4.9. Jackal unmanned ground vehicle . 76

Figure 4.10. Jackal costmap design . 77

Figure 4.11. Jackal race world ROS simulation with three different cost curve designs. 79

Figure 4.12. Geometric relationship of local safe zone, local projected goal and opti-
mized local goal . 81

Figure 4.13. System architecture overview of environment aware safe tracking control. 87

Figure 4.14. Safety test on ten random selected goals. 90

Figure 4.15. The result maze adaptivity experiment . 91

Figure 4.16. Hardware experiment in a large-scale collaborative working space 92

Figure 4.17. Costmap of a large-scale collaborative working space 93

Figure 4.18. Result of moving obstacle simulation with six dynamic obstacles at differ-
ent running speed and sizes . 94

Figure 4.19. Hardware experiment with Jackal robot and two moving obstacle 95

ix

LIST OF TABLES

Table 4.1. Three different costmap design parameters. 79

Table 4.2. Simulation quantitative result of three costmap designs. 79

Table 4.3. Parameter table of control gains. 89

Table 4.4. Parameter table of control gains used in moving obstacle simulation. 93

x

ACKNOWLEDGEMENTS

I would like to first express my deepest gratitude to my advisor Professor Atanasov for

his unwavering support and guidance throughout the entire journey of this dissertation. His

constant encouragement has been the driving force behind my research and my motivation to

excel. In addition, I extend my thanks to the members of my dissertation committee for their

invaluable insights and constructive feedback. Their contributions have played a pivotal role in

shaping this research.

I would also like to thank all my colleagues at Exisential Robotic Lab, without whom

my research would have no doubt taken five times as long. It is their support that helped me in

an immeasurable way. Special thanks to Thai Duong, for the intense insightful and discussions

in research, helping me doing experiments in day and night and bring many joys using his

humorous conversations. Thanks to Yinzhuang Yi and Zhuolin Niu, for spending heroic effort

helping me finish my last project and drag me out from lab and hiking outdoors to keep me fit.

Thanks to Zhirui Dai, thank you for helping me out with programming and answering stupid and

challenging questions with great patience.

I also like to thank my friends at UC San Diego, Weijian Xu, Songting Xu, Pengluo

Wang, Yangsheng Hu, Dan Li, Huan Yu. Thank you for helping me go through this long journey,

cheer me up when I am down, help me out when I am in trouble or ill and share happiness in

beautiful moments. I feel so grateful.

Finally, I would like to thank my parents and my wife for their constant support and

unconditional love. Thank you for always believing in me, encouraging me, and giving me great

freedom to explore my life. My accomplishment and success cannot happen without your love.

Chapter 2, in full, is a reprint of “Governor-parameterized barrier function for safe output

tracking with locally sensed constraints” by Zhichao Li and Nikolay Atanasov, which appears

in Automatica, Elsevier Press, 2023. The dissertation author was the primary investigator and

author of this paper.

Chapter 3, is based on material from the following papers. First, “Safe autonomous

xi

navigation for systems with learned SE(3) Hamiltonian dynamics” authored by Zhichao Li*,

Thai Duong* and Nikolay Atanasov, which appears in Learning for Dynamics and Control

Conference (L4DC), 2022. The dissertation author was the co-primary investigator and author of

this paper, (*equal contribution). Second, “Robust and Safe Autonomous Navigation for Systems

with Learned SE(3) Hamiltonian Dynamics” by Zhichao Li, Thai Duong and Nikolay Atanasov,

which appears in Open Journal of Control Systems, IEEE, 2022. The dissertation author was the

primary investigator and author of this paper.

Chapter 4, is based on material the following two papers. First, “Fast and safe path-

following control using a state-dependent directional metric” authored by Zhichao Li, Omur

Arslan and Nikolay Atanasov, which appears in International Conference on Robotics and

Automation (ICRA), IEEE, 2020. The dissertation author was the primary investigator and

author of this paper. Second, “EAST: Environment Aware Safe Tracking using Planning and

Control Co-Design” by Zhichao Li, Yinzhuang Yi, Zhuolin Niu and Nikolay Atanasov, is

currently being prepared for submission. The dissertation author was the primary investigator

and author of this material.

xii

VITA

2013 Bachelor of Engineering, Northwestern Polytechnical University

2016 Master of Science, Arizona State University

2016–2023 Research Assistant, University of California San Diego

2023 Doctor of Philosophy, University of California San Diego

FIELDS OF STUDY

Major Field: Electrical and Computer Engineering (Intelligent Systems, Robotics, and Control)

Studies in Guidance Navigation and Control System
Professor Chao Xing

Studies in Control Systems
Professor Armando Rodriguez

Studies in Robotics
Professor Nikolay Atanasov

xiii

ABSTRACT OF THE DISSERTATION

Safe Control for Mobile Robots via Reference Governor Techniques

by

Zhichao Li

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics, and Control)

University of California San Diego, 2023

Professor Nikolay Atanasov, Chair

This dissertation considers the problem of safe navigation for autonomous mobile robots

working in partially known and unknown environments with static and non-adversarial moving

obstacles. Given a geometric path generated by standard path planner, we develop reference-

governor based tracking control policy to continuous generate proper set-points along the path

for downstream low-level stabilizing controller. This new method systematically puts planning,

motion prediction and safety metric design together to achieve environmentally adaptive and safe

navigation. Our algorithm balances optimality in travel distance and safety regarding passing

clearance. Robots adapt progress speed adaptively according to the sensed environment, being

fast in wide open areas and slowdown in narrow passages and taking necessary maneuvers

xiv

to avoid dangerous incoming obstacles. Directional distance measure, motion prediction and

custom costmap are integrated properly to evaluate system risk accurately with respect to local

geometry of surrounding environments. Using such risk estimation, reference governor technique

and control barrier function are worked together to enable adaptive and safe path tracking in

dynamical environments. We validate our algorithm extensively both in simulations and hardware

platforms in challenging real-world environments.

xv

Chapter 1

Introduction

In recent years, there has been a rapid emergence of robot applications, thanks to advance-

ments in sensing technology and computation power. Robot systems are becoming increasingly

integrated into the human society in applications, such as autonomous transportation, factory

inspection, cleaning services, and medical robotics. Reliable robot navigation in unstructured

environments is a crucial aspect for enabling these services. As a result, there is a growing focus

on researching and developing certifiably safe yet efficient navigation algorithms.

1.1 Motivation

There are extensive works on classical motion planning computing optimal paths that

connect two states in a robot’s work space or configuration space. However, only a few of

these algorithms prioritize safety in defining optimality and the robot’s dynamics are often

ignored or greatly simplified. In algorithms like ARA* [70], RRT* [52], optimality is often

measured in terms of travel distance neglecting robot dynamics. Path clearance is often set to a

constant (bigger than the robot’s circumscribed radius). If this constant is small, the resulting

optimal paths usually hug obstacle boundaries tightly and introduce collision risk for downstream

tracking controllers (due to model uncertainty and external disturbances). If the constant is large,

it will cause a planner to return no path to areas connected by narrow passages. On the other

extreme, maximum clearance [11] can provide the most safe path, however, a much larger travel

1

distance may not be favorable for energy-efficiency reasons. Ideally, we want a planner that can

balance energy (travel distance) and safety (path clearance) and is able to reach feasible regions

without being overly close to obstacles.

In tracking controller design, the performance is usually measured in terms of tracking

error and speed. Such design works reasonably well for machines that operate in known,

controlled and static environments, like robot arm in manufacturer, airplane on the fly. But, there

are many robots applications (for example, floor cleaning robot or autonomous cars) have to work

in safe-critical and highly constrained dynamical environments. For these applications, solely

using tracking error and speed as objective becomes insufficient and less-favorable. In nature,

a intelligent agent tends to control its motion speed according to sensory data. For example,

a cat can go through a narrow tunnel or passage cautiously while running fast in wide open

area. An experienced driver will pay most attention to objects in front and adjust safe distance

properly according to speed, meanwhile being alert to lateral cars but not overly-reacting. From

these observations, we see that a good tracking control policy must can estimate risk quickly in

real-time and adjust its motion speed adapt to local environments. Plus, while pursuing along

the given path, it must be flexible to take necessary detour to reduce collision risk imposed by

moving objects. We would like to robot being aware to surrounding environments and can run

sufficiently fast when possible in wide-open area and slow down in highly constrained spaces.

Furthermore, it needs to pay attention to nearby moving obstacles and able to avoid potential

collision and resume to original task quickly.

To address above issues, we develop an environment aware and safe tracking by in-

tegrating planning and control design. First, we design a generic customizable cost function

connecting planning states and integrated in A* planning algorithm. By using distance-based

costmap, the planner generate natural (human-like) path balancing safety and clearance, favoring

custom clearance in wide open space while being able to go through tight passage. Next, by

adopting accurate motion prediction and directional metric, we estimate system running risk

with respect to locally sensed environments. Using this estimation, we develop new adaptive

2

reference-governor to track optimized path. It regulates robot motion speed and continuously

generate proper signal for low level controller, fast in empty space and slow down when go

through places while being reasonable fast in narrow passage. Finally, to handle moving obsta-

cles, we use control barrier functions (CBF) to optimized reference signal (allowing it being

away from given path) in minimally invasive fashion. Following this optimized goal, robot can

be alert to incoming obstacle and take necessary detours maneuver. When gaining enough safety,

robot can resume to original path quickly.

1.2 Related Works

1.2.1 Graph Search Algorithms

The problem of finding a feasible or optimal path (trajectory) connecting start and goal

points (states) has been investigated extensively [62]. Sampling-based methods like Probabilistic

Roadmap (PRM) [53], Rapidly-exploring Random Tree (RRT) [61] can quickly find a feasible

path even in large scale or high-dimensional space. Some algorithm like RRT* [52] can asymp-

totically converge to the optimal solution. But the non-deterministic property due to sampling

procedure and unpredictable intermediate result makes its usage limited especially when ap-

plication has fixed planning time requirements. Search-based motion planning algorithms like

A* [41] or jump point search (JPS) [40] can provide optimal path in a more consistent manner

and planning time is predictable. However, search-based algorithms can face scalability issues in

large-scale workspace or high-dimensional complex configuration space. If a hard planning time

constraints exists, algorithms like ARA* [70] and RTAA [56] can be used. In most graph search

algorithms, optimality is often equivalent to path length measured in workspace (for mobile

robots) and safety is either ignored or simply considered in terms of fixed path clearance. To

help further discussion, this type of graph search motion planning algorithm will be referred to

geometric planner.

3

1.2.2 Safe Control and Trajectory Tracking

Model predictive control (MPC) [14, 39, 17, 95, 76] is a well established approach

for constrained control that approximates an infinite-horizon optimal control problem with a

sequence of finite-horizon problems. With a suitable choice of terminal cost and constraints for

the finite-horizon problems, MPC guarantees recursive feasibility and asymptotic stability for

linear systems subject to polytopic state and control constraints [14]. Even if the system and

constraints are nonlinear, implicit MPC techniques solve the finite-horizon problems online using

sequential quadratic programming approximation [39]. In the context of trajectory tracking, the

safe set of system states is commonly approximated via polytopes, ellipsoids, or other convex

regions and collision checking is performed using linearized system models. In [33], robust

invariant sets are first computed offline, by treating the nonlinear part of the system dynamics

as a bounded disturbance, and then used to tighten the state and input constraints in a nominal

nonlinear MPC problem. Collision avoidance among multiple vehicles as well as static and

dynamic obstacles is considered in [90]. It is shown that this problem can be stated as a receding-

horizon linear program with mixed integer and linear constraints that account for the unsafe

regions.

Reference governor control (RG) [10, 36, 37, 34, 58] is an approach for enforcing

input and state constraints for a nonlinear system tracking a reference trajectory. Unlike MPC,

this technique may directly use the nonlinear system dynamics. It assumes that a control law

that stabilizes the system to an equilibrium point in the absence of constraints is available. A

virtual system, called a reference governor, is used to adaptively decide the rate of change of the

reference signal so that the pre-stabilized system can track it without violating the constraints.

The governor update rule is a key component of the design, typically involving constrained scalar

optimization [59]. A forward invariant set, such as the maximum state or output admissible set

for linear systems [36] or a Lyapunov function level set for nonlinear systems [37], is required to

solve the optimization problem efficiently. The explicit reference governor (ERG) formulation

4

[35] relies on Lyapunov function level sets to modify the reference governor velocity and enforce

the constraints without resorting to any online optimization. With an appropriate choice of

dynamic safety margin and navigation field, ERG control [78] can guarantee safe trajectory

tracking with a priori known obstacles. ERG control can be conservative because it enforces

constraints via Lyapunov function level sets, which implicitly requires all sublevel sets to be

forward invariant. Our prior work [67] shows that directional trajectory bounds can be computed

only for the actual initial state of a linear system, allowing fast and safe tracking control.

Reachability-based methods [19, 91, 21, 44] for safe control rely on precise reachable

set approximations for each system state. There are many ways to compute reachable sets

but funnels and Hamilton-Jacobi reachability techniques have been particularly effective in

trajectory tracking applications. A funnel is a tight outer approximation of the reachable

set around a reference trajectory. Sequential funnel composition [19] is a seminal work that

composes controllers, by guaranteeing that the goal point of each lies within the domain of

attraction of the next, to achieve complex system behaviors. Recent advances in sum-of-square

(SOS) programming allow efficient and accurate computation of funnels and their successful

application in safe navigation [96, 75]. Funnel computations are tied to a reference trajectory,

requiring the design of a funnel library [75], which faces a trade-off between the number of

pre-computed funnels and the computational complexity of composing them online. Contraction

theory [91] generalizes the funnel design to allow adaptation to any feasible nominal trajectory

online. Hamilton-Jacobi reachability techniques [8] approximate the complete reachable set

of a nonlinear system by solving a partial differential equation using dynamic programming.

Obtaining solutions for high-dimensional systems may be challenging without decomposition

methods that split the system into several low-order subsystems [21]. FaSTrack [44] is a safe

motion planning framework that employs a safe controller with a pre-computed tracking error

function. The tracking error function is defined over the relative state between a simplified

planning model and an accurate dynamics model, engaged in a pursuit-evasion game. Then, a

feasible path may be computed efficiently online using the simplified model while augmenting

5

the obstacles with the worst-case tracking error as a safety margin. Reachability-based Trajectory

Design (RTD) [60] adapts system decomposition techniques [21] to compute forward reachable

sets that provably bound the tracking error. Persistently feasible trajectories, ensuring the

existence of a new safe trajectory before a previous one is completed, are generated online based

on a discrete finite-set obstacle approximation.

Control barrier functions (CBF) [4, 5, 2] enable complex safety constraints that remain

linear in the control input of a control-affine nonlinear system. As mentioned earlier, this

leads to an elegant CLF-CBF-QP formulation, successfully utilized in safe-critical applications

[4, 15, 3, 99, 77]. CBF techniques are applied to trajectory tracking in [9, 93]. Barry et

al. [9] use SOS optimization to construct multiple polynomial barrier functions to ensure

collision-free navigation for an unmanned aerial vehicle, with potentially non-smooth transitions

among different reference trajectories. The complexity of this CBF construction, however,

increases drastically with the number of obstacles because each obstacle requires an additional

barrier function. Collision avoidance among multiple agents in the absence of other obstacles

is considered in [93]. A CBF is constructed by computing the infimum of a safety function

along closed-loop future trajectories, with the help of a pre-designed evading maneuver strategy.

Recently, a predictor-corrector collision avoidance algorithm for multiple systems was developed

in a MPC framework without explicit communication among the systems [89]. The host agent,

executing the algorithm, treats the differences between the predicted and observed control

actions of other agents as disturbances for a robust CBF-based quadratic program. Existing

CBF techniques, however, have not considered safe trajectory tracking in unknown cluttered

environments with arbitrary shape obstacles. Recent work proposes a support vector machine

learning approach [94] to classify safe and unsafe regions and synthesize a CBF constraint from

online sensor data.

Kinodynamic motion planning is another popular approach that trying to solve the

planning and control task at the same time. For example, [83] use linear-quadratic-regulation

(LQR) cost in steering function design and optimal control is used in [98] to connecting sampling

6

states. However, as pointed out by [82], locally optimal control, does not necessarily lead to

global optimality. Moreover, these methods often use simplified system dynamics to reduce

computation requirement. The potential tracking error due to model discrepancy can lead to

unsafe behavior.

1.2.3 Dynamics Learning

For safe critical applications, an accurate robot model is always preferred. This moti-

vated data-driven dynamics learning approaches, utilizing machine learning techniques, such

as Gaussian process (GP) regression [27, 51, 45] and neural networks [85, 23]. For physical

systems, recent works [74, 102, 28] design the model architecture to impose a Lagrangian or

Hamiltonian formulation of the dynamics [73, 47], which a black-box model might struggle to

infer. For Lagrangian dynamics, Lutter et al. [74] use neural networks to represent the mass and

potential energy in the Euler-Lagrange equations of motion. Meanwhile, Zhong et al. [102] use

a differentiable neural ODE solver [22] to predict state trajectories of a Hamiltonian dynamics

model, encoding Hamilton’s equations of motion. A trajectory loss function is back-propagated

through the ODE solver to update the Hamiltonian model parameters. Our prior work [28]

extends the neural ODE Hamiltonian formulation by imposing SE(3) constraints to capture the

kinematic evolution of rigid-body systems, such as ground or aerial robots. A Hamiltonian-based

model architecture also allows the design of stable regulation or tracking controllers by energy

shaping [102, 29, 28]. Interconnection and damping assignment passivity-based control (IDA-

PBC) [97], one of the main approaches for energy shaping, injects additional energy into the

system via the control input to achieve a desired total energy, which is minimized at a desired

regulation point. Instead of learning robot dynamics in continuous time, Saemundsson et al.

[88] design a variational integrator network to learn discrete-time Lagrangian dynamics. Havens

and Chowdhary [42] extend it by including control input in the model and use model predictive

control for stabilization.

7

1.2.4 Environmental Adaptive Motion Control and Planning

In the motion planning algorithm mentioned above, safety is considered as hard con-

straints. In safe tracking and planning works mentioned above, only system dynamics are

considered (in motion prediction). To achieve navigation behavior like smart agents, one needs

to develop environmental aware safety metric and integrate in planner and control design.

As mentioned in introduction, a good risk metric should jointly consider system motion

and surrounding environment. The author of [6] constructs a dynamic safety metric (DSM)

[35] using the difference of distance to obstacle and Lyapunov function. Using this DSM,

a navigation algorithm is developed using reference-governor techniques for a second order

fully-actuated system. In [67], the author develops a reference-governor path tracker using time-

varying ellipsoid motion predictions instead of using Lyapunov function induced invariant set. By

embedding directional preference and aligning it with given geometric path using state-dependent

directional metric (SDDM), the tracker pays less attention to lateral obstacles and achieves better

performance in corridor-like narrow passages. However, due to front-back symmetry, ellipsoid

shape trajectory bound prevents robot gaining speed when leaving obstacle-dense area. To

overcome this, EVA-planner [84] proposes environmental adaptive safety aware (EASA) by

evaluating angle difference using inner product of gradient of Euclidean signed distance filed

(ESDF) and robot motion direction. However, the volume of free space is neglected which might

result in path with insufficient clearance [71]. In this paper, we use the distance between an

accurate cone shape motion prediction [50] and inflated obstacle space in costmap to serve as our

DSM in governor design. Furthermore, by comparing directional DSM and regular, we construct

a SDDM-base gain to speed up robot longitudinal motion. The resulting tracker can go fast in

narrow passages and quickly speed up when leaving obstacle dense area.

8

1.3 Overview

The main contribution of this dissertation is developing a safe and adaptive tracking

controller design framework based on reference governor techniques. In specific, at Chapter 2,

we develop an adaptive tracking control policy based on reference governor techniques, which

bridges the gap between geometric planner and low-level stabilizing controller. In contrast to

existing work, by employing parameterized barrier function, our algorithms enable safe out-

put tracking for time-varying constraints that obtained from online sensor measurements. In

Chapter 3, we extend our safe tracking framework from feedback-linearizable system to more

complex nonlinear system modeled using Hamiltonian Dynamics. To address model uncertainty,

we use an ordinary differential equation network to learn the dynamics of a Hamiltonian system

from trajectory data. By exploiting the structure of passivity-based controller and associated

energy-based Lyapunov function, we extend our reference governor tracking control design

Hamiltonian model and analyze the robustness against uncertainty. Our Hamiltonian dynamics

learning and tracking control techniques are demonstrated on simulated hexarotor and quadrotor

robots navigating in cluttered 3D environments. In Chapter 4, we focus on improving adap-

tiveness of algorithm and extend our method to dynamical environments. We developed novel

state-dependent directional metric for accurate trajectory estimation and reachable set approxi-

mation. Together with distance-based costmap as input for path planner, adaptive safety metrics

allow the robot to adapt its behavior to sensed local environments, resulting control policy can

navigate the robot fast and safely in complex unknown environments. Furthermore, combining

CBF techniques, we propose a novel active governor control policy, allowing intermediate goals

temporarily deviated from reference signal, so robot is alert to surrounding dynamical obstacles

and take necessary action to avoid them. We validate our algorithm extensively at different robot

platforms both in simulated and physical worlds. The code is open source at here. In Chapter 5,

we summarized our work and pointed out future research directions.

9

https://zhl355.github.io/

Chapter 2

Safe Output Tracking via Reference Gov-
ernor

In this chapter, we introduce a reference governor design approach for the safe output

tracking problem. We formulate the safe output tracking control problem for a linear time-

invariant (LTI) system and cover background on output tracking. Next, we present our safe

output regulation method using parametric barrier functions (PBFs). Then, we present a safe

output tracking design using reference governor techniques and summarize the main result in a

theorem. Finally, we evaluate our algorithm using a simulated omni-directional robot which is a

feedback linearizable system.

2.1 Problem Formulation

Consider a linear time-invariant dynamical system:

ẋ = Ax+Bu, x(t0) = x0,

y = Cx,
(2.1)

where x ∈ Rn is the state, u ∈ Rm is the control input, y ∈ Rm is the output.

The goal of this chapter is to design a controller such that the output y of (2.1) tracks

a reference path without violating safety constraints or adhering to pre-defined time scaling.

To accommodate output constraints, we define an obstacle-free open set F ⊂ Rm and a closed

10

obstacle set O := Rm \F . Motivated by applications in autonomous system navigation, we

assume that the obstacle set O is not known a priori. Instead, the system can sense the distance

from its output y to O only locally with a limited sensing range β > 0:

ds(y,O) =


−min{d(y,∂O),β} if y ∈ int(O)

min{d(y,∂O),β} if y /∈ int(O)

(2.2)

where d(y,∂O) := mina∈∂O∥y−a∥. We denote the interior of a set A as int(A) and its closure

as cl(A).

Problem 1. Let P : [0,1] 7→ F be a continuous function specifying an output reference path for

the system in (2.1). Assume that P(0) = y(t0) ∈ F . Using local distance observations ds(y,O)

of the obstacle set O , design a control policy for (2.1) so that the output y(t) of the closed-loop

system converges asymptotically to P(1), while remaining safe, i.e., y(t) ∈ cl(F) for all t ≥ t0.

In robot navigation applications, a reference path P can be generated and updated online

by continuously mapping the occupied space using distance observations [80, 48] and replanning

a path in free space using a motion planning algorithm [62].

2.2 Output Regulation without Constraints

We first discuss stabilizing the output of (2.1) to an arbitrary fixed point g ∈ Rm without

constraints.

Problem 2. Design a sufficiently smooth function u = k(x,g) such that for any constant g ∈Rm,

the closed-loop system:

ẋ = Ax+Bk(x,g), x(t0) = x0,

y = Cx,
(2.3)

admits a g-parameterized equilibrium xg = Xg for some constant matrix X ∈ Rn×m and the

output y converges to g exponentially.

11

Theorem 1 ([32]). Let K ∈ Rm×n be such that (A+BK) is Hurwitz. If there exist matrices

X ∈ Rn×m and U ∈ Rm×n that satisfy the regulator equations:

0 = AX+BU,

0 = CX− I,
(2.4)

then there exists a static state-feedback controller that solves Problem 2:

k(x,g) = Kx+(U−KX)g. (2.5)

Proof. Let x̄ := x−Xg. Since X and U satisfy (2.4), the closed-loop system in (2.3) with k(x,g)

in (2.5) becomes:
˙̄x = Ax+B [Kx+(U−KX)g]

= (A+BK)(x̄+Xg)− (A+BK)Xg

= (A+BK)x̄,

y = Cx̄+g.

(2.6)

Since (A+BK) is Hurwitz by assumption, the closed-loop system in (2.6) is exponentially stable

with equilibrium xg = Xg and steady-state output y = g.

Assumption 1. The pair (A,B) is stabilizable and

rank

A B

C 0

= n+m (2.7)

Under Assumption 1, the regulator equations (2.4) are guaranteed to have a solution [49,

Theorem 1.9] and the static feedback controller in (2.5) solves Problem 2.

12

2.3 Safe Output Regulation via PBF

Section 2.2 showed how to regulate the output of (2.1) under Assumption 1 to a desired

reference point g. Next, we consider Problem 2 in the presence of output constraints. We

construct a g-parameterized barrier function (PBF) that quantifies the trade-off between safety

(distance from g to the obstacle set O in (2.2)) and the system energy. For controllable (A,B),

following Thm. 1, the energy of (2.3) can be measured by a g-parameterized quadratic Lyapunov

function [54]:

V (x;g) = (x−Xg)⊤P(x−Xg) , (2.8)

where P is the unique solution of the Lyapunov equation (A+BK)⊤P+P(A+BK) =−Q for

any positive-definite symmetric matrix Q ∈ Sn
>0. The Lyapunov function can be expressed as

V (x;g) = ∥x−Xg∥2
P using a quadratic norm ∥x∥P :=

√
x⊤Px on Rn defined by P ∈ Sn

>0. The

system output y = Cx is Lipschitz continuous with respect to ∥x∥P, allowing us to relate the

distance to the obstacle set O with the distance to the desired equilibrium xg = Xg.

Lemma 1. For any P ∈ Sn
>0 with Cholesky factorization P = LL⊤, there exists a global Lipschitz

constant L = λ
1/2
max(L−1C⊤CL−⊤) such that:

∥Cx1 −Cx2∥ ≤ L∥x1 −x2∥P, ∀x1,x2 ∈ Rn. (2.9)

Proof. The result follows from the generalized Rayleigh quotient.

Definition 1. Let V (x;g) be a g-parameterized Lyapunov function for output regulation to

g ∈ Rm. Let ds(g,O) be the truncated signed distance function to the obstacle set O in (2.2). A

g-parameterized barrier function (PBF) is:

b(x;g) := d2
s (g,O)−L2V (x;g) (2.10)

where L is the Lipschitz constant in (2.9).

13

Proposition 1. Let g ∈ F . Consider the closed-loop system in (2.3) with controller in (2.5).

The set S (g) := {x | b(x;g)≥ 0} is positively invariant and the output y(t) converges to g

asymptotically without violating the output constraints, i.e., y(t) ∈ cl(F) for all t ≥ t0.

Proof. For fixed g, the time derivative of b(x;g) is strictly positive, ∂b
∂x ẋ =−L2 ∂V

∂x ẋ > 0, because

V (x;g) is a Lyapunov function. Hence, S (g) is forward invariant. Thm. 1 guarantees that

y(t)→ g and x(t)→ xg = Xg. Finally, we show that, if x0 ∈ S (g), then y(t) ∈ cl(F) for all

t ≥ t0. Since the time derivative of b(x;g) is positive, b(x(t);g) ≥ b(x0;g) ≥ 0 for all t ≥ t0.

From (2.4),(2.9) and (2.10):

b(x(t);g)≤ d2(g,∂O)−L2∥x(t)−xg∥2
P

≤ d2(g,∂O)−∥Cx(t)−g∥2.

(2.11)

Hence, for all t ≥ t0, ∥y(t)−g∥ ≤ d(g,∂O), and since g ∈ F , y(t) ∈ cl(F) for all t ≥ t0.

Remark 1. Proposition 1 and the remaining results in the paper hold when only a subspace of

Rm is constrained. Assume, without loss of generality, that only the first m1 ≤ m dimensions

are constrained so that O = O1 × /0m−m1 , F1 = Rm1 \O1, and F = F1 ×Rm−m1 . The results

can be extended by defining d(y,∂O) := minb∈∂O1∥b−P1y∥, where P1 = [I,0] ∈ Rm1×m is a

projection matrix. For example, noting that ∥P1y−P1g∥ ≤ ∥y−g∥, ∀y,g ∈ Rm, (2.11) implies

that

min
b∈∂O1

∥b−P1g∥ ≥ ∥P1y(t)−P1g∥,

i.e., P1y(t) ∈ cl(F1), which means that y(t) ∈ cl(F).

2.4 Safe Output Tracking using a Reference Governor

Section 2.3 discussed output regulation to a static reference point g using a PBF to

quantify safety. In this section, we develop an approach to adaptively change the regulation

point g(t) so that the output of the closed-loop system in (2.3) tracks the desired path P safely.

14

Reference Governor

Prestabilized System

Gvn.
State

Adaptive Risk Prediction

Local Projected Goal

Orignal System

Trasformed Plant

Dynamic
Safety
Margin

Figure 2.1. The structure of the reference-governor controller. A virtual governor system
with state g adaptively tracks the desired reference path P while ensuring that the output of a
prestabilized system can track g.

Our control design consists of two parts: a virtual reference governor system whose state g(t)

adaptively moves along the path P and the closed-loop system in (2.3), tracking the time-varying

reference point Xg(t). The structure of the reference-governor controller is visualized in Fig. 2.1.

Definition 2. A reference governor is a linear system:

ġ =−kg (g− ḡ) (2.12)

with gain kg > 0, state g ∈ Rm, and input ḡ ∈ Rm.

We show that the slackness in the PBF safety metric in (2.10) can be used to move

the governor state g along the reference path P without endangering safety or stability of the

closed-loop system in (2.3).

Definition 3 ([78]). A continuous function ∆E(x,g) : Rn ×Rm 7→ R is a dynamic safety margin

(DSM) for the closed-loop system in (2.3) if:

1. ∆E(x,g)≥ 0 =⇒ ds(Cx,O)≥ 0,

2. ∆E(x0,g) = 0 =⇒ ∆E (x(t),g)≥ 0, ∀t ≥ t0,

15

3. for all δ > 0, there exists ε > 0 such that

ds(g,O) ≥ δ =⇒ ∆E(xg,g)≥ ε .

A DSM is a measure of system safety, i.e., larger ∆E means that the system is safer

with respect to the output constraints. The first condition requires that non-negative ∆E implies

that the system is safe at the current moment, while the second condition requires certification

of safety forward in time for fixed g. The last condition requires that the DSM captures the

slackness in the safety constraints.

Lemma 2. For g ∈F , the g-parameterized barrier function in (2.10) is a dynamic safety margin

for the closed-loop system in (2.3): ∆E(x,g) = b(x;g).

Proof. From (2.10), (2.8), (2.9), and (2.2):

∆E(x,g)≥ 0 =⇒ d2
s (g,O)≥ L2∥x−Xg∥2

P

=⇒ ds(g,O)≥ ∥Cx−g∥

=⇒ d(g,∂O)≥ ∥Cx−g∥

(2.13)

Since g ∈F the last inequality implies that y = Cx ∈ cl(F) and, hence, ds(Cx,O)≥ 0. The sec-

ond requirement of Def. 3 follows from Proposition 1. The last one holds with ε = min
{

δ 2,β 2}:

b(xg;g) = d2
s (g,O)−0 ≥ min

{
δ 2,β 2}= ε .

In the rest of the paper, we study the case of a moving governor g(t). We denote the

Lyapunov function and PBF by V (x,g) and b(x,g), instead of V (x;g) and b(x;g), to emphasize

the fact that g(t) is time-varying. To guarantee safe output tracking, the input ḡ of the governor

system in (2.12) must be chosen by jointly considering the geometry of the local safe space

and the activeness of the prestabilized system. This trade-off is captured by the PBF b(x,g).

We define a set of feasible governor inputs that will not violate the safety or stability for the

closed-loop system in (2.3).

16

Definition 4. A local safe zone is a time-varying set, determined by the joint system-governor

state (x,g), a dynamic safety margin ∆E(x,g), and a constant l > 1:

L S (x,g) :=
{

q ∈ Rm | ∥q−g∥2 ≤ l−1
∆E(x,g)

}
. (2.14)

Remark 2. The constant l > 1 in Def. 4 is needed to ensure that L S (x,g) ⊂ F . When

∆E(x,g) = 0, L S (x,g) = {g} ⊂ F . If ∆E(x,g)> 0, then for any q ∈ L S (x,g), ∥q−g∥2 <

∆E(x,g)≤ d2
s (g,O), which implies that ∥q−g∥< ds(g,O), i.e., q ∈ F .

We show, in the proof of Thm. 2 below, that choosing ḡ ∈ L S (x,g)⊂ F ensures that

system safety is guaranteed and the governor trajectory g(t) lies in F and always eventually

makes ∆E(x,g) strictly positive until reaching P(1). To make the governor progress along the

reference path P and lead the closed-loop system, we choose the governor input ḡ as the furthest

point along P that is contained in L S (x,g).

Definition 5. A local projected goal at system-governor state (x,g) is a point ḡ ∈ L S (x,g)

that is furthest along the reference path P:

ḡ = P(σ̄), σ̄ = argmax
σ∈[0,1]

{σ | P(σ) ∈ L S (x,g)} . (2.15)

We summarize the closed-loop dynamics for the joint (x,g) system controlled by the

output regulator in (2.5) and the reference-governor control law in (2.15):

ẋ = (A+BK)(x−Xg), (2.16a)

ġ =−kg (g− ḡ) , (2.16b)

y = Cx (2.16c)

Theorem 2. Given a reference path P , consider the closed-loop system in (2.16). Suppose that

17

the initial state (x0,g0) satisfies:

∆E(x0,g0)> 0, g0 = P(0) = y(t0) ∈ F , (2.17)

where ∆E(x,g) is the dynamic safety margin in (2.10). Then, the joint state (x,g) converges to

(XP(1),P(1)) without violating the output constraints, i.e., y(t) ∈ cl(F), ∀t ≥ t0.

Proof. The proof consists of three parts. First, we prove that the dynamics in (2.16) are updated

continuously. Second, we show that the output constraints are not violated under (2.16). Last,

we prove that the joint system (2.16) has a unique stable equilibrium point at (XP(1),P(1)).

First, we show that the DSM ∆E(t) := b(x(t),g(t)) is continuous. In Lemma 6, we

prove that ∥ġ(t)∥ is uniformly bounded by kgβ
√

l−1 and therefore g(t) is continuous. Then,

since the truncated signed distance function ds(g(t),O) is continuous (Lemma 7) and V (x,g) is

continuous in (x,g), we show in Lemma 8 that ∆E(t) is also a continuous function in t. The state

x is regulated by a static feedback controller k(x,g) and is also continuous. Hence, the system

dynamics in (2.16) are updated continuously.

Second, we prove that safety is ensured, i.e., for all t ≥ t0, y(t) ∈ cl(F), when g(t) is

changing according to (2.16b). Lemma 10 shows that the set

S := {(x,g) ∈ Rn ×Rm | ∆E(x,g)≥ 0}

is positively invariant for the closed-loop system in (2.16). Hence, ∆E(t)≥ 0 for all t ≥ t0 and,

by the first property of a dynamic safety margin in Def. 3, ds(y(t),O)≥ 0 for all t ≥ t0. In detail,

initially g0 = y0 = P(0) ∈ L S (x0,g0) and ∆E(t0)> 0. The local projected goal ḡ in (2.15)

is well defined and moves along the reference path P , i.e., σ̄ in (2.15) increases. As g tracks

ḡ using (2.16b), the system state x tracks Xg using the controller in (2.5). During this process,

the DSM ∆E(t) = b(x(t),g(t)), as the difference of d2
s (g,O) and the scaled Lyapunov function

V (t), is fluctuating and regulating the rate of change of g (see Fig. 2.3). Lemma 9 shows that for

18

x̄ = x−Xg:

V̇ (t)≤−x̄(t)⊤Qx̄(t)+2∥X⊤Px̄(t)∥∥ġ(t)∥,

D+∆E(t)≥−2kgM(t)
√

∆E(t)/l +L2x̄(t)⊤Qx̄(t),

where D+∆E(t) is the lower-right Dini derivative and M(t) is bounded pointwise in time. By

continuity, ∆E(t) cannot become negative instantaneously without crossing 0 at some time t = T0.

Lemma 9 shows that ∆E(T0 +h) will bounce back from 0 to a strictly positive number after any

such time T0.

Finally, we show that the joint state (x,g) converges to (XP(1),P(1)) under the

dynamics in (2.16). Note that g(t) ∈ L S (x(t),g(t)) and, from Remark 2, g(t) ∈ F for all

t ≥ t0. If g = P(1), then P(1) ∈ L S (x,g), σ̄ = 1, and ḡ = P(1) in (2.15). Then, ġ ≡ 0 and

the output regulator in (2.5) drives x to XP(1). Hence, (XP(1),P(1)) is an equilibrium point

for (2.16). From Lemma 9, whenever ∆E(t) = 0 at an arbitrary time t = Ti, it becomes strictly

positive after some time hi. Then, at ti = Ti +hi, the joint state (x(ti),g(ti)) satisfies:

∆E(ti)> 0, g(ti) ∈ F , (2.18)

and we are back to the case from the beginning. The local projected goal ḡ gets closer to P(1)

and guides the joint system. It is not possible to have another equilibrium point because g(t)∈F

for all t ≥ t0 and, by the third DSM property in Def. 3, ∆E(Xg,g)≥ ε . From Def. 5, ḡ(t) can

only stop moving at P(1) when ∆E(Xg,g)> 0. Hence, the joint system in (2.16) has a unique

stable equilibrium point at (XP(1),P(1)).

In summary, Thm. 2 shows that the control law:

π(x,g) = k(x,g), (2.19)

ġ =−kg(g− ḡ(x,g)), g0 = y(t0) = P(0),

19

1

2

3

Figure 2.2. A mobile robot with omnidirectional wheels.

combining the controller k(x,g) in (2.5) and the reference governor in (2.12), (2.15) solves

Problem 1 as long as the dynamic safety margin is strictly positive initially, ∆E(x0,g0) =

b(x0,g0)> 0.

2.5 Evaluation

This section evaluates our safe output-tracking controller on a simulated mobile robot,

measuring distances to obstacles in an unknown environment.

System Model. Consider a mobile robot equipped three identical Swedish omnidirec-

tional wheels [25], shown in Fig. 2.2. Let m be the mass and I be the inertia around the Zb

axis (perpendicular to the Xb, Yb plane in the body frame). The robot’s motion is described by

the position and orientation, (x,y,θ), of the body frame and the positions of φ1, φ2, φ3 of the

three wheels. The robot’s dynamics can be obtained using Euler-Lagrange equations subject to

pure-rolling non-holonomic constraints for the three wheels [25, 20]. When the non-holonomic

constraints are considered, the wheel positions φi may be eliminated, leading to the following

20

dynamics model:

M1R⊤(θ)


ẍ

ÿ

θ̈

=−J⊤1 J−1
3 µ, (2.20)

with:

R(θ) =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 , J1 =


−

√
3

2
1
2 d

0 −1 d
√

3
2

1
2 d

 ,

M1 = diag(m,m, I) , J3 = diag(r,r,r) ,

where d is the distance from the robot center to the wheels and r is the wheel radius. The input

µ ∈ R3 contains the generalized forces and torque.

We consider obstacles O1 ⊂R2 with no constraints on orientation, i.e., O = O1×{ /0}, as

shown in Fig. 2.3 and Fig. 2.4. As mentioned in Remark 1, the distance d(y,∂O) is defined as:

d(y,∂O) = min
b∈∂O1

∥P1y−b∥, (2.21)

where P1 = [I,0]. An output reference path P : [0,1] 7→F ⊂R3 is provided as shown in Fig. 2.3

and Fig. 2.4 with desired orientation fixed at 0.

Environment Sensing and Path Generation. In an unknown environment, the obstacle

set O1 is not known. In our simulations, a simulated Lidar sensor provides a set of points

P(t) := {pi(t)}i on the surface of the obstacle set O1, depending on the (position) output y(t),

with a maximum sensing range of β = 25. The distance from the governor to the obstacle set is

approximated as,

d(g(t),∂O)≈ min
p∈P(t)

∥P1g(t)−p∥. (2.22)

Note that, the same Lidar hit points P(t) from output depth measurement are used in above

expression. To obtain a feasible reference path P , an occupancy grid [48] is created and updated

21

0 50 100 150 200 250 300
0

50

100

150

200

Finish Time: 30.60 sec

nav path

rbt path

gvn path

0 50 100 150 200 250 300
0

50

100

150

200

Time: 12.50 sec

dist(g, O) = 20.16

0 5 10 15 20 25 30

0

200

400

600
d̄ 2(g,O)

∆E

V

0

Figure 2.3. Simulation result of output-tracking control of an omnidirectional mobile robot
navigating in an unknown environment. Top left shows the projection of the reference path P
and the paths followed by the system and the governor. Top right shows a snapshot at time t = 15.
The bottom plot shows the summary of safety metrics, indicating that safe navigation is achieved.

using the Lidar measurements (see Fig. 2.4). The grid map is discretized at resolution 0.5 m with

a 0.5 m inflation around the obstacles. The unknown obstacle set O1 is over-approximated by

the union Ô1(t) of all occupied cells up to time t. Using the latest map, the reference path P is

recomputed periodically using the A∗ motion planner [62]. Since Ô1(t) is an over-approximation

of O1, the re-planned reference paths lie within the free space F . A snapshot of the occupancy

grid map and one of the (re)planned paths (blue curves at top) are shown in Fig. 2.4.

Control Design. Observe that in equation (2.20), M1, R(θ), J1, J−1
3 are all invertible

matrices. Hence, this model is feedback linearizable. Let x := [x, ẋ,y, ẏ,θ , θ̇]⊤ ∈ R6 and y :=

22

Figure 2.4. Simulation result of output-tracking control of an omnidirectional robot in an
unknown environment with complex obstacles, sensed by a simulated Lidar. The bottom plot
is the corresponding occupancy grid map at resolution 0.5 m/cell, where gray cells represent
inflated obstacles (0.5 m inflation) and white cells represent free space.

[x,y,θ]⊤ ∈ R3 be the new state and output vector. Applying control input:

µ = J3J−⊤
1 M1R⊤(θ)u, (2.23)

transforms system (2.20) into a linear time-invariant form as in (2.1). Specifically, we have

block-diagonal matrices A = diag(A1,A2,A3), B = diag(b1,b2,b3), C = diag(c⊤1 ,c
⊤
2 ,c

⊤
3) with

elements Ai ∈ R2×2, bi ∈ R2, ci ∈ R2:

Ai =

0 1

0 0

 , bi =

0

1

 , ci =

1

0

 , (2.24)

for i = 1,2,3. It can be verified that Assumption 1 is satisfied, and the regulator equation (2.4) is

23

solved by X = C⊤ and U = 0.

With x̄ = (x−C⊤g), the state-feedback controller k(x,g) = Kx̄, with

K =−I⊗ [2.553,1.9478] ,

can drive the system output to an arbitrary reference g. To define the PBF ∆E(x,g) = b(x,g) in

(2.10), we choose a quadratic Lyapunov function V (x,g) = x̄⊤Px̄ with:

P = I⊗

1.7508, 0.7769

0.7769, 0.9739

 ∈ S6
>0, (2.25)

Lipschitz constant L ≈ 0.9403, computed using Lemma 1, and sensing range β = 25. The

governor control law in (2.12), (2.14), (2.15) is defined with l = 1.001 and kg = 1.0.

Simulation results. Throughout this chapter, we denotes governor state g as blue dot,

local projected goal ḡ as purple dot, obstacle distance d̄(g,O) as gray ball, and local safe zone

L S as yellow ball. Obstacles are denoted by gray circles or squares. The reference path is

depicted as solid black line, while governor path and robot trail are plotted as blue and green line

respectively.

Fig. 2.3 shows the behavior of the closed-loop joint system in a constrained output

tracking simulation. Our control policy (2.19) successfully enforces the locally sensed obstacle

avoidance constraints and drives the system to the goal configuration P(1). During this process,

∆E(t) (orange line) is determined by the difference in the size of the local free space and the

value of the Lyapunov function value V (t) (green line) as shown in the bottom plot. The governor

is controlled adaptively based on ∆E(t), slowing down when ∆E(t) is small and speeding up

when it is large. The value of PBF never crosses the zero line, indicating that safe navigation is

achieved.

In Fig. 2.4, we test our controller in a more challenging unknown environment with

non-convex obstacles. With the same controller parameters described above, the system reaches

24

the goal without collisions. The Lidar provides distance measurements (red dots) from the robot

position (green dot) to the obstacle set O1 (black surfaces). The reference path (blue curve) is

recomputed online from the governor position (blue dot) to a goal location (green star). The

local projected goal ḡ (purple dot) is computed based on the obstacle distance (gray ball) and the

local safe zone (yellow ball). Our algorithm can successfully drive the robot towards goal in this

unknown environment.

2.6 Summary

This chapter developed an output-tracking controller framework that provides formal

safety and stability guarantees for feedback-linearizable control-affine nonlinear systems. We

showed that reference-governor techniques can be extended to output tracking with distance

measurements to an unsafe set. A key component of our design was a governor-parameterized

barrier function, which uses the trade-off between the safe distance and the system Lyapunov

function to define a local safe set for the system and governor states. The slackness in the safe

set allows the governor to track the reference and the system to track the governor without

endangering safety or stability. Our approach allows safe autonomous navigation in a priori

unknown unstructured environments. The simple structure of the safety conditions in our

design offers a promising research avenue for safe control with learned and approximate system

dynamics and constraints. In the next chapter, we will extend the safe tracking framework to

learned dynamics for rigid-body systems.

Acknowledgements

Chapter 2, in full, is a reprint of “Governor-parameterized barrier function for safe output

tracking with locally sensed constraints” by Zhichao Li and Nikolay Atanasov, which appears

in Automatica, Elsevier Press, 2023. The dissertation author was the primary investigator and

author of this paper.

25

Chapter 3

Robust and Safe Autonomous Navigation
for Systems with Learned SE(3) Hamilto-
nian Dynamics

3.1 Overview

In this chapter, we consider both dynamics model learning and safe control synthesis

for rigid-body systems, whose states include position, orientation, and generalized velocity. We

assume that the system has an unknown dynamics model but, as a physical system, it satisfies

Hamilton’s equations of motion over the SE(3) manifold of positions and orientations. Given

state-control trajectories, from past experiments or collected by a human operator, we seek to

learn the system dynamics and design a tracking control law that handles safety constraints,

e.g., obtained from distance measurements to obstacles in the environment. In our preliminary

work [69], we learn a translation-equivariant Hamiltonian model of the system dynamics using

a physics-guided neural ODE network [28]. We use the Hamiltonian model to synthesize

an energy-shaping geometric tracking controller. The total energy of the system serves as a

Lyapunov function and enables us to enforce safety constraints during trajectory tracking using

a reference governor to regulate the difference between the system energy and the distance to

safety violation. However, our preliminary work [69] uses the learned Hamiltonian model as

the ground-truth dynamics and ignores the model estimation error in the control design. In this

26

paper, we capture the estimation error as a bounded disturbance applied to the learned system

and develop a robust safe tracking controller that takes the disturbance into account in the design

of the reference governor. Our Hamiltonian dynamics learning and tracking control techniques

are compared to a GP MPC technique [45] and are demonstrated in a 3D environment using a

simulated hexarotor robot to achieve collision-free autonomous navigation.

In summary, the contribution of this chapter is a tracking control design for Hamiltonian

systems with learned dynamics, which achieves robustness to model estimation errors and safety

with respect to state constraints.

3.2 Problem Statement

Consider a rigid body with position p ∈ R3, orientation R ∈ SO(3), body-frame linear

velocity v ∈ R3, and body-frame angular velocity ω ∈ R3. Let q= [p⊤ r⊤1 r⊤2 r⊤3]
⊤ ∈ SE(3)

denote the body’s generalized coordinates, where r1, r2, r3 ∈ R3 are the rows of the rotation

matrix R. Let ζ = [v⊤ ω⊤]⊤ ∈ R6 denote the body’s generalized velocity. The generalized

momentum p of the body is defined as:

p= M(q)ζ ∈ R6, (3.1)

where M(q)≻ 0 is the positive-definite generalized mass matrix. Let x=(q,p)∈ T ∗SE(3) denote

the state of the rigid body system on the cotangent bundle T ∗SE(3) of the SE(3) manifold. The

Hamiltonian, H (q,p), captures the total energy of the system as the sum of the kinetic energy

T (q,p) = 1
2p

⊤M−1(q)p and the potential energy U (q):

H (q,p) = T (q,p)+U (q). (3.2)

27

The evolution of the state x is governed by Hamilton’s equations of motion [66]:

ẋ = f(x)+G(x)u, x(t0) = x0,

=

 0 q×

−q×⊤ p×


∇qH (q,p)

∇pH (q,p)

+

 0

B(q)

u
(3.3)

where u ∈ R6 is the control input, e.g. force and torque or motor speeds for a UAV system,

B(q) ∈ R6×6 is an input gain matrix, and the operators q×, p× are defined as:

q× =

R⊤ 0 0 0

0 r̂⊤1 r̂⊤2 r̂⊤3


⊤

, p× =

pv

pω


×

=

 0 p̂v

p̂v p̂ω ,

 ,

where the hat map ŵ for w ∈ R3 is:

ŵ =


0 −w3 w2

w3 0 −w1

−w2 w1 0

 .

The Hamiltonian dynamics model in (3.3) can be extended to include energy dissipation in a

port-Hamiltonian formulation [97] such as friction or drag forces [103]. However, for clarity of

the control design, we leave this for future work.

We consider the case that the parameters of the Hamiltonian dynamics model in (3.3),

including the mass M(q), the potential energy U (q), and the input matrix B(q), are unknown.

Instead, we are given a trajectory dataset D = {t(i)0:N ,q
(i)
0:N ,ζ

(i)
0:N ,u

(i)
0:N−1}D

i=1 consisting of D

sequences of generalized coordinates and velocities (q(i)0:N ,ζ
(i)
0:N) at times t(i)0 < t(i)1 < .. . < t(i)N ,

collected by applying a constant control input u(i)
n to the system with initial condition (q

(i)
n ,ζ (i)

n)

for t ∈ [tn, tn+1) and n = 0, . . . ,N−1. Our objective is to learn the system dynamics from the data

set D and design a control policy u = π(x) such that the system follows a desired reference path

28

without violating safety constraints. Let O ⊂ R3 and F := R3 \O denote the unsafe (obstacle)

set and the safe (obstacle-free) set, respectively. Denote the interior of F as Int(F). We assume

that O is not known apriori but the distance d̄(p,O) from the system’s position p to O can be

sensed with a limited sensing range dmax > 0:

d̄(p,O) := min{d(p,O),dmax} , (3.4)

where d(p,O) := infa∈O∥p−a∥ denotes the Euclidean distance from p to the set O . The safe

tracking control problem considered in this paper is summarized below.

Problem 3. Let D = {t(i)0:N ,q
(i)
0:N ,ζ

(i)
0:N ,u

(i)
0:N−1}D

i=1 be a training dataset of state-control trajectories

obtained from a rigid-body system with unknown Hamiltonian dynamics in (3.3). Let r : [0,1] 7→

Int(F) be a continuous function specifying a desired position reference path for the system.

Assume that the reference path starts at the initial position at time t0, i.e., r(0) = p(t0) ∈

Int(F). Using local distance observations d̄(p(t),O) of the unsafe set O , design a control

policy π : T ∗SE(3) 7→ R6 so that the position p(t) of the closed-loop system with control law

u = π(x) converges asymptotically to r(1), while remaining safe, i.e., p(t) ∈ F ,∀t ≥ t0.

3.3 Learning SE(3) Hamiltonian Dynamics from Data

In this section, we design a dynamics model that can be learned from a previously

collected trajectory dataset, e.g., obtained from manual control, and is sufficiently general to

represent different mobile robots, such as cars and drones. We describe how to learn Hamilto-

nian dynamics from the dataset D = {t(i)0:N ,q
(i)
0:N ,ζ

(i)
0:N ,u

(i)
0:N−1}D

i=1, described in Sec. 3.2, using

translation-equivariant Hamiltonian-based neural ODE networks [28]. The mass M(q), the

potential energy U (q) and the input gain B(q) are approximated by neural networks. We show

that the model estimation errors caused by the trained neural networks can be considered as a

disturbance applied on the learned system.

29

3.3.1 Translation-Equivariant SE(3) Hamiltonian Dynamics Learning

Since the system dynamics does not change if we shift the position p to any points in the

world frame, we offset the trajectories in the dataset D so that they start from the position 0 and

learn the system dynamics well around the origin. This is sufficient for stabilization task, e.g.

using the controller design in Sec. 3.4, because driving the system from state x with position

p to a desired state x∗ with position p∗ is the same as driving the system from the state x with

position 0 to a desired state x∗ with offset position p∗−p.

Since the momentum p is not directly available from the dataset D , we use the time

derivative of the generalized velocity, derived from (3.1):

ζ̇ =

(
d
dt

M−1(q)

)
p+M−1(q)ṗ. (3.5)

Eq. (3.3) and (3.5) describe the Hamiltonian dynamics of the generalized coordinates and

velocities with unknown inverse generalized mass matrix M−1(q), input matrix B(q), and

potential energy U (q), for which we aim to approximate by three neural networks M−1
θ
(q),Bθ (q)

and Uθ (q), respectively, with parameters θ .

To optimize for the parameters θ , we use the Hamiltonian-based neural ODE framework

that encodes the Hamiltonian dynamics (3.3) and (3.5) with Mθ (q),Bθ (q) and Uθ (q) in the

network structure (Fig. 3.1). The forward pass rolls out the dynamics f̄θ described by (3.3)

and (3.5) with the neural networks Mθ (q),Bθ (q) and Uθ (q) using a neural ODE solver ([22])

with initial state (q
(i)
n ,ζ (i)

n). We obtain a predicted state (q̄
(i)
n+1, ζ̄

(i)
n+1) at times t(i)n+1 for each

n = 0, . . . ,N −1 and i = 1, . . . ,D as:

(q̄
(i)
n+1, ζ̄

(i)
n+1) = ODESolver

(
(q

(i)
n ,ζ (i)

n), f̄, t(i)n+1 − t(i)n ;θ

)
.

The loss function is defined as L = ∑
D
i=1 ∑

N
n=1 c(q(i)n ,ζ (i)

n , q̄
(i)
n , ζ̄

(i)
n) where the distance metric c

30

is defined as the sum of position, orientation, and velocity errors on the tangent bundle T SE(3):

c
(
q,ζ , q̄, ζ̄

)
= cp(p, p̄)+ cR(R, R̄)+ cζ (ζ , ζ̄), (3.6)

with the position error cp(p, p̄) = ∥p− p̄∥2
2, the velocity error cζ (ζ , ζ̄) = ∥ζ − ζ̄∥2

2, and the

rotation error cR(R, R̄)= ∥
(
log(R̄R⊤)

)∨ ∥2
2. The log-map log(·) : SE(3) 7→ so(3) returns a skew-

symmetric matrix in so(3) from a rotation matrix in SE(3), and the ∨-map (·)∨ : so(3) 7→ R3 is

the inverse of the hat map ˆ(·) in Sec. 3.2.

The network parameters θ are optimized using gradient descent by back-propagating the

gradient ∇θL of the loss through the neural ODE solver efficiently using adjoint method [22].

Specifically, let a = ∇q,ζ L be the adjoint state and s = ((q,ζ),a,∇θL) be the augmented state.

The augmented state dynamics are [22]:

ṡ = f̄s =
(

f̄θ ,−a⊤∇q,ζ f̄θ ,−a⊤∇θ f̄θ

)
. (3.7)

We obtain the gradient ∇θL by a single call to a reverse-time ODE solver starting from

sn+1 = s(tn+1):

s0 = (x̄0,a0,∇θL) = ODESolver(sn+1, f̄s, tn+1 − tn), (3.8)

for n = 0, . . . ,N −1, and update the parameters θ using gradient descent. Please refer to [22] for

more details.

3.3.2 Model Estimation Error as a Disturbance

Via the training process described in Sec. 3.3.1, we approximate the ground truth mass

M̃(q), potential energy Ũ (q) and input gain matrix B̃(q) with the learned mass Mθ (q) = M̃(q)+

∆Mθ (q), potential energy U (q)= Ũ (q)+∆Uθ (q), and input gain B(q)= B̃(q)+∆Bθ (q) where

∆Mθ (q),∆Uθ (q), and ∆Bθ (q) are the estimation errors. We drop the subscript θ to simplify the

notations. The generalized coordinates q and the ground-truth momentum p̃ := M̃(q)ζ , satisfy

31

Figure 3.1. Architecture of SE(3) Hamiltonian neural ODE network.

the Hamiltonian dynamics (3.3):

q̇= q×∇p̃H̃ (q, p̃) = q×ζ

˙̃p=−q×⊤
∇qH̃ (q, p̃)+ p̃×∇pH̃ (q, p̃)+ B̃(q)u

=−q×⊤
∇qH̃ (q, p̃)+ p̃×ζ + B̃(q)u,

(3.9)

with the ground-truth Hamiltonian

H̃ (q, p̃) =
1
2
p̃⊤M̃−1(q)p̃+ Ũ (q) =

1
2

ζ
⊤M̃(q)ζ + Ũ (q). (3.10)

Meanwhile, for the generalized coordinates q and the momentum p := M(q)ζ , the Hamiltonian

dynamics is learned from data and of the form:

q̇= q×∇pH (q,p) = q×ζ

ṗ=−q×⊤
∇qH (q,p)+p×∇pH (q,p)+B(q)u

=−q×⊤
∇qH (q,p)+p×ζ +B(q)u,

(3.11)

32

with the learned Hamiltonian

H (q,p) =
1
2

ζ
⊤M(q)ζ +U (q) = H̃ (q, p̃)+∆H (q,p),

and its estimation error ∆H (q,p) = 1
2ζ

⊤
∆M(q)ζ +∆U (q).

However, the learned dynamics (3.11) is only an approximation of the actual dynamics for

(q,p). While the dynamics of q does not change, the actual dynamics of the learned momentum,

p= M(q)ζ = p̃+∆p, where ∆p= ∆M(q)ζ , is derived from (3.9) as follows:

ṗ= ˙̃p+ ∆̇p

=−q×⊤
∇qH (q,p)+p×ζ +B(q)u

+q×⊤
∇q (∆H (q,p))−∆p×ζ −∆B(q)u+ ∆̇p.

=−q×⊤
∇qH (q,p)+p×ζ +B(q)u+d1,

(3.12)

where the force

d1 := q×⊤
∇q (∆H (q,p))−∆p×ζ −∆B(q)u+ ∆̇p, (3.13)

represents the effect of the model errors ∆M(q),∆U (q), and ∆B(q) and is considered as a

disturbance applied to the learned system (3.11). To improve the error d1 with respect to

the position p, we enforce translation-equivariance in the neural ODE model, as described in

Sec. III.A, and learn the model well around the origin. This allows us to offset any position

p to the well-learned region around the origin. To reduce the model error with respect to

orientation, we collect a training dataset that covers different regions of roll, pitch, and yaw

angles, e.g. by manually driving a UAV to different desired positions and yaw angles. A

promising approach to estimate the disturbance magnitude is to employ a Bayesian formulation

of the neural ODE network used to learn the dynamics model. A Bayesian model will provide

a posterior distribution, rather than point estimates, for the model parameters (i.e. M−1(q),

B(q), and U (q)), whose variance can be used to obtain parameter error bounds and, in turn, a

33

disturbance bound. Bayesian neural network models that can be used for dynamics learning

include Bayesian neural ODE networks [24, 100], neural stochastic differential equation (SDE)

networks [72], or Gaussian-process ODEs [43]. This motivates analyzing the robustness of our

control design in next section to the disturbance d1 caused by the model errors.

3.4 Stabilization of Hamiltonian Dynamics with Matched
Disturbances

As discussed in Sec.3.3.2, due to estimation errors in the dynamics learning process, the

learned system model satisfies Hamilton’s equations of motion in (3.3) subject to a matched

disturbance signal d1 : R 7→ R6:

q̇
ṗ

=

 0 q×

−q×⊤ p×


∇qH (q,p)

∇pH (q,p)

+

 0

B(q)

u+

 0

d1

 . (3.14)

We consider a passivity-based stabilizing controller for (3.14), and analyze its robustness with

respect to the disturbance signal d1 and its safety with respect to the obstacle set O .

3.4.1 Passivity-based Control

Consider a desired regulation point x∗ = (q∗,p∗) for the system in (3.14) with generalized

coordinates q∗ = (p∗,R∗) and momentum p∗ = 0. Since the Hamiltonian H (x) may not have

a minimum at x∗, the control signal u in (3.14) should be designed to inject additional energy

Ha(x,x∗) into system and achieve a desired Hamiltonian Hd(x,x∗) =H (x)+Ha(x,x∗), which

is minimized at x∗. This is the approach followed by interconnection and damping assignment

passivity-based control (IDA-PBC) [81]. Let xe = (qe,pe) denote the error in generalized

34

coordinates and momentum:

Re = R∗⊤R =

[
re1 re2 re3

]⊤
pe = p−p∗

qe =

[
p⊤

e r⊤e1 r⊤e2 r⊤e3

]⊤
pe = p−p∗.

(3.15)

A possible choice of Hd(x,x∗), minimized at x = x∗, is:

Hd(x,x∗) = T (qe,pe)+Ud(qe) =
1
2
p⊤e M−1(qe)pe +

kp

2
∥pe∥2 +

kR
2

tr(I−Re) (3.16)

where kp and kR are positive scalars.

The IDA-PBC method [28, 81] designs a controller u = π(x,x∗) such that the closed-loop

dynamics of the system in (3.14) are governed by the desired Hamiltonian in (3.16) as:

q̇e

ṗe

=

 0 J(x,x∗)

−J(x,x∗)⊤ −Kd


∇qeHd(x,x∗)

∇peHd(x,x∗)

+

0

d

 , (3.17)

where the terms J(x,x∗), Kd , and d in the transformed dynamics depend on the control design.

To obtain the controller, one uses the relationship between x and xe in (3.15) to equate the

dynamics in (3.14) and (3.17), leading to:

u = π(x,x∗) = B†(q)b(x,x∗), (3.18)

where B†(q) = (B⊤(q)B(q))−1B⊤(q) is the pseudo-inverse of the input gain B(q) and:

b(x,x∗) =
(
q×⊤

∇qH (x)−p×∇pH (x)−J(x,x∗)⊤∇qeHd(x,x∗)−Kd∇peHd(x,x∗)
)

(3.19)

35

with J(x,x∗) :=

R⊤ 0 0 0

0 r̂⊤e1 r̂⊤e2 r̂⊤e3


⊤

. If the IDA-PBC matching equations [13],

B⊥(q)b(x,x∗) = 0, (3.20)

are satisfied, where B⊥(q) is a maximal-rank left annihilator of B(q), i.e., B⊥(q)B(q) = 0, then

the controller in (3.18) achieves the desired closed-loop dynamics in (3.17) with d = d1, i.e.,

without introducing any extra disturbance.

If the matching equations (3.20) cannot be satisfied globally, i.e., the IDA-PBC controller

does not solve the system B(q)u = b(x,x∗) exactly, then π(x∗,x) = B†(q)b(x,x∗) is a least-

squares solution. In this case, the residual,

d2 :=
(

B(q)B†(q)− I
)

b(x,x∗), (3.21)

is introduced as an additional matched disturbance:

d = d1 +d2 (3.22)

in the closed-loop dynamics in (3.17). Since the magnitude of d2 is proportional to that of

b(x,x∗), it depends on the desired regulation point x∗. An underactuated quadrotor system

example is provided in Sec.3.7.4.

In general, the matching equations (3.20) are nonlinear PDEs and can be solved explicitly

only for certain cases [13]. If B(q) is invertible, i.e., the system in (3.14) is fully-actuated,

then the solution in (3.18) exists and is unique. For systems with underactuation degree 1, the

matching equations may be reduced to ODEs with closed-form solution [38] or solved with

certain desired kinetic energy [1]. Yuksel et al. [101] solve the matching equations specifically

for stabilizing a quadrotor system, using Euler angles instead of a rotation matrix. A survey on

36

this topic is available in [13].

3.4.2 Robustness Analysis

In this section, we analyze the stability and robustness with respect to the disturbance

signal d in (3.22) of the IDA-PBC controller in (3.18). Although the techniques we developed for

dynamics learning in Sec. 3.3 and control synthesis in Sec. 3.4.1 did not make any assumptions

about the Hamiltonian system in (3.14), our robustness and safety analysis that follows is

developed under two assumptions.

Assumption 2. The disturbance signal (3.22) is uniformly bounded, i.e., ∥d∥ ≤ δd for some

constant δd > 0.

Assumption 3. The generalized mass matrix is constant, i.e., M(q)≡ M.

Without Assumption 2, it is not possible to provide any performance guarantees for the

control design because the disturbance d can have an arbitrary effect on the evolution of the

closed-loop system dynamics. The disturbance magnitude bound δd exists if we assume bounded

estimation errors, bounded velocity and acceleration, bounded ∇q (∆H (q,p)), and bounded

control input u from the controller (3.18).

Our robustness analysis in Thm. 3 below constructs an ISS-Lyapunov function [92] to

handle the disturbance d. Assumption 3 simplifies the proof that we have a valid ISS-Lyapunov

function. Extending the analysis to handle a state-dependent mass M(q) is left for future work.

We simplify the error dynamics (3.17) by noting that:

e(x,x∗) := J(x,x∗)⊤∇qeHd(x,x∗) =

 kpR⊤pe

1
2kR

(
Re −R⊤

e
)∨
 ,

which leads to:
q̇e = J(x,x∗)M−1pe,

ṗe =−e(x,x∗)−KdM−1pe +d.
(3.23)

37

Theorem 3. Consider the Hamiltonian system in (3.14) with desired regulation point x∗ = (q∗,0)

and control law specified in (3.18) with parameters kp, kR, Kd. Assume that the initial state

x(t0) lies in the domain A =
{

x | tr(I−R∗⊤R)≤ α < 4,∥p∥ ≤ β
}

for some positive constants

α and β . Then, the function:

V (x,x∗) = Hd(x,x∗)+ρ
d
dt

Ud(qe) (3.24)

is an ISS-Lyapunov function [92] with respect to d in (3.22) and satisfies:

k1∥z∥2 ≤ V (x,x∗)≤ k2∥z∥2,

V̇ (x,x∗)≤−k3∥z∥2 + kγδ
2
d ,

(3.25)

where z := [∥e(x,x∗)∥ ∥pe∥]⊤ ∈ R2, kγ =
1

2λmin(Kd)
+

ρλ 2
2

2λ1
, λ1 := λmin(M−1), λ2 := λmax(M−1),

k1 =
1
2λmin(Q1), k2 =

1
2λmax(Q2), k3 =

1
2λmin(Q3), and the associated matrices Q1, Q2, Q3 are

defined as:

Q1 =

min
{

k−1
p ,k−1

R
}
−ρλ2

−ρλ2λ1

 Q2 =

max
{

k−1
p ,

4k−1
R

4−α

}
ρλ2

ρλ2λ2

 Q3 =

q1q2

q2q3

 , (3.26)

where the elements of Q3 are:

q1 = ρλ1,

q2 =−ρ
[
λmax(M−1KdM−1)+βλ

2
2
]
,

q3 = λmin(Kd)λ
2
1 −2ρλ

2
2 max

{
kp,kR

}
.

(3.27)

Denote the sub-level set of V (x,x∗) with respect to positive scalar c as: Sc := {x | V (x,x∗)≤ c}.

38

Given constants c1, c2 defined as:

c1 :=
k2kγ

k3
δ

2
d , c2 := k1 min

{
k2

Rα(4−α)/4,β 2} , (3.28)

Sc2 ⊆ A is an estimate of the region of attraction of the control law in (3.18). Any state x

starting within Sc2 will converge exponentially to Sc1 and remain within it. The position error

trajectory pe(t) is uniformly ultimately bounded as:

lim
t→∞

∥pe(t)∥2 ≤ c1

k1k2
p
=

k2kγ

k1k3k2
p

δ
2
d . (3.29)

To ensure that c1 < c2, the disturbance bound δd should satisfy δd <
√

c2k3
k2kγ

.

Proof. See Appendix B.1.

The estimates of the region of attraction and the uniform ultimate bound on the position

error are provided by Thm. 3 for the IDA-PBC controller are conservative because our analysis

considers the mass and inertia jointly as a generalized mass M and does not differentiate the

force and torque disturbances. Besides considering separate disturbance bounds for the force and

torque inputs, less conservative bounds can be achieved by introducing disturbance compensation

as shown in [65].

3.4.3 Safety Analysis

Section 3.4.2 analyzed the stability and robustness properties of the IDA-PBC controller

for a given regulation point x∗. Next, we use the Lyapunov function V (x,x∗) in (3.24) to derive

conditions under which the trajectory of the closed-loop system remains outside the unsafe set

O . We introduce a barrier function, which takes the region of attraction Sc2 of the controller

and the invariant set Sc1 associated with the ultimate bound in Thm. 3 as well as the distance

39

d̄(p∗,O) to O into account to quantify the margin to safety violation:

∆E(x,x∗) := min
{

c2,k1k2
pd̄ 2 (p∗,O)

}
−V (x,x∗)+max{c1 −V (x,x∗),0} , (3.30)

where k1, kp, c1, c2 are the constants specified in Thm. 3. If, for a given regulation point x∗,

the safety margin ∆E(x,x∗) is positive initially, then any trajectory of the closed-loop system

remains safe as it converges to the invariant set Sc1 .

Proposition 2. Consider the system in (3.14) with regulation point x∗ = (q∗,0) and control law

in (3.18). Suppose that the desired position p∗ has sufficient clearance from the unsafe set O

and the disturbance d is bounded as follows:

d̄ 2(p∗,O)≥ k2kγ

k1k3k2
p

δ
2
d , ∥d∥2 ≤ δ

2
d <

c2k3

k2kγ

. (3.31)

If the initial state x(t0) = x0 satisfies:

∆E(x0,x∗)≥ 0, (3.32)

then the position error trajectory is uniformly ultimately bounded as in (3.29) and the system

remains safe, i.e., d(p(t),O)≥ 0 for all t ≥ t0.

Proof. By the definition in (3.30), ∆E(x,x∗)≥ 0 implies that the Lyapunov function V (x,x∗)

satisfies one of three cases:

1. c1 < V , V ≤ min
{

c2,k1k2
pd̄ 2 (p∗,O)

}
,

2. c1 ≥ V , V ≤ min
{

c2,k1k2
pd̄ 2 (p∗,O)

}
,

3. c1 ≥ V , V > min
{

c2,k1k2
pd̄ 2 (p∗,O)

}
.

Case 3) can never happen because (3.31) implies that c1 ≤ k1k2
pd̄ 2 (p∗,O) and c1 < c2.

40

Figure 3.2. Structure of the reference-governor tracking controller (left). A governor with state
g adaptively tracks desired path r and generates a reference point x∗ = ℓ(g) for the closed-loop
Hamiltonian system (right). A local projected goal ḡ (purple dot) is generated as the farthest
intersection between the local safe set L S (x,g) (yellow sphere) and the path r (blue curve) to
guide the governor motion.

For Case 1), when c1 < V ≤ c2, we know from Thm. 3 that V̇ < 0 and every trajectory

starting in Sc2 converges exponentially to Sc1 . In this case, from (3.25):

k1k2
pd̄ 2 (p∗,O)≥ V (x(t0),x∗)> V (x(t),x∗)≥ k1∥z(t)∥2 ≥ k1k2

p∥p(t)−p∗∥2. (3.33)

Therefore, ∥p(t)−p∗∥2 ≤ d̄ 2 (p∗,O)≤ d2(p∗,O) and d(p(t),O)≥ 0 for all t ∈ [t0, t1],

where t1 is the time when the trajectory enters Sc1 , corresponding to Case 2) above.

For Case 2), we have V (x,x∗)≤ c1 since (3.31) implies that c1 < c2. From Thm. 3, Sc1

is forward invariant and:

∥p(t)−p∗∥2 ≤ V (x(t),x∗)
k1k2

p
≤ c1

k1k2
p
=

k2kγ

k1k3k2
p

δ
2
d . (3.34)

Hence, (3.31) implies that d(p(t),O)≥ 0.

3.5 Safe and Stable Tracking using a Reference Governor

In this section, we develop a safe tracking controller by introducing a reference governor

[10] to guide the reference point x∗ for the stabilizing control law π(x,x∗) in (3.18) along the

desired reference path r introduced in Problem 3.

41

A reference governor is a virtual dynamical system whose state g(t) moves along r(σ)

for σ ∈ [0,1]. In this paper, the governor state g(t) ∈ R3 specifies a desired position p∗(t) for

the Hamiltonian system. We introduce a lifting function x∗(t) = ℓ(g(t)) to provide a desired

orientation R∗(t) and specify a reference state x∗(t) for the Hamiltonian system.

Given x∗(t), we compute the safety margin ∆E(x(t),x∗(t)) in (3.30) and use the leeway

amount by which the margin exceeds 0 to move the governor state g(t) along r(σ). Intuitively,

the reference point x∗(t) = ℓ(g(t)) speeds up when ∆E(x(t),x∗(t)) increases, e.g., the distance

to obstacles increases or the system energy function decreases, and vice versa.

Given a point g = r(σ) on the reference path for some σ ∈ [0,1], we generate a reference

state x∗ = (q∗,p∗) where q∗ = (p∗,R∗) = (g,I) and p∗ = 0. The governor state g represents

the desired position p∗ on the path. For simplicity, we set the desired rotation matrix R∗ = I.

If, in addition to r, a desired yaw angle reference is provided, one can generate R∗ using the

method described in [64] to achieve better orientation tracking. We define a lifting function

ℓ : R3 7→ T ∗SE(3) that generates a reference state x∗ = ℓ(g) from the governor state g:

ℓ(g) :=
[

g⊤ e⊤1 e⊤2 e⊤3 0⊤ 0⊤
]⊤

, (3.35)

where e1, e2, e3 are the rows of the identity matrix. Given the reference state x∗ = ℓ(g), we

compute the safety margin ∆E(x,x∗) in (3.30) and describe how to update the governor state to

ensure that safety is preserved.

We update the governor state g(t) = r(σ(t)) along the path by regulating the path

parameter σ :

g(t) = r(σ(t)), σ̇(t) =−kg(σ(t)−σ
∗(t)), (3.36)

where kg > 0 is a control gain and σ∗(t) ∈ [0,1] is a desired time-varying parameter, which

we construct using the safety margin ∆E(x,x∗). We require σ∗(t) to satisfy two conditions: 1)

always stay ahead of the current σ(t): σ∗(t)≥ σ(t), ∀t ≥ t0, and 2) have distance ∥σ∗(t)−σ(t)∥

42

proportional to ∆E(x(t),x∗(t)). The first condition guarantees that the governor state g(t) moves

forward along the path towards the goal r(1). The second condition allows the safety margin

∆E to adaptively regulate the governor state g(t) in order to ensure safety for the Hamiltonian

system. To construct the desired path parameter σ∗, we define a local safe zone as a ball around

the governor state g with radius ∆E(x,x∗) based on the state x and the reference state x∗ = ℓ(g).

Definition 6. A local safe zone is a subset of R3 that depends on the system state x and the

governor state g:

L S (x,g) :=
{

q ∈ R3 |∥q−g∥2 ≤ ∆E(x, ℓ(g))
}
, (3.37)

where ℓ is the lifting function in (3.35) and ∆E is the safety margin in (3.30).

We determine σ∗ as the farthest intersection between the local safe zone L S (x,g) and

the path r by solving the scalar optimization problem in Def. 7.

Definition 7. A local projected goal for system-governor state (x,g) is a point ḡ ∈ L S (x,g)

that is farthest along the path r:

ḡ = r(σ∗), σ
∗ = argmax

σ∈[0,1]
{σ | r(σ) ∈ L S (x,g)} . (3.38)

The construction of the local projected goal ḡ is shown in Fig. 3.2 (right), showing a

reference path r, the local safe zone L S (x,g) and the local projected goal ḡ. A local projected

goal ḡ (purple dot) is generated as the farthest intersection between the local safe set L S (x,g)

(yellow sphere) and the path r (blue curve) to guide the governor motion. This constructing of

σ∗ and ḡ completes the governor update law (3.36).

Our safe tracking controller consists of the reference governor system in (3.36), adaptively

updating the reference point x∗ = ℓ(g) via the lifting function in (3.35), and the passivity-based

controller in (3.18) that drives the Hamiltonian system towards x∗. The stability, safety, and

robustness of the proposed tracking controller are analyzed in Thm. 4.

43

Theorem 4. Suppose that the desired path r(σ) has sufficient clearance from the unsafe set O

and the disturbance d is bounded as:

min
σ∈[0,1]

d̄ 2(r(σ),O)≥ k2kγ

k1k3k2
p

δ
2
d , ∥d∥2 ≤ δ

2
d <

c2k3

k2kγ

.

Consider the Hamiltonian system in (3.14), the governor system in (3.36) with σ∗ constructed

in Def. 7 and the control law u = π(x, ℓ(g)) in (3.18). Suppose that the initial state (x0,g0)

satisfies:

∆E (x0, ℓ(g0))> 0, g0 = r(0) = p(t0), (3.39)

where ∆E(x,x∗) is the safety margin in (3.30). The position p(t) of (3.14) converges to a ball of

radius
√

k2kγ

k1k3k2
p
δd around r(1) and remains safe, i.e. p(t) ∈ F , for all t ≥ t0

Proof. To simplify notation, let ∆E(t) = ∆E (x(t), ℓ(g(t))). Initially, g0 = p(t0) = r(0) ∈

L S (x0,g0) and ∆E(t0)> 0. The local projected goal ḡ and the associated σ∗ are well defined

in Def. 7. By the governor update law (3.36), the path parameter σ increases, the governor state

g(σ) moves along r towards the goal r(1). The desired state x∗ = ℓ(g) is updated via the lifting

function (3.35). As g tracks ḡ on the path r via the path parameter update in (3.36), the system

state x tracks x∗ = ℓ(g). During this process, the safety margin ∆E(t) fluctuates and regulates

the rate of change of σ .

Since σ∗(t) is bounded in (3.38), σ(t) is updated continuously [30] in (3.36), leading

to a continuous governor state g(t). By construction, the lifting function ℓ(g) is continuous in

g. Therefore, the reference point x∗(t) = ℓ(g(t)) is continuous in time, leading to a continuous

Lyapunov function V (x,x∗) and a continuous safety margin ∆E(t). As a result, the safety margin

∆E(t) cannot become negative without crossing 0 from above at some time T0. As ∆E(t) ↓ 0, the

local safe zone shrinks to a point, i.e., L S (x,g) ↓ {g}. This immediately stops the the governor

because ḡ = g(T0) = r(σ(T0)) and σ̇(T0) = 0.

As a result, Proposition 2 states that x(t) stays within the invariant set Sc2 (x∗(T0)) for

44

t ≥ T0 and converges to Sc1 (x∗(T0)) without leaving F . Eq. (3.30) shows that ∆E(t) = 0

implies c1 ≤ V (t) ≤ c2. By Thm. 3, as x(t) approaches x∗(T0), we have V̇ (T0) < 0, i.e., the

Lyapunov function V is decreasing. There exists h > 0 such that ∆E(T0 +h) becomes strictly

positive. Hence, the governor is able to move again towards a new ḡ generated by the positive

∆E(T0 +h). This process continues until the governor state g(t) converges to r(1), the closed-

loop system converges to the region Sc1 (ℓ(r(1))) and the position p(t) satisfies the uniform

ultimate bound in (3.29) around r(1).

Note that while our control design does not account for state estimation errors, e.g. from

an odometry algorithm with a sensor setup (e.g. stereo camera, LiDAR, or visual-inertial), we

can conservatively handle the errors by reducing the obstacle distance d̄ in the safety margin

specification in (3.31).

3.6 Application to Hamiltonian Dynamics in Rn

In this section, we show that our control design can be easily modified and applied to a

Hamiltonian system with configuration q in Rn and dynamics:

q̇
ṗ

=

 0 In

−In 0


∇qH (q,p)

∇pH (q,p)

+

 0

B(q)

u+

 0

d1

 (3.40)

where the Hamiltonian H (q,p) is defined as:

H (q,p) =
1
2
p⊤M−1(q)p+U (q). (3.41)

Given a desired regulation point x∗ = (q∗,p∗) with momentum p∗ = 0, define the error

state xe = (qe,pe) as:

qe = q−q∗, pe = p−p∗. (3.42)

45

Figure 3.3. SE(3) Hamiltonian neural ODE network (left to right): (a) simulated hexarotor for
evaluation, (b) training loss, (c) learned inverse inertia Jθ (q)

−1, and (d) learned input matrix
Bθ (q) along a test trajectory, evaluated on the simulated hexarotor.

A desired Hamiltonian, minimized at x = x∗, is:

Hd(x,x∗) =
1
2
p⊤e M−1(qe)pe +

kp

2
∥qe∥2. (3.43)

The IDA-PBC controller:

u = π(x,x∗) = B†(q)b(x,x∗) (3.44)

with b(x,x∗) = ∇qH (x)−∇qeHd(x,x∗)−Kd∇peHd(x,x∗) achieves the closed-loop dynamics:

q̇e

ṗe

=

 0 In

−In −Kd


∇qeHd(x,x∗)

∇peHd(x,x∗)

+

0

d

 , (3.45)

where d = d1 +d2 as in (3.22) and d2 is as in (3.21).

Theorem 5. Consider the Hamiltonian system in (3.40) with desired regulation point x∗ = (q∗,0)

and control law in (3.44) with parameters kp, Kd. Under Assumptions 2 & 3, the function:

V (x,x∗) = Hd(x,x∗)+ρ
d
dt

Ud(qe) (3.46)

with Ud(qe) =
kp
2 ∥qe∥2 is an ISS-Lyapunov function [92] with respect to d and satisfies:

k1∥z∥2 ≤ V (x,x∗)≤ k2∥z∥2,

V̇ (x,x∗)≤−k3∥z∥2 + kγδ
2
d ,

(3.47)

46

where z := [kp∥qe∥ ∥pe∥]⊤ ∈ R2, kγ = 1
2λmin(Kd)

+
ρλ 2

2
2λ1

, λ1 := λmin(M−1), λ2 := λmax(M−1),

k1 =
1
2λmin(Q1), k2 =

1
2λmax(Q2), k3 =

1
2λmin(Q3), and the associated matrices Q1, Q2, Q3 are

defined as:

Q1 =

 k−1
p −ρλ2

−ρλ2 λ1

 , Q2 =

k−1
p ρλ2

ρλ2 λ2

 ,

Q3 =

 ρλ1 −ργdλ 2
2

−ργdλ 2
2 γdλ 2

1 −2ρλ 2
2 kp

 .

(3.48)

Any initial state x converges exponentially to Sc1 = {x|V (x,x∗)≤ c1} with c1 := k2kγ

k3
δ 2

d and

remains within. The error trajectory qe(t) is uniformly ultimately bounded:

lim
t→∞

∥qe(t)∥2 ≤ c1

k1k2
p
=

k2kγ

k1k3k2
p

δ
2
d . (3.49)

The proof of Thm. 5 follows the same steps as that of Thm. 3, and is omitted due to space

limitations. In contrast to Thm. 3, the result in Thm. 5 for Rn holds globally, i.e., the region of

attraction is A = Rn ×Rn. Thus, the disturbance magnitude bound δd can be arbitrarily large.

The safety analysis in Sec. 3.4.3 can be modified with a new safety margin:

∆E(x,x∗) := k1k2
pd̄ 2(q∗,O)−V (x,x∗)+max{c1 −V (x,x∗),0} , (3.50)

as Thm. 5 holds globally. The reference governor lifting function can be chosen as ℓ(g) =

[g⊤ 0⊤]⊤. The governor state update remains the same as in (3.36). The robustness analysis

extends the safe tracking results in [68] and [6].

3.7 Evaluation

We evaluate our robust and safe tracking controller using simulated hexarotor and

quadrotor robots in 2D and 3D environments with ground-truth mass m = 6.77 kg, and inertia

47

0 2 4 6 8 10
Time (s)

10−8

10−7

10−6

10−5

10−4

10−3

O
ne

-s
te

p
pr

ed
ic

ti
on

er
ro

r
(m

)
Ours

GP MPC

0 2 4 6 8 10
Time (s)

0.00

0.02

0.04

0.06

0.08

0.10

T
ra

ck
in

g
er

ro
r

(m
)

Ours

GP MPC

0 2 4 6 8 10
Time (s)

0.05

0.10

0.15

0.20

0.25

D
is

ta
nc

e
to

ob
st

ac
le

(m
) Ours

GP MPC

Figure 3.4. Comparison of position prediction errors (left) between the learned Hamiltonian
dynamics and GP model, tracking errors (middle) and distance to obstacles (right) between our
safe tracking controller and GP-MPC.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2
x (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

z
(m

)

Obstacle boundary

Path

Robot Position

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2
x (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

z
(m

)

Obstacle boundary

Path

Robot Position

Figure 3.5. Path tracking with our approach (left) and GP-MPC [45] (right).

matrix J = diag([1.05,1.05,2.05]) kg ·m2 , inspired by the solar-powered UAV in [55]. The

robot’s ground-truth dynamics satisfy Hamilton’s equations (3.3) with generalized mass M(q) =

diag(mI,J), potential energy U (q) = mg
[

0 0 1

]
p, where p is the position and g ≈ 9.8ms−2

is the gravitational acceleration. The input matrices for the hexarotor and the quadrotor are

B(q) = I and B(q) =
[

04×2 I4×4

]⊤
, respectively. The control input u of the hexarotor includes

a 3D force and a 3D torque while that of the quadrotor includes a scalar force and a 3D torque.

For all experiments, the following control gains are used for our controller in Sec. 3.4.1:

kp = 20, kR = 50, Kd = 15I in (3.16). The parameters shown in Thm. 3 are: α = 2, β = 20,

c1 = 2.2050, c2 = 8.8200, ρ = 3.5822× 10−5. The control gain for the governor in (3.36) is

kg = 0.5. The control loop frequency for all experiments is at 120 Hz.

While, our evaluation focuses on rotorcraft aerial robots, the methodology for system

identification and control synthesis proposed in this paper is general. The exact same approach

is applied to hexarotor, quadrotor and other ground and marine vehicles. This is in contrast

with other system identification and control synthesis methods, which require knowledge of the

48

dynamics structure, careful experiment design, and domain expertise for the particular system.

3.7.1 Evaluation of SE(3) Hamiltonian Dynamics Learning

We consider a simulated hexarotor unmanned aerial vehicle (UAV) (Fig. 3.3) with fixed-

tilt rotors pointing in different directions [86] and a simulated quadrotor UAV. Since the mass

m of the UAVs can be easily measured, we assume the mass m is known, leading to a known

potential energy U (q) = mg [001]p. We approximate the inverse generalized mass matrix by

M−1
θ
(q) = diag(m−1I,J−1

θ
(q)) and learn Jθ (q)

−1 and Bθ (q) from data.

We mimic manual flights in an area free of obstacles using a PID controller and drive the

UAVs from a random initial pose to 18 desired poses, generating 18 1-second trajectories. We

shift the trajectories to start from the origin and create a dataset D = {t(i)0:N ,q
(i)
0:N ,ζ

(i)
0:N ,u

(i)
0:N−1)}D

i=1

with N = 24 and D = 18. The Hamiltonian-based neural ODE network is trained with the dataset

D , as described in Sec. 3.3, for 5000 iterations and learning rate 10−4. For the hexarotor, Fig.

3.3(c) shows the loss function during training. Note that if we scale Mθ (q) and the input matrix

B(q) by a constant γ , the dynamics of (q,ζ) in (3.3) and (3.5) does not change. Fig. 3.3(d) and

3.3(e) plot the scaled version of the learned inverse mass Jθ (q)
−1 and the input matrix Bθ (q),

converging to the constant ground truth values. We achieve similar results for the quadrotor

using the same training process.

3.7.2 Evaluation of Robust Safe Tracking Control of a Learned 2D
Hexarotor Hamiltonian Model

Next, we compare our approach with a GP-MPC technique [45] using a simulated 2D

fully-actuated hexarotor UAV, moving on the xz-plane with position p =

[
x,0,z

]
and orientation

R = Rψ determined by the pitch angle ψ . The control input is a 3D wrench, including a 2D force

and a 1D torque. As we only consider the pitch angle ψ , we are interested in the inertia value Jyy

and ignore Jxx and Jzz. We assume that the generalized mass m and Jyy are unknown for the 2D

hexarotor and approximated by mθ and Jyy
θ

, respectively. The input gain B(q) is assumed known.

49

Let m0 = 1.5m and Jyy
0 = 1.5Jyy be initial guesses of the mass m and the inertia Jyy. We

model the approximated mass inverse m−1
θ

and inertia inverse Jyy
θ

−1 as:

m−1
θ

=

(√
m−1

0 +L1(q;θ)

)2

,Jyy
θ

−1
=

(√
Jyy

0
−1

+L2(q;θ)

)2

,

where L1(q;θ) and L2(q;θ) are two neural networks, representing the residual mass inverse and

inertia inverse to be learned. In GP-MPC [45], the dynamics (3.3) are split into a prior nominal

model with the prior mass m0 and inertia Jyy
0 , and residual dynamics, modeled by a GP regression

model.

To collect training data, we place the simulated hexarotor at an initial location (x,z) =

(−1,0) and apply random control inputs to obtain D = {t(i)0:1,q
(i)
0:1,ζ

(i)
0:1,u

(i)
0 }150

i=1. Our Hamiltonian

neural ODE network is trained with the dataset D , as described in Sec. 3.3. For GP-MPC, the

same dataset D is used to train a GP regression model of the residual dynamics as described in

[45] and implemented in [18].

We assume there are two walls in the environments, generating two safety constraints

on the robot position: −x+ z < 1.1, 0.8x+ z < 0.4. The task is to track a predefined piecewise

linear path r, shown in Fig. 3.5, while safely avoiding collision with the walls. We adapt

the GP-MPC implementation by [18] for the 2D hexarotor and enforce the safety constraints

probabilistically with 95% confidence interval using the GP model uncertainty. To propagate the

model uncertainty through a horizon of 10 time steps, we linearize the dynamics model around

the hovering state and propagate the state mean and covariance using the mean equivalence

technique [45, 18] with a time step of 1/120 s. Meanwhile, our learned Hamiltonian neural ODE

model is used with the safe tracking controller described in Sec. 3.5 to perform the task and

enforce safety constraints.

Fig. 3.4 compares the prediction errors of our learned neural ODE network and the GP

model. We collect the robot states and control inputs, generated by our controller while tracking

the path, and predict the next state. Fig. 3.4 (left) plots the prediction error over time, showing

50

Figure 3.6. Safe navigation of a hexarotor system using learned model in a warehouse (left).
The hexarotor (red body) navigates from a start (red star) to a goal location (green star) while
avoiding obstacles. The obstacles are sensed by a simulated LiDAR sensor. The reference path,
the robot path are shown in blue and green, respectively. Local safe set is shown in yellow sphere.
The right plots show the dynamic safety margin ∆E, the Lyapunov function V , and the distance
to the obstacles d̄(p(t),O), indicating that the safety constraints are never violated.

that we achieve better prediction than the trained GP model. This reflects the difference between

our model, which encodes the Hamiltonian structure and translation equivariance in the network

architecture, and the GP model, which incurs higher model uncertainty in locations far from the

data points.

Fig. 3.4 and 3.5 show tracking performance of our approach and GP-MPC. We compare

the tracking error of both methods, calculated as the distance from the robot position to the

reference point, specified by the governor in our approach and by time parameterization of the

path in GP-MPC: p∗(t) = r(min(t,10)/10), i.e., the GP-MPC method finishes the task in about

10 seconds, similar to the tracking time of our approach. Our controller is able to track the path

more accurately than GP-MPC, illustrated qualitatively in Fig. 3.5 and quantitatively in Fig.

3.4 (middle). This can be explained by the higher predictions errors shown in Fig. 3.4 (left),

which grow quickly after multiple time steps due to uncertainty propagation. Both safe tracking

controller with learned Hamiltonian dynamics and the GP-MPC controller keep the hexarotor in

the safe region, i.e., the distance to the obstacles is always positive in Fig. 3.4 (right).

51

−0.5

0.0

0.5

(m
) ex

ey

ez

−5

0

5

(d
eg

) roll

pitch

yaw

−0.5

0.0

0.5

(m
/s

) evx
evy

evz

0 10 20 30 40 50 60 70 80

Time (s)

−0.5

0.0

0.5

(r
ad

/s
) eωx

eωy

eωz

Figure 3.7. Tracking error of a hexarotor system (top to bottom): position, velocity, angle and
angular velocity errors.

3.7.3 Evaluation of Robust Safe Tracking Control of a Learned 3D
Fully-actuated Hexarotor Hamiltonian Model

This section evaluates our Hamiltonian dynamics learning and safe tracking control

techniques using a simulated hexarotor UAV in a 3D environment. The task is to navigate

from a start position to a goal in a cluttered warehouse environment without colliding with the

obstacles O . The same control gains are used for this 3D navigation task as in the previous

section. A simulated LiDAR scanner provides point cloud measurements P(t) of the surface

of the unsafe set O , depending on the system pose at time t, with a maximum sensing range

of dmax = 30 m. The distance from the governor g(t) to the unsafe set O is approximated via

d̄(g(t);O)≈ miny∈P(t)∥g(t)−y∥. The reference path r is pre-computed using an A* planner

and tracked in about 80 seconds.

Fig. 3.6 shows the behavior of the closed-loop hexarotor system in the warehouse

environment. The safety margin ∆E(x,x∗) fluctuates during the tracking process but, as can be

seen in Fig. 3.6, it never becomes negative. The augmented system (x,g) is controlled adaptively,

52

10−3 10−2 10−1 100 101

0.1

0.2

0.3

0.4

0.5

m

ēx
ēy

ēz

10−3 10−2 10−1 100 101

Disturbance bound δd

0.58

0.60

0.62

0.64

0.66

m

min d(p,O)

Figure 3.8. Tracking controller performance for hexarotor in warehouse simulation with the
ground truth model subject to a disturbance d with different magnitudes: the average position
tracking error (top) and the minimum distance to obstacle (bottom).

slowing down when the dynamic safety margin decreases (e.g., when the hexarotor is close to

an obstacle or has large Lyapunov value V) and speeding up otherwise (e.g., when the robot

is far away from the obstacles or has small total energy V). The simulations show that our

control policy successfully drives the system from the start to the end of the reference path while

avoiding sensed obstacles online, i.e., d(p,O) remains positive throughout the tracking task.

Fig. 3.7 plots the tracking errors between the robot state x and the reference state x∗ generated by

the governor, showing that our controller tracks the path well. The tracking errors for the Euler

angles and angular velocity, are close to 0. The position and linear velocity errors in the x and z

directions are close to zero as well while the errors in y direction fluctuates around −0.5 m and

0.8 m/s, respectively, and converges to 0 at the end. This is expected as the robot stays behind

the reference point, mostly in y direction, and converges to the end of the path.

To evaluate the robustness of our controller, we repeat the warehouse experiment using the

ground-truth dynamics, subject to a artificially generated disturbances d∈R6 with different upper

53

bounds δd. Each component of the disturbance d ∈R6 is uniformly generated in [−0.5δd,0.5δd].

If ∥d∥> δd, we normalize the disturbance as δdd/∥d∥. Our robust tracking controller success-

fully finishes the tracking task across a wide range of δd: [0.001,0.01,0.1,1,10,20,30]. Larger

δd are not reported due to violation of the positiveness requirement on ∆E. Fig. 3.8 shows the

average position errors and the minimum distance to obstacle during the tracking task versus the

disturbance upper bound δd. The average position tracking errors remain similar against δd. The

minimum distance to obstacle d(p,O) is always positive, illustrating the safety guarantees of our

controller. This number starts decreasing when δd > 1 as larger disturbances can suddenly move

the robot towards the obstacles.

3.7.4 Evaluation of Robust Safe Tracking Control of a Learned 3D
Quadrotor Hamiltonian Model

In this section, we repeat the task of safely navigating from a start position to a goal

in the same cluttered warehouse environment in Sec. 3.7.3 with a quadrotor, whose model

is learned from data as described in Sec. 3.7.3.7.1. As mentioned in Sec. 3.4, the control

input in (3.18) would not introduce additional disturbance d2 when the matching condition

(3.20) is satisfied. For quadrotor, a maximal-rank left annihilator of the ground-truth B(q) =[
04×2 I4×4

]⊤
is B†(q) =

[
I2×2 02×4

]
. The matching condition (3.20) is satisfied if and only

if the first two elements of b(x,x∗) =
[

b⊤
v b⊤

ω

]⊤
,bv ∈R3,bω ∈R3 in (3.19) equal to 0, i.e. the

force component bv coincides with the z-axis of the body frame. As guaranteeing this condition

is hard, we instead use the force component in the world frame Rbv and a desired yaw angle ψ∗

to determine the desired rotation matrix, similar to [64]. The vector Rbv is set as the z-axis of the

desired frame, i.e., the third column b∗
3 of the rotation matrix R∗, to minimize the disturbance

d2 in (3.21) from the matching condition. We calculate the second column b∗
2 by projecting the

second column of the yaw’s rotation matrix bψ

2 = [−cosψ,sinψ,0] onto the plane perpendicular

54

0 10 20 30 40 50 60 70 80

Time (s)

0.0

2.5

5.0

7.5

10.0 d̄ 2(g,O)

∆E

V

0 10 20 30 40 50 60 70 80

Time (s)

0

1

2

3

(m
)

d̄(p,O)

d̄(g,O)

d(g,p)

Figure 3.9. Safe navigation of quadrotor system (learned model) in a warehouse: the dynamic
safety margin ∆E, the Lyapunov function V (top) and the distance to the obstacles d̄(p(t),O)
(bottom), indicating that the safety constraints are never violated.

to b∗
3. We use the controller (3.18) with R∗ = [b∗

1 b∗
2 b∗

3] where:

b∗
3 =

Rbv
∥Rbv∥

,b∗
1 =

bψ

2 ×b∗
3

∥bψ

2 ×b∗
3∥

,b∗
2 = b∗

3 ×b∗
1, (3.51)

and ω̂
∗ = R∗⊤Ṙ∗ for our tracking task.

We successfully finish the task with the quadrotor while remaining safe for the entire

experiment, as shown in Fig. 3.9, with similar behavior of the closed-loop quadrotor system in

terms of the safety margin, Lyapunov function and distance to obstacle compared to Sec. 3.7.3.

However, the orientation tracking error of quadrotor (Fig. 3.10) is larger than that of hexarotor,

as expected since the quadrotor is underactuated.

55

−0.5

0.0

0.5

(m
) ex

ey

ez

−5

0

5

(d
eg

) roll

pitch

yaw

0

1

(m
/s

) evx
evy

evz

0 10 20 30 40 50 60 70 80

Time (s)

−0.25

0.00

0.25

(r
ad

/s
) eωx
eωy

eωz

Figure 3.10. Tracking error of a quadrotor system (top to bottom): position, velocity, angle and
angular velocity errors.

3.7.5 Evaluation of Our Approach against Unmodeled Noise

In this section, we verify the robustness of our controller against unmodeled noise on

a simulated hexarotor by injecting high frequency noise (e.g., propeller vibration) into control

inputs and simulating state estimation errors. In particular, a 4.8 kHz 6D sinusoidal signal

with amplitude 5 is generated for high frequency noise. Meanwhile, state estimation errors in

positions, Euler angles, linear and angular velocity are randomly generated with zero mean

and standard deviation, chosen from [46] (position: 0.01 m, Euler angle: 0.01 degree, linear

velocity: 0.02 m/s and angular velocity: 0.14 degree/s). We consider the task of stabilizing to

a static governor, i.e. the governor is not moving, with the learned dynamics model: without

any unmodeled noise (base), with high-frequency noise, and with state estimation error. Fig.

3.11 plots the Lyapunov function V and the safety margin ∆E over time. Our controller is not

affected significantly from the high-frequency noise, potentially because the noise’s effect is

56

0.0

2.5

5.0

7.5

10.0 V (base)

∆E (base)

V
∆E

0.0

2.5

5.0

7.5

10.0 V (base)

∆E (base)

V
∆E

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (s)

0

5

10 V (base)

∆E (base)

V
∆E

Figure 3.11. The Lyapunov function V and safety margin ∆E in the presence of: high-frequency
noise (top), state estimation error with standard deviation from [46] (middle) and 3x larger
(bottom), respectively.

canceled out due to its zero mean. Our controller is safe against the state estimation errors from

[46], i.e. ∆E > 0 over time, but fails to remains safe, i.e. ∆E < 0 at some times, if we triple the

noise deviation.

3.8 Summary

This chapter extends our tracking controller to Hamiltonian systems with learned dynam-

ics. We employed a neural ODE network to learn translation-invariant Hamiltonian dynamics

on the SE(3) manifold from trajectory data. The Hamiltonian of the learned system was used

to synthesize an energy-shaping controller and quantify its robustness to modeling errors. A

reference governor was employed to guide the system along a desired reference path using the

trade-off between system energy, disturbance bounds, and distance to obstacles to guarantee safe

tracking. Our results demonstrate that encoding SE(3) kinematics and Hamiltonian dynamics in

the model learning process achieves more accurate prediction than Gaussian Process regression.

57

Utilizing the system energy in the control design offers a general approach for guaranteeing

robustness and safety for physical systems and generalizes well to desired trajectories which are

significantly different from the training data. Future work will focus on disturbance compensation

and real experiments.

Acknowledgements

Chapter 3, is based on material from the following papers. First, “Safe autonomous

navigation for systems with learned SE(3) Hamiltonian dynamics” authored by Zhichao Li*,

Thai Duong* and Nikolay Atanasov, which appears in Learning for Dynamics and Control

Conference (L4DC), 2022. The dissertation author was the co-primary investigator and author of

this paper, (*equal contribution). Second, “Robust and Safe Autonomous Navigation for Systems

with Learned SE(3) Hamiltonian Dynamics” by Zhichao Li, Thai Duong and Nikolay Atanasov,

which appears in Open Journal of Control Systems, IEEE, 2022. The dissertation author was the

primary investigator and author of this paper.

58

Chapter 4

Environment Aware Safe Tracking using
Planning and Control Co-Design

4.1 Overview

In this chapter, we propose a new method that systematically puts planning, motion

prediction and safety metric design together to achieve environment adaptive and safe navigation.

This approach balances optimality in travel distance and safety with respect to passing clearance.

A robot employing the proposed approach adapts its speed according to the sensed environment,

being fast in wide open areas and slow in narrow passages. In our method, a directional distance

measure, directional reachable set prediction and a clearance-based costmap are integrated to

evaluate system risk accurately with respect to the local geometry of the surrounding environ-

ments. Using such risk estimation, a reference governor technique and a control barrier function

are utilized to enable adaptive and safe path tracking in dynamic environments.

We consider a similar safe navigation problem as in Sec. 2.1. First, we show how a

directional distance metric can be used to improve tracking performance for linear systems by

exploiting the geometric features of the local environment. Then, we describe how to extend

the use of a directional metric for a nonlinear system using ice-cream-shaped reachable set

approximation. Furthermore, we extend our tracking control design to dynamic environments

by injecting CBF-based time-varying constraints to handle moving obstacles. We validate our

algorithm extensively both in simulation and challenging real-world environments. In summary,

59

the focus of this chapter is an integrated planning and tracking control design, which achieves

safe and adaptive navigation in dynamic environments.

4.2 Directional Metric and Motion Prediction

As mentioned in the introduction, for the safe tracking task, it is crucial to develop

environment-aware and directional safety metrics. Measuring safety using a static Euclidean

distance can also lead to poor performance due to the equal consideration of all directions,

regardless of the direction of motion. In this section, we develop state-dependent directional

metrics. In the beginning, we present a quadratic norm-based distance metric followed by the

definition of a directional matrix which incorporates the robot’s motion direction. Using a

directional matrix, we develop two types of safety metrics based on output trajectory prediction

and reachable set approximation. To facilitate further discussion, we introduce some notation.

Let Sn
>0 and Sn

≥0 denote the set of n×n symmetric positive definite and positive semi-

definite matrices. Let ≻ and ⪰ denote the generalized inequalities associated with Sn
>0 and

Sn
≥0. Denote the Euclidean (ℓ2) norm by ∥x∥ and the quadratic norm induced by Q ∈ Sn

>0 by

∥x∥Q :=
√

xT Qx. Let λmax(Q) and λmin(Q) be the maximum and minimum eigenvalues of Q.

Let dQ(x,A) := infa∈A ∥x− a∥Q denote the quadratic norm distance from a point x to a set

A . Given Q ∈ Sn
>0 and scaling η ≥ 0, denote the associated ellipsoid centered at q ∈ Rn by

EQ(q,η) :=
{

x ∈ Rn | (x−q)T Q(x−q)≤ η
}

.

4.2.1 State-Dependent Directional Metric

As mentioned in the introduction, measuring safety using a static Euclidean norm may

lead to system performance suffering from the corridor effect. We propose a quadratic distance

measure ∥·∥Q that assigns priority to obstacles depending on the robot’s moving direction. The

level sets of ∥·∥Q are ellipsoids EQ(0,η) whose shape and orientation are determined by the

matrix Q. Our idea is to encode a desired directional preference in the distance metric via an

appropriate choice of Q. Consider the example in Fig. 4.1. A quadratic norm, well-aligned

60

−3 −2 −1 0 1 2 3

Q-Dist. to wall 1.41

−3 −2 −1 0 1 2 3

E-Dist. to wall 0.71

Figure 4.1. Robot (black dot) moving in direction v :=
[√

2/2,
√

2/2
]

(green arrow) along
a corridor. The distances, measured by a quadratic norm ∥·∥Q (left) and Euclidean norm ∥·∥
(right), from the robot to the closest point (small blue square) on the wall (red line) are 1.41 and
0.71. The matrix Q = [[2.5−1.5], [−1.5,2]] is defined as a directional matrix Q [v].

with the local environment geometry, may provide a more accurate evaluation of safety than

a static Euclidean norm. Based on this observation, we propose a general construction of a

directional matrix Q[v], in the direction of vector v, that defines a state-dependent directional

metric (SDDM).

Definition 8. A directional matrix associated with vector v and scalars c2 > c1 > 0 is defined as

Q [v] =


c2I+(c1 − c2)

vvT

∥v∥2 , if v ̸= 0,

c1I, otherwise.
(4.1)

The unit ellipsoid EQ[v](p,1) centered at p generated by a directional matrix Q [v] is

elongated in the direction of v.

Lemma 3. For any vector v, the directional matrix Q [v] is symmetric positive definite.

Proof. Since vvT is symmetric, Q [v]T = Q [v]. If v = 0, Q [v] = c1I is positive definite. If v ̸= 0

61

and q is arbitrary:

qT Q [v]q = c2qT q+(c1 − c2)
(qT v)2

∥v∥2

≥ c2qT q+(c1 − c2)
∥q∥2∥v∥2

∥v∥2 = c1∥q∥2,

which follows from c2 > c1 and the Cauchy-Schwarz inequality. The proof is completed by

noting that c1 > 0.

4.2.2 Trajectory Bounds Estimation for LTI System

Using a directional matrix, one can define an SDDM to adaptively evaluate the risk of

surrounding obstacles. We will show how to use an SDDM to obtain bounds on the closed-loop

trajectory of constrained output of LTI systems. Assume the system is stabilized by some state

feedback control law. Without loss of generality, the closed-loop dynamics can be written as:

˙̄x = Āx̄ y = Cx (4.2)

where Ā := (A−BK) is Hurwitz. Any initial state x̄0 := x̄(t0) will converge exponentially

to the equilibrium point at the origin. The output y represents the constrained output of the

system. For example, the position p of a mobile robot. We are interested in measuring the

maximum deviation of p(t) for t ≥ 0 from the origin using a directional measure determined by

the orientation of initial state p0 := p(t0) with respect to 0. Define an SDDM using the following

directional matrix:

Q := Q [0−p0] ∈ Sn
>0 (4.3)

and choose output y(t) = Q
1
2 p(t) so that C := Q

1
2 P, where P := [I,0] is the projection matrix

from x to p. Note that y(t)T y(t) = p(t)T Qp(t) = ∥p(t)∥2
Q. Thus, measuring the maximum

62

deviation of p(t) in the SDDM is equivalent to finding the output peak along the robot trajectory.

η(t0) := max
t≥t0

∥p(t)∥2
Q = max

t≥t0
∥y(t)∥2 (4.4)

We outline two approaches to solve this problem.

Exact solution

The output peak η(t0) can be computed exactly by comparing the values of ∥y(t)∥2 at

the boundary point t = t0 and all critical points
{

t > t0 | d
dt ∥y(t)∥2 = 0

}
. Since the closed-loop

system in (4.2) is linear time-invariant, x(t) can be obtained in closed form. Let Ā = VJV−1 be

the Jordan decomposition of Ā, where J is block diagonal. The critical points satisfy:

0 =
d
dt

y(t)T y(t) = 2y(t)T ẏ(t) (4.5)

= 2
(

PVeJ(t−t0)V−1x0

)T
Q
(

PVJeJ(t−t0)V−1x0

)
.

In general, an exact solution may be hard to compute due to the complicated expression of eJt .

Approximate solution

When an exact solution to (4.4) is hard to obtain, we may instead compute a tight upper

bound on η(t0). Given a U ∈ Sn
>0, let

Einv :=
{

w ∈ Rns | wT Uw ≤ 1
}

(4.6)

be an invariant ellipsoid for the robot dynamics (4.2), i.e., x(t) ∈ Einv for all t ≥ t0. Instead of

finding the peak value of ∥y(t)∥2 along the state trajectory, we can compute it over the invariant

ellipsoid Einv. Since Einv contains the system trajectory, we have for all t ≥ t0:

∥y(t)∥2 ≤ η(t0)≤ max
w∈Einv

wT CT Cw. (4.7)

63

Obtaining the upper bound above is equivalent to solving the following SDP [16, Ch.6]:

minimize
U,δ

δ

subject to ĀT U+UĀ ⪯ 0, x̄T
0 Ux̄0 ≤ 1U CT

C δ I

⪰ 0, U ≻ 0,

(4.8)

where the constraints ensure that the ellipsoid is invariant.

Lemma 4. For any initial condition x0 and associated constant directional matrix Q in (4.3), the

trajectory p(t) under system dynamics (4.2) admits a tight ellipsoid bound, p(t)∈ EQ(0,η(t0))⊆

EQ(0,δ (t0)), for all t ≥ t0, where η(t0) is the solution to (4.4) and δ (t0) is the solution to (4.8).

Proof. By definition, p(t) ∈ EQ(0,η(t0)) is equivalent to d2
Q (0,p(t)) ≤ η(t0). Since δ (t0) =

maxw∈Einv wT CT Cw, inequality (4.7) yields δ (t0)≥ η(t0)≥ ∥y(t)∥2 = ∥p(t)∥2
Q = d2

Q (0,p(t)).

Hence, p(t)∈EQ(0,η(t0))⊆EQ(0,δ (t0)).

We demonstrate that predicting the robot trajectory using our directional metric has

some desirable properties for enforcing safety constraints. Fig. 4.2 compares trajectory bounds

obtained from Lemma 4 for a closed-loop double integrator system using a Euclidean metric

and an SDDM. It is clear that the ellipsoid bounds on the system trajectory are less conservative

(smaller area/volume) than the spherical bounds at beginning.

Remark 3. Unlike a Lyapunov function, the ellipse EQ(t)(0,η(t)) bounding the robot trajectory

is not forward invariant. It can be shown that requiring invariance of directional ellipsoids

(EQ(t1)
⊂ EQ(t2)

∀t2 ≥ t1) would need infinite damping unless Q = kI for some k > 0, causing the

metric to lose directionality.

64

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

Figure 4.2. Trajectory bounds comparison between a Euclidean metric (left) and an SDDM
(right). The governor is fixed at the origin while the robot’s initial conditions are p0 = (−2,0)
and ṗ0 = (0,2). The change of the trajectory bounds over time is illustrated via ellipsoids with
different colors, starting from cold blue and converging towards warm red.

4.2.3 Trajectory Bounds Estimation for Unicycle-like Nonlinear Systems

In the last subsection, we discussed an accurate trajectory bound estimation for linear

systems. This method can be extended to feedback-linearizable systems. However, for general

nonlinear systems, obtaining trajectory bounds is quite challenging as mentioned in introductions.

In this section, we focus on nonlinear systems with unicycle-like dynamics as shown below.

The state of the robot x consists of its position p = (x,y) and orientation θ , while its

input is the linear velocity v and the angular velocity ω . Assuming there is no wheel slip, the

kinematic model [26] describing the robot’s motion is:


ẋ

ẏ

θ̇

=


cosθ

sinθ

0

v+


0

0

1

ω. (4.9)

To obtain motion prediction, [50] proposes several outer approximation sets of the robot

trajectory. We adopt the ice-cream cone set approximation that outperforms circular reachable set

65

estimation by Lyapunov function. More importantly, this convex cone shape set can be computed

efficiently, which makes it a great fit for our task.

When considering moving obstacles, allowing backward motion (rather than rotate-and-

avoid) can take a robot to safer place sooner in certain cases. Hence, we extend the forward

unicycle controller used in [50] to be bi-directional and use this controller in our experiments

with moving obstacles.

Bi-directional Motion Control

Suppose the current robot state is x = (p,θ). Given any goal pose x∗ = (p∗,θ ∗), the

control law u f m(x,x∗) = (v(x,x∗),ω(x,x∗)) is defined as follows,

v = kv ev ω = kω atan
(

e⊥v /ev

)
. (4.10)

where kv > 0 and kω > 0 are control gains for linear and angular velocities and ev and e⊥v are

defined as follows1:

ev =

cosθ

sinθ


⊤

(p∗−p), e⊥v =

−sinθ

cosθ


⊤

(p∗−p). (4.11)

One can show that the unicycle model (4.9) controlled by (4.10) is globally asymptotically stable

[50, Lemma 1] in position, i.e., for any p∗, the closed-loop unicycle trajectory p(t) satisfies

limt→∞ p(t) = p∗.

Ice-cream Cone Shape Reachable Set Prediction

Given the robot’s position and goal location, we can construct an ice-cream-cone shape

outer approximation of its reachable set enclosing the future robot trajectory. This leads to a

much tighter approximation of the reachable set compared to a circular or ellipsoidal motion

1To resolve the indeterminacy, set ω = 0 when p = p∗.

66

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Figure 4.3. Cone shape reachable set prediction. The start and goal are depicted as red and
green stars respectively with green circle being the goal region. The robot is scaled and shown as
cyan rectangle with purple arrow showing its instantaneous moving direction. The reachable set
approximations are shown in orange.

prediction from a quadratic Lyapunov function. An illustrative example given in Fig. 4.3, where

the ball and cone approximations are depicted on left and right, respectively.

Proposition 3. For any goal pose x∗ = (p∗,θ ∗) and any initial condition x0 = (p0,θ0), the

closed-loop trajectory x(t) = (p(t),θ(t)) of the unicycle model (4.9) under control law (4.10) is

positively invariant in the ice-cream-cone-shape motion prediction set M (x,p∗) defined as:

M (x,p∗) := C
(

p,p∗,∥e⊥v ∥
)

(4.12)

where the bounded ice-cream cone C (p,p∗,ρ) is defined as:

C (a,b,r) := {a+α(z−a) | α ∈ [0,1] ,z ∈ B(b,r)} , (4.13)

and B(c,r) :=
{

z ∈ R2 | ∥z− c∥ ≤ r
}

is the closed ball centered at c ∈ R2 with radius r ≥ 0.

Proof. The proof follows from Proposition 4 of [50].

To help later discussion, we name the control law in (4.10) a cone controller. Note that

67

this controller only guarantees position convergence but orientation alignment is not enforced.

4.3 Dynamic Safety Margin using SDDM

We will show how to use an SDDM as adaptive risk assessment for collision avoidance

during navigation. In Chapter 2, we defined dynamic safety margin (DSM) in Def. 3 that jointly

considers the robot and governor status. We showed how to use a Parametric Barrier Function

(PBF) as a DSM to regulate tracking speed via a reference governor. In this chapter, we will show

how to construct a DSM from state-dependent direction metrics developed in the last section.

4.3.1 DSM from Ellipsoid Trajectory Bounds

Without loss of generality, we use a double integrator as running example for using

SDDM as dynamic safety metric. It can be applied to any linear system satisfying regulator

equations (2.4). Consider an acceleration-controlled robot, stabilized by a proportional-derivative

(PD) controller:

p̈ = u :=−2kp−ζ ṗ. (4.14)

The closed-loop robot-governor system is:

ẋ

ġ

=


ṗ

v̇

ġ

=


v

−2k(p−g)−ζ v

−kg(g− ḡ)

 , (4.15)

where the governor control policy is the same as in Section. 2.12.

Proposition 4. Let (p0,y0,g0) be any initial state for the robot-governor system in (4.15) with

p0,g0 ∈ F . Suppose that governor control law ġ ≡ 0 so that g(t)≡ g0. Let Q := Q [g0 −p0] ∈

Sn
>0 be a constant directional matrix and suppose that the following safety condition is satisfied:

δ (t0)≤ d2
Q(g0,O), (4.16)

68

where δ (t0) is an upper bound for ∥p(t)− g0∥2
Q obtained according to Lemma 4. Then, the

robot-governor system is globally exponentially stable with respect to the equilibrium (g0,0,g0)

and, moreover, the robot trajectory is collision free, i.e., p(t) ∈ F , for all t ≥ t0.

Proof. Since (g0,0) is an equilibrium for ˙̄x = Āx̄, by Lemma 4, p(t) ∈ EQ (g0,δ (t0)) for all

t ≥ t0. From the safety condition in (4.16), p(t) ∈ EQ (g0,δ (t0))⊆ EQ(g0,d2
Q(g0,O))⊆ F for

all t ≥ t0. Stability and output regulation is ensured by Servo-regulator Theorem 1.

Corollary 1. The difference between the directional distance from the governor to the obstacle

space and the ellipsoid bound is a dynamic safety metric, i.e., ∆E(x,g) = d2
Q(g,O)−δ (x,g) is

a DSM.

4.3.2 DSM from Reachable Set Approximation

By jointly considering bi-directional feed-forward information (from a costmap) and

feedback information (from motion prediction), we define a safety metric using the distance

between the motion prediction set and obstacle set defined by a costmap:

d(M (x,p∗),O), (4.17)

where M is the ice-cream cone reachable set approximation shown in (4.12) and O is the

obstacle space. In practice, one can design different cost curves and compute corresponding

inflated obstacle space O+ to replace O . As shown in [50] and [67], the distance between

the reachable set (projection on the working space) and the obstacle space is a suitable DSM

candidate.

Proposition 5. For g ∈ Int(F), the g-parameterized function

∆E(x,g) = d(M (x,g),O), (4.18)

69

is a dynamic safety margin for the closed-loop unicycle model with bi-directional control law

(4.10).

Proof. The proof follows from [50, Proposition 9].

4.3.3 DSM for Adaptive Control Law

To achieve proper directional risk assessment, we embed the robot’s state and surrounding

environment into a risk metric design via SDDM. Furthermore, we develop an adaptive gain

for longitudinal motion by computing the ratio of the directional safety metric and the regular

one. With this gain, the robot with desired heading can go fast under straight motion in long

corridor-like passages. First, let us define distance from a set A to another set B using quadratic

norm as dQ(A ,B) := infa∈A ,b∈B∥a−b∥Q. Then, we use a directional matrix Q [v] to define a

Q-norm and set the robot heading θ in the elongated direction, i.e., let v = [cosθ ,sinθ]⊤. Then,

the SDDM-based boost gain can be defined as:

β :=


dQ[v](M (x,g),O)

d(M (x,g),O) if d(M (x,g),O)> 0,

1 otherwise.
(4.19)

to speed up the longitudinal motion (4.10), i.e., v = β kv ev.

Remark 4. The SDDM-based boost gain β is uniformly bounded. Following the proof of [50],

one can verify that the shape of cone-shape motion prediction M (x,g) does not change if boost

gain β > 0.

Combining the unicycle controller (4.10) with the adaptive boost gain β in (4.19), we

have the closed-loop dynamics for unicycle model as:

ẋ = β vcosθ (4.20a)

ẏ = β vsinθ (4.20b)

θ̇ = ω, (4.20c)

70

0 50 100 150 200 250 300 350 400
0

25 Time: 10.00 sec

0 50 100 150 200 250 300 350 400
0

25 Time: 10.00 sec

Figure 4.4. Comparison of baseline controller (top) and proposed controller (bottom) in a
corridor simulation. A snapshot is shown at the same time instant for both controllers. The local
energy zone (yellow) resulting from the proposed SDDM trajectory bounds fits the corridor
environment well, leading to fast, yet safe, movement.

where v and ω are the same as shown in bi-directional motion control law (4.10).

4.3.4 Evaluation of Dynamic Safety Margin

We have introduce two new dynamic safety margins for linear and unicycle models.

To demonstrate their effectiveness, we construct three different simulated environments with

various complexity. We test a DSM backed by ellipsoid trajectory prediction in three cases: 1)

corridor environment 2) sparse environment with circular obstacles 3) unknown environment

with cluttered arbitrary obstacles. For DSM developed from reachable set prediction, we use

a C-shape environment to show the advantage of the boost gain discussed in Sec. 4.3.3. Other

experiments are delegated to the evaluation section (Sec. 4.6). For all simulations, the start and

end of the path are indicated by a red and green star, respectively.

Corridor environment

We show that utilizing a directional metric in the control design alleviates the corridor

effect discussed in introduction. We setup a simulation requiring a robot to navigate through a

corridor (Fig. 4.4). We use the controller developed in [6] as our baseline controller, in which a

71

Lyapunov function,

V (x,g) = k∥p−g∥2 +
1
2
∥v∥2 (4.21)

is used to estimate spherical reachable set. The results show that baseline controller, using a

Lyapunov function with spherical level sets, suffers from the corridor effect while the proposed

controller, making directional predictions about the system trajectory, does not.

Sparse environment with circular obstacles

This experiment compares the two controllers in a longer path-following task in an

environment with circular obstacles. Snapshots illustrating how the two controllers judge

distances to obstacles and define a local energy zone are shown in Fig. 4.6. It can be seen

that the controller equipped with a directional sensing ability has a better understanding of the

local environment geometry, leading to a larger, elongated local safe zone set. As a result, our

controller does not need to slow down for low-risk lateral obstacles, leading to smoother and

faster navigation. The directional bounds on the robot trajectory obtained analytically, according

to eq. (4.5), and from the SDP in eq. (4.8) are compared in Fig. 4.5.

0 5 10 15 20
Time (s)

0

500

1000

1500 ANL
OPT

Figure 4.5. Output peak ∥p(t)∥2
Q(t) from the trajectory followed in Fig. 4.6. The red curve is

η(t,Q(t)) obtained analytically from eq. (4.5). The blue curve is δ (t) computed from the SDP
optimization in eq. (4.8). It is clear that δ (t) is an upper bound for η(t,Q(t)), and the bound is
tight at certain moments. Analytical bounds are used in simulation, while optimization bounds
are computed for comparison purpose.

72

0 50 100 150 200 250 300
0

50

100

150

200
Iter 173 | time 8.65 sec
dist(g, O) = 21.83

0 50 100 150 200 250 300
0

50

100

150

200
Iter 110 | time 5.50 sec
dist(g, O) = 42.10

0 50 100 150 200 250 300
0

50

100

150

200

Finish Time: 36.45 sec

nav path
governor path
robot path

0 50 100 150 200 250 300
0

50

100

150

200

Finish Time: 23.80 sec

nav path
governor path
robot path

Figure 4.6. Simulation of the robot-governor system tracking a piecewise-linear path (black) in
an environment with circular obstacles (dark gray circles). The two plots on the left show that
the robot at around the same location behaves differently due to different distance measures. The
controller using Euclidean distance is overly cautious with respect to lateral obstacles resulting in
conservative motion. The system employing SDDM trajectory bounds has a larger local safe zone,
which helps the robot turn fast and smoothly. The two plots on the right show the trajectories
followed by the systems employing the two controllers. The velocity profiles are shown as
magenta arrows perpendicular to the robot path. The controller based on SDDM trajectory
bounds (rightmost) results in higher velocities compared to the controller using Euclidean ball
invariant sets. Note that the path followed by the robot (green line) is also smoother, especially
when turning, for the directional controller despite the higher velocity.

Unknown cluttered environment with arbitrary obstacles

This experiment demonstrates that our controller can work in a complex unknown

cluttered environment relying only on local onboard measurements. The directional distance

d2
Q(t)(g(t),O) from the governor to the obstacles is computed from the latest lidar scans. The

path P is re-planned from the current governor position to the goal using an occupancy grid

map constructed from the lidar scans over time, as illustrated in Fig. 4.7.

C-shape environment

To demonstrate the effectiveness of the directional boost gain (4.19), we create a C-

shaped simulated environment using Gazebo as shown in Fig. 4.8. Two controllers are tested:

left (boost gain disabled, i.e., β ≡ 1); right (boost gain enabled). All other configurations remain

the same. The boost gain value can be read from the color bar on the side. From the plots, we see

that the robot with SDDM boost speeds up faster in straight lines and remains at low speeds at

turns, while the other one is overly cautious. As a result, the controller with boost gain finishes

the task in 2/3 of the time of the other one.

73

Figure 4.7. Snapshot of the robot-governor system navigating a cluttered maze. Streaming
lidar scan measurements (red dots) are used to update an occupancy grid map of the unknown
environment. An acceleration-controlled robot (green dot) follows a virtual governor (blue dot)
whose motion is modulated based on the local energy zone (yellow ellipse) and the directional
distance to obstacles (gray ellipse). Navigation path (blue line) is periodically replanned using
an A* planner over the inflated occupancy grid map (bottom plot).

4.4 Safety Aware Planning

In previous sections, we introduced a new directional metric and developed dynamic

safety margins. This lays a foundations for safe tracking tasks but a high-quality planner is

indispensable for the reference-governor tracking methods to work properly. In previous chapters,

we assumed a path is either given or can be computed easily from off-the-shelf planners. As

discussed in the Introduction chapter, a simple A* algorithm may not be sufficient in safety-

critical applications. In a complex environment, part of the shortest path usually stays close to the

obstacle boundaries. Due to unmodelled dynamics and measurement noise, following shortest

paths strictly might lead to collisions. On the other hand, aiming to find the maximum clearance

path can lead to infeasibility or undesired long-distance paths. To resolve this, we design and

construct a distance-field-based costmap as input for a search-based planning algorithm. Instead

74

4 2 0 2 4 6 8 10
12

10

8

6

4

2

0

2

Finished Time:
20.84 secs

Obstacles
Planning Path
Robot Path

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

4 2 0 2 4 6 8 10
12

10

8

6

4

2

0

2

Finished Time:
17.88 secs

Obstacles
Planning Path
Robot Path

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Figure 4.8. Simulation of robot-governor path following controller in C-shape environment. The
adaptive boost gain is disable at left and enabled at right.

of searching for an optimal path (in terms of travel distance) over a binary occupancy grid map,

using a costmap as input for the planner, we can tune the planner to generate optimal paths

favoring safety while maintaining good performance in travel distance. It can generate paths

from max-clearance path to shortest travel distance paths, leaving the practitioner the freedom

to balance safety and efficiency. We will use a rectangularshaped Jackal robot as a running

example for this section. As shown in Fig. 4.9, a Jackal robot is a differential-drive robot with

four equivalent wheels, two on each side running at the same speed. The external dimensions are

508×430×250 mm. It weighs about 17 kg and can run at top speed 2.0 m/sec. The planning

module consists of two parts, a costmap computation block and a standard geometric planner.

We chose a standard A* planning algorithm as our 2D geometric planner. We start with the

costmap design for the Jackal UGV.

4.4.1 Costmap Design

A costmap is a representation for the planning search space around a vehicle, it allows

planned path to be pushed away from obstacle space [79]. Inspired by ROS costmap 2d package,

we design our own costmap curve for the Jackal robot. The footprint of Jackal UGV is approxi-

mated as a rectangle with inscribed radius rins = 0.215 m and circumscribed radius rcir = 0.333

m as shown in Fig. 4.10 (b). We set cost for real obstacle and inscribed obstacle (distance to robot

75

http://wiki.ros.org/costmap_2d

Figure 4.9. Jackal unmanned ground vehicle.

center less than inscribed radius) at 19 and the exponential decay rate chosen to be 7.0. To allow

robot planning in unknown space yet still prefer known space, we set unknown cell cost at 3. The

resulting cost curve is depicted in Fig. 4.10 (c). Using the cost curve, we can generate costmap

from occupancy grid map message obtained from Hector SLAM. The hector map occupancy

grid is first processed as binary image and then pass to distanceTransform function provided

by OpenCV image processing library. Next, we multiply the distance map (in pixel) by grid

map resolution, we get distance map over Euclidean distance metric. Finally, we assign cell cost

according to its type and distance and get the costmap. The occupancy grid map and costmap are

shown in Fig. 4.10 (c) and (d).

4.4.2 Planner Edge Cost Design

We choose Manhattan distance as heuristic and the cost between neighborhood cells on

search graph is computed as follows:

cost(p1,p2) = ∥p1 −p2∥+ costmap(p2), (4.22)

76

https://docs.opencv.org/3.4/d2/dbd/tutorial_distance_transform.html

Figure 4.10. The robot footprint is approximated as a rectangle with inscribed radius rins = 0.215
m and circumscribed radius rcir = 0.333 m as depicted in (a). Cost curve design for Jackal robot
is shown in (b) where lethal obstacle and inscribed cost is set to 19 with decay rate 7.0. The
occupancy grid map of Jackal Race simulated world is shown in (c) with cell value being the
probability (in percent) being occupied by obstacles. A corresponding costmap is shown in (d),
in which cell value stands for traversing cost.

77

where p1 and p2 are the cell coordinates for parent and child cells and costmap(p2) denotes the

costmap value at p2.

Note that we can set different critical values when generating costmap from occupancy

grid map. For example, considering circumscribed radius (rcir = 0.333 m) and map resolution

(0.1 m/cell), we can set the obstacle cost lower bound as 5 to ensure resulting path from planner

can achieve at least 0.4 m clearance. This critical value 5 can be determined from the cost curve

directly, see vertical orange line in Fig. 4.10 (b). A comprehensive example can be found in

Figure 4.11 in next subsection, in which we use different costmap designs to generate various

paths: from path with shortest travel distance, path with medium travel distance and clearance

and path with maximum clearance.

4.4.3 Evaluation of Costmap Designs

From the previous discussion, we know that the costmap can affect the planner’s per-

formance and safety metric estimation. Using different cost curves, we can control the path

clearance. In this section, we want to demonstrate how our algorithm can be tailored for different

preferences.

Given map resolution and robot circumscribed radius, we choose 0.4 m as the minimum

path clearance for all cost curve designs. A planning cutoff value and obstacle lower bound can

be computed from the cost curve. For example, for a medium-clearance design whose cost curve

is depicted in Fig. 4.10 (b), we set the planning cutoff value as 5 (corresponding to 0.406 m

clearance) and the obstacle lower bound as 8 (corresponding to 0.333 m clearance). Similarly,

we designed another two cost curves for a minimum clearance path (shortest path with desired

0.4 m clearance) and a maximum clearance path. The parameter values of these three costmap

designs are listed in Table 4.1.

Using these different costmap designs, three corresponding paths are computed in Jackal

race world and depicted as black dash line as shown in Fig. 4.11. For all cases, our algorithm

can safely drive the robot towards goal. The resulting robot paths are plotted using colored

78

Figure 4.11. Jackal race world ROS simulation with three different cost curve designs.

line where robot to obstacle distance is embedded by gradient color. The value of color bar is

saturated at 1 for visibility. Associated quantitative results are summarized at Table. 4.2.

Table 4.1. Three different costmap design parameters.

Costmap Design Decay Rate Planning Cutoff Obstacle Lower Bound
minimum clearance 15.0 1 3
medium clearance 7.0 5 8
maximum clearance 1.0 15 17

Table 4.2. Simulation quantitative result of three costmap designs.

Costmap Design Plan Path Length Robot Traj. Length Avg. Clearance Min. Clearance
minimum clearance 15.10 m 15.66 m 0.45 m 0.13 m
medium clearance 16.19 m 15.63 m 0.63 m 0.34 m
maximum clearance 22.28 m 20.32 m 1.31 m 0.38 m

4.5 Safe Tracking via Reference Governor

In this section, we show how to use adaptive risk developed in Sec. 4.3 to construct two

reference governor trackers for path following. We will first introduce the a reference governor

path tracker design with necessary backgrounds. This tracker can help a robot navigate fast and

efficiently in static environments. To handle moving obstacles, we change the governor dynamics

allowing it to follow a safer goal around the given path but not necessarily on it. This extension

can help the robot navigate safely in challenging situations with multiple obstacles. Controlled

79

by our algorithm, the robot can progress to the goal efficiently while actively avoiding incoming

obstacles in a natural way.

4.5.1 Governor Control Policy Design

Recall that a reference governor is a virtual first-order system defined as follows:

ġ =−kg(g−g∗), (4.23)

where g ∈ R2 is the internal governor states and g∗ ∈ R2 is input signal to be determined. The

governor state g is used to guide robot dynamics while following input signal g∗(t) served

as intermediate goals along the reference (path P). To utilize a reference governor for path

following, a dynamic safety margin serves as an indicator of system safeness, wherein a larger

value of it signifies increased safety. In the following of the paper, we will use DSM based on

reachable set approximation as described in Sec. 4.3.2 for Jackal robot control. Considering

robot footprint, we have the following DSM,

∆E(x,g) := d(M (x,g),O+). (4.24)

where O+ is the inflated obstacle space determined by robot footprint and costmap.

Next step is to find local goals used in governor dynamics, i.e., g∗ in (4.23). Using safety

margin ∆E, we can define a local safe zone, from which local goals will be computed. Then we

can compute local projected goal as input signal ḡ. The definitions of local safe zone and local

projected goal are presented below with an illustrative plot in Fig. 4.12.

Definition 9. A local safe zone is a time-varying set, determined by the joint system-governor

state (x,g), a dynamic safety margin ∆E(x,g),

L S (x,g) :=
{

q ∈ R2 | ∥q−g∥2 ≤ ∆E(x,g)
}
. (4.25)

80

Figure 4.12. Geometric relationship of local safe zone L S (yellow ball), local projected goal ḡ
(red dot) and optimized local goal ĝ (green dot).

Definition 10. A local projected goal at system-governor state (x,g) is a point ḡ ∈ L S (x,g)

that is furthest along the reference path P:

ḡ = P(σ̄), σ̄ = argmax
σ∈[0,1]

{σ | P(σ) ∈ L S (x,g)} . (4.26)

Until now we have completed the first reference-governor-based path tracker. Combining

a unicycle controller (4.10) and the governor dynamics (4.23) with a time-varying input signal

g∗(t) = ĝ in the governor dynamics, we summarize the robot-governor dynamics as follows:

ẋ = β vcosθ (4.27a)

ẏ = β vsinθ (4.27b)

θ̇ = ω (4.27c)

ġ =−kg(g− ḡ), (4.27d)

where β is the SDDM boost gain in (4.19) and v and ω as shown in (4.10).

Theorem 6. Given a reference path P , consider the closed-loop system in (4.27). Suppose that

81

the initial state (x0,g0) satisfies:

∆E(x0,g0)> 0, g0 = p(0) ∈ F , (4.28)

where ∆E(x,g) = d(M (x,g),O+). Then, the robot converges to goal region close to P(1)

without collision, i.e., p(t) ∈ F , ∀t ≥ t0.

Proof. Note that, in this chapter we adopt new dynamic safety from reachable set approximation.

The proofs follows from Theorem 2 and Proposition 5.

The reference governor tracker can now guide the robot to navigate in a static unknown

environment safely and efficiently. When a moving obstacle approaches to the robot (∆E = 0),

robot will stop in place and will resume its motion only when the moving obstacles leaves

(∆E(t) > 0). However, the non-at-fault stop-and-go strategy may not be efficient enough in

certain applications where robots are required to navigate through crowds. To overcome this, we

extend our algorithm in the following section.

4.5.2 Governor Control Policy Extension for Moving Obstacles

Merely adhering to the planned path is insufficient for promptly avoiding approaching

obstacles. An intelligent algorithm should grant the robot the ability to temporarily deviate from

the predetermined path and execute emergency maneuvers when deemed necessary. To acquire

such capability, we not only need to bi-directional low-level motion control, but the leading

signal shall also be flexible to provide proper guidance. The unicycle controller (4.10) shown in

4.2.3 already allows bi-direction movement. To satisfy the second requirement, we propose an

optimization-based method to modify the input signal (ḡ) in governor dynamics (4.23), allowing

the governor to purse local goals that deviate from given path. So, when moving obstacles

endanger robot’s progression, it can take proper avoidance maneuver in a defensive fashion.

To ease the discussion, let us suppose there are k moving obstacles with circular shape

centered at location {pi}k
i=1 with radius {ri}k

i=1. All moving obstacles behave like an independent,

82

linear, time-invariant system satisfying the following dynamics:

ṗi = vi, (4.29)

where vi is the velocity of agent i. For simplicity, we assume the position and velocity of moving

obstacles are known to the robot. In practice, this information can be obtained from the front-end

perception module. Inspired by safety control techniques based on control barrier functions

(CBFs) [2], we formulate a convex optimization problem to shift the governor input reference

signal ḡ in a minimally invasive way to avoid incoming moving agents.

CBF construction for moving obstacle.

Let r+i = ri + rcir be the inflated radius of moving obstacle i, define the gap between two

balls B(pi,r+i) and B(g,∥p−g∥) as:

dhi := ∥g−pi∥−∥g−p∥− r+i ≥ 0.

The gap between these two balls can be visualized in Fig. 4.12. One can prove [50, Prop.8] that

the cone motion prediction set M (x,g) is a subset of the ball B(g,∥g−p∥), i.e.,

M (x,g)⊂ B(g,∥g−p∥). (4.30)

Hence, the gap dhi is a DSM between moving obstacle i and the robot. Therefore, we can

construct a CBF for agent i from dhi:

hi(x,g,pi) = ∥g−pi∥2 −
(
r+i +∥g−p∥

)2
. (4.31)

83

To enforce collision avoidance, the CBF constraint becomes:

ḣi(x,g,pi)≥−αi(hi(x,g,pi)), (4.32)

where αi(·) is a class-K function to be designed. Expanding out the expression of ḣ, we have:

ḣi(x,g,pi) =
∂hi

∂g
ug +

∂hi

∂p
u+

∂hi

∂pi
vi, (4.33)

where u = [kvevβ cosθ ,kvevβ sinθ]⊤ is the control signal of robot and ug ∈ R2 is the governor

control to be determined.

Local projected goal modification

With the above CBF for moving obstacles, we can push the local projected goal ḡ

away from the path P temporarily if the nearest obstacle is getting too close to the robot. Let

h∗ := mini hi . We formulate an optimization problem to determine the governor control input as

follows:

min
ug∈R2, ĝ∈R2

∥ĝ− ḡ∥2 (4.34a)

subject to ḣ∗ ≥−αi(h∗) (4.34b)

ug =−kg(g− ĝ) (4.34c)

ĝ ∈ L S (x,g). (4.34d)

This optimization problem tries to search a modified local projected goal ĝ within local safe

zone L S (x,g) that is close to the original one ḡ. When a moving obstacle endangers the robot

operation, the optimization will push the projected goal away from the path P to reduce the

collision risk. An illustrative example is depicted in Fig. 4.12, where the optimized projected

goal ĝ (green dot) is found in the vicinity of local projected goal ḡ (red dot) to avoid nearest

84

incoming obstacle.

It is not hard to verify that this optimization problem is a convex program. By plugging

(4.25) and (4.33), we can simplify the above optimization (4.34) as:

min
ĝ∈R2

∥ĝ− ḡ∥2 (4.35a)

subject to a⊤h ĝ ≥ bh (4.35b)

∥ĝ−g∥2 ≤ d(M ,O+), (4.35c)

where ah = kg

(
∂h∗
∂g

)⊤
and bh = kg

∂h∗
∂g g− ∂h∗

∂p u− ∂h∗
∂p∗ v∗−α(h∗). The first constraint is linear in

ĝ and the second one is a convex quadratic constraint in ĝ since d(M ,O+) is known. Hence, the

optimization problem is a convex quadratically-constrained quadratic program (QCQP) and can

be solved efficiently by a QCQP solver.

Once ĝ is obtained, replacing ḡ with the modified projected goal ĝ in (4.27d) leads to the

governor dynamics:

ġ =−kg(g− ĝ). (4.36)

The effectiveness of this new active robot-governor control policy is verified in both simulation

and hardware experiments in the next section. For easy reference, we call this optimization-based

extension described in (4.34) and (4.36) active governor control policy.

In static environments, the proposed algorithm is provably safe as shown in Theorem 2

in Chapter 2. When moving obstacles are present, ensuring safety become much more involved

because it depends on the behavior of the obstacles. There are no universally accepted criteria

for safety among multiple agents in all situations. Sometimes, the problem is simply infeasible

since many situations can result in unavoidable collisions, such as when a moving obstacle is

adversarial and the environment and nonholonomic constraints restricts the motion of the robot

from taking an avoidance maneuver. Due to this complexity, our formulation for

we do not provide a theoretical only verify the effective of our algorithm in hardware

85

experiments. A rigorous proof is left as future work.

4.6 Evaluation

In this section, we will evaluate the performance of our path-following controller. We

will with an overview of system design. Then we will test the performance of our controller

using both simulations and hardware demonstrations. First, we describe our system design. In

specific, we will introduce hardware platform including computation, sensing and communication

module. Then, we will present our software architecture to enable safe navigation in unknown

environments.

4.6.1 Hardware Overview.

We chose to use ClearPath Jackal Unmanned Ground Vehicle (UGV) as our experimental

platform. As shown in Fig. 4.9, Jackal is a small field robotics research platform with onboard

computer and customizable sensor configuration such as GPS, IMU and LiDAR. It is Robot

Operating System (ROS) compatible, so we can quickly test and debug your algorithm in

simulation and deploy it to hardware.

Mobile platform. Jackal UGV is a differential drive robot with four equivalent wheels,

two on each side running at same speed. The external dimensions are 508×430×250 mm. It

weighs about 17 kg and can run at top speed 2.0 m/sec. For basic usage, it can run about 2-4

hours.

Computation, sensing and communication. Our custom Jackal is equipped with an

Intel i7-9700TE CPU with 32GB RAM, an Ouster OS1-32 LiDAR and a UM7 9-axis IMU. This

supplies sufficient computation power and sensing capability for autonomous navigation tasks.

The UGV can be manually controlled by a Bluetooth joystick or remotely accessed by onboard

Wi-Fi. We use the joystick to trigger our problem at the beginning and use it as an emergency

stop controller. A local network is setup via a standard router, so we can use visualization tools

that come with ROS development kit to monitor running status of our algorithm and save ROS

86

Costmap
Computation

Geometric Planner

Planning

Adaptive Risk
Assessment

Governor Dynamics

Ref-Gvn Tracker

Adaptive Feedback
Hybrid Controller

Motion Prediction

Unicycle Control

Localization and Mapping
Hector SLAM

Robot Platform
Motor Controller

Path

Costmap

Local Goal

Motion
Prediction

Map Velocity
Commands

Robot States Robot States

Robot States

Sensor
Measurments

Robot States

Adaptive
Gain

Figure 4.13. System architecture overview of environment aware safe tracking control.

bag for replay and debugging.

4.6.2 Software Architecture

The software components can be grouped into three categories: Localization and Map-

ping, Planning and Control. We use Robot Operation System (ROS) as the framework for all

high-level tasks running on the robot. Figure 4.13 is an overview of our system architecture. On

the top half, we have the planning block at left and the control modules (in dash rectangular),

which are the focus of this paper. We use the out-of-box low-level velocity controller provided

by Clearpath Robotics which takes linear and angular velocity command and transforms them to

motor input signals. In the rest of this section, we will describe the localization and mapping

package we used and briefly summarize our design in the planning and control.

Localization and mapping. For localization and mapping task, we use an open-source

LiDAR-based 2D SLAM algorithm called Hector SLAM [57]. This algorithm takes 2D laser

scan as inputs and outputs robot’s poses (position and orientation) in an online constructed

occupancy grid map. We use an ROS package named pointcloud_to_laserscan to convert

3D pointcloud from Ouster LiDAR to 2D laser scan.

Planning. The planning module consists of two parts, a costmap computation block

and a standard geometric planner. As described in Sec. 4.4, we chose searched-based planning

87

algorithm named A* as our 2D geometric planner. We create a distance-field based costmap as

input for the planner. The customizable costmap can be easily tuned to generate optimal paths

from max-clearance path to shortest travel distance path, leaving practitioner the freedom to

balance safety and efficiency.

Control. The control system contains three parts: path tracking, unicycle velocity control

and motor speed regulation. Motor control is handled by built-in embedded software from

Clearpath. The unicycle control design including a bi-directional controller and an accurate

motion prediction are described in Sec. 4.3.3 and Sec. 4.3.2.

To bridge the gap between a geometric path planner and unicycle controller, we develop

environmental-aware reference-governor tracker in Section 4.5 that continuously generates

proper local goals along the path and sends them to the controller. This tracker estimates running

risk by considering local geometric information and system dynamics at the same time. In

addition, it also updates an adaptive gain to speed up tracking process when it is safe to do so.

Using this tracker, the robot can track the path safely and fast in challenging environments.

4.6.3 Experiment Setup and Parameters

In this section, all experiments share the same design parameters and control gains

unless explicitly pointed out. For localization and mapping, the hector SLAM packages provide

robot pose estimation at about 20 Hz with 0.1 m positional and 0.1 rad angular accuracy. The

map resolution is chosen at 0.1 m. The control gains and directional matrix parameters are

summarized in Table 4.3.

Unless pointed out explicitly, all experiments share the same control parameters in this

table and the class-K function for moving obstacle experiment is:

αi(hi) = γih2
i . (4.37)

For all simulated experiments, we plot a 2D planning path as a black dash line with

88

Table 4.3. Parameter table of control gains.

Parameter kg kv kω γi c1 c2
Value 2.0 0.5 1.5 0.2 1 9

start and goal denoted by a red and green star, respectively. The velocity profiles are shown as

magenta arrows perpendicular to the robot path.

4.6.4 Baseline Comparison

In this section, we compare our work with a recent work called EVA-Planner [84], in

which an environmental-aware adaptive planner is developed using MPC techniques with novel

SDF gradient based directional safety metric. Two experiments have been done to compare

these two methods with emphasis on difference on safety and adaptivity, respectively. The EVA

planner solves the planning and control problem via a two-layer hierarchy MPC, all constraints

are encoded as soft cost and solved by a gradient-based numerical solver (NLopt2 + L-BFGS

algorithm). It is worth pointing out that the EVA planner tries to solve are constrained nonlinear

non-convex optimization problems. Therefore, the optimality and safety constraints satisfactions

are not guaranteed. We tried our best to fine-tune it.

Safety ten point test. In the first experiment, we randomly sampled ten feasible points

from Jackal race world as shown in Fig. 4.11. All goals are at integer grid intersections, markers

positions are shifted slightly for visualization. From the plot, we can see that our algorithm

can reach all ten goals safely, while EVA planner failed to reach one goal at (6,−8). In our

implementation, the EVA planner failed to find global optimal solution of the high MPCC

optimization problem and outputs trajectory go through obstacles. Other paper find out that

this EVA planner performance degrades (collision rate gets higher) when robot operates in

environment with high obstacle density [71].

Adaptivity maze test. In the second experiment, we create a challenging maze-like

environment to test the adaptivity of these two methods. The robot is asked to go from the start

2http://github.com/stevengj/nlopt

89

10 8 6 4 2 0 2 4 6 8 10

10

8

6

4

2

0

2

4

6

8

10 Ours (Success)
EVA (Success)
Ours (Fail)
EVA (Fail)

Figure 4.14. Safety test on ten random selected goals.

position at origin to goal at (6,6) in the maze center. To accomplish this task, the robot must

go through corridors that become narrower from outer (about 3m wide) to inner (less than 1

m wide). For both methods, we use the same 0.4 m inflation radius in A* planner. The low

MPC used in EVA planner are set similar distance (0.7 m) clearance preference as our medium

clearance cost curve design. Both methods use the same parameters as in Jackal race world. The

results are shown in Fig. 4.15. The velocity profiles are depicted perpendicular along robot paths

using purple lines (longer faster). The safety distance margin d(p,O+) is embedded in colorbar.

As we can see from this plot, our method accomplishes this task successfully while adapting

its speed according to local environments, i.e., faster when corridor is wide and slower when it

becomes narrows. In contrast, the EVA planner cannot handle this task elegantly using the same

hyper-parameters. Although the EVA planner runs faster at beginning when corridor is wide,

the two cost terms of progress (pushing robot progress along planned path) and direction safety

metric (reducing speed when robot getting closer to obstacle) are fighting each other when robot

getting deep in the maze. This results in wobbly motion and snake trajectory, and eventually

90

drive robot crash to wall.

2 0 2 4 6 8 10 12 14
2

0

2

4

6

8

10

12

14

0.0

0.2

0.4

0.6

0.8

1.0

2 0 2 4 6 8 10 12 14
2

0

2

4

6

8

10

12

14

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.15. The result maze adaptivity experiment. The distance from robot to inflated obstacle
space is embedded in robot path. The value of colorbar is saturated at 1 m for better visualization.

4.6.5 Hardware Demonstration in Clutter Unknown Environment

In this experiment, we test our algorithm in a large scale (40×20 m) office-like collab-

orative lab environment. The place is shared with multiple research lab groups with various

robots, complex experiment platform, package boxes, working desks, etc., as shown in Fig. 4.16.

During this experiment, we use RViz to specify a few goals over unknown regions and let

the robot explore autonomously. This experiment takes about 10 minutes, a first-person video

captured by onboard GoPro camera can be found at here. While exploring this place, the robot

creates costmap online through occupancy grid and navigate itself safely without any collision.

The experiment overview can be found in Figure. 4.16, where the final costmap is depicted

Fig. 4.17. Three local scenes (marked in green boxes) are shown in the top row subplot (a)-(c)

with associated quantitative results right down below each of them.

The robot cruise speed adapts to sensed local environments, slowing down when entering

obstacle-dense areas and speed up when in wide open spaces as shown in these plots as shown

all scenes. From the middle row plots, we can see that the speed of Jackal robot (orange curve) is

higher when it is distance to obstacle (green line) is bigger. The adaptive directional SDDM boost

91

https://youtu.be/WPHYcv1nJjI

(purple curve) increases when motion direction is aligned with local environments. This can be

seen clearly in scene (2) in Fig. 4.16 when robot tries to go through a long narrow aisle. It allows

robot maintains relatively high speed in straight motions and slows down when turn-and-go are

required to pass obstacles (red luggage in front and green chair at behind) in the midway.

Figure 4.16. Hardware experiment in a large-scale (about 40 m × 20 m) collaborative working
space. Three representative scenes 1-3 are shown: scene 1) robot going from wide open area
to cluttered obstacle dense region and leave; scene 2) robot going through narrow aisle with
obstacles (red luggage and green chair); scene 3) robot going through one region to another while
passing narrow gaps and stop. At top row, photos of these three scenes are shown. Associated
quantitative plots is plotted down below each of these scenes.

4.6.6 Moving Obstacles Experiments

In this section, we will evaluate the path tracker extension using the active governor con-

trol policy. We will test the performance of our controller in dynamically changing environments

with moving obstacles. The position and velocity information of moving agents are assumed

to be known to the robot. For simulated experiments, the trajectories of moving obstacles are

calculated ahead and replayed at runtime. For hardware demonstration, we use Vicon motion

capture system to track motions of human actors and then pass this information to Jackal robot

over wireless network.

Simulation experiment. In this experiment, the robot is asked to follow a predefined

path (black dash line) while avoiding six known moving obstacles (light gray circles) with

92

Figure 4.17. Costmap of working space. The cost value from high to low are depicted in red,
yellow, blue to white.

different size and running speed. See snapshots in Fig. 4.18 for the simulation setup. Control

parameters used in this experiment are summarized in Table 4.4. To handle fast moving obstacles,

we use more conservative circular shape motion prediction set, i.e., B(g,∥g−p∥) (blue circle)

and increased control inputs bounds to [−10,10] m/sec and [−4,4] rad/s for linear and angular

velocities, respectively. Three snapshots of this simulation are shown in Fig. 4.18. The resulting

robot trajectory is depicted as a green line with purple arrows indicating its heading. Using

active governor control policy in Sec. 4.5.2, we allow local projected goal to deviate from path

temporarily, so robot can take necessary defensive maneuvers to avoid nearby incoming obstacles

and quickly resume to normal path following behavior when is safe to do so.

Table 4.4. Parameter table of control gains used in moving obstacle simulation.

Parameter kg kv kω γi c1 c2
Value 2.0 2.0 5.0 0.15 1 1

Hardware experiment. The site setup is shown in Fig. 4.19 (a) with static obstacles

(boxes, walls, pillars, etc,.) and moving obstacles (two actors wearing helmets). The robot is

93

Figure 4.18. Summary of moving obstacle simulation with six dynamic obstacles at different
running speed and sizes. When incoming obstacle endangers robot motions, the CBF constraints
become active and push optimized local projected goal (green cross) away from local projected
goal (red dot) allowing robot to take necessary defensive maneuvers. Three snapshots at different
times are shown.

asked to go through three different goals (marked as green circle) and return to origin (red circle).

The robot does not have any prior information of this environment, except receiving moving

obstacle positions from Vicon system. Actors are instructed to interrupt robot motions to each

goal but not being adversarial against it. Same controller parameter set are used as in Table. 4.3.

Please check out experiment video at here for better visualization. From the bottom plot 4.19 (d),

we see that the robot remains safe during the experiment (blue and purple line above zero).

4.7 Summary

This chapter presented an environment adaptive and safe path-following tracker via plan-

ning and control co-design. Through the usage of custom A* planner over costmap, directional

safety metric and conic shape motion prediction, our reference governor-based path tracker can

94

https://youtu.be/RvJ2Xo4qPV4?feature=shared

Figure 4.19. Hardware experiment with Jackal robot and two moving obstacle. Actors’ positions
are captured by Vicon motion captures system and passed to the robot via local network. This
robot re-plans at about 10 Hz online to reach different goals while avoiding moving pedestrians
temporarily crossing the path. Video is available at here.

achieve safe and efficient safe navigation in challenging large-scale unknown environments. The

effectiveness and adaptability are verified in various simulated and real experiments. By further

integrating with control barrier function, our method can handle dynamic environments with

moving obstacles under mild assumption. Future work will focus on extending geometric path

planner for SE(2) configuration space and developing semantic mapping algorithm can auto

detect moving obstacles onboard.

95

https://youtu.be/RvJ2Xo4qPV4?feature=shared

Acknowledgements

Chapter 4, is based on material the following two papers. First, “Fast and safe path-

following control using a state-dependent directional metric” authored by Zhichao Li, Omur

Arslan and Nikolay Atanasov, which appears in International Conference on Robotics and

Automation (ICRA), IEEE, 2020. The dissertation author was the primary investigator and

author of this paper. Second, “EAST: Environment Aware Safe Tracking using Planning and

Control Co-Design” by Zhichao Li, Yinzhuang Yi, Zhuolin Niu and Nikolay Atanasov, is

currently being prepared for submission. The dissertation author was the primary investigator

and author of this material.

96

Chapter 5

Concluding Remarks

5.1 Conclusion

In this dissertation, we developed an environment aware and safe tracking framework

based on reference governor techniques. Our method bridges the gap between geometric

planner and low-level stabilizing controller. With novel directional metric and dynamic safety

margins, resulting control policy can navigate the robot fast and safely in complex unknown

environments yet being alerted to surrounding dynamical obstacles and take necessary action to

avoid them. With learning technique, our methods are robust to model error and measurement

noise. With planning and control co-design, our algorithm balances safety and travel distance

leaving the freedom to practitioners. Through extensive simulation and hardware experiments,

we demonstrated the effectiveness of our design framework algorithms. The code is open sourced

to facilitate the research community.

5.2 Future Work

There are potential extensions that can be done beyond this dissertation. For example,

extending safe tracking framework to more complex dynamical systems like manipulators, under-

actuated non-rigid body dynamics. Designing advance planner over SE(2) and SE(3) to achieve

agile maneuverability. Integrated learning-based perception module to detect moving obstacles

in real-time and design algorithm being robust against prediction errors.

97

Appendix A

Proofs of Chapter 2

Lemma 5 ([31]). Let (X ,µ) be a metric space and let A ⊆ X be nonempty. The point-to-set

distance function d(·,A) : X 7→ R defined by d(·,A) := inf{µ(x,a) | a ∈ A } is 1-Lipschitz:

|d(x,A)−d(y,A)| ≤ µ(x,y), ∀x,y ∈ X ,

and, hence, uniformly continuous.

Lemma 6. The rate of change of the governor state in (2.12) is uniformly bounded by a constant,

∥ġ(t)∥ ≤ kgβ
√

l−1, and g(t) is continuous.

Proof. Considering (2.12), Def. 5, and Def. 4:

∥ġ(t)∥= kg∥g(t)− ḡ(t)∥ ≤ kg
√

∆E(t)/l. (A.1)

With ∆E(x,g) = b(x,g), from Def. 1 and (2.2), we know that ∆E(x,g) ≤ d2
s (g(t),O) ≤ β 2.

Hence, ∥ġ(t)∥ ≤ kgβ
√

l−1 and g(t) is continuous [30].

Lemma 7. The function ds(g(t),O) is continuous when g(t) ∈ F .

Proof. When g(t) ∈ F , from definition (2.2), we have ds(g(t),O) = min{d(g(t),∂O),β}. The

min operation is continuous, d(g(t),∂O) is continuous because g(t) is continuous by Lemma 6

and d(·,∂O) is continuous by Lemma 5.

98

Lemma 8. The Lyapunov function V (t) =V (x(t),g(t)) in (2.8) and the dynamic safety margin

∆E(t) = b(x(t),g(t)) in (2.10) are continuous functions in time.

Proof. From Lemma 6, we know that g(t) is continuous. Because V (x,g) is continuous in x, g,

we have V (t) =V (x(t),g(t)) continuous in time. By Lemma 7, ds(g(t),O) is continuous in time

and, hence, ∆E(t) = d2
s (g(t),O)−L2V (t) is continuous in time.

Lemma 9. For ∆E(t) = b(x(t),g(t)) defined in (2.10), let T0 ≥ t0 be such that ∆E(T0) = 0. Then,

the lower-right Dini derivative of ∆E(t):

D+∆E(t) := liminf
h→0+

∆E(t +h)−∆E(t)
h

(A.2)

satisfies D+∆E(T0)> 0 and there exists h > 0, such that ∆E(T0 +h)> 0.

Proof. Note that ∆E(t) is not differentiable everywhere due to the truncated signed distance

function ds(g(t),O) in its definition. We use the lower-right Dini derivative D+∆E(t) instead.

Let d̂(t,h) := max{ds(g(t),O),ds(g(t +h),O)}. From Lemma 5:

ds(g(t +h),O)−ds(g(t),O)≥−∥g(t)−g(t +h)∥.

Hence, ∆E(t +h)−∆E(t)≥−2∥g(t)−g(t +h)∥d̂(t,h)+L2(V (t)−V (t +h)) and D+∆E(t)≥

−2∥ġ(t)∥ds(g(t),O)−L2V̇ (t). From (2.8), with x̄ = x−Xg:

V̇ (t) = 2x̄⊤P((A+BK)x̄−Xġ) =−x̄⊤Qx̄−2x̄⊤PXġ ≤−x̄⊤Qx̄+2∥X⊤Px̄∥∥ġ∥. (A.3)

From Lemma 6, ∥ġ(t)∥ ≤ kg
√

∆E(t)/l, and therefore:

D+∆E(t)≥−2M(t)∥ġ(t)∥+L2x̄(t)⊤Qx̄(t)≥−2kgM(t)
√

∆E(t)/l +L2x̄(t)⊤Qx̄(t)

99

where M(t) = d̄(g(t),O) + L2∥X⊤Px̄(t)∥ ≤ β + L2∥X∥∥P∥∥x̄(t)∥ < ∞ for bounded ∥x̄(t)∥.

From (2.10),

λmin(P)∥x̄(t)∥2 ≤V (t)≤ β 2 −∆E(t)
L2 , (A.4)

which implies ∥x̄∥ and M(t) are bounded, for t = T0 such that ∆E(T0) = 0.

Note that g(t) ∈ L S (x(t),g(t)) ⊂ F , so ∆E(t) > 0 when V (t) = x̄(t)⊤Px̄(t) = 0.

Therefore, ∆E(t) = 0 and x̄(t) = 0 cannot happen simultaneously. Plugging t = T0 such that

∆E(T0) = 0 into (A.4),

D+∆E(T0)≥ L2x̄(T0)
⊤Qx̄(T0)> 0 (A.5)

since x̄(T0) ̸= 0, Q ∈ Sn
>0, and L > 0. Let γ̇ ≡ 0 with initial condition γ(T0) = 0. By the

Comparison Lemma [54], ∆E(T0 +h)> γ(T0 +h) = 0 for some h > 0.

Lemma 10. Consider the closed-loop system in (2.16).

S := {(x,g) ∈ Rn ×Rm | ∆E(x,g)≥ 0}

is positively invariant.

Proof. By inequality (A.5), S is forward invariant if and only if the vector field defining the

joint (x,g) system in (2.16) belongs to the Bouligand tangent cone of S for all (x,g) ∈ S .

The tangent cone is trivial except on the boundary of S (see [12]) so the condition needs to be

checked only for (x,g)∈ ∂S . Since S is defined implicitly by the function ∆E(x,g), the tangent

cone is equal to the hypograph of the lower-right derivative of ∆E(x,g) [7, Prop. 3.3.2]. In other

words, S is forward invariant if and only if for all t such that ∆E(t) := ∆E(x(t),g(t)) = 0, we

have D+∆E(t)≥ 0, where D+∆E(t) is the lower-right Dini derivative of ∆E(t) evaluated along

the flow of (2.16). This is concluded in Lemma 9.

100

Appendix B

Proofs of Chapter 3

B.1 Proof of Theorem 3

We do not write function arguments explicitly to simplify the notation. We also introduce

the following notation for the components of e and pe in (3.23):

e =

ep

eR

=

 kpR⊤pe

1
2kR

(
Re −R⊤

e
)∨
 ,

pe = M

ev

eω

= M

 v−R⊤
e v∗

ω −R⊤
e ω∗

 .

(B.1)

Consider the Lyapunov function candidate in (3.24):

V =
1
2
p⊤e M−1pe +Ud +ρ

d
dt

Ud, (B.2)

where Ud =
kp
2 ∥pe∥2 + kR

2 tr(I−Re). In the domain A , we have [63, Prop. 1]:

k−2
R ∥eR∥2

2 ≤ tr(I−Re)≤
4k−2

R
4−α

∥eR∥2
2. (B.3)

101

By the chain rule and (3.23), we have:

d
dt

Ud = ∇qeH
⊤

d q̇e = ∇qeH
⊤

d JM−1pe = e⊤M−1pe (B.4)

Using (B.3) and (B.4), together with the Cauchy-Schwartz inequality and the sub-multiplicative

property of the Euclidean norm, the Lyapunov function candidate is bounded as:

V ≤ λ2

2
∥pe∥2 +

k−1
p

2
∥ep∥2 +

2k−1
R

4−α
∥eR∥2 +ρλ2∥e∥∥pe∥.

V ≥ λ1

2
∥pe∥2 +

k−1
p

2
∥ep∥2 +

k−1
R
2

∥eR∥2 −ρλ2∥e∥∥pe∥.

The bounds can be stated compactly in quadratic form using z = [∥e∥ ∥pe∥]⊤ and Q1, Q2 in

(3.26):
1
2

z⊤Q1z ≤ V ≤ 1
2

z⊤Q2z. (B.5)

The time derivative of the Lyapunov candidate satisfies:

d
dt

V = p⊤e M−1ṗe + e⊤M−1pe +ρe⊤M−1ṗe +ρ ė⊤M−1pe.

The term ṗe is from (3.23). The term ė is obtained from (B.1):

ė =

ėp

ėR

=

−ω̂ep + kpev

kREReω


=−

ω̂ 0

0 0

e+

kpI 0

0 kRER

M−1pe,

(B.6)

102

where ER = 1
2

[
tr(R⊤

e)I−R⊤
e
]

satisfies ∥ER∥2 ≤ 1 [64, Prop. 1]. Hence, we have:

d
dt

V =−p⊤e M−1KdM−1pe +p⊤e M−1d

−ρe⊤M−1e−ρe⊤M−1KdM−1pe +ρe⊤M−1d

−ρp⊤e M−1

ω̂ 0

0 0

e+ρp⊤e M−1

kpI 0

0 kRER

M−1pe.

To find an upper bound on d
dt V , we need a few intermediate steps. First, on the domain A , we

have: ∥∥∥∥∥∥∥
ω̂ 0

0 0


∥∥∥∥∥∥∥

2

= ∥ω̂∥2 = ∥ω∥ ≤ ∥M−1p∥ ≤ λ2β . (B.7)

Second, an upper bound on

ξ1 :=−λmin(Kd)∥M−1pe∥2 +∥M−1pe∥∥d∥ (B.8)

can be found using Young’s inequality [87]:

−ε∥a∥2 +η∥a∥∥b∥ ≤ −ε

2
∥a∥2 +

η2

2ε
∥b∥2 (B.9)

with ε = λmin(Kd), η = 1, a = M−1pe, b = d:

ξ1 ≤−λmin(Kd)

2
∥M−1pe∥2 +

1
2λmin(Kd)

∥d∥2. (B.10)

Similarly, we have:

ξ2 :=−λ1∥e∥2 +λ2∥e∥∥d∥ ≤ −λ1

2
∥e∥2 +

λ 2
2

2λ1
∥d∥2. (B.11)

103

Using (B.7), (B.10), and (B.11), d
dt V is bounded by:

d
dt

V ≤−1
2

z⊤Q3z+ kγ∥d∥2, (B.12)

where the elements of Q3 are provided in (3.27) and kγ =
1

2λmin(Kd)
+

ρλ 2
2

2λ1
. Since the parameters

ρ , kp, kR, Kd can be chosen arbitrarily, there exists some choice that ensures the matrices Q1,

Q2, Q3 are positive definite as shown below. The inequalities in (3.25) are obtained from (B.5)

and (B.12) using the Rayleigh-Ritz inequality.

Design Parameter Choice

We use the invariant sets Sc = {x | V (x,x∗)≤ c} induced by the Lyapunov function

to restrict the error dynamics inside the domain A and estimate the region of attraction.We

determine c1 ≥ 0 such that V̇ is positive on Sc1 . From (3.25), V̇ is positive when kγδ 2
d −

k3∥z∥2 ≥ 0, which happens when V
k2

≤ kγ

k3
δ 2

d . Hence, with c1 = k2kγδ 2
d/k3, we have V̇ ≥ 0 on

Sc1 . Then, we determine c2 ≥ 0 such that Sc2 ⊆ A . From (B.3) and (B.5), we have:

4−α

4
k2

R tr(I−Re)≤ ∥eR∥2 ≤ ∥z∥2 ≤ V

k1
. (B.13)

Hence, if V ≤ 1
4k1k2

Rα (4−α), then tr(I−Re) ≤ α . Similarly, if V ≤ k1β 2, then ∥pe∥2 ≤

∥z∥2 ≤ V
k1
≤ β 2. Hence, to ensure that Sc2 ⊆ A , we define c2 as:

c2 := k1 min
{

k2
Rα(4−α)/4,β 2} . (B.14)

To ensure that c1 < c2, the disturbance bound δd must satisfy δd <
√

c2k3
k2kγ

. Then, any

closed-loop system trajectory that starts in Sc2 converges exponentially to Sc1 and remains

within it. Recall that ep = kpR⊤pe and from (B.5):

k2
p∥pe∥2 = ∥ep∥2 ≤ ∥e∥2 ≤ ∥z∥2 ≤ V

k1
. (B.15)

104

Hence, on Sc1 , ∥pe∥2 ≤ c1/(k1k2
p) and the uniform ultimate bound on the position error trajectory

in (3.29) is satisfied.

Design Parameter Choice

We propose a systematic way to select parameters ρ , kp, kR, Kd, ensuring that the

matrices Q1, Q2, Q3 are positive definite. Suppose kp < 4−α

4 kR and Kd = γdI for some γd > 0,

then we have

Q1 =

 k−1
R −ρλ2

−ρλ2 λ1

 Q2 =

k−1
p ρλ2

ρλ2 λ2


q2 =−ρλ

2
2 (γd +β) q3 = γdλ

2
1 −2ρλ

2
2 kR.

(B.16)

To guarantee the positive definiteness of Q1, Q2, Q3, the following requirements must be

satisfied:
λ1

kR
−ρ

2
λ

2
2 > 0,

λ2

kp
−ρ

2
λ

2
2 > 0, γdλ

2
1 −2ρλ

2
2 kR > 0

ρλ1
(
γdλ

2
1 −2ρλ

2
2 kR

)
−ρ

2
λ

4
2 (γd +β)2 > 0.

All these constraints put upper bounds on ρ:

ρ ≤ min

{√
λ1

kRλ 2
2
,

√
1

kpλ2
,

γdλ 2
1

2kRλ 2
2
, ρ̄Q3

}
, (B.17)

where ρ̄Q3 =
γdλ 3

1
λ 2

2 [2λ1kR+λ 2
2 (γd+β)2]

.

105

Bibliography

[1] Jose Angel Acosta, Romeo Ortega, Alessandro Astolfi, and Arun D Mahindrakar. Inter-
connection and damping assignment passivity-based control of mechanical systems with
underactuation degree one. IEEE Transactions on Automatic Control, 50(12):1936–1955,
2005.

[2] Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil
Sreenath, and Paulo Tabuada. Control barrier functions: Theory and applications. In IEEE
European Control Conference (ECC), pages 3420–3431, 2019.

[3] Aaron D Ames, Kevin Galloway, Koushil Sreenath, and Jessy W Grizzle. Rapidly
exponentially stabilizing control Lyapunov functions and hybrid zero dynamics. IEEE
Transactions on Automatic Control (TAC), 59(4):876–891, 2014.

[4] Aaron D Ames, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based
quadratic programs with application to adaptive cruise control. In IEEE Conference on
Decision and Control (CDC), pages 6271–6278, 2014.

[5] Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. Control barrier function
based quadratic programs for safety critical systems. IEEE Transactions on Automatic
Control (TAC), 62(8):3861–3876, 2017.

[6] Omur Arslan and Daniel E Koditschek. Smooth extensions of feedback motion planners
via reference governors. In IEEE International Conference on Robotics and Automation
(ICRA), 2017.

[7] Jean-Pierre Aubin. The method of characteristics revisited. a viability approach. In arXiv
preprint: math/9906178, 1999.

[8] Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-Jacobi Reach-
ability: A Brief Overview and Recent Advances. In IEEE Conference on Decision and
Control (CDC), pages 2242–2253, 2017.

[9] Andrew J Barry, Anirudha Majumdar, and Russ Tedrake. Safety verification of reactive
controllers for UAV flight in cluttered environments using barrier certificates. In IEEE
International Conference on Robotics and Automation (ICRA), pages 484–490, 2012.

[10] Alberto Bemporad. Reference governor for constrained nonlinear systems. IEEE Trans-
actions on Automatic Control (TAC), 43(3):415–419, 1998.

106

[11] Priyadarshi Bhattacharya and Marina L Gavrilova. Roadmap-based path planning-using
the voronoi diagram for a clearance-based shortest path. IEEE Robotics & Automation
Magazine, 15(2):58–66, 2008.

[12] Franco Blanchini and Stefano Miani. Set-theoretic methods in control, volume 78.
Springer, 2008.

[13] Guido Blankenstein, Romeo Ortega, and Arjan J Van Der Schaft. The matching conditions
of controlled Lagrangians and IDA-passivity based control. International Journal of
Control, 75(9):645–665, 2002.

[14] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[15] Urs Borrmann, Li Wang, Aaron D Ames, and Magnus Egerstedt. Control barrier certifi-
cates for safe swarm behavior. IFAC-PapersOnLine, pages 68–73, 2015.

[16] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. Linear
matrix inequalities in system and control theory, volume 15. SIAM, 1994.

[17] José Manuel Bravo, Teodoro Alamo, and Eduardo F Camacho. Robust mpc of constrained
discrete-time nonlinear systems based on approximated reachable sets. Automatica,
42(10):1745–1751, 2006.

[18] Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati,
and Angela P. Schoellig. Safe learning in robotics: From learning-based control to safe
reinforcement learning. Annual Review of Control, Robotics, and Autonomous Systems,
2021.

[19] Robert Burridge, Alfred Rizzi, and Daniel Koditschek. Sequential composition of dynam-
ically dexterous robot behaviors. The International Journal of Robotics Research (IJRR),
18(6):534–555, 1999.

[20] Guy Campion and Georges Bastin. On adaptive linearizing control of omnidirectional
mobile robots. In Robust Control of Linear Systems and Nonlinear Control, pages 531–538.
Springer, 1990.

[21] Mo Chen, Sylvia Herbert, and Claire J Tomlin. Exact and efficient Hamilton-Jacobi
guaranteed safety analysis via system decomposition. In IEEE International Conference
on Robotics and Automation (ICRA), pages 87–92, 2017.

[22] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems (NeurIPS),
2018.

[23] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models. In Advances in
Neural Information Processing Systems (NeurIPS), 2018.

107

[24] Raj Dandekar, Karen Chung, Vaibhav Dixit, Mohamed Tarek, Aslan Garcia-Valadez,
Krishna Vishal Vemula, and Chris Rackauckas. Bayesian neural ordinary differential
equations. arXiv preprint arXiv:2012.07244, 2020.

[25] Brigitte d’Andrea Novel, Georges Bastin, and Guy Campion. Dynamic feedback lin-
earization of nonholonomic wheeled mobile robots. In IEEE International Conference on
Robotics and Automation (ICRA), pages 2527–2528, 1992.

[26] Alessandro De Luca, Giuseppe Oriolo, and Claude Samson. Feedback control of a
nonholonomic car-like robot. In Robot motion planning and control, pages 171–253.
Springer, 1998.

[27] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes for
data-efficient learning in robotics and control. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 37(2):408–423, 2015.

[28] Thai Duong and Nikolay Atanasov. Hamiltonian-based Neural ODE Networks on the
SE(3) Manifold For Dynamics Learning and Control. In Proceedings of Robotics: Science
and Systems, Virtual, July 2021.

[29] Thai Duong and Nikolay Atanasov. Learning adaptive control for se(3) hamiltonian
dynamics. arXiv preprint arXiv:2109.09974, 2021.

[30] Aleksei Fedorovich Filippov. Differential equations with discontinuous righthand sides:
control systems, volume 18. Springer Science & Business Media, 1988.

[31] Simon Fitzpatrick. Metric projections and the differentiability of distance functions.
Bulletin of the Australian Mathematical Society, 22(2):291–312, 1980.

[32] Bruce A Francis. The linear multivariable regulator problem. SIAM Journal on Control
and Optimization, 15(3):486–505, 1977.

[33] Yiqi Gao, Andrew Gray, H Eric Tseng, and Francesco Borrelli. A tube-based robust
nonlinear predictive control approach to semiautonomous ground vehicles. Vehicle System
Dynamics, 52(6):802–823, 2014.

[34] Emanuele Garone, Stefano Di Cairano, and Ilya Kolmanovsky. Reference and command
governors for systems with constraints: A survey on theory and applications. Automatica,
75:306–328, 2017.

[35] Emanuele Garone and Marco M Nicotra. Explicit reference governor for constrained
nonlinear systems. IEEE Transactions on Automatic Control (TAC), 61(5):1379–1384,
2016.

[36] Elmer G Gilbert and Ilya Kolmanovsky. Discrete-time reference governors for systems
with state and control constraints and disturbance inputs. In IEEE Conference on Decision
and Control (CDC), volume 2, pages 1189–1194, 1995.

108

[37] Elmer G Gilbert and Ilya Kolmanovsky. Set-point control of nonlinear systems with state
and control constraints: A Lyapunov-function, Reference-Governor approach. In IEEE
Conference on Decision and Control (CDC), volume 3, pages 2507–2512, 1999.

[38] Fabio Gomez-Estern, Romeo Ortega, Francisco R Rubio, and Javier Aracil. Stabiliza-
tion of a class of underactuated mechanical systems via total energy shaping. In IEEE
Conference on Decision and Control, volume 2, pages 1137–1143, 2001.

[39] Lars Grüne and Jürgen Pannek. Nonlinear model predictive control. Springer, 2017.

[40] Daniel Damir Harabor and Alban Grastien. Online graph pruning for pathfinding on grid
maps. In AAAI Conference on Artificial Intelligence, 2011.

[41] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[42] Aaron Havens and Girish Chowdhary. Forced variational integrator networks for prediction
and control of mechanical systems. In Learning for Dynamics and Control, pages 1142–
1153. PMLR, 2021.

[43] Markus Heinonen, Cagatay Yildiz, Henrik Mannerström, Jukka Intosalmi, and Harri
Lähdesmäki. Learning unknown ODE models with Gaussian processes. In Jennifer
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
1959–1968, 10–15 Jul 2018.

[44] Sylvia L Herbert, Mo Chen, SooJean Han, Somil Bansal, Jaime F Fisac, and Claire J
Tomlin. FaSTrack: A modular framework for fast and guaranteed safe motion planning.
In IEEE Conference on Decision and Control (CDC), pages 1517–1522, 2017.

[45] Lukas Hewing, Juraj Kabzan, and Melanie N Zeilinger. Cautious model predictive control
using gaussian process regression. IEEE Transactions on Control Systems Technology,
28(6), 2019.

[46] Minh Long Hoang, Marco Carratù, Vincenzo Paciello, and Antonio Pietrosanto. Noise
Attenuation on IMU Measurement For Drone Balance by Sensor Fusion. In IEEE
International Instrumentation and Measurement Technology Conference (I2MTC), pages
1–6, 2021.

[47] Darryl D Holm. Geometric Mechanics. World Scientific Publishing Company, 2008.

[48] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard.
Octomap: An efficient probabilistic 3d mapping framework based on octrees. Autonomous
robots, 34(3):189–206, 2013.

[49] Jie Huang. Nonlinear output regulation: theory and applications. SIAM, 2004.

109

[50] Aykut İşleyen, Nathan van de Wouw, and Ömür Arslan. Feedback motion prediction for
safe unicycle robot navigation. arXiv preprint arXiv:2209.12648, 2022.

[51] Juraj Kabzan, Lukas Hewing, Alexander Liniger, and Melanie N. Zeilinger. Learning-
based model predictive control for autonomous racing. IEEE Robotics and Automation
Letters, 4(4):3363–3370, 2019.

[52] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research (IJRR), 30(7):846–894, 2011.

[53] Lydia E Kavraki, Mihail N Kolountzakis, and J-C Latombe. Analysis of probabilistic
roadmaps for path planning. IEEE Transactions on robotics and automation (TRA),
14(1):166–171, 1998.

[54] Hassan Khalil. Nonlinear systems. Prentice Hall, 2002.

[55] Nathaniel Kingry, Logan Towers, Yen-Chen Liu, Yue Zu, Yuchen Wang, Briana Staheli,
Yusuke Katagiri, Samuel Cook, and Ran Dai. Design, modeling and control of a solar-
powered quadcopter. In IEEE International Conference on Robotics and Automation
(ICRA), pages 1251–1258, 2018.

[56] Sven Koenig and Maxim Likhachev. Real-time adaptive A. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 281–288. ACM, 2006.

[57] Stefan Kohlbrecher, Oskar Von Stryk, Johannes Meyer, and Uwe Klingauf. A flexible and
scalable SLAM system with full 3D motion estimation. In IEEE International Symposium
on Safety, Security, and Rescue Robotics, pages 155–160, 2011.

[58] Ilya Kolmanovsky, Emanuele Garone, and Stefano Di Cairano. Reference and command
governors: A tutorial on their theory and automotive applications. In IEEE American
Control Conference (ACC), 2014.

[59] Ilya Kolmanovsky, Emanuele Garone, and Stefano Di Cairano. Reference and command
governors: A tutorial on their theory and automotive applications. In IEEE American
Control Conference (ACC), pages 226–241, 2014.

[60] Shreyas Kousik, Sean Vaskov, Fan Bu, Matthew Johnson-Roberson, and Ram Vasudevan.
Bridging the gap between safety and real-time performance in receding-horizon trajectory
design for mobile robots. The International Journal of Robotics Research (IJRR), 2020.

[61] Steven LaValle. Rapidly-exploring random trees: A new tool for path planning. Tr 98-11,
Comp. Sci. Dept., Iowa State University, 1998.

[62] Steven LaValle. Planning Algorithms. Cambridge University Press, 2006.

[63] Taeyoung Lee. Robust Adaptive Attitude Tracking on SO(3) with an Application to a
Quadrotor UAV. IEEE Transactions on Control Systems Technology, 21(5):1924–1930,
2013.

110

[64] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Geometric tracking control of a
quadrotor UAV on SE(3). In IEEE Conference on Decision and Control (CDC), 2010.

[65] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Nonlinear robust tracking
control of a quadrotor uav on se (3). Asian Journal of Control, 15(2):391–408, 2013.

[66] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Global formulations of La-
grangian and Hamiltonian dynamics on manifolds. Springer, 2017.

[67] Zhichao Li, Omur Arslan, and Nikolay Atanasov. Fast and Safe Path-Following Con-
trol using a State-Dependent Directional Metric. In IEEE International Conference on
Robotics and Automation (ICRA), 2020.

[68] Zhichao Li, Thai Duong, and Nikolay Atanasov. Safe Robot Navigation in Cluttered
Environments using Invariant Ellipsoids and a Reference Governor. arXiv preprint
arXiv:2005.06694, 2020.

[69] Zhichao Li, Thai Duong, and Nikolay Atanasov. Safe Autonomous Navigation for Systems
with Learned SE(3) Hamiltonian Dynamics. Technical report, University of California,
San Diego, 2021.

[70] Maxim Likhachev, Geoffrey J Gordon, and Sebastian Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. In Advances in neural information processing systems
(NIPS), pages 767–774, 2004.

[71] Shulin Liu, Kexin Guo, Xiang Yu, Lina Ma, Lihua Xie, and Lei Guo. Safe maneuvering
planning for flights in complex environments. IEEE Transactions on Industrial Electronics,
2023.

[72] Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. Neural sde:
Stabilizing neural ode networks with stochastic noise. arXiv preprint arXiv:1906.02355,
2019.

[73] Anatolii Isakovich Lurie. Analytical mechanics. Springer Science & Business Media,
2013.

[74] M Lutter, K Listmann, and J Peters. Deep Lagrangian Networks for end-to-end learning of
energy-based control for under-actuated systems. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2019.

[75] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feedback
motion planning. The International Journal of Robotics Research (IJRR), 36(8):947–982,
2017.

[76] David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM Scokaert. Con-
strained model predictive control: Stability and optimality. Automatica, 36(6):789–814,
2000.

111

[77] Quan Nguyen and Koushil Sreenath. Exponential control barrier functions for enforcing
high relative-degree safety-critical constraints. In IEEE American Control Conference
(ACC), pages 322–328, 2016.

[78] Marco M Nicotra and Emanuele Garone. The explicit reference governor: A general
framework for the closed-form control of constrained nonlinear systems. IEEE Control
Systems Magazine, 38(4):89–107, 2018.

[79] Helen Oleynikova, Alexander Millane, Zachary Taylor, Enric Galceran, Juan Nieto, and
Roland Siegwart. Signed distance fields: A natural representation for both mapping and
planning. In RSS 2016 Workshop: Geometry and Beyond-Representations, Physics, and
Scene Understanding for Robotics. University of Michigan, 2016.

[80] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Nieto.
Voxblox: Incremental 3d euclidean signed distance fields for on-board mav planning. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

[81] Romeo Ortega, Arjan Van Der Schaft, Bernhard Maschke, and Gerardo Escobar. Intercon-
nection and damping assignment passivity-based control of port-controlled Hamiltonian
systems. Automatica, 38(4):585–596, 2002.

[82] Vincent Pacelli, Omur Arslan, and Daniel E Koditschek. Integration of local geometry and
metric information in sampling-based motion planning. In IEEE International Conference
on Robotics and Automation (ICRA), pages 3061–3068, 2018.

[83] Alejandro Perez, Robert Platt, George Konidaris, Leslie Kaelbling, and Tomas Lozano-
Perez. LQR-RRT*: Optimal sampling-based motion planning with automatically derived
extension heuristics. In IEEE International Conference on Robotics and Automation
(ICRA), pages 2537–2542, 2012.

[84] Lun Quan, Zhiwei Zhang, Xingguang Zhong, Chao Xu, and Fei Gao. Eva-planner:
Environmental adaptive quadrotor planning. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 398–404. IEEE, 2021.

[85] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep neural networks for
data-driven discovery of nonlinear dynamical systems. arXiv preprint arXiv:1801.01236,
2018.

[86] Sujit Rajappa, Markus Ryll, Heinrich H Bülthoff, and Antonio Franchi. Modeling, control
and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers.
In IEEE international conference on robotics and automation (ICRA), pages 4006–4013,
2015.

[87] Mutaz Ryalat and Dina Shona Laila. A robust ida-pbc approach for handling uncertainties
in underactuated mechanical systems. IEEE Transactions on Automatic Control (TAC),
63(10):3495–3502, 2018.

112

[88] Steindor Saemundsson, Alexander Terenin, Katja Hofmann, and Marc Deisenroth. Varia-
tional integrator networks for physically structured embeddings. In International Confer-
ence on Artificial Intelligence and Statistics, pages 3078–3087. PMLR, 2020.

[89] Mario Santillo and Mrdjan Jankovic. Collision Free Navigation with Interacting, Non-
Communicating Obstacles. arXiv preprint arXiv:2008.12092, 2020.

[90] Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed integer
programming for multi-vehicle path planning. In IEEE European control conference
(ECC), pages 2603–2608, 2001.

[91] Sumeet Singh, Benoit Landry, Anirudha Majumdar, Jean-Jacques Slotine, and Marco
Pavone. Robust Feedback Motion Planning via Contraction Theory. The International
Journal of Robotics Research (IJRR), 2019.

[92] Eduardo D Sontag. Input to state stability: Basic concepts and results. In Nonlinear and
optimal control theory, pages 163–220. Springer, 2008.

[93] Eric Squires, Pietro Pierpaoli, and Magnus Egerstedt. Constructive barrier certificates with
applications to fixed-wing aircraft collision avoidance. In IEEE Conference on Control
Technology and Applications (CCTA), pages 1656–1661, 2018.

[94] Mohit Srinivasan, Amogh Dabholkar, Samuel Coogan, and Patricio A Vela. Synthesis
of control barrier functions using a supervised machine learning approach. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 7139–7145,
2020.

[95] Zhongqi Sun, Li Dai, Kun Liu, Yuanqing Xia, and Karl Henrik Johansson. Robust
MPC for tracking constrained unicycle robots with additive disturbances. Automatica,
90:172–184, 2018.

[96] Russ Tedrake, Ian R. Manchester, Mark Tobenkin, and John W. Roberts. LQR-trees:
Feedback Motion Planning via Sums-of-Squares Verification. The International Journal
of Robotics Research (IJRR), 2009.

[97] Arjan Van Der Schaft and Dimitri Jeltsema. Port-Hamiltonian systems theory: An
introductory overview. Foundations and Trends in Systems and Control, 1(2-3), 2014.

[98] Dustin J Webb and Jur van den Berg. Kinodynamic RRT*: Asymptotically optimal motion
planning for robots with linear dynamics. In IEEE International Conference on Robotics
and Automation (ICRA), 2013.

[99] Guofan Wu and Koushil Sreenath. Safety-critical control of a planar quadrotor. In
American Control Conference (ACC), pages 2252–2258, 2016.

[100] Winnie Xu, Ricky TQ Chen, Xuechen Li, and David Duvenaud. Infinitely deep bayesian
neural networks with stochastic differential equations. In International Conference on
Artificial Intelligence and Statistics, pages 721–738. PMLR, 2022.

113

[101] Burak Yüksel, Cristian Secchi, Heinrich H Bülthoff, and Antonio Franchi. Reshaping the
physical properties of a quadrotor through ida-pbc and its application to aerial physical
interaction. In IEEE International Conference on Robotics and Automation (ICRA), 2014.

[102] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ODE-Net:
learning Hamiltonian dynamics with control. In International Conference on Learning
Representations (ICLR), 2019.

[103] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Dissipative SymODEN:
Encoding Hamiltonian dynamics with dissipation and control into deep learning. In ICLR
Workshop on Integration of Deep Neural Models and Differential Equations, 2020.

114

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Motivation
	Related Works
	Graph Search Algorithms
	Safe Control and Trajectory Tracking
	Dynamics Learning
	Environmental Adaptive Motion Control and Planning

	Overview

	Safe Output Tracking via Reference Governor
	Problem Formulation
	Output Regulation without Constraints
	Safe Output Regulation via PBF
	Safe Output Tracking using a Reference Governor
	Evaluation
	Summary

	Robust and Safe Autonomous Navigation for Systems with Learned SE(3) Hamiltonian Dynamics
	Overview
	Problem Statement
	Learning SE(3) Hamiltonian Dynamics from Data
	Translation-Equivariant SE(3) Hamiltonian Dynamics Learning
	Model Estimation Error as a Disturbance

	Stabilization of Hamiltonian Dynamics with Matched Disturbances
	Passivity-based Control
	Robustness Analysis
	Safety Analysis

	Safe and Stable Tracking using a Reference Governor
	Application to Hamiltonian Dynamics in Rn
	Evaluation
	Evaluation of SE(3) Hamiltonian Dynamics Learning
	Evaluation of Robust Safe Tracking Control of a Learned 2D Hexarotor Hamiltonian Model
	Evaluation of Robust Safe Tracking Control of a Learned 3D Fully-actuated Hexarotor Hamiltonian Model
	Evaluation of Robust Safe Tracking Control of a Learned 3D Quadrotor Hamiltonian Model
	Evaluation of Our Approach against Unmodeled Noise

	Summary

	Environment Aware Safe Tracking using Planning and Control Co-Design
	Overview
	Directional Metric and Motion Prediction
	State-Dependent Directional Metric
	Trajectory Bounds Estimation for LTI System
	Trajectory Bounds Estimation for Unicycle-like Nonlinear Systems

	Dynamic Safety Margin using SDDM
	DSM from Ellipsoid Trajectory Bounds
	DSM from Reachable Set Approximation
	DSM for Adaptive Control Law
	Evaluation of Dynamic Safety Margin

	Safety Aware Planning
	Costmap Design
	Planner Edge Cost Design
	Evaluation of Costmap Designs

	Safe Tracking via Reference Governor
	Governor Control Policy Design
	Governor Control Policy Extension for Moving Obstacles

	Evaluation
	Hardware Overview.
	Software Architecture
	Experiment Setup and Parameters
	Baseline Comparison
	Hardware Demonstration in Clutter Unknown Environment
	Moving Obstacles Experiments

	Summary

	Concluding Remarks
	Conclusion
	Future Work

	Proofs of Chapter 2
	Proofs of Chapter 3
	Proof of Theorem 3

	Bibliography

