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ABSTRACT OF THE DISSERTATION 

 
 

Photo- Responsive Adhesion and De-Adhesion of Polymers and Nanoparticles 
 
 

by 
 

 

Seyed Hossein Mostafavi 

 

Doctor of Philosophy, Graduate Program in Bioengineering  

University of California, Riverside, December 2019 

Dr. Christopher Bardeen, Chairperson 

 

 

Photochromic behavior is not a new concept in chemistry and was mentioned for 

the first time in literature more than a century ago.  This dissertation focused on using 

photochromic molecules to innovate and develop methods to remotely modify adhesion of 

thin films to substrates. We explored both photo-induced covalent and non-covalent 

adhesion.  

To induce non-covalent adhesion, we hypothesized that if photochromic molecules 

embedded in a polymer were exposed to light, this could change the properties of the 

molecule which might lead to the change of polymer adhesion to substrate. We investigated 
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the effect of ultraviolet (UV)  and visible light exposure on the adhesion of polystyrene 

(PS) for a range of photochromic molecules such as, donor-acceptor Stenhouse adducts 

(DASA), diarylethene derivatives (DAE) and  spiropyrans (SP) to glass substrate. We 

utilized adhesion measurement methods like water detachment, pull-off and the lap shear 

tests, which were used to detect the increase and decrease of adhesion to the glass surface 

after light exposure. We also investigated the effects of photochrome concentration, light 

wavelength, substrate properties, and polymer structure on adhesion and de-adhesion.  

The innovative part of our final project was to engineer multi-functional 

nanoparticles and substrates with light-switchable covalent adhesion. Nanoparticles with 

surface-bound anthracene (AN) were able to undergo [4+4] photocycloaddition reactions 

to form covalent adhesion. In theory this reaction could help nanoparticles to selectively 

assemble and make a predesigned structure after being activated by light. Our results 

demonstrated that under ultraviolet (365 nm) illumination, both unimolecular and 

bimolecular photochemical reactions led to the loss of surface-bound AN absorbance.  

These competing reaction pathways decreased the efficiency of the cross-linking 

dimerization reaction.   
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1- Chapter 1 Introduction 

1-1 Motivation 

  

For centuries nature has been using light as a source of energy. Some plants, 

organisms, and cells directly respond to light, and as a response they change their shape 

and properties. In the human body, exposure to light releases enzymes and initiates 

biological pathways. Observing these light sensitive motions in nature has inspired 

scientists, to mimic them and fully control the various processes using optical stimulus. 

Remote control of processes is not the only benefit of lights; light can also be highly 

selective, cheap to use, produces no chemical contamination or mechanical wear, is 

harmless to use, and is more precise than mechanical devises.1–3.  

  Inspired by nature, the goal of our group and current research is to enlist light for 

the sake of humans and particularly we want to engineer light responsive adhesion.  We 

plan to design multi-functional nanoparticles and films with switchable adhesion. 

Reversible adhesives enable us to temporarily glue two surfaces together and detach them 

remotely by light irradiation. This technology may be used to protect/deprotect silicon 

dioxide surfaces in semiconductor manufacturing where residual adhesives must be 

avoided, or help us to engineer light responsive nail polish as a clean substitute for the 

current method of removing nail polishes with acetone. Light responsive nanoparticles can 

assemble and make predesigned structures, perform a task and then be disassembled by 

another stimulus when their job is finished. This technology is not only beneficial for 
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making microstructures, but also provides a platform to deliver and release molecules near 

their target.  In drug delivery, nanoparticles can attach to a drug with the first stimulus and 

release drug molecules into the target with second one. This attachment and release is 

achieved through light responsive adhesion and can open and close a gate, releasing drugs 

or other substances (Figure 1-1).  In microfluidics, light exposure to these nanoparticles 

can stop the flow of liquid by light in one direction and force the current to follow another 

path.  

A key feature of this project is to use photochromic molecules. The term “photo 

chromic material” is used for a molecule that undergo reversible photo stimulated 

transformation between two different isomers. The unique properties of photochromic 

molecules encouraged us to take advantage of them to regulate adhesion4. 

 

 

 

Figure 1- 1: Potential application of photo-triggered light response. The reservoir can 

encapsulate one or more types of chemical substance. Opening and closing the gate 

sealed with a light responsive polymer release a controlled amount of drug into the 

external media 

 

Light Triggered Release 
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1-2 Photochromic molecules: 

Photochromic behavior was first reported by Fritsche in year 1867 when he noticed 

sunlight exposure can bleach tetracene and lack of exposure will reverse the reaction. 5  

Later, in 1899, Markwald observed the reversible color change of 2,3,4,4-

tetrachloronapthalen-1(4H)-one 2 in the solid state and in 1950, Hirshberg invented the 

term photochromism [originated from two Greek words: “phos” (light) and “chroma” 

(color)], which, from that date forward, used to describe this process6,7. During this 

procedure some properties of the molecule including: absorbance spectra, fluorescence 

emission, electron conductivity, refractive index, geometrical structure, volume, etc. might 

significantly change. And more interestingly, these properties are able to switch back again 

to the initial status by irradiating with different wavelengths of lights or by increasing the 

temperature. Although photochromism itself is a non-destructive reaction, loss of 

performances occurs over repeated cycles due to side reactions, including oxidation, which 

can cause chemical degradation.8–11 In the 1980s there were discoveries of new 

photochromic molecules that showed high resistance to these degradation process. These 

molecules include dchromenes, diarylethenes, and spirooxazines, and their resilience was 

the reason several commercial applications were developed, including optical filters, 

optical recording and photochromic lenses.11,12 Some of the photo chromic compounds are 

illustrated in Figure 1-2: 
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Figure 1- 2: Illustration of some photochromic molecules that undergoes photo-switching 

by light irradiation11 
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1-3 Different types of photochromism:  

Molecular photo-switch reactions are reversible transformations and, based on the type of 

stimulus that induces back the reaction, they can be categorized into two classes13: 

1-3-1 Classification based on types of reversibility stimulant: 

1-3-1-1 Type P photochromism: 

This kind can be switched in both (forward and backward) directions with different 

wavelengths of light.  In P-type photochromes, the color change can be observed after 

irradiation with a specific wavelength of light, and it will not go back even after removal 

of the light. The return process initiates after irradiation with another wavelength of light.11  

 

1-3-1-2 Type T photochromism:  

In contrast to type P, light is only able to drive the reaction in one direction in T-

type photochromes.   These photochromic molecules will go back to their original state, by 

a thermal stimulus, after removing the light.11   

Reversibility of response is a very important aspect of photochromes and we cannot 

describe light-sensitive materials that do not undergo a back reaction as photochromic. 

Photochromic systems are also divided into two other big classes of molecules based on 

their color change: 
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1-3-2 Classification based on types of Color change: 

1-3-2-1 Positive photochromes: 

In positive photochromes, the original state is colorless and upon light irradiation 

the absorbance increases. The major problem with these types of molecules is that after 

light irradiation the formation of color will act as a hinderance for light to penetrate deep 

into the films and it becomes hard to get to 100% transformation.  

 

1-3-2-2 Negative photochromes: 

In contrast, the negative photochromes (inverse or reverse photochrome) initially 

have color and then their absorption decreases after light irradiation. 11,14,15 

The majority of organic photochromic molecules are positive photochromes.  

  

1-4 Overview of Some Photochromic Molecules: 

1-4-1 Spiropyran (SP):  

 

This molecule is one of the most studied among photochromic molecules. it can 

undergo structural isomerization in response to a range of different stimuli like: light, metal 

ions, temperature, redox potential, and mechanical stress. 

We decided to use this molecule in our experiment since it can isomerize to the 

Merocyanine (MC) form using UV light. MC has a strong absorption between 550–600 
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nm, a deep blue color. The electric dipole moment -which we need for a reversible 

adhesion- is higher in MC (14–18 D) than in SP (4–6 D). In our experiments, we made a 

thin film of polystyrene containing SP. Initially, we investigated The SP transformation to 

MC and it’s reversibility. In polar solvents and environments like cells, MC is the preferred 

form. In non-polar solvents like hexane, the SP form is favored. 14,16–19 

   

1-4-2 Donor–acceptor Stenhouse adducts 

  A new class of negative photochromes was introduced in 2014 by Read de Alaniz 

et al from the University of California, Santa Barbara. They have used the term donor–

acceptor Stenhouse adducts (DASAs) in recognition of John Stenhouse. The second generation 

of DASAs was developed in 2016. Recently, the 3rd generation has been developed. 8 

 

Figure 1- 3: DASA is relatively a new photo switch organic molecule which is a negative 

photochrome and the molecules volume reduces after light exposure 8 

 

Visible Light 
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These molecules initially are colored, conjugated, hydrophobic and extended. After 

exposure to light they will turn to colorless, ring-closed and hydrophilic zwitterionic 

structure. These molecules have very high fatigue resistance. These molecules show 

promising applications in drug release as well. 8,20 

1-4-3 DASA vs Spiropyran 

There are few significant differences between spiropyran and DASA which we tried 

to employ to understand different aspects of light induced adhesion and the role of 

photochromic molecule in increasing and decreasing adhesion.   

The most important similarity is that in both molecules the polarity of the molecules 

increases after light irradiation. 

But these molecules have two big differences. 1- The DASA molecule extends after 

light irradiation; in contrast, SP transforms to a more compact form after light irradiation. 

2- DASA is a negative photochrom but SP is positive.  

Using these two different photochromes not only helped us to identify and get closer to 

finding the mechanism of adhesion. 

1-5 Substrate: 

  The substrate plays an important role in adhesion. In general, the surface of the 

substrate will bond to the deposited film if we have a good adhesion. Thin films (<1um) 

have been used for variety of purposes like generating resistance to corrosion, erosion, 

abrasion, tarnish, wear or high temperature oxidation; to reduce electrical resistance, 
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provide lubrication and so on. The interesting part is that no matter what the application is, 

the thin films are not functional without proper adhesion to substrate. Thin films structure, 

and properties have a direct relation to its adhesion to the substrate.21,22 

 

1-5-1 Glass Types: 

  We have used different types of glass slides in these experiments. Glass is non-

crystalline and has many applications in industry and science. Silicon dioxide (SiO2) is a 

common fundamental constituent of glass. There are two main reasons for the selection of 

glass.  First of all, glass is transparent which makes it a very good substrate for photo 

modulation of adhesion, and this will enable us to irradiate the polymer- glass interface 

directly. The surface hydrophilicity of glass can be easily tuned using plasma, piranha wash 

or extreme heat; also, these substrates are very cheap to use and easily cut in to any shapes 

that we need. 

Contact angle measurements show that after piranha wash, the wettability of glass 

increases, which indicates that washing does indeed make the SiO2 surfaces more 

hydrophilic by the formation of silanols. Upon heating (over 150º C), there is a steady 

decrease in the wettability of a glass surface, which is an indication of surface dehydration 

(evaporation and condensation of silanol groups). The loss of water occurs gradually to 

give a surface that is relatively hydrophobic.23  
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We have used three types of glass slides in our experiments.  

1-5-1-1 Quartz: 

Quarts is almost pure silica (99%, SiO2). It has very low thermal expansion, it is 

very hard and relatively expensive compare to other types of glass.24  

 

1-5-1-2 Soda-lime-silica glass: 

The most common commercial glass in industry is soda-lime-silica glass. It is 

cheaper than other kinds of glasses and easy to recycle.  The main compositions of soda-

lime glass is 70–75 wt% Silica (SiO2), 12–16 wt% Sodium Oxide (Na2O), and 10–15 wt%  

lime (CaO) .24 

1-5-1-3 Borosilicate Glass: 

Borosilicate glass contains 8% wt boron oxide (B2O3).  Borosilicate glass is 

composed of 70–80 wt% Silica (SiO2), 7–13 wt% of Borosilicate B2O3 4–8 wt% Sodium 

oxide (Na2O) or K2O, and 2–8 wt% of Aluminum oxide (Al2O3).
24  

1-6 Adhesion, Adhesion Technology and Definitions 

Humankind has been using different types of materials for gluing two different 

surfaces together for centuries. Scientists felt the need for improving this technology 

significantly after the 1940s because synthetic polymer technology developed significantly 

in this decade and adhesion was a requirement for almost every application of these 

polymers. Although decades of research and development have passed, and scientists 
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invented many solutions in response to industry desires, there is still room for 

developments like adhesion in wet conditions and remotely controlled adhesion 

modulation. 25   

 

1-6-1 Adhesion bonding and mechanical properties:  

Adhesion is any form of attraction between unlike molecular species that have been 

connected directly, such as interactions between thin films and substrates. The work of 

adhesion is the energy required to separate unit areas of two different surfaces. The term 

cohesion is the attraction between two identical materials. The adhesion between two 

surfaces can originate from intermolecular or mechanical forces, or both. These 

interactions can be repulsive or attractive, and their range of action and magnitude can vary 

based on the operating forces between two surfaces, which depends on the nature of the 

interacting surfaces and medium between them. The strength of the adhesion between two 

materials depends on the interactions between the two materials and the surface area over 

which the two materials are in contact. 

1-6-2 Types of Adhesion: 

There are 5 proposed mechanism for adhesion: 
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 1-6-2-1 Mechanical interlocking: 

Mechanical interlocking happens when the adhesive flows into substrate pores and 

irregularities. A very good example of this kind of adhesion is filling pores of teeth using 

mercury amalgam. In order to develop strong mechanical adhesion, special surface 

treatment is needed. 

 

 1-6-2-2 Diffusion theory: 

  When we have 2 types of polymers that can diffuse into each other, we will have 

an adhesion based on diffusion.  

 

 1-6-2-3 Electrostatic adhesion: 

Differences in electrical charge may result in another type of adhesion that is called 

electrostatic adhesion. This mechanism is the most reversible type of adhesion mechanism. 

Also, in many cases, we can remotely increase and decrease electrical charge and induce 

adhesion. 

 

 1-6-2-4 Dispersive adhesion: 

The main force in this type of adhesion is van der Waals forces, and it happens 

when two surfaces have induced polarization.  

 

1-6-2-5 Chemical adhesion:  

  Substrate and adhesives may form a chemical bond. Ionic bonds and covalent bonds 

make the strongest adhesion. The hydrogen bond is in the next level in case of strength. 
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Chemical bonds make a very strong adhesion, but these forces are only effective when 

distances between two surfaces is less than a quarter of nanometer (Figure 1-4).26 The key 

types of intermolecular and surface forces are listed in Table 1-1 

 

  

Figure 1- 4: The strength of chemical adhesive interactions.26  
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Table 1- 1: Different types of adhesion forces and their main features are listed in this 

table.27 

Type of interactions Main features 

Intermolecular 

forces 

Dispersive 

Weak interactions /dispersion forces 

A force existing between all bodies. Usually 

attractive and can be repulsive. 

Electrostatic 

Dipole-dipole, Ion dipole or hydrogen 

bonds 

Chemical Ionic and covalent interactions 

Mechanical 

Forces 

Mechanical 

Films fill the voids or pores of the surfaces 

/interlocking. 

 

Diffusive 

Merge or intermingle at the bonding 

interface by diffusion 
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1-6-3 Effect of surface conditions on adhesion: 

Requirements to generate an ideal adhesion will be explained below: 

 

1-6-3-1 Clean surfaces: 

Many factors, including surface roughness, contamination, and applied force on 

both surfaces can alter adhesion. For instance, dust particles severely decrease adhesion by 

stopping a direct contact between the surfaces, so washing a substrate properly is a critical 

step in forming a strong adhesive bond.28,29 Williamson et al in their studies on the effect 

of contamination and roughness on adhesion, proposed that if the dust particles are larger 

than the surface roughness, then the adhesion will be reduced; otherwise, the dust has small 

effect on adhesion. Adhesion also depends upon the vapor density in the nearby 

environments. So, it is important to control the surface and environment to reach the 

preferred results.24,29–32    

In order to have an effective adhesion, a clean surface is necessary. Some chemical 

groups such as –OH, –SH, –COOH, and –NH2 will increase wettability of surface, and 

washing the surface is the first step to expose these groups. Contamination of surface is 

one important reason for malfunction of adhesion, and cleaning processes minimize this 

effect. In our experiment, we used piranha solution for cleaning the surface.33–35 
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1-6-3-2 Adhesion and roughness 

Surface roughness is one of the most important factors in developing adhesion 

between two unlike surfaces. In general, for elastic surfaces, the roughness and adhesion 

are inversely related.29,36–39 The reduction of adhesion in rough surfaces is mainly because 

roughness in elastic surfaces reduces the likelihood of intimate contact between the 

surfaces. 25,40 

     

1-6-3-3 Proper contact angle and good wetting 

For developing an adhesion system, we need to have knowledge of surface and 

interfaces.  To have strong adhesion, the adhesive should be able to wet the substrate. For 

measuring the wettability, an internal angle of a droplet of liquid on substrate will be 

calculated. This method is called contact angle measurement. For a solid and liquid at fixed 

temperature and pressure, there is always an equilibrium in contact angle. Measuring the 

contact angle between a liquid drop and solid surface is one of the easiest ways to find the 

wettability of a surface. This angle is affected by properties of both surfaces (solid and 

liquid) and their interactions, pressure, temperature and surface roughness. 39 Figure 1-5 

shows 3 different type of contact angle. 
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Figure 1- 5: On super hydrophobic surfaces θ is close to 180º. When water spreads on a 

surface, it means that surface is super hydrophobic and θ will be close to zero. In most 

cases the θ is between 0 and 180. 

In this study, contact angles of the polymer films were measured using a Kruss 

DO4010 Easy drop instrument. When θ is about zero, it means that the liquid wets the 

surface and spreads on it. On the other hand, no wetting will occur at θ= 180º . 

1-6-3-4 Low viscosity adhesives and adequate flow 

Another factor that we need to consider is the viscosity of adhesive. The adhesive 

should be able to flow on surface and cover it. In mechanical interlocution, the adhesive 

should flow inside the pores and fill that up.41 

 

1-6-3-5 Air entrapment: 

Studies of the interfaces of glass and adhesive using optical microscopy reveals that 

there is a layer of air between them. As temperature rises this air will find a way into the 

adhesive and be trapped there as bubbles. A complete depletion of entrapped air will 

happen when we have zero contact angle or liquefy the adhesive during heat cure.42 

 

 

 

 

 

 

θ= 180                 180≥θ≥0                θ≈0                                      
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1-6-4 Adhesion measurement:  

As it discussed before, an adhesion forms when two different materials stick 

together, so we can define the adhesion measurement as the force needed to separate them.  

 

1-6-4-1 Methods for characterization: 

     The methods of measurement of thin film adhesion can be categorized in several ways: 

1) Qualitative and quantitative methods. 

2) Destructive and non-destructive methods. 

3) Mechanical and non-mechanical methods. 

 

Adhesion measurement method can be categorized into two different classes: 

1-6-4-1-1 Destructive and non-destructive measurements  

  Most of the adhesion tests fall into thee destructive group. In these tests, force is 

applied to the coated films and then the percent of damage is detected or observed. 

Adhesion can also be measured by applying a pulse of energy to the substrate/coating class, 

after which a loading force is applied to the coating in some specified manner and the 

resulting damage subsequently observed. Nondestructive methods includes observation, 

tap test, ultrasonic testing, x ray test and Infrared Thermography.   
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 1-6-4-2 Mechanical method for adhesion measurement: 

All mechanical methods are destructive, and this means that we need to destroy the 

thin films in order to measure adhesion. Mechanical methods can be classified into two 

different typed: 

a) Methods that measure detachment normal to surface  

b) Methods that measure detachment lateral to interface  

 

1-6-4-2-1 Scotch tape: 

  This method is a qualitative method and works by pressing a scotch tape to the film 

and then stripping it in an abrupt move, and in the process, three things might happen: 1- 

The film completely detaches 2- The film partially detaches 3- The film stays attached.  

The advantages of this methods are: 

1- This test is reasonably low-cost.  

2- This test can be executed very quickly and easily. 

3- This method is able to provide valuable data for exploratory research. 

This method has some disadvantages, such as:  

1- It’s highly qualitative, and unfortunately, it does not provide any numbers to 

compare results.  
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2- The results depend on many factors, such as the type of tape the pressure, and 

strength of interaction of tape and thin films 

3- It is only applicable when the adhesion between substrate and film is less than 

the film and tape  

 

1-6-4-2-2 Lap Shear Test: 

The lap shear test is a method to measure stresses across the bond area. There are 

some different types of shear tests, including Single lap, Double lap, Double-sided bonded 

and single sided bonded. In our experiments, we have used the single lap test to compare 

adhesion between various surfaces. This measurement was done using Instron instrument 

and the instrument report the results in Newton. This test measures lateral force that need 

to break the adhesion.   

 

1-6-4-2-3 Water Detachment:  

This method was developed and used for the first time in our group. This method 

is cheap and easy to perform and can provide a reliable method for comparing adhesion. In 

this method, we monitor delamination of a polymer in the presence of water over time. We 

will go over this method thoroughly in next chapter.44 
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1-6-4-2-4 Pull-off adhesion test: 

This method is based on gluing together two surfaces (one can be a pulling device) 

using the adhesive. In this method, the amount of force required to break the adhesion was 

applied perpendicular to the film. This test was performed by using the 

photochrome/polymer mixture as glue and attaching one microscopic slide as a bridge to 

two other slides. Adhesion was measured by adding weights incrementally on the bridging 

slide until the adhesion failed.   

 

1-6-5 Remotely-Modified Adhesion  

Photo-induced adhesion and de-adhesion have attracted much attention recently, 

and many scientists are working to develop this technology. 45 

1-6-5-1 Reversible Adhesion  

The importance of adhesion was discussed widely in this report. However, in many 

situations, we need to remotely modify adhesion. Remote modification refers to 

reducing/increasing adhesion without physical contact. Some remotely induced adhesives 

are sensitive to temperature 46 and pressure47, but the majority of remotely induced 

adhesives are light sensitive. Light is the best resource to utilize for adhesion modification. 

Unlike the methods described in this thesis, previous methods of light-controlled adhesion 

are very time consuming and hard to achieve because they require either (a) specially 

designed custom polymers, or (b) chemically modified glass surfaces. Gelmi et al. explored 
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the reversible adhesion of a chemically activated AFM tip with fibronectin and a 

spiropyran-modified surface, and they found that UV irradiation can potentially change the 

adhesion. 48 Blass et al. similarly used modified AFM tip to measure switchable adhesion 

but instead, they used β-cyclodextrin functionalized surfaces and Azobenzene 

functionalized AFM tip.49  

Kaiser et al, used anthracene derivatives to switch adhesion on and off. UV light 

induced dimerization of anthracene between two surfaces and heat, reversing this 

reaction.50 Trying to develop photo-induced de-adhesion, Asadirad et al. used a Diels–

Alder reaction to produce diarylethene by dithienylfuran and maleimide monomers. This 

polymer showed a reversible adhesion after UV irradiation and visible light exposure. 51  
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Figure 1- 6: a) Photo-induced de-adhesion; b) Shear test when two strips of synthesized 

polymer are glued together. UV irradiation was 312 nm for 5 minutes and visible light was 

435 nm for 2 hours.  The first figure (left) is at room temperature and the second figure 

(middle) is at 90 °C and the third figure (right) is the difference between 23 and 90 °C. 51 

Saito et al. designed a light-induced reversible adhesive by using liquid crystal 

compounds in the structure of their adhesives. These developed materials melt-down upon 

UV irradiation.52  
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Figure 1- 7:  Photo-induced deadhesion of 2 glass substrate52 

Sasaki et al. developed a light-detachable adhesive by utilizing a photo-

depolymerizable cross‐linked polyolefin sulfone. Thermal curing the polymer will increase 

the adhesion of two quartz plate upto 7 M Pa. Depolymerization induced by UV irradiation 

(λ = 254 nm).54 
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Figure 1- 8: Photoinduced depolymerization of poly(olefin sulfone)s.54  

Different sources of irradiation have been used to induce adhesion; among them, 

UV-induced adhesions have attracted the most attention, and their sales in the market are 

expected to increase up to $1.2 billion by 2021 (report published by MarketsandMarkets). 

Light-induced adhesion has advantages when compared to temperature-induced adhesion, 

including rapid curing, room temperature experimentation, being environmentally friendly, 

and being a solvent-free, which all make it a perfect candidate for adhesions. However, 

there are some problems that come with light-induced adhesion. The substrate have to be 

transparent, otherwise light will not penetrate the polymer and adhesion may not form 

efficiently. When the sample is thick, the same problem may occur as well. To avoid this 

problem, most light-induced adhesion occurs at the surface of the polymer. For instance, 

extensive studies were conducted, and different methods were developed to increase light-
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induced cell adhesion on chemically modified surfaces. Higuchi et al. designed poly 

(spiropyran-co-methyl methacrylate) membranes to be able to control cell adhesion and 

de-adhesion to the substrate. After irradiating UV light to A copolymer of 

nitrobenzospiropyran and methyl methacrylate (poly(NSP-co-MMA)) was used as a 

material with a photosensitive surface poly (NSP-co-MMA)-coated glass plates, the 

contact angle dropped and showed light-induced detachment of platelets and mesenchymal 

stem (KUSA-A1) cells. 53 

 

Figure 1- 9: Photo-switch of poly (NSP-co-MMA) UV irradiation. 53 

 

Tada et al. grafted nitrospirobenzopyran residues into poly(ethylene glycol), and 

they used it as a photo-responsive cell culture substrate. UV light (350-400 nm) was used 

, and cell adhesion increased significantly after a 5 minutes irradiation. Cell adhesion was 

measured by cell growth indicators.55 In another study, Matsuyama et al. controlled cell 

adhesion on a surface by irradiating the surface, which was functionalized with a caged 

arginine-glycine-aspartate (RGD) peptide. 56 A commercially available culture dish was 
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modified with poly‐L‐lysine (PLL) to make it photo-responsive by using a bifunctional 

cross‐linked polyethylene glycol (PEG) and the caged RGD peptide. HeLa cells cannot 

attach to the surface until photolysis occurs through exposure to UV light, which cleaves 

the nitrobenzyl group and prepares an active location for cells to adhere. 

 

 

Figure 1- 10: A half-irradiated dish culture functionalized with a nitrobenzyl‐substituted 

tri-peptide (arginine-glycine-aspartate) clearly shows a controlled cell adhesion. 56 

 

Azobenzene derivatives are widely used photochromic molecules. Linked to these 

azobenzene derivatives, α‐D‐mannoside ligands stabilized at the surface can be recognized 

by proteins on E. coli, and the proteins can be attached to these ligands. Researchers at the 

University of Frankfurt showed the effect of photoswitching and carbohydrate orientation 

for cell adhesion on a glycosylated surface. They immobilized azobenzene glycosides on a 
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gold substrate and formed a photo-switchable, self-assembled monolayer. Photoswitching 

of azobenzene made the cell attachment unfavorable.57  

 

 

Figure 1- 11: Light exposure will lead to photoswitching of the azobenzene molecules, and 

E. coli will not be able to attach to the surface. Attachment of Fimbrial tip on E. coli to α‐

D‐mannoside ligands is an indication of adhesion.57 

 

1-7 Covalent adhesion 

Another strategy to achieve robust reversible adhesion is to form covalent bonds 

between the adhesive and the substrate. The [4+4] photocycloaddition is a photochemical 

reaction in which two unsaturated molecules are covalently connected to each other by four 

atoms from each molecule.  Anthracene photo dimerization is one of the earliest [4+4] 

photocycloaddition reactions, and its kinetics are very well studied. Anthracene can be 
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dimerized by UV irradiation (figure 1-10). Dimerized anthracene is called dianthracene. 

The dimerization can be reversed by heat.58  

    

 

Figure 1- 12: Photo dimerization of Anthracene, The [4+4] Photocycloaddition is a 

photochemical reaction in which two unsaturated molecules are covalently connected to 

each other by four atoms from each molecule. 

 

The innovative part of this research is engineering multi-functional nanoparticles 

and substrates with switchable adhesion. Our plan was to use [4+4] photocycloaddition of 

anthracenes to selectively assemble nanoparticles via a bimolecular reaction. This 

technology is not only beneficial for making microstructures, but also it will provide a 

platform where these particles can deliver and release molecules to the target. In drug 

delivery, these nanoparticles can attach to a drug upon activation of the first stimuli and 

then release drug molecules to the target with the second stimuli. In microfluidic devices, 

these nanoparticles can stop the flow of liquid with light in one direction, force the current 

to follow in another path for short periods of time, and re-open the blockage in response to 

heat or visible light. These reconfigurable nano particles (NPs) can move in a certain 
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direction and stabilize to a functionalized surface when they reach the target and make 3D 

microstructures.59–61 

 

1-8 Project Summary:  

The field of photo-induced adhesion is very promising, and adhesion methods still 

need to improve. In this thesis, we tried to investigate two types of photo-induced adhesion.  

The first is non-covalent photo-induced reversible adhesion. We developed an original 

method to induce adhesion and de-adhesion by light exposure. In this method, we explored 

whether the photochromic reaction of a molecule embedded in a polymer film can affect 

its surface adhesion properties by measuring shear strength and delamination in water.  The 

adherence of polystyrene (PS) to glass was chosen as a model system.  Two commercially 

available photochromes, a spiropyran (SP) derivative 1′, 3′-dihydro-1′, 3′, 3′-trimethyl-6-

nitrospiro [2H-1-benzopyran-2, 2′-(2H)-indole]) (SP) and a diarylethene derivative 1,2-

bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene (DAE) are 

studied in detail.  Both photochromic reactions can significantly enhance the adhesion of 

PS to a glass surface.  The most dramatic results were obtained for PS/SP films, whose 

shear strength increased by a factor of 7 while the delamination rate was suppressed by at 

least 2 orders of magnitude after exposure to UV light.  The enhanced polymer adhesion 

could only be partially reversed, even after extended exposure to visible light completely 

regenerated the UV-absorbing isomer.  Nanoindentation and heating experiments suggest 
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that the limited reversibility results from changes in polymer internal structure.  We 

hypothesize that the adhesion changes arise from localized polymer and molecular motions 

that eliminate void spaces and surface gaps at the polymer-glass interface.  The results 

show that adhesive forces between a prototypical polymer and an inorganic substrate can 

be modulated by photochromic reactions of embedded molecules. 

  In the next project a different photochromic reaction, the visible-light induced 

cyclization of a donor-acceptor Stenhouse adduct (DASA) leads to the opposite effect:  the 

de-adhesion of a polystyrene film from a clean glass surface.  Measurements of the shear 

and pull-off adhesion strengths before and after visible irradiation show a light-induced 

decrease of 20-30%.  The time required for delamination in water shows an even more 

dramatic decrease of 90%.  Changes in the water contact angle and other measurements 

suggest that molecular-level noncovalent interactions between the polymer and glass are 

weakened after photoisomerization, possibly due to the molecular contraction of the DASA 

that disrupts the interaction between its amine groups and the surface silanols.  The ability 

to reduce polymer adhesion using visible light enables the controlled release of dye 

molecules from a glass container, where they have been stored as a dry powder, into an 

aqueous solution.  Embedding photochromic molecules in a polymer can lead to new 

effects that may have practical applications in stimuli-responsive materials. 

In my third project, we have used photoinduced cross-linking based on the [4+4] 

photocycloaddition reaction to induce covalent adhesion. The goal of this work is to extend 

this capability to silica nanoparticles using surface-tethered anthracenes (ANs) and assess 
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the cross-linking kinetics.  We find that the AN attachment leads to multiple fluorescence 

lifetimes, suggesting that the AN molecules experience different environments on the silica 

surface.  Under ultraviolet (365 nm) illumination, the photochemical kinetics can be 

followed using absorption spectroscopy. Both unimolecular and bimolecular 

photochemical reactions lead to the loss of surface-bound AN absorbance, with the 

unimolecular decomposition reactions possibly mediated by the triplet excited state.  These 

competing reaction pathways limit the efficiency of the bimolecular cross-linking and in 

some cases may prevent it altogether.  Our results confirm that surface conjugated ANs can 

cross-link silica NPs but also suggest that SiO2’s chemical heterogeneity provides 

environments that enhance the photodecomposition of surface-bound AN.  In order to 

utilize the SiO2 surface as a robust platform for organic photochemistry to enable 

photoresponsive nanomaterials, a clearer understanding of its heterogeneous nature and 

effect on photochemical reactions is required.   
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Chapter 2- Experimental Methods: 

 

2-1 Non-Covalent Photochromic Polymer Adhesion 

2-1-1 Materials: 

The photochromic molecules 1′, 3′-dihydro-1′, 3′, 3′-trimethyl-6-nitrospiro [2H-1-

benzopyran-2, 2′-(2H)-indole]) (SP), 1,3,3-trimethylindolinonaphthospirooxazine, and 

1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene (DAE) 

were all purchased from TCI Chemicals.  Polystyrene ((PS, MW=280,000) and another 

spiropyran derivative, nitro 1′, 3′-dihydro-8-methoxy-1′, 3′, 3′-trimethyl-6-nitrospiro[2H-

1-benzopyran-2,2′-(2H)-indole], were purchased from Sigma Aldrich. Hydrogen peroxide 

(30%), ammonium hydroxide,, concentrated H2SO4 (95.0-98.0%), and methylene chloride 

were obtained from Fisher Scientific.  All chemicals were used as received. 

 

2-1-2 Sample Preparation: 

Glass microscope slides (Fisherbrand, 25×27×1mm) were cleaned using freshly prepared 

piranha solutions. Two types of piranha solutions were used. An acidic piranha solution 

was prepared by adding a 30% hydrogen peroxide solution to the concentrated H2SO4 in a 

volume ratio of 1:3.  A basic piranha solution was prepared by mixing the 30% hydrogen 

peroxide solution with ammonium hydroxide solution (30% w/w) in a volume ratio of 1:3.  

In both cases, the mixtures were brought to boiling and the glass slides were submerged 
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for 20 minutes.  After immersion in the piranha solution, the glass slides were rinsed 

thoroughly by Milli-Q purified water, spin dried and used immediately.    

Photochrome stock solutions with concentrations of 10-3 M were prepared in methylene 

chloride.  Varying amounts of the stock solutions were added to a 1.1% (w/v) solution of 

polystyrene in methylene chloride.  A microsyringe was used to inject 10 microliters of the 

solution onto a cleaned glass surface to form films with diameters of ~1 cm.  Care was 

taken to ensure that the edges of the films were not close to the edge of the slide.  The films 

typically had a thickness of 300-400 nm, as measured using a Veeco Dektak 8 Surface 

Profiler. 

        

2-1-3 Sample Characterization: 

The single lap joint shear test was used to measure adhesive strengths of UV treated PS-

photochrome to glass slides quantitatively (figure 2-1).1  Polymer films containing 0%, 5%, 

10%, 15% and 29% mass fraction (Equation (2)) were used to glue two microscopic glass 

slides together.  

𝑀𝑎𝑠𝑠 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑆𝑃

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑆𝑃 𝑎𝑛𝑑 𝑃𝑆
                                                                          (2) 

10 microliters of PS-photochrome solution was dropped on one slide and the second one 

was pressed on top.  The contact area was 10 mm×10 mm.  The sandwich structure was 

allowed to dry overnight.  UV-exposed slides were irradiated with a 365 nm bench lamp 
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(UVP 15 Watt) with an intensity at the sample of 0.6 mW/cm2 for 10 minutes. The slides 

were pulled with the speed of 3 mm/min in opposite directions using an Instron Model 

5942 Testing System (Figure 2-1 and Table 2-1). Each experiment repeated 5 times and 

the results were averaged. The shear strengths is reported as force needed to break the slides 

apart divided by the contact area. 

 

  

 

 

Figure 2- 1: a) Schematic of lap shear test measurement. In this experiment the polymer 

loaded with the photochromic molecule was sandwiched between two glass slides.  These 

slides were then pulled in opposite directions and the force needed to break the adhesion 

was measured using the Instron 5942 Test Instrument, shown in (b). 

To measure the detachment rate of the PS films from a glass surface in the presence 

of water, 18 film spots were deposited onto a single slide, 9 with PS-only films as control 

samples, and 9 with PS-photochrome films.  The slides were irradiated with a 365 nm 

a) b) 
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bench lamp (UVP 15 Watt) with an intensity at the sample of 0.6 mW/cm2 for one minute, 

while the other half of PS-SP coated slides were left un-irradiated. Then the microscopic 

glass slides were submerged into a vigorously stirred water bath and the number of 

detached films was monitored over time (Figures 2-2 and 2-3, Table 2-2).  Care was taken 

that the stir bar did not touch the samples.  To study the reversibility of adhesion, UV-

irradiated films were prepared as previously described and then either exposed to room 

light or irradiated with a laser (532 nm, 575 mW/cm2) for 10 hours.   

 

 

Figure 2- 2: a) Solution of nitro-spiropyran (SP) and PS in CH2Cl2 before (right) and 

after (left) UV irradiation.  b) 2 microscope slides, each with 18 polymer film spots.  

Each polymer is loaded with 0.29 mass fraction SP.  The top slide has not been irradiated 

and the spots are colorless, while the bottom slide has been irradiated at 365 nm, leading 

to the purple color indicative of the merocyanine isomer.  The slides are submerged in 

water in a Petri dish with stirring (white stir bar is spinning in the middle between the two 

slides).   The sample is observed at regular time intervals and the number of detached 

spots is recorded. 

 

a) b) 
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Figure 2- 3: Schematic of method used to measure detachment rates. 

 

            Contact angles were measured using a Kruss DO4010 Easy drop instrument.  UV-

Vis absorption spectra of irradiated and non-irradiated SP-PS films were obtained using a 

Varian CARY 500 UV/Vis spectrometer.   

In order to measure polymer elastic modulus and hardness, films drop-cast on 

glass slides were indented before and after UV irradiation using a TI 950 TriboIndenter 

(Hysitron, USA) with a 5 μm radius conospherical diamond tip.  Sections of the films 

with a thickness range of 10-15 m were used to minimize substrate effects on the 

resulting modulus and hardness measurements. Indents were placed in similar regions of 

the pre- and post-irradiated film, spaced 100-200 μm apart to minimize variance due to 
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film thickness and roughness. An 8 x 8 square array of indents, each 1 μm deep and each 

spaced 6 μm apart, was collected using a quasi-static load function with load, hold, and 

unload segment durations of 5 seconds. Unload curves were fitted to determine the 

hardness and reduced modulus using the Oliver-Pharr method.2   

 

2-2 Photoinduced De-Adhesion of a Polymer Film Using a Photochromic Donor-

Acceptor Stenhouse Adduct 

 

2-2-1 Sample Preparation:  

 The third-generation donor–acceptor Stenhouse adduct (DASA) was synthesized as 

reported previously.3  Polystyrene was purchased from Sigma Aldrich. The glass 

microscope slides, hydrogen peroxide (30%), ammonium hydroxide, concentrated sulfuric 

acid (95.0–98.0%), and methylene chloride (CH2Cl2) were obtained from Fisher Scientific.  

The water-soluble dye Allura Red was obtained from TCI.   

            Glass microscope slides (Fisherbrand, 25×27×1mm) were cleaned using freshly 

prepared piranha solutions. In this study both acidic and basic piranha solutions were used. 

The acidic piranha solution was prepared by adding a 30% hydrogen peroxide solution to 

concentrated H2SO4 in a volume ratio of 1:3. The basic piranha solution was prepared by 

mixing the 30% hydrogen peroxide solution with ammonium hydroxide solution (30% w/w) 

in a volume ratio of 1:3.  In both cases, the mixtures were brought to boiling and the glass 
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slides were submerged for 20 minutes.  After immersion in the piranha solution, the glass 

slides were rinsed thoroughly by Milli-Q purified water, spin dried and used immediately.   

                 DASA 3.0 stock solutions were made (1 mM in CH2Cl2) and various amounts 

were added to a 1.1% (w/v) solution of polystyrene in CH2Cl2. A 200 μL Hamilton 

microsyringe was used to inject a controlled amount of the DASA/PS/CH2Cl2 mixture onto 

a piranha washed glass surface to form polymer films, which were typically left to dry for 

at least 12 hr to ensure solvent evaporation.  A solid-state 532 nm laser was used for sample 

irradiation. A beam diffuser (Thorlabs) was used to ensure uniform irradiation of the entire 

sample.    

 

2-2-2 Sample Characterization: 

              A Cary 500 spectrophotometer was utilized to measure the UV –Visible 

absorption spectra.  A Kruss DO4010 Easy Drop instrument was used for contact angle 

measurements. Atomic force microscopy (AFM) images were collected in tapping mode 

using a Digital Instruments Nanoscope IIIA scanned probe microscope system (AFM 

Probe: NSG01, NT-MDT Spectrum Instruments). The AFM cross-section analysis (or 

roughness) was performed on the AFM image using Nanoscope Control software.  

Three methods of measurement were utilized to evaluate the adhesion of the 

DASA/PS films to the glass substrates.  In all cases, the results report the mean and 

standard deviation for at least 5 different samples.  The first method was the single lap-
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joint shear adhesion test that measures the shear force (parallel to the film) required to 

break the glass-polymer bond (Figure 2-4).  10 μL of the DASA/PS/CH2Cl2 solution was 

used to glue two cleaned microscopic glass slides together, which were then allowed to dry 

overnight.  The samples were then irradiated by 532 nm light with an intensity of 6 

mW/cm2 at the sample until the blue color completely disappeared (10-15 hr).  An Instron 

Model 5942 testing system was used to pull slides in opposite directions at a speed of 3 

mm/min until they separated.  The force applied at the breaking point was recorded and 

divided by the glued area to give a shear adhesion value in units of N/cm2.  The reported 

values represent averages over at least 5 trials.   

 

 

Figure 2- 4: Schematic of single lap-joint shear adhesion test. The DASA/PS film 

(purple) is used as an adhesive between two precleaned glass slides.  The slides are pulled 

in different directions until the adhesive bond fails and the slides separate. 

 

The second method was the pull-off adhesion test that measures the force applied 

perpendicular to the film required to break the adhesion (Figure 2-5).  This test was done 

by gluing one microscopic slide as a bridge between two other slides using the 
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DASA/PS/CH2Cl2 solution.  After letting the sample dry, it was irradiated until no blue 

color could be observed.  The adhesion was measured by putting weights incrementally on 

the bridging slide until it broke free.  The mass that caused the adhesion failure was then 

converted to N/cm2 by multiplying by 9.8 m/s2 and dividing by the contact area.  

 

Figure 2- 5: Schematic of pull-off adhesion test. For this test one precleaned microscopic 

slide is glued to two other clean glass slides using the DASA/PS film (purple) as an 

adhesive. Slides dried for 24 hours in room temperature and then adhesion measured by 

putting weights on top of middle glass until the adhesion between the slides fails. 

 

The third measurement method was a water detachment test (Figure 2-6).  A 

microsyringe was used to deposit 5 L of the DASA/PS/CH2Cl2 solution on a cleaned glass 

slide.  Typically, 18 film spots with a diameter of a few mm were deposited on a single 

slide.  A solution of 1.1 % (w/v %) polystyrene in methylene chloride were used as a control 

sample.  After drying, the DASA/PS films were subjected to the same irradiation conditions 

described above, then submerged in stirred water (deionized) and the number of detached 

films was monitored. 
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Figure 2- 6: Schematic for water detachment test. For this test, DASA/PS films are drop 

cast on precleaned slides and number of detached films is recorded at specific time 

intervals.  Typically, the irradiated samples (which lost their purple color) detached more 

rapidly than the non-irradiated samples.  

 

2-3 Heterogeneous Kinetics of Photoinduced Cross-Linking of Silica Nanoparticles 

with Surface-Tethered Anthracenes 

2-3-1 Synthesis of 9-anthracene- N-hydroxysuccinimide:  

In a 250 mL round bottle flask equipped with magnetic stir bar was added 9-

Anthracenecarboxylic acid (2.0 g, 8.9 mmol) and N-hydroxysuccinimide (1.2 g, 10.8 

mmol) in 4 mL of dry dichloromethane. The reaction was stirred for 15 min at 0 oC under 

N2 atmosphere followed by slow addition of N, N’-dicyclohexylacarbodiimide (DCC) (1.9 
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g, 8.9 mmol) to the mixture. After complete addition, the reaction was stirred for 4 hr at 0 

oC. Excess DCC was removed by vacuum filtration through a short silica plug and the 

dichloromethane layer was concentrated by rotary evaporation. The crude product was 

recrystallized in toluene. Finally, the product was purified via silica column eluted by 

dichloromethane to yield pure white product (2.5 g, 88%). 1H NMR (400 MHz, CDCl3) δ 

8.63 (s, 1H), 8.41 (dt, J = 8.8, 1.0 Hz, 2H), 8.04 (d, J = 8.5 Hz, 2H), 7.64 (ddd, J = 9.0, 6.6, 

1.3 Hz, 2H), 7.53 (ddd, J = 7.9, 6.6, 1.1 Hz, 2H), 3.37 – 2.70 (m, 4H). 13C NMR (126 MHz, 

CDCl3) δ 169.38, 165.00, 131.46, 130.68, 129.55, 128.56, 128.15, 125.88, 124.88, 121.34, 

25.91. ESI-MS: m/z C19H14NO4 (MH+) calculated = 320.0918, found: [MH]+ = 320.9090. 

 

 

 

Figure 2- 7: 1H NMR spectrum of anthracene-NHS linker (400 MHz, CDCl3) 
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Figure 2- 8: 13C NMR spectrum of anthracene-NHS linker (100 MHz, CDCl3) 

 

2-3-2 Anthracene attachment to silica nanoparticles.   

3-aminopropyl functionalized silica NPs, suspended in ethanol, were purchased 

from Sigma-Aldrich (catalog number 660442).  1 mL of this suspension was mixed with 2 

ml of anhydrous ethyl alcohol and 2 ml of dry dichloromethane, and then 10.8 mg of the 

9-anthracene- N-hydroxysuccinimide linker was added to the solution. The mixture was 

sonicated for 1 minute and then gently stirred for 24 hours at 35 ºC. After completion, the 

reaction mixture was centrifuged at the speed of 13,000 rpm for 30 minutes.  The 

supernatant was discarded and the pellet resuspended in anhydrous ethanol and centrifuged 

again.  The procedure was repeated 4-5 times, until no trace of the AN linker absorption 

could be detected in the supernatant.  The anthracene coverage was calculated using 

absorption spectroscopy.  

https://www.metric-conversions.org/temperature/celsius-to-fahrenheit.htm
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2-3-3 Photoinduced NP aggregation. 

Various concentrations of the AN-SiO2 NPs were irradiated in a 1 cm pathlength 

quartz cuvette using a 365 nm lamp source with an intensity of 2.5 mW/cm2.  The 

absorbance was measured at various time intervals using a Cary 500 spectrophotometer.  

 

2-3-4 Characterization   

The AN-SiO2 NPs were characterized using scanning electron microscopy (SEM) 

with a NovaNanoSEM 450 scanning electron microscope.  The dried samples were coated 

with a thin layer of palladium using a Cressington 108 sputter coater.  Dynamic Light 

Scattering (DLS) and zeta potential measurements were performed using a Malvern 

ZetaSizer instrument.  The AN-SiO2 NPs were sonicated for 10 minutes to disperse them 

before injection into the ZetaSizer instrument.  Time-resolved photoluminescence 

measurements were done using 400 nm femtosecond pulses at a 1 kHz repetition rate. The 

400 nm excitation wavelength was generated by using a Beta Barium Borate crystal to 

frequency double the 800 nm fundamental of a Coherent Libra regeneratively amplified 

Ti:sapphire laser system.  The sample was degassed using by bubbling argon gas through 

it and the fluorescence was collected using front-face detection and a Hanamatsu C4334 

streak camera with a time resolution of 25 ps and a wavelength resolution of 2 nm.    
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2-4 Instructions and techniques  

2-4-1Cleaning and hydrophilization of substrates  

            Surfaces must be clean and completely free of organic solvents from previous wash 

steps before coming into contact with piranha solution. Great care is necessary to prepare 

the piranha solution because it is highly explosive, extremely corrosive, and one of the 

most powerful oxidizers. Piranha solution dissolves organic contaminants and a large 

amount of violent bubbles are produced in order to release gas, which can potentially cause 

an explosion. This solution should be prepared by adding hydrogen peroxide slowly to 

sulfuric acid; the reverse may cause splashing since this reaction is extremely exothermic. 

For this experiment, glass slides were submerged in freshly prepared and boiling piranha 

solution (30% hydrogen peroxide solution to the concentrated H2SO4 in a volume ratio of 

1:3) for 20 minutes. Then, the glass slides were rinsed thoroughly by Milli-Q purified 

water, were spin dried, and used immediately.4,5 By increasing the number of silanol groups 

on the surface (hydroxylating the surface), piranha solution makes glass more hydrophilic.6 

 

2-4-2 Increase the hydrophobicity of the glass substrate: 

Heating the cleaned glass substrates in an oven to over 280 ºC for 3-5 hours will 

significantly reduce the silanols on glass and produce siloxane to make the surface more 

hydrophobic. Upon heating, there is a steady decrease in silanol concentration on the 

surface since heating causes evaporation and condensation of silanol functional groups.7  
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During our study of testing the effects of silanols on adhesion, cleaned glass slides were 

heated to 280 ºC for 4 hours and then cooled down to room temperature. The polymer-

photochrome mixture was drop cast on the surface and the water detachment was 

monitored as an indication for changing adhesion.   

 

 

Figure 2- 9: Extreme heating reduces silanol concentration by producing solixane groups 

and making the surface more hydrophobic. Piranha solution can reverse this reaction by 

hydroxylating the surface. 7 

 

2-4-3 Contact angle measurement  

           In this study, contact angles were measured using a Kruss DO4010 Easy drop 

instrument.  A freshly prepared polymer-photochrome solution was spin coated onto 

cleaned glass slides with the speed of 2000 rpm for 20 s and dried. The spin coated film 

looked uniform at this point. These samples were carried in a sealed and dark container to 

Dr. Vullev’s lab for measurements. The contact angle of water droplets on the surface were 

collected before and after irradiation. For more accurate results, the syringe needed to be 

emptied and filled with fresh DI water at the beginning of experiments. It is possible to 
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change the pH of water if required, however, after getting permission, the syringe needed 

to be cleaned 3 times and filled with fresh DI water at the end of experiments.    

    

2-4-4 Water Detachment adhesion measurement  

The water detachment adhesion method was developed and used for the first time 

in our group.8 This method is cheap and easy to perform, and it can easily provide us with 

a reliable and comparative method for measuring adhesion.  

In this method, we are trying to explore delamination of attached polymers to a 

substrate in the presence of water. Typically, 18 film spots with a diameter of a few mm 

were deposited on a pre-cleaned single slide.  A microsyringe was used to deposit 5 µL of 

the polymer-photochrome solution on a piranha washed glass slide. A solution of 1.1 % 

(w/v %) polystyrene in methylene chloride was used as a control sample on one slide.  After 

drying, the polymer-photochrome films were irradiated, then submerged in stirred water 

and the number of detached films was monitored over time. The number of detached films 

versus time (Ndetach) was fit using an exponential function: 

 (1). ( )tk
detach

detacheNN
−

−= 10   

where N0 is the number of film spots originally on the slide and kdetach is the characteristic 

detachment rate and t is the time spent in the agitated water solution.8  
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Figure 2- 10: Multiple spots were drop casted on cleaned glass slides and put in stirred 

water a) Before irradiation, dried PS-SP has a weak interaction with the glass b) UV 

irradiation significantly increased the adhesion. 8 

 

2-4-5 Single Lap Shear Test: 

 Procedure for working with Instron: 

1. Clean glass substrate with piranha solution for 20 minutes 

2. Rinse with water and dry   

3. Use a certain amount of dissolved polymer-photochrom to glue two different 

substrates together 

4. Irradiate the samples with the appropriate wavelength  

5. Do not touch the samples until they are dry   

6. Measure the attached area in square centimeters 

7. Stabilize each end of the slides in the grips of the Instron instrument 

8. Apply a force at a controlled rate in different directions until the adhesion fails and 

record the maximum force 

9. Measure the maximum force at breaking point of adhesion 
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10. Measure the maximum shear stress by dividing the maximum force by the shear 

area. In most cases, units are newtons/square centimeters. 

Extra care is needed to stabilize the slides on sample holders and tighten the clamps 

until we feel that the sample cannot move under high pressure.  For the shear measurement, 

we need to: a) open the “Bluehill 3” software on the desktop, b) choose the test, c) select 

the most relevant method among the options, d) click on next and pick the preferred name 

and location for each sample, e) make the value of load and extension 0 before starting the 

measurement, and f) run the experiment. The Instron pulls both sides of the glass slides in 

different directions until the adhesion fails and the device calculates the maximum force 

required to break it.  
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Figure 2- 11: a) Shows the Instron instrument b) Schematic of single lab shear test. In this 

test the glass slides are glued together by adhesives and pulled in different directions until 

adhesion fails to keep the two slides together. Shear stress is the maximum force needed 

to break the adhesion divided by the overlapping area (b cm×I cm).9 

 

2-4-6 Pull-off adhesion test: 

The pull-off adhesion method is based on gluing two surfaces together using the 

polymer-photochrome solution. In this method, the amount of force required to break the 

adhesion was applied perpendicular to the film. This test was performed by gluing one 

microscopic slide as a bridge to two other slides by polymer-photochrome mixture. For 

this test, glass slides need to be cut to about 6-8 mm in width and their contact area needs 

to be minimized as much as possible. All slides need to be washed with piranha solution to 
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be in their most hydrophilic state and contamination free before gluing them together. After 

letting the sample dry and exposing it to the appropriate wavelength of light, adhesion was 

measured by adding weights incrementally on the bridging slide until the adhesion failed.  

Then, the maximum mass was converted to Newtons (by multiplying by 9.8 m/s2) and 

divided by the area of slide contact to measure adhesion in N/cm2.  

 

2-4-7 Time-resolved photoluminescence measurements 

Anthracene covered nanoparticles were analyzed by time-resolved 

photoluminescence. These measurements were done using 400 nm femtosecond pulses at a 

1 kHz repetition rate. The sample fluorescence was collected using front-face detection and 

a Hanamatsu C4334 streak camera with a time resolution of 15 ps.  The fluorescence 

decays of AN by itself and the crosslinked nanoparticle-linker were taken on time scale 

increments of fifty nanoseconds. 

 

2-4-8 Surface profilometer 

In this study, the Veeco Dektak 8 profilometer was used to measure the thickness 

of the spin-coated films. The system is a Bench-Top Surface Profiler that measures the step 

heights of any surface. The spin-coated polymer was cut into two parts using a razor blade 

and then the sample was loaded on the stage. To begin the procedure, the system needs to 

log in to the Dektak software, and the system will initialize automatically. After completing 
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this procedure, an interesting position was located on the polymer by rolling the track ball 

in the X or Y direction, the area that was previously cut by the razor was found. After 

finding this position, the starting point and the scanning parameters were defined. The most 

important input was stylus force, which had a range between 3-15 mg. In this study, 5 mg 

was used. Once scanning was completed, plot appeared on the screen. Then, the scanning 

curve was leveled by moving the red marker to the left on the flat surface of the polymer 

and by moving the green marker to the right and positioning it on the exact area of the 

initial cut, which is always the deepest location in the scanned area. The Dektak instrument 

showed the thickness of the polymer in nanometers on screen.  

 

Figure 2- 12: Surface profilometer in the The NanoFab lab provides the thickness of the 

polymer in our experiment 
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2-4-9 Atomic force microscopy  

Atomic force microscopy (AFM) was used to evaluate variation in topography of 

thin films containing photochrome after laser irradiation and analyze the samples in-situ. 

To make sure that data was collected from the exact same point during each analysis, the 

samples were not moved before or after irradiation. The polymer-photochrome solution 

was spin-coated on cleaned glass slides and stabilized on an AFM sample holder. The green 

laser was also safely set up and aligned in the room to hit the sample in-situ. AFM images 

were collected in tapping mode using a Digital Instruments Nanoscope IIIA scanned probe 

microscope system (AFM Probe: NSG01, NT-MDT Spectrum Instruments). The AFM 

cross-section (or roughness) analysis was performed on the AFM image using Nanoscope 

Control software. 
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Figure 2- 13: AFM images were collected in tapping mode using a Digital Instruments 

Nanoscope IIIA scanned probe microscope system. As it is shown, the sample is not in a 

closed chamber, and this provided the opportunity to irradiate the sample in-situ without 

moving the sample. 

 

2-4-10 Drug design software  

VEGA ZZ is a very interesting and useful drug design software for molecular 

modeling applications, which was designed by the University of Milan. This software is 

free for non-profit academic use and can be easily downloaded and installed. This software 

was used to analyze the photochromic molecular structure before and after photo-switching 

and was specifically utilized to calculate the molecular volume. This software uses the van 

der Waals radius to create a set of spheres and calculates the final volume of the molecule. 

Initially, the molecule was drawn with ChemDraw software, and it was saved in a VEGA 

ZZ recognizable format. After selecting the View tab from the toolbar, “information” was 
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selected, and we chose to order the calculation of the molecular properties. The properties 

the software calculated included: molecular weight, approximate dimension, surface area, 

polar area, and, most importantly, the molecular volume. The calculated results were used 

to compare the molecular volume of the photochromes before and after photo-switching.  

  

Figure 2- 14: VEGA ZZ software shows a DASA molecule 

 

2-4-11 Nanoindentation 

Film drop-casts on glass slides were indented before and after UV irradiation 

using a TI 950 TriboIndenter (Hysitron, USA) with a 5 μm radius conospherical diamond 

tip (Thickness range: 15-20 μm). Sections of the films were used to minimize substrate 

effects on the resulting modulus and hardness measurements. Indents were placed in 



62 

 

similar regions of the pre- and post-irradiated film, spaced 100-200 μm apart to minimize 

variance due to film thickness and roughness. An 8 x 8 square array of indents, each 1 μm 

deep and each spaced 6 μm apart, was collected using a quasi-static load function with 

load, hold, and unload segment durations of 5 seconds. Unload curves were fitted to 

determine the hardness and reduced modulus using the Oliver-Pharr method.2,8 

 

2-4-11 Dye release experiment: 

In the lab, a technique was developed to release chemicals upon light irradiation in 

order to demonstrate the potential application of the photo-induced de-adhesion. A soluble 

dye (Allura Red) was used as a model molecule to illustrate a control release system. For 

the experiment, Allura Red (.5mg) was placed in a piranha-washed microscope well plate.  

A second precleaned glass slide (preferably a cover slip) was then glued to the well slide 

using the polymer-photochrome and allowed solution to dry. For more rapid release, the 

cover glass needed to be the exact size of the well to completely cover up the boundaries 

of each well. 20 µl of polymer-photochrome was used to glue both glasses together and 

then they were irradiated and left to dry.  As shown in Figure 2-13, samples were irradiated 

until no color was observed. Then, the time needed for adhesion failure in vigorously 

stirred water was monitored and the data was compared to a sample of identical assembly 

that was in stirred water but left in the dark.  Observation and UV absorption proved that 

dye release was induced by visible light exposure. 
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2-4-12 Spin Coater: 

Spin coating (Laurell Spin coater Model WS-400B-6NPP/Lite) is a procedure to 

deposit a uniform thin film on a flat substrate. A small amount of the coating solution was 

drop-cast to the center of the substrate and then the instrument was run. The speed of spin 

coating may vary based on the coating material, concentration of the polymer, and needed 

thickness of the thin film. The other usage of this instrument is to dry samples, and it is a 

preferred method over air drying since it minimizes the amount of handling.  

 

2-4-12-1 Spin-coater instructions: 

1. Place the substrate (e.g. a glass slide) upon the O-Ring 

2. Turn on the spin coater  

3. Open the vacuum line 

4. Open the N2 line 

5. Press the blue vacuum button on the keypad to attach the substrate  

6. Set the parameters 

a- Program select: select one of the predesigned programs 

b- F1: allows changes to parameters to preferred parameters  

7. Press run/stop to start/stop spinning 

8. Clean off surface of spin coater lid with wipe 

9. Turn off vacuum and N2 lines 

10. Turn off the instrument 
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Figure 2- 15: The spin coater was used in this experiment to deposit a uniform thin film 

on a flat substrate with a specific thickness. This device also was used for drying 

substrates. 
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Chapter 3 Non-Covalent Photochromic Polymer Adhesion 

3-1 Introduction 

 The adhesion of a polymer to a substrate is an important technological problem that 

encompasses phenomena on multiple length scales, from molecular-level bonding to 

macroscopic film morphology.1  While developing a fundamental understanding of this 

adhesion remains an important goal, it is also desirable to control it using an external 

stimulus.  In many respects, light is an ideal control field since it can be delivered to closed 

systems with high spatial and temporal resolution.  Photoswitching of adhesion can be 

accomplished by modifying the polymer morphology through light-induced sintering or 

melting2-3 or by using photochemistry to modify molecular binding interactions.4-7  Both 

methods tend to require the synthesis of specially designed molecules or polymers.  It 

would be useful to develop a simple and reasonably general method to manipulate polymer 

adhesion using light. 

 An example of poor adhesion occurs when the hydrophobic polymer polystyrene 

(PS) is deposited onto a hydrophilic surface like SiO2.
8-9  When PS-coated glass surfaces 

are placed into room temperature water, the polymer film typically delaminates from the 

glass within 30 minutes 10, presumably because the polar H2O molecules diffuse into the 

interface and displace the weak Van der Waals interactions between the hydrophilic surface 

siloxy groups and the hydrophobic polymer.  The adhesive strength of this interface is also 

quite weak – the polymer will detach from the glass under relatively small loads.  

Photoinduced cross-linking has been demonstrated to be an effective strategy for 
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permanently bonding polystyrene (PS) to surfaces like Si and SiO2, but this process 

introduces irreversible chemical changes in the polymer.11   

In this chapter, we explore how a photochromic molecule that can be switched 

between two isomers can be used to modify adhesion between a polymer film and a glass 

surface.  The adherence of PS to glass was chosen as a model system.  The idea is to use 

the photochromic reaction to alter the molecular interactions at the glass-polymer interface.  

There exist a large variety of photochromic molecules that can be used.12  For this research, 

we examined two commercially available photochromes, a spiropyran derivative 1′, 3′-

dihydro-1′, 3′, 3′-trimethyl-6-nitrospiro [2H-1-benzopyran-2, 2′-(2H)-indole]) (SP) and a 

diarylethene derivative 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-

1-cyclopentene (DAE).  These two molecules belong to classes of photochromes that 

absorb in the ultraviolet (UV) region and undergo reversible unimolecular isomerizations 

to generate photoisomers (Scheme 3-1).13-15  The photoisomers absorb at visible 

wavelengths, making it straightforward to completely reverse the reaction using a different 

light source.  We test adhesion by looking at shear strength and delamination rates in water.  

Both photochromic reactions can significantly enhance the adhesion of PS to a glass 

surface, although the effect of the DAE is limited by its lower reactivity in the PS matrix.  

The enhanced polymer adhesion could only be partially reversed, even after extended 

exposure to visible light completely regenerated the UV-absorbing isomer.  

Nanoindentation and heating experiments suggest that the limited reversibility results from 

an effective polymer annealing process that accompanies the photoisomerization reaction.  
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While these noncovalent changes enhance adhesion, they do not affect the chemical 

properties of the polymer, like solubility or optical clarity.  The results of this chapter show 

that adhesive forces between dissimilar materials can be modulated by photochromic 

reactions of embedded molecules.  This work provides a simple path to materials that 

possess photo-switchable adhesive properties without covalent crosslinking.   

 

 

 

 

SP: 

 

 

 

 

DAE: 

 

Scheme 3-1.  The two photochromic molecules, SP and DAE, studied in this chapter.   

 



69 

 

3-2 Results and Discussion 

Both SP and DAE photochromes react in PS, but not to the same extent.  Figure 3-

2 shows the absorption change due to the photochromic reactions of SP and DAE in PS.  

Under 365 nm illumination, the UV absorption due to the SP form completely disappears, 

replaced by the merocyanine absorption (peaked around 600 nm).  This photochromic 

change can be reversed by exposure to visible light (Figure 3-1).  Using 365 nm light, we 

can essentially convert 100% of the SP to its merocyanine isomer.  The DAE photochrome, 

however, loses only about 5% of its absorbance under the same conditions, as shown in 

Figure 3-2 b.  This low conversion may be due to the fact that the ring-open isomer absorbs 

weakly at this wavelength, while the ring-closed isomer absorbs more strongly.  This 

situation can lead to a photostationary state that favors the reactant.  Using a shorter 

wavelength excitation source would be expected to increase the conversion.  A second 

possibility is that there is heterogeneity in the local environment around the DAE 

molecules, allowing only a small fraction to react while the others are prevented by steric 

constraints.  The important point is that this photochrome is less reactive in the PS and thus 

its effect on adhesion is expected to be diminished. 
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Figure 3-1: a) Absorption of 1′, 3′-dihydro-1′, 3′, 3′-trimethyl-6-nitrospiro [2H-1-

benzopyran-2, 2′-(2H)-indole]) (SP) in polystyrene before and after UV irradiation (365 

nm), and after visible light exposure. b) Absorption of 1,2-bis(2,4-dimethyl-5-phenyl-3-

thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene (DAE) in polystyrene before and after 

UV (365 nm) irradiation, and after visible light exposure.  Both photochromes completely 

recover the reactant absorption after 30 hr of visible light exposure.  
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Figure 3-2: a) Absorption spectra for 0.29 mass fraction PS/SP sample (equivalent to a 

mass ratio SP:PS = 29:71) film before (black) and after (red) 1 minute of 365 nm 

irradiation.  b)  Absorption spectra for PS/DAE 0.29 mass fraction of DAE (equivalent to 

a mass ratio DAE:PS = 29:71)film before (black) and after (red) 1 minute of 365 nm 

irradiation.  

   

The next question concerns how the photochromic reactions affect PS adhesion to 

the glass.  A standard lap-shear test was used to evaluate the adhesive strength between 

two glass plates that sandwich a polymer film. The force per unit area (shear) required to 

separate the plates was determined (Figure 3-3 a, Table 3-1). With neat PS or unirradiated 

PS/SP films, the average shear required was relatively low, 9.3±1.3 N/cm2.  After UV 

irradiation, this value for a 0.29 mass fraction PS/SP film jumped to 69±4 N/cm2.  Here, 

mass fraction refers to the weight of the photochrome as a fraction of the total weight, for 

example a 0.29 mass fraction PS/SP sample has the mass ratio SP:PS is 29:71. These 
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highly colored films could be returned to their original, uncolored state after 30 hours of 

visible light exposure, but resulted in only a slight decrease in shear strength to 51±4 

N/cm2.  Even though the chemical change could be reversed, the adhesion change was 

mostly permanent.  A similar but smaller photoinduced change was observed in the 

PS/DAE films, where the shear strength approximately doubled to 21±1.2 N/cm2 for the 

UV irradiated samples, then relaxed slightly to 16±2 N/cm2 after the ring-closed isomer 

was converted back to the uncolored, ring-open form.  The smaller effect for the PS/DAE 

films was expected based on DAE’s lower photoconversion efficiency.   

 

 

 

Figure 3-3: a) Lap-shear test results for PS/SP 0.29 mass fraction films sandwiched 

between two glass plates.  The measured force per unit area (shear) required to pull the 

plates apart for neat PS, the PS/SP film before irradiation, the PS/SP UV irradiated film, 

and the PS/SP UV irradiated film after exposure to visible light for 30 hr has regenerated 

the SP reactant.  b) The same experiment as in a) but for a PS/DAE mass fraction film. 
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Table 3- 1: Results of the standard lap-shear test on different polymer samples. 

 Lab shear test (N/cm2) 

PS 9.3  ±  1.8  

PS/SP 10.7  ±  2.33 

PS/DAE 9.38  ±  1.16 

PS-Heat 16.5  ± 3.62 

PS/SP-UV 69.25   ±  3.41 

PS/DAE-UV 20.6 ±  1.16 

PS/SP-UV visible light 30 hr 51   ±  3.51 

PS/DAE - visible light 30 hr 16  ±  1.56 

 

In all the shear experiments, the samples broke apart at the polymer glass interface, 

which appears to be the “weak link” in the glass-polymer sandwich.  The vulnerability of 

this interface could be further probed by measurements of the water-induced delamination 

of the polymer films.  If a neat PS film was deposited onto a piranha cleaned microscope 

slide and then immersed in stirred water, it typically detached within about 30 minutes.  To 

quantify the detachment rate, we monitored multiple films and measured how many were 

still attached to the glass at regular time intervals.  Delamination often results from internal 

stress between the two layers16, but can also result from interface debonding, in this case 

due to penetration of water into the interface.  Interface debonding relies on diffusive 

transport and can be modeled as a chemical rate process.17-18  In our case, we assume it can 
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be described by first-order kinetics, with the number of detached films (Ndetach) predicted 

by an exponential function: 

 ( )tk
detach

detacheNN
−

−= 10        (1) 

N0 is the number of film spots originally on the slide, kdetach is the characteristic detachment 

rate, and t is the time spent in the agitated water solution.  Examples of the data and fitting 

using Equation (1) are shown in Figure 3-4.  kdetach for a PS-only film was measured to be 

(2.9±0.2)× 10-2 min-1.  When SP is added to the PS with a 0.29 mass fraction, the film 

delaminates slightly more slowly with kdetach =(1.2±0.1)× 10-2 min-1.  When the film was 

exposed to 365 nm light at an intensity of 0.6 mW/cm2 for 1 minute, the film changed from 

colorless to purple and stayed attached even after several days in an agitated H2O solution 

(Figure 3-4 a).  Given the low number of detached films in this sample, it is difficult to 

extract a reliable estimate for kdetach, but we estimate that it is less than 10-5 min-1, or 2-3 

orders of magnitude smaller than that of an unirradiated doped film.   
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Figure 3-4: a) Time dependent detachment percentage of neat polystyrene films (PS), 

0.29 mass fraction polystyrene-spiropyran (PS/SP) films, and polystyrene-spiropyran 

films after UV exposure (PS/SP-UV).  b) Time dependent detachment percentage of PS, 

PS/DAE and PS/DAE-UV films under the same conditions. 

 

Table 3- 2: kdetach values for different mass fraction of PS/SP films before and after 

UV irradiation. 

Mass fraction k detach before UV (min-1) k detach after UV (min-1) 

0 0.05±.003 0.05±.003 

0.05 0.0359±.006 0.012±.001 

0.15 0.026±.002 0.006±.0001 

0.2 0.021±.001 0.0016±.00003 

0.29 0.018±.001 No detachment 

0.4 0.008±.0005 No detachment 
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The photoinduced slowing of the delamination was observed for other 

photochromic molecules.  The magnitude of kdetach suppression for another spiropyran 

derivative, nitro 1′, 3′-dihydro-8-methoxy-1′, 3′, 3′-trimethyl-6-nitrospiro[2H-1-

benzopyran-2,2′-(2H)-indole] was similar to that for SP.  When the spirooxazine 

photochrome 1,3,3-trimethylindolinonaphthospirooxazine was used, UV light similarly 

changed the film from colorless to a deep blue.  But the photoinduced change in kdetach was 

smaller, decreasing from 8×10-3 min-1 to 1.5×10-3 min-1.  The PS/DAE films also exhibited 

a smaller change in the delamination rate, with kdetach =2.2×10-2 min-1 before irradiation 

and kdetach =1.5×10-2 min-1 afterward (Figure 3-4 b).  We did not undertake an exhaustive 

survey of all possible photochromic reactions, but the kdetach values for the doped and 

undoped PS films studied in this work are given in this study.  Finally, cleaning the glass 

slide using either acidic and basic piranha solutions resulted in the same decrease in kdetach.  

If the glass was not cleaned, the inhibition effect was much less reproducible, presumably 

due to the presence of hydrophobic surface contaminants that affected PS adhesion to the 

surface.   

The magnitude of the photoinduced adhesion change was sensitive to the 

photochrome concentration, with a greater fraction of SP leading to stronger adhesion.  The 

shear strength of the unexposed films was independent of the SP concentrations to within 

the experimental error.  Figure 3-5 a shows how the shear strength of the UV-exposed films 

steadily increases as the SP loading increases.  The dependence of kdetach on SP loading is 

harder to visualize because kdetach for unexposed samples increases with higher SP loading.  



77 

 

Moreover, kdetach(after UV) became effectively zero for the more concentrated samples.  In 

Figure 3-5 b, we plot the ratio kdetach(after UV)/kdetach(before UV) to illustrate the 

suppression of the delamination rate for different SP concentrations.  For a pure PS film, 

exposure to 365 nm light has no effect and this ratio is 1.0.  But for films with high amounts 

of SP, this ratio rapidly drops to 0.0 as the films become permanently resistant to 

delamination.  

  

 

Figure 3-5 : a) Lap-shear test results for PS/SP films with varying SP mass fractions after 

UV exposure, showing enhanced photoinduced adhesion with increasing SP concentration. 

b) The dependence of the ratio kdetach(before UV)/kdetach(after UV) for varying SP mass 

fractions, showing that the photoinduced resistance to delamination increases with 

increasing SP concentration).  

 

Having established that photochromic reactions in a polymer film can affect its 

adhesion to a clean glass surface, we now consider possible mechanisms for this effect.  
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We found that even when strongly attached to the glass, all of the UV-exposed films could 

still be easily dissolved in organic solvents and the photochrome absorption recovered.  

There was no evidence of a permanent chemical change in the polymer.  The merocyanine 

isomer is more polar than the spiropyran form, and we considered the possibility that this 

polarity change strengthens the interaction of the polymer film with the hydrophilic 

surface.  To assess the change in surface polarity, we measured the water contact angle.  A 

neat PS film had a measured contact angle of 85.6º, in good agreement with previously 

measured values.19-20  When the PS is doped with a 0.29 mass fraction of SP, the contact 

angle slightly decreased to 83.2±0.6°.  After irradiation, the film color changed from 

colorless to purple, and the contact angle decreased to 78.6±0.4° ( Figure 3-6).  The contact 

angle change of ~5° is comparable to that observed for nitro-spiropyran doped poly(ethyl 

methacrylate) polymers21 but less than that typically observed for polymer films with a 

high surface density of spiropyrans.22-23  It is certainly possible that this polarity change 

contributes to the improved adhesion.  But for the adhesion to persist after prolonged 

visible illumination, it must be assumed the merocyanines close to the glass surface resist 

conversion back to the SP form.  Studies of SP isomerization on functionalized glass22, 24-

25 and alumina26 provide no evidence that the reversibility can be prevented by a 

hydrophilic surface.  The relatively small change in contact angle, the continued adhesion 

even after the less polar SP is regenerated, and the ability of DAE to promote adhesion, all 

suggest that a photoinduced surface polarity change is not primarily responsible for the 

increased adhesion.   
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Figure 3-6: Contact angle measurement to measure change in surface polarity.  a) contact 

angle for 0.29 mass fraction PS/SP before UV, b) contact angle after UV. 

 

The fact that the adhesion changes are largely irreversible, even after the 

photochrome returns to its original state, suggests that the photochromic reaction induces 

a permanent change in the nanoscale polymer morphology.  For example, local heating or 

softening could allow the PS to flow and conform to the glass surface.  This would increase 

the surface contact of the polymer to the glass while removing small void spaces and 

channels that allow H2O molecules to penetrate and decrease adhesive strength.27  These 

morphology changes would not be photoreversible but would still allow the polymer film 

to be readily dissolved, as observed experimentally.  To test this hypothesis, we measured 

the polymer mechanical properties.  
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Any annealing process that eliminates voids would be expected to make the 

material more dense and resistant to indentation, leading to higher elastic modulus and 

hardness values.  Changes in the elastic modulus and hardness before and after UV 

exposure can be measured using nanoindentation.  Unlike the delamination rate, there was 

no consistent trend in hardness and modulus values with increased SP loading before UV 

treatment. For pure PS films, there was no change in the hardness after UV exposure to 

within the error, and a very small decrease in elastic modulus that was close to the error.  

For the PS/SP films, UV exposure caused both the elastic modulus and hardness to increase 

by 5-10%, which is greater than the error range.  The fractional changes in hardness and 

elastic modulus are plotted in Figure 3-7.  The magnitude of these changes is comparable 

to the increase in stiffness of poly(ethyl methacrylate -co-methyl acrylate) doped with 

comparable levels of SP after UV exposure.28  Photoisomerization of SP has also been 

shown to decrease the modulus of a different polymer 29, so there is no general rule as to 

how it affects polymer mechanical properties.  The important point is that the photoinduced 

changes in mechanical properties tracked the SP mass fraction, as expected based on the 

adhesion results.  
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Figure 3-7: a) Fractional change in elastic modulus after UV exposure for different SP 

mass fractions.  b)  Fractional change in hardness after UV exposure for different SP mass 

fractions. 

Table 3-3: Nanoindentation results:  average modulus and hardness values with standard 

deviation calculated from indent maps of different mass fraction PS/SP films before and 

after UV exposure. 

Film Hardness (MPa) Reduced Modulus (GPa) 

PS 248 ± 11 5.99 ± 0.47 

PS-UV 253 ± 16 5.69 ± 0.25 

15% SP 252 ± 12 5.92 ± 0.20 

15% SP- UV 276 ± 11 6.1 ± 0.20 

29% SP 291 ± 10. 5.74 ± 0.24 

29% SP-UV 326 ± 15 6.15 ± 0.16 
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 If the photochromic reactions lead to an effective annealing of the polymer film, 

then we should see similar changes in the adhesion after thermal annealing.  Consistent 

with this idea, we found that the shear strength of the polymer-glass bond could be 

increased by roughly a factor of 2 after heating at 50°C for 1 hour (Figure 3-8 a).  Similarly, 

kdetach could be decreased by a factor of 20-40 after the same treatment (Figure 3-8 b).  For 

both shear strength and delamination, the improvement due to thermal annealing was less 

than that generated by the photochromic reactions, even though the average temperature of 

the irradiated samples never rose more than 1ºC as measured by an optical thermometer.  

We attempted to increase the adhesion by heating PS films above their glass transition 

temperature, which is approximately 100°C.30  After this treatment, about 40% of the films 

still detached quickly, but the rest remained stably attached to the glass (Figure 3-9).  It 

appears that even after high-temperature thermal annealing, there is still some 

heterogeneity in the PS sample adhesion, while for the PS/SP films there is 100% 

attachment after UV exposure. 
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Figure 3-8: a) Comparison of lap-shear test results for neat PS, neat PS after heating to 

50°C for 1 hour, and PS/SP after UV exposure.  Both heating and photochromic reaction 

increase the adhesion, but the increase for the PS/SP film is at least 3 times larger. b) 

Time dependent detachment percentage for neat PS, neat PS after heating to 50°C for 1 

hour, and PS/SP after heating to 50°C for 1 hour.  For both heated films, kdetach was 

decreased by a factor of 20-40. 
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Figure 3-9: Experimental plots of the detachment percentage as a function of time. The 

black squares show the % detachment of neat PS (exponential fit yields kdetach = 0.05 min-

1), blue triangles show the % detachment of neat PS after heating to 50◦C for 60 min 

(exponential fit yields kdetach = 0.002 min-1), and red circles show the % detachment of neat 

PS heated to 100◦C for 60 min (exponential fit yields kdetach = 0.0008 min-1).  Note that the 

exponential fit to the 100◦C is clearly not adequate, probably due to heterogeneity in the 

sample after heating. 

 

 Photochromic dopants based on azobenzene31-32 and spiropyran33-34 have been 

shown to induce photomechanical effects in amorphous polymers.  Furthermore, the ability 

of photochromic reactions to drive spatial rearrangements and pattern formation is well 

established for polymer systems containing azobenzene.35  We suspect that similar 

dynamics are responsible for the increased adhesion we observe.  The change in adhesion 

clearly requires high photochrome concentrations (a 0.29 mass fraction corresponds to a 
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concentration of 0.89 Molar), where the glass surface sees a mixed molecular and polymer 

solid that is probably more fluid than a neat polymer.  The physical distortion that 

accompanies photoisomerization, along with local heating, may be sufficient to drive 

rearrangements of both the polymer chains and dopant molecules.  While the bulk 

concentration of the photochrome cannot change, it is possible that photoisomerization 

leads to morphology changes at the nanoscopic level, for example aggregation of the 

merocyanine isomer.14, 34, 36-37  It is possible that such small-scale changes could be detected 

using scanning probe microscopy methods, but such measurements are beyond the scope 

of the present work.  Finally, it should be noted that large spatial rearrangements in 

azobenzene-doped polymer typically required laser excitation and multiple cis-trans 

isomerization cycles.38  In the present case, a single photochromic transformation cycle, 

initiated by lamp illumination, is sufficient to generate the nanoscale changes that modulate 

the adhesion.   

 

3-3 Conclusion 

 The results in this chapter demonstrate that the photochromic reaction of a molecule 

embedded in a polymer film can affect its surface adhesion properties, as measured by 

shear strength and delamination in water.  The size of the effect depends on the molecular 

structure of the photochrome and its concentration.  The most dramatic results were 

obtained for PS/SP films, whose shear strength increased by a factor of 7 while the 

delamination rate was suppressed by at least 2 orders of magnitude after exposure to UV 
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light.  We hypothesize that the changes in adhesion arise from localized polymer and 

molecular motions that eliminate void spaces and surface gaps.  It is remarkable that this 

photochromic annealing appears to be more effective than bulk thermal annealing.  

Although the mechanism deserves further investigation, the demonstration of non-covalent 

photoinduced adhesion in polymer films is a promising step in the development of 

materials whose adhesive properties can be changed using light. 

 

 

 

 

 

 

 

 

 

 

 



87 

 

3-4 References 

 

(1) Zeng, H., Polymer Adhesion, Friction, and Lubrication. Wiley: Hoboken, New 

Jersey, 2013. 

(2) Gurney, R. S.; Dupin, D.; Nunes, J. S.; Ouzineb, K.; Siband, E.; Asua, J. M.; 

Armes, S. P.; Keddie, J. L., Switching Off the Tackiness of a Nanocomposite Adhesive in 

30 s via Infrared Sintering. ACS Appl. Mater. Interfaces 2012, 4, 5442-5452. 

(3) Saito, S.; Nobusue, S.; Tsuzaka, E.; Yuan, C.; Mori, C.; Hara, M.; Seki, T.; 

Camacho, C.; Irle, S.; Yamaguchi, S., Light-Melt Adhesive Based on Dynamic Carbon 

Frameworks in Columnar Liquid-Crystal Phase. Nat. Commun. 2016, 7, 12094/1-7. 

(4) Goulet-Hanssens, A.; Sun, K. L. W.; Kennedy, T. E.; Barrett, C. J., 

Photoreversible Surfaces to Regulate Cell Adhesion. Biomacromolecules 2012, 13, 2958-

2963. 

(5) Blass, J.; Bozna, B. L.; Albrecht, M.; Krings, J. A.; Ravoo, B. J.; Wenz, G.; 

Bennewitz, R., Switching Adhesion and Friction by Light Using Photosensitive Guest-

Host Interactions. Chem. Commun. 2015, 51, 1830-1833. 

(6) Kadem, L. F.; Holz, M.; Suana, K. G.; Li, Q.; Lamprecht, C.; Herges, R.; 

Selhuber-Unkel, C., Rapid Reversible Photoswitching of Integrin-Mediated Adhesion at 

the Single-Cell Level. Adv. Mater. 2016, 28, 1799-1802. 

(7) Zhang, J.; Ma, W.; he, X.-P.; Tian, H., Taking Orders from Light:  Photo-

Switchable Working/Inactive Smart Surfaces for Protein and Cell Adhesion. ACS Appl. 

Mater. Interfaces 2017, 9, 8498-8507. 

(8) Strange, T. G.; Evans, D. F.; Hendrickson, W. A., Nucleation and Growth of 

Defects Leading to Dewetting of Thin Polymer Films. Langmuir 1997, 13, 4459-4465. 

(9) Baxamusa, S. H.; Stadermann, M.; Aracne-Ruddle, C.; Nelson, A. J.; Chea, M.; 

Li, S.; Youngblood, K.; Suratwala, T. I., Enhanced Delamination of Ultrathin Free-

Standing Polymer Films via Self-Limiting Surface Modification. Langmuir 2014, 30, 

5126-5132. 



88 

 

(10) Maebayashi, M.; Matsuoka, T.; Koda, S.; Hashitani, R.; Nishio, T.; Kimura, S., 

Study on Polystyrene Thin Film on Glass Substrate by Scanning Acoustic Microscope. 

Polymer 2004, 45, 7563-7569. 

(11) M.Yan; Harnish, B., A Simple Method for the Attachment of Polymer Films on 

Solid Substrates. Adv. Mater. 2003, 15, 244-248. 

(12) Durr, H.; Bouas-Laurent, H., Photochromism : molecules and systems. Elsevier: 

New York, 1990. 

(13) Berkovic, G.; Krongauz, V.; Weiss, V., Spiropyrans and Spirooxazines for 

Memories and Switches. Chem. Rev. 2000, 100, 1741-1753. 

(14) Klajn, R., Spiropyran-Based Dynamic Materials. Chem. Soc. Rev. 2014, 43, 148-

184. 

(15) Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S., Photochromism of 

Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chem. Rev. 

2014, 114, 12174–12277. 

(16) Freund, L. B.; Suresh, S., Thin Film Materials:  Stress, Defect Formation, and 

Surface Evolution. Cambridge U. Press: Cambridge, 2003. 

(17) Kook, S.-Y.; Dauskardt, R. H., Moisture-Assisted Subcritical Debondingn of a 

Polymer/Metal Interface. J. Appl. Phys. 2002, 91, 1293-1303. 

(18) Sharratt, B. M.; Wang, L. C.; Dauskardt, R. H., Anomalous Debonding Behavior 

of a Polymer/Inorganic Interface. Acta Mater. 2007, 55, 3601-3609. 

(19) Kwok, D. Y.; Lam, C. N. C.; Li, A.; Zhu, K.; Wu, R.; Neumann, A. W., Low-

Rate Dynamic Contact Angles on Polystyrene and the Determination of Solid Surface 

Tensions. Polym. Sci. Engin. 1998, 38, 1675-1684. 

(20) Li, Y.; Pham, J. Q.; Johnston, K. P.; Green, P. F., Contact Angle of Water on 

Polystyrene Thin Films:  Effects of CO2 Environment and Film Thickness. Langmuir 

2007, 23, 9785-9793. 

(21) Athanassiou, A.; Lygeraki, M. I.; Pisignano, D.; Lakiotaki, K.; Varda, M.; Mele, 

E.; Fotakis, C.; Cingolani, R.; Anastasiadis, S. H., Photocontrolled Variations in the 



89 

 

Wetting Capability of Photochromic Polymers Enhanced by Surface Nanostructuring. 

Langmuir 2006, 22, 2329-2333. 

(22) Rosario, R.; Gust, D.; Hayes, M.; Jahnke, F.; Springer, J.; Garcia, A. A., Photo-

Modulated Wettability Changes on Spiropyran-Coated Surfaces. Langmuir 2002, 18, 

8062-8069. 

(23) Wagner, N.; Theato, P., Light-Induced Wettability Changes on Polymer Surfaces. 

Polymer 2014, 55, 3436-3453. 

(24) Wu, T.; Zou, G.; Hu, J.; Liu, S., Fabrication of Photoswitchable and 

Thermotunable Multicolor Fluorescent Hybrid Silica Nanoparticles Coated with Dye-

Labeled Poly(N-isopropylacrylamide) Brushes. Chem. Mater. 2009, 21, 3788–3798. 

(25) Park, Y. S.; Ito, Y.; Imanishi, Y., Photocontrolled Gating by Polymer Brushes 

Grafted on Porous Glass Filter. Macromolecules 1998, 31, 606-2610. 

(26) Vlassiouk, I.; Park, C.-D.; Vail, S. A.; Gust, D.; Smirnov, S., Control of Nanopore 

Wetting by a Photochromic Spiropyran: A Light-Controlled Valve and Electrical Switch. 

Nano Lett. 2006, 6, 1013-1017. 

(27) Frens, G., Depletion:  A Key Factor in Polymer Adhesion. In Adhesion Aspects of 

Polymer Coatings, Mittal, K. L., Ed. Brill Academic: Zeist, The Netherlands, 2003; Vol. 

2, pp 21-27. 

(28) Samoylova, E.; Ceseracciu, L.; Allione, M.; Diaspro, A.; Barone, A. C.; 

Athanassiou, A., Photoinduced Variable Stiffness of Spiropyran-Based Composites. 

Appl. Phys. Lett. 2011, 99, 201905/1-. 

(29) Zhang, X.; Zhou, Q.; Liu, H.; Liu, H., UV Light Induced Plasticization and Light 

Activated Shape Memory of Spiropyran Doped Ethylene-Vinyl Acetate Copolymers. Soft 

Matter 2014, 10, 3748-3754. 

(30) Rieger, J., The Glass Transiton Temperature of Polystyrene:  Results of a Round 

Robin Test. J. Therm. Anal. 1996, 46, 965-972. 

(31) Tanchak, O. M.; Barrett, C. J., Light-Induced Reversible Volume Changes in Thin 

Films of Azo Polymers:  The Photomechanical Effect. Macromolecules 2005, 38, 10566-

10570. 



90 

 

(32) Barrett, C. J.; Mamiya, J.; Yager, K. G.; Ikeda, T., Photomechanical Effects in 

Azobenzene-Containing Soft Materials. Soft Matter 2007, 3, 1249-1261. 

(33) Santos, E. A. G.-d. l.; Lozano-Gonzalez, M. J.; Johnson, A. F., Photoresponsive 

Polyurethane-Acrylate Block Copolymers. II.  Photomechanical Effects in Copolymers 

Containing 6'-Nitro Spiropyranes and 6'-Nitro-bis-Spiropyranes. J. Appl. Polym. Sci. 

1999, 71, 267-272. 

(34) Athanassiou, A.; Kalyva, M.; Lakiotaki, K.; S.Georgiou; Fotakis, C., All-Optical 

Reversible Actuation of Photochromic-Polymer Microsystems. Adv. Mater. 2005, 17, 

988-992. 

(35) Cojocariu, C.; Rochon, P., Light-Induced Motions in Azobenzene-Containing 

Polymers. Pure. Appl. Chem. 2004, 76, 1479-1497. 

(36) Cabrera, I.; Schvartsman, F.; Veinberg, O.; Krongauz, V., Photocontraction of 

Liquid Spiropyran-Merocyanine Films. Science 1984, 226, 341-343. 

(37) Seki, T.; Ichimura, K.; Ando, E., Stable J-Aggregate Formation of Photoinduced 

Merocyanine in Bilayer Membrane. Langmuir 1988, 4, 1068-1069. 

(38) Juan, M. L.; Plain, J.; Bachelot, R.; Royer, P.; Gray, S. K.; Wiederrecht, G. P., 

Stochastic Model for Photoinduced Surface Relief Grating Formation Through Molecular 

Transport in Polymer Films. Appl. Phys. Lett. 2008, 93, 153304/1-3. 

 

 

 

 

 

 

 



91 

 

Chapter 4: Photoinduced De-Adhesion of a Polymer Film Using a Photochromic 

Donor-Acceptor Stenhouse Adduct 

 

 

4-1 Introduction 

 The ability of an organic film to adhere to an inorganic surface, like silica or a 

metal, can determine material properties like friction, chemical resistance, and electronic 

conductivity.1  The metal-polymer interface has received considerable attention due to its 

importance in electronics and corrosion applications,2-3 but the glass-polymer interface also 

has considerable practical importance, for example in composites.4  Light provides a 

convenient and tunable noncontact way to modify the properties of the organic component 

via photochemistry.  For example, in the case of a conductive polymer interface, 

photoisomerization of an organic photochromic layer can tune the interfacial barrier to 

charge injection.5  In the case of adhesion, light can be used to generate covalent 

crosslinking  between the polymer and substrate.6-7  Photochemistry can also modulate 

noncovalent adhesive interactions by changing surface electrostatic properties.8-14  In most 

of these examples, the photoswitching relied on the synthesis of a covalently attached 

surface layer of photochromic molecules, similar to what is used to modulate surface 

wettability.  We recently showed that simpler approach, relying on the photoisomerization 

of photochromic dopants like spiropyran, could significantly increase adhesion between a 

polystyrene film and a clean silica substrate.15  To explain this photoinduced adhesion, we 

hypothesized that the photoisomerization reactions could rearrange the surrounding 
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polymer chains, inducing nanoscale morphology changes that improved the mechanical 

contact between the film to the substrate.   

 In the covalent and noncovalent examples described above, photochemical changes 

lead to an increased adhesion.  Using light activated photoswitches to decrease adhesion 

would arguably be just as useful, since it would permit the remote disassembly of structures 

with temporal and spatial control.  One could imagine applications in fields like drug 

delivery, in which a capsule could be opened at a specific time and place in the body, or in 

manufacturing where a protective layer could be detached from a surface after it was no 

longer needed.  Despite these potential advantageous properties, examples of light-

controlled de-adhesion are not common.  Branda and coworkers demonstrated 

photocontrolled adhesion on textured polydimethylsiloxane surfaces by taking advantage 

of changes in surface hydrophilicity generated by spiropyran photoisomerization.16  Saito 

and coworkers showed that an anthracene-based liquid crystal could function as an 

adhesive at room temperature but a combination of ultraviolet (UV) light and high 

temperatures (200°C) could induce melting of the liquid crystal with a concomitant loss of 

adhesion.17  The melting transition was initiated by photodimerization of anthracene pairs 

in the mesogen, permitting control by UV light, but the requirement of high temperatures 

probably limits the practical utility of this de-adhesion approach.  The use of photoinduced 

thermal effects to reduce adhesion has been reported in azobenzene polymers18 and in 

polymer composites.19  
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 Based on our work on photochromic noncovalent adhesion in polymer films, we 

became interested in whether the concept of using photochemistry to modify noncovalent 

adhesive interactions could be applied to the problem of de-adhesion.  In the previous 

chapter, the photoisomerizations involved bonding changes that increased the size of the 

photochrome, perturbing the surrounding polymer in a sort of annealing process that 

allowed the polymer to more closely conform to the substrate surface, increasing the 

mechanical adhesion.15  We reasoned that a photoisomerization reaction that decreased 

molecular size might lead to the opposite effect; with the molecule pulling back from the 

substrate surface and lowering the adhesive forces.  An additional goal was to find a 

photochrome that could be excited by visible rather than UV light, since visible light can 

penetrate more deeply into scattering environments and has less propensity to generate 

undesirable side reactions.  A photochromic system that meets both criteria is the donor-

acceptor Stenhouse adduct (DASA) family of molecules recently developed by Read de 

Alaniz and coworkers.20-25  These photochromic molecules rely on a cis→trans 

photoisomerization followed by a ring-closing reaction, as outlined in Scheme 1.  The 

detailed photophysics of this multistep transformation are still being worked out, but 

several generations of this scaffold have now been synthesized.  The latest generation of 

DASA compounds absorb well into the near-infrared, while maintaining good isomer 

stability, rapid switching and high reversibility in dilute solutions.26  Furthermore, the 

molecule (DASA) shown in Scheme 1 is somewhat unique because its isomerization 

produces a more compact product due to the ring-closing reaction shown in Scheme 4-2.  
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Calculations indicate a 12% decrease in molecular volume after photoisomerization (Table 

4-1).   

Table 4-1: Molecular Volume calculations.  VEGA ZZ drug design software (3.1.1) was 

used to calculate the molecular volumes. This software uses the van der Waals radius for 

the calculations.  Isomerized DASA (after light irradiation) undergoes a volume reduction 

of 10 Å³, or about 12%.  

 
Molecular Volume 

DASA (1) 84.9 Å³ 

Isomerized DASA (2)  74.5 Å³ 

 

 

 

 

Scheme 4-1:  Photochromic behavior of third generation DASA molecule which isomerizes 

from the open form (1) to the closed form (2) after 532 nm irradiation 

532 nm 

Heat, dark 
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 The promising attributes of the DASA photochromes motivated us to investigate 

how this photochromism affects the adhesion of polystyrene (PS) films to clean silica 

surfaces.  Both shear and pull-off adhesive forces, as well as water delamination rates, are 

measured before and after irradiation.  Changes in the spectroscopic properties and surface 

wettability are measured as well.  Although it is not a particularly strong adhesive, the 

DASA/PS system does undergo photoinduced de-adhesion under ambient (room 

temperature) conditions.  The ability to reduce polymer adhesion using visible light allows 

us to demonstrate the controlled release of dye molecules from a glass container, where 

they have been stored as a dry powder.  These results demonstrate that the relatively simple 

approach of blending photochromic molecules in a polymer matrix can generate a new 

composite material with light-switchable properties.   

 

4-2 Results and Discussion 

 The DASA molecule used in our experiments is shown in Scheme 1, which also 

shows the photoisomerization pathway.  It is a third generation molecule that features a 

red-shifted absorption and improved isomer stability.26  The absorption spectrum in 

solution and at high (0.08 mass fraction) loading in PS are shown in Figure 4-1.  The 

photochromic behavior of DASA in dilute solution and polymer hosts has been extensively 

characterized.25  Illumination at visible wavelengths leads to rapid disappearance of the 

absorbance, while removal of the light allows for a full recovery of the absorption on a 

timescale of seconds to minutes (Figure 4-1a).  At the high concentrations used in our 
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polymer adhesion experiments, however, there are several differences (Figure 4-1b).  First, 

the absorption lineshape is broadened and slightly shifted, indicating that intermolecular 

interactions affect the molecule’s electronic states.  More importantly, the rapid absorbance 

loss and facile thermal reversibility observed in dilute samples is not seen in the 

concentrated samples.  Instead of minutes, visible light exposure times on the order of 10 

hours are required to induce the absorption change, and the absorption does not recover at 

all on the timescale of days.  This slowdown in the photochromic kinetics and loss of 

reversibility at high DASA concentrations is the subject of a separate paper.27  However, it 

should be noted that the DASA photochromism is not reversible for the high concentration 

samples that show measurable changes in adhesion.  Control experiments support that the 

lack of reversibility was not due to a photodegradation pathway.  After conversion, the 

colorless films were redissolved in a fixed volume of CH2Cl2.  Upon dilution, the DASA 

molecules rapidly converted back to the open form, and the visible open-form absorbance 

was completely recovered (Figure 4-2).  This shows that high concentrations do not 

introduce a new irreversible photochemical pathway, but instead inhibit the previously 

identified cyclization pathway and its reversal.   
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Figure 4-1: a) Normalized absorption of DASA/PS in dichloromethane before (black) and 

after laser irradiation (red).  After 20 minutes, the absorption completely recovers (green),  

b) Normalized absorption of spin coated DASA/PS (black) and after 14 hours of 532 nm 

laser irradiation (red).  Note that the red spectrum in panel a) fully recovers after a few 

minutes, while that in panel b) does not recover.  
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Figure 4-2: Absorption spectrum of DASA/PS/CH2Cl2 solution before depositing as a solid 

film (black) and the same sample after the solid film was irradiated for 14 hr to completely 

convert it, then redissolved in CH2Cl2 and finally allowed to convert back to the open form 

in solution (red).  There is no sign of a permanent chemical change in the film.    

 

 To completely convert the DASA in a 0.08 mass fraction DASA/PS film, 

approximately 14 hr of exposure to 532 nm light at an intensity of 6 mW/cm2 was required.  

After this period, the visible open-form DASA absorption completely disappeared and the 

blue films turned colorless.  The next question was whether this color change was 

accompanied by a change in the adhesion properties.  We used three different methods to 

assess polymer adhesion.  First, the shear adhesion was measured as the force-per-area 

required to pull apart two glass slides that sandwiched a DASA/PS layer.  In this 
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experiment, the force is applied parallel to the adhesive surface.  The results of these 

measurements, before and after light exposure, are shown in Figure 4-3 for various DASA 

loadings.  PS by itself is a hydrophobic, nonpolar material that only weakly adheres to the 

hydrophilic silica surface.28-29 As the DASA concentration is increased, the adhesion force 

of the nonirradiated sample increases steadily.  After irradiation, the shear force required 

to separate the slides dropped by ~30%, especially for the more concentrated samples, as 

shown in Figure 4-6.  The shear adhesion test, in which the force is applied parallel to the 

polymer-glass interface, was complemented by pull-off adhesion test in which the force 

was applied normal to the interface.  Data from this experiment is plotted in Figure 4-4, 

showing an even more pronounced increase in adhesion with DASA loading before 

irradiation, along with a ~20% decrease after irradiation.   
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Figure 4-3: Shear adhesion measurements of DASA/PS thin films before (black) and after 

(red) 532 nm irradiation for various DASA/PS mass fraction samples.  
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Figure 4-4: Pull-off adhesion measurements of DASA/PS thin films before (black) and 

after (red) 532 nm irradiation for various DASA/PS mass fraction samples.  

 

The two force-based measures of dry adhesion were complemented by a third 

measurement of the polymer film delamination in water.  As in our previous experiments 

on spiropyran/PS films,15 the detachment of drop-cast polymer films in a stirred water 

environment was monitored over time.  An example of the experimental results for a 0.01 

mass fraction DASA/PS films is shown in Figure 4-8a.  Before irradiation, the films were 

highly water resistant, with almost no detachment over the course of 24 hours.  After 

irradiation, the films rapidly detached.  The time-dependent detachment can be modeled as 

a first-order kinetic process, since it is believed to rely on diffusion of water into the 
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polymer-glass interface.30-31  The fraction of detached films (Fdetach) is then given by an 

exponential function: 

 det/
1 acht

detachF e
−

= −         (1) 

where detach is the characteristic detachment lifetime and t is the time spent in the agitated 

water solution.  The exponential fits are overlaid with the detachment data in Figure 4-5a, 

and in Figure 4-5b we plot the detach values before and after irradiation for different DASA 

loadings.  In water, PS tends to quickly delaminate from glass surfaces.32  The addition of 

DASA increases detach for the unirradiated samples, consistent with the data in Figures 4-

6 and 4-7.  After irradiation, the magnitude of the change in detach was much greater than 

for the shear and pull-off adhesive force data in Figures 4-3 and 4-4 where detach decreased 

by 90% for the 0.08 mass fraction sample, as compared to a 20-30% change in the adhesion 

force per area.  Presumably, the light-induced change would be even more dramatic for 

higher DASA loadings, but above 10% mass fraction 100% photoconversion was not 

achieved, even after 24 hr of light exposure.  Samples with higher loadings showed smaller 

adhesion changes because of this incomplete conversion.   
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Figure 4-6: a) Time-dependent detachment percentage DASA/PS for mass fraction of 0.01 

before (black) and after (red) 532 nm irradiation. b) τdetach values for mass fractions of 

0.004, 0.01, 0.03, 0.08 (red) and the values reduces significantly after irradiation (black). 

 

 To explain the previously observed photoinduced adhesion increase in SP/PS films, 

we hypothesized that the photochromic reaction resulted in localized annealing of the 

polymer film that enhanced the nanoscale mechanical contact between the surfaces.15  But 

this type of local morphology change cannot explain the de-adhesion seen here.  First, 

heating to 60ºC on the DASA/PS films resulted in increased adhesion and resistance to 

delamination in water (Figure 4-7), the opposite of what is observed upon exposure to light.  

Second, we looked for evidence of surface roughening by using atomic force microscopy 

(AFM) to measure the surface before and after irradiation.  The AFM scans were 

indistinguishable (Figure 4-8) and yielded the same roughness values (1.3 ±0.4 nm and 

1.1±0.2 nm) to within the experimental error.   
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Figure 4-7:  Effect of heat on the water detachment of a DASA/PS film with mass fraction 

of 0.01.  Heating the irradiated (brown) and non-irradiated (black) films to 60°C does not 

accelerate detachment relative to the unheated, irradiated sample (red).  Heating decreases 

the detachment rate for all samples, consistent with mechanical annealing of the polymer 

film. 
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Figure 4-8:  a) AFM image of a DASA/PS film before irradiation, with a calculated 

roughness of 1.1 ± 0.3 nm.  b) AFM image after irradiation, with a calculated roughness of 

1.3 ± 0.3 nm, indistinguishable from that of the non-irradiated film. 

 

As mentioned above, there is no sign of irreversible photochemistry (e.g. cross-

linking), since the open-form DASA isomer could be completely recovered after 

dissolution of the light-exposed film.  To probe the possible role of changes in the surface 

chemistry, we used surface contact angle measurements.  For the previously studied SP/PS 

films, the presence of the SP had only a small effect on the surface contact angle, with a 

light-induced change of 86º to 83º, as compared to 85º for neat PS.  In the DASA/PS films, 

we saw similarly small changes, as summarized in Table 4-2.  The 0.08 mass fraction 

DASA/PS film had an initial contact angle is 87.4º for a pH=7 water droplet, suggesting 

that the presence of the DASA makes the surface slightly more hydrophobic than PS.  After 

irradiation, the contact angle drops to 84.8º, identical to that of neat PS to within the error.  
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Interestingly, the contact angle on samples before irradiation depended on the water pH.  

For acidic water (pH=2), the initial contact angle was significantly smaller, 84.0±0.3° 

versus 87.4±0.1° for pH=7.  The contact angle also did not change after irradiation, to 

within the error, unlike the pH=7 droplet.  The contact angle of neat PS film was not 

sensitive to pH or irradiation.  These contact angle changes are smaller than for polymer 

films containing a high density of photochromes33-34 but are comparable to those observed 

for doped polymer films.35 

 

Table 4-2: Contact angle of spin-coated DASA/PS films on a glass substrate with water 

droplet at two different pH values.  

 
pH=2 pH=7 

PS 86 ± 0.6 85.6 ± 0.7 

DASA/PS 84 ± 0.3 87.4 ± 1 

DASA/PS 

Irradiated 

83.8 ± 0.3 84.8 ± 0.4 

 

 The sensitivity of the surface contact angle to pH suggested that acid-base or other 

types of surface-specific chemical interactions could be important.  This suspicion was 
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reinforced by the sensitivity of the photoinduced de-adhesion to the glass cleaning 

procedure.  Precleaning the glass slides with an acid piranha wash (H2SO4/H2O2) gave the 

de-adhesion results shown in Figures 2-4.  When the glass was not cleaned at all, no 

photoinduced change is observed.  When a basic piranha wash (NH4OH/H2O2) was used, 

the photoinduced adhesion change was much smaller because the initial adhesion was 

much weaker, comparable to that of PS (Figure 4-9).  This pH sensitivity contrasts with 

the lack of sensitivity to acid/base washing observed for the spiropyran/PS system where 

mechanical effects were dominant.15  A second piece of evidence indicating that the 

adhesion change is chemical in nature was provided by an experiment in which we exposed 

the DASA/PS solution to 532 nm light before casting solid films.  In solution, the 

photoisomerization proceeds quickly and high conversion is possible within a few minutes.  

The converted solution was then deposited to form a solid film containing mostly the 

photoisomer.  These films showed the same rapid detachment in water as the irradiated 

films (Figure 4-10), despite the fact that they were never exposed to light in solid form.  

These results point to a change in DASA’s chemical structure as the source of the 

deadhesion, rather than a change in morphology of the polymer host. 
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Figure 4-9:  Water detachment rates for a 0.01 mass fraction DASA/PS film after a basic 

piranha wash before (black) and after irradiation (red).  The initial adhesion was much 

weaker than for the acid wash, and no significant photoinduced change in the detachment 

rate was observed.  
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Figure 4-10:  Water detachment rates for a 0.01 mass fraction DASA/PS film that has not 

been irradiated (black) and one that was irradiated to full conversion while in the CH2Cl2 

solution before film deposition (red).  The presence of the DASA photoisomer accelerates 

detachment even when it is created before the solid polymer film is formed by evaporation.   

 

 A possible mechanism for the photoinduced de-adhesion that is consistent with our 

observations is outlined in Figure 4-11.  Given the high concentrations used, there are many 

DASA molecules located near the polymer surface.  If a significant fraction exists with 

their tertiary amine groups oriented toward the surface, this would explain the lower 

contact angle observed for acidic water,36-37 although attempts to directly quantify the 

nitrogen content at the surface using X-ray photoelectron spectroscopy were unsuccessful.  

Moreover, at the glass-polymer interface, these amines would be available to interact with 

surface silanol groups, forming a hydrogen-bond or proton donor complex.38-39  The acidic 
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cleaning treatment should result in a higher density of protonated silanols40-42 and thus 

enhanced bonding to the DASA amine groups.43   The ability to support this amine-silanol 

interaction will depend sensitively on the surface specific orientation of the DASA within 

the PS, and this orientation would likely change after photoisomerization.  For example, 

the photoinduced molecular-level contraction could pull the amine back into the bulk PS, 

disrupting the noncovalent interaction that led to stronger adhesion in the nonirradiated 

sample.  It is also possible that photoisomerization enable the formation of hydrogen-

bonded DASA pairs at these high concentrations.  Such hydrogen-bonded pairs have been 

observed in crystal structures of the ring-closed form.44  In either scenario, 

photoisomerization would eliminate some fraction of the amine-silanol interactions and 

weaken adhesion of the polymer film.   

 

Figure 4-11: Proposed mechanism for de-adhesion of DASA/PS films from glass surfaces.  

The DASA photoisomerization leads to a ring-closing and molecular contraction that 

interferes with the amine-silanol interaction.   

 

 The small decrease in adhesion (Figures 4-4 and 4-5) is accompanied by a large 

change in the detachment rate in aqueous solutions (Figure 4-6).  To highlight the potential 
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utility of the de-adhesion effect in a practical application, we hypothesized that the 

DASA/PS composite could be used as a photoswitchable release mechanism.  To illustrate 

this application of the photochromic de-adhesion, we placed a water-soluble food dye 

(Allura Red) in a microscope well plate that had been precleaned using an acid piranha 

solution.  A second precleaned glass slide was then glued to the well slide using the 0.08 

mass fraction DASA/PS mixture and allowed to dry.  The solid dye particles were 

completely enclosed by the two glass plates, as shown in Figure 4-12a, and remained as a 

dry powder after being submerged in water.  Two identical assemblies were then placed in 

a water bath, and one irradiated with 532 nm light while the other was left in the dark.  The 

unirradiated sample remained intact for >24 hr before the two glass plates separated and 

the dye was released into the surrounding water.  The irradiated assembly separated after 

5 hr, as shown by the sequence of images in Figure 4-12b.  Eventually, the detachment of 

the lower glass slide leads to a sudden jump in dye concentration as measured by its 

absorbance (Figure 4-13).  This proof-of-principle experiment demonstrates that it is 

possible to use a photoswitchable, water-proof adhesive to control the release of molecules 

into an aqueous environment.   
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Figure 4-12: a) Schematic illustration for dye release.  The solid dye particles are 

encapsulated between 2 glass slides which are glued together by a DASA/PS film.  532 nm 

irradiation causes the adhesion to fail and the bottom slide to drop off, releasing the dye 

into the surrounding water.  b) Photographs of the sample before and after irradiation, and 

then after de-adhesion and dye release.   
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Figure 4-13: Absorption of Allura Red in water as a function of time for the irradiated (red) 

and non-irradiated (black) encapsulated dye samples.  The jump in absorption after 4 hours 

represents the release of the dye after the de-adhesion of the bottom glass slide. 

 

 

 

 

b) 
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4-4 Conclusion 

 In this chapter, we have used a newly developed DASA photochromic molecule 

that enables the PS-glass adhesive bond to be significantly weakened after visible light 

exposure.  Preliminary investigations into the physical origin of this effect suggest that 

molecular-level noncovalent interactions between the DASA photochrome and the glass 

surface are weakened after photoisomerization.  We hypothesized that photoinduced 

electrocyclization of DASA molecules disrupts interfacial bonding interactions between 

the DASA amine groups and surface silanols.  This proposed mechanism requires more 

experimental work to be verified.  In the meantime, we demonstrated that this phenomenon 

can be harnessed to enable the photo-controlled release of molecules from a closed glass 

container into the surrounding water.  These results illustrate how organic molecular 

photochemistry in solid matrices can lead to new and unexpected effects that may have 

practical applications.   
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Chapter 5: Heterogeneous Kinetics of Photoinduced Cross-Linking of Silica 

Nanoparticles with Surface-Tethered Anthracenes 

 

5-1 Introduction 

Materials that can reconfigure themselves after exposure to an external stimulus 

have potential applications as sensors and actuators.1  The external stimulus can be 

chemical (e.g. a pH change), or physical, such as heat or the application of a magnetic field.  

Light is a particularly useful stimulus because it does not change the chemical composition, 

does not require physical contact, and has multiple degrees of freedom (intensity, 

polarization, and wavelength) that can be used as control parameters.  One strategy to make 

photoresponsive materials is to surround nanoparticles (NPs) with organic molecules that 

can undergo photochemical reactions, for example [2+2] and [4+4] photodimerizations that 

create covalent cross-links between NPs 2-10, or photoisomerization reactions that change 

the surface properties and lead to NP aggregation. 11-18   

 Previous experimental work has mostly concentrated on metal or polymer NPs 

whose surfaces are relatively homogeneous.  Less attention has been paid to oxide NPs, 

but this class of materials is potentially more useful.  In particular, SiO2 can be used as an 

inert yet porous shell to enclose different types of cores that support a wide variety of 

functionalities, from plasmonic to magnetic to catalytic.19-20  A general way to stitch 

together silica-coated NPs could provide a route to new types of photocontrolled, 

multifunctional nanomaterials.   
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In this chapter, we examine the ability of silica NPs decorated at the surface with 

anthracenes (ANs) to undergo photoinduced self-assembly.  The anthracene [4+4] 

photodimerization provides a robust, spectroscopically accessible cross-linking reaction 

that has been successfully used to assemble gold NPs.21-22  Our goal is to quantitatively 

characterize the surface coverage and cross-linking kinetics in order to develop a 

quantitative kinetic model that takes both intra- and interparticle reactions into account.  

Analysis of the extracted rate constants allows us to assess how heterogeneity leads to 

different types of AN photochemical reactions that compete with the desired cross-linking 

reaction.  The results in this Letter confirm that surface conjugated ANs can be used to 

cross-link silica NPs, but also highlight heterogeneous behavior that likely results from a 

diversity of NP surface sites.  This heterogeneity may complicate efforts to develop NP 

systems that can be rapidly reconfigured in a reproducible manner. 

 

5-2  Results and Discussion 

The procedure for preparing anthracene (AN) functionalized SiO2 NPs is shown in 

Scheme 5-1.23-24    The small diameter (~20 nm) of the NPs allowed the absorption 

spectrum of the suspension to be measured with a low scattering background (Figure 5-1).  

The vibronic lineshape of the AN-SiO2 NPs was similar to that of 9-anthracenecarboxylic 

acid and the unreacted linker, indicating that the proximity of the SiO2 does not strongly 

perturb the electronic structure of the aromatic core.  The absorption coefficient of the 

linker was determined to be (365 nm) = 6900 M-1cm-1, allowing us to estimate the 
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effective concentration of AN in the suspension from the absorption.  Since the total mass 

of SiO2 NPs in the suspension was also measured, we could calculate that there were 1100 

± 200 AN molecules per each NP.  Given a NP diameter of 20 nm, this corresponds to a 

surface coverage of 0.8 ± 0.1 AN/nm2. 

 

 

 

Scheme 5-1: a) Method of attaching AN to surface of propylamine-terminated SiO2 NPs.  

b) Photodimerization reaction conditions used for crosslinking the AN-SiO2 NPs.    

 

a) 

 

b) 

  35 ºC, 24 hr 

CH2Cl2 / Ethanol 

 

365 nm, RT 

Ethanol 

https://www.metric-conversions.org/temperature/celsius-to-fahrenheit.htm
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Figure 5-1: Normalized absorption spectra of the AN linker (black), 9 anthracene 

carboxylic acid (red) and the AN-SiO2 NPs (blue).  The peaks and overall lineshapes of 

the three different anthracene moieties are similar, suggesting that the SiO2 does not perturb 

the electronic structure of the aromatic core of the anthracene.  

 

 The presence of the tethered AN molecules affected the NP surface charge, as 

expected.  Measurements of zeta potential showed a change from -30 mV for bare SiO2 

NPs to 6.2±0.5 mV for the amine-terminated SiO2 NPs and then to 11.4 ± 1.24 mV for the 

SiO2-AN NPs.  This increase in the NP zeta potential is typically seen when the negatively 

charged siloxy surface groups are replaced by amines and then by tethered anthracenes.25-

26  The loss of surface negative charge is accompanied by a tendency to aggregate.  

300 320 340 360 380 400 420
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

. 
A

b
so

rp
ti

o
n

Wavelength (nm)



123 

 

Dynamic light scattering measurements showed that the average particle size in the 

suspension was 55± 2 nm for the SiO2-NH2 sample and 158±7 nm for the AN-SiO2 sample, 

suggesting that the NPs were slightly aggregated even before any photochemistry occurred. 

 Figure 5-2 shows the fluorescence decays for the AN-linker in ethanol solution and 

for the AN-SiO2 NPs.  In solution the AN-linker exhibited a single exponential decay with 

a lifetime of 3.2±0.2 ns, identical to that measured for 9-anthracenecarboxylic acid in 

ethanol (3.1± 0.1 ns).    When bound to the NP surface, the AN fluorescence decay could 

only be fit using a biexponential function of the form 𝐴𝑒𝑥𝑝 [−
𝑡

𝜏𝐴
] + 𝐵𝑒𝑥𝑝 [−

𝑡

𝜏𝐵
].  The fit, 

overlaid with the data in Figure 5-2, yields A = 1.2 ns and B=7.1 ns, with the amplitude 

ratio A/B = 4.1.  Note that this decay has both shorter and longer components than observed 

for the linker in solution.  There is no change in the fluorescence spectrum over the course 

of this decay (Figure 5-2) so it must be attributed to surface-bound AN molecules that 

experience different nonradiative decay rates, presumably due to different local 

environments.  This effect of the SiO2 surface on the fluorescence decay has been observed 

for other molecules and has been taken as evidence for the heterogeneity of the SiO2 

surface.27-29 
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Figure 5-2: Time-resolved fluorescence measurements of the AN linker (black) and the 

AN-SiO2 NPs (red) in ethanol. The AN linker decay can be fit with a single exponential 

with a lifetime of 3.2±0.2 ns (green) but the AN-SiO2 decay must be fit with a biexponential 

decay with lifetimes of 1.2 ns and 7.1 ns.   
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Figure 5-3: Time-resolved fluorescence spectrum integrated over the first 0-10 ns of 

emission (black) and 10-20 ns (red) for the AN-SiO2 NPs in ethanol.  There is a slight red 

shift for the later emission, but the overall shape of the emission remains the same during 

the entire decay, showing that it comes from the same AN species on the surface.  

 

Given the spectroscopic evidence for different AN environments on the NP surface, 

it was important to determine whether this heterogeneity is also reflected in the cross-

linking kinetics.  When a suspension of NPs was exposed to 365 nm UV light, the particles 

agglomerated and the larger masses slowly fell out of suspension, as shown in Figure 5-4a.  

The resulting suspension can be deposited on a glass slide, dried, and examined using SEM 

(Figures 5-4b and 5-4c).  Before UV irradiation, the NPs spread evenly across the glass 

surface.  After UV irradiation, large clumps of NPs were visible, the result of NPs 
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becoming attached together in solution as they collide and undergo cross-linking due to 

intermolecular photochemical reactions.   

 

 

 

 

 

Figure 5-4: a) Cuvette containing an ethanol suspension of AN-SiO2 NPs before (left) and 

after (right) 3 hours of 365 nm irradiation that causes the NPs to agglomerate and fall to 

the bottom of the cuvette.  b)  Scanning electron microscopy (SEM) image showing a layer 

of NPs before 365 nm exposure.  c)  SEM image showing the formation of large NP clusters 

after 365 nm exposure.   

 

 In principle, the progress of the cross-linking reaction can be followed by 

monitoring the disappearance of the AN absorption, since the loss of conjugation in the 

photodimer shifts its absorbance into the UV region.  But to extract accurate rate 

information, it is important to use samples that are optically thin.  Highly absorbing 

samples suffer from nonuniform illumination due to light attenuation, and this effect 

evolves as the absorbance falls during the course of the reaction.  For our measurements, 

a) 

200 nm c) 200 nm 
b) 

a) 
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we made sure the peak absorbance was less than 0.15 in order to minimize such inner filter 

effects.  Before every absorption measurement, the sample was vigorously stirred to make 

sure there was a homogeneous distribution of NPs in the sample area.   

In Figure 5-5, we show an example of the decay of a sample with an initial AN 

concentration N0= 0.138 mM.  After four hours of exposure to 365 nm, the AN absorbance 

has completely vanished.  We can plot the absorbance (measured for the largest peak at 

381 nm) versus time, and these normalized data are shown in Figure 5-6 for two different 

AN initial concentrations, N0 = 0.138 mM and N0 =0.012 mM.  The NP decays are non-

exponential, with a rapid initial decline followed by a slower component.  The rate of 

absorption loss is concentration dependent, as expected since the cross-linking is a 

bimolecular reaction that proceeds more rapidly at higher AN (NP) concentrations.   
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Figure 5-5: Decrease of the absorption of AN-SiO2 NPs for various 365 nm exposure times.  

The initial AN concentration was N0 = 0.138 mM.   

 

 

 

 

 

 

 

 

 

320 340 360 380 400
0.00

0.02

0.04

0.06

0.08

0.10

0.12

A
b

so
rp

ti
o

n

Wavelength (nm)

 0 min UV

 15 min UV

 60 min UV

 210 min UV

 330 min UV

  



129 

 

 

 

Figure 5-6:  a) The time-dependent AN-SiO2 NP absorption decays from Figure 4b (N0 

=0.0125 mM and N0=0.138 mM) overlaid with fits derived using Equations (1) and (2) in 

the text that assume a single unimolecular decay channel with rate k1.  b) The time-

dependent absorption decays from Figure 4b overlaid with fits derived using Equations (3) 

and (4) in the text that assume two different unimolecular decay channels with rates k1A 

and k1B.   

 

In order to model the kinetics of the AN disappearance, we consider two processes.  

We take NNP and N to be the concentrations of the NPs and AN, respectively.  If we take  

to be the average number of AN molecules per NP, we have N=NNP.  We assume that the 
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AN molecules react as the result of interparticle NP collisions at a rate kcoll, leading to a 

second-order process.  Furthermore, we assume that the surface-bound AN is also subject 

to a first-order intraparticle reaction with rate k1.  These assumptions lead to the rate 

equation 

2 2
1 1 2coll NP

dN
k N k N k N k N

dt
= − − = − −        (1)  

where 2 2

collk
k


= .  Equation (1) can be solved analytically to give  

 

( )

1

1

0

2
0

1

( )

1 1

k t

k t

N e
N t

k
N e

k

−

−

=

+ −

        (2)  

Note that the N(t) decay depends on the initial concentration N(0) due to the second order 

term in Equation (1).  We can fit the N0 = 0.0125 mM data in Figure 5-6a using Equation 

(2).  Then, using the values k1 = 6.07×107 min-1 and k2 = 956 min-1 obtained from this 

fitting, we can plot the predicted N(t) curve for N0 = 0.138 mM.  Both the low concentration 

fit and its high concentration prediction are overlaid with the data in Figure 5-6a.  The large 

discrepancy between the experimental and predicted curves for N0 = 0.138 mM shows that 

a single component model cannot be used to describe the data.  If we drop the k1 term and 

consider only the second-order k2 term, the discrepancy becomes even larger. 

 To achieve agreement with experiment, the theory must take into account the 

fluorescence decay data that suggests there are at least two different types of AN bound to 
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the NP surface, which we denote A and B.  If we assume that these populations are subject 

to different unimolecular decay rates k1A and k1B, we can write a pair of coupled rate 

equations:   

 
𝑑𝑁𝐴

𝑑𝑡
= −𝑘1𝐴𝑁𝐴 − 𝑘2𝑁𝐴(𝑁𝐴 + 𝑁𝐵)      (3a)  

 
𝑑𝑁𝐵

𝑑𝑡
= −𝑘1𝐵𝑁𝐵 − 𝑘2𝑁𝐵(𝑁𝐴 + 𝑁𝐵)      (3b)  

Here we assume that type A and B AN molecules are equally likely to participate in the 

interparticle dimerization reaction.  Also note that k1A and k1B take all intraparticle reactions 

into account, including dimerization of neighboring ANs on a single NP.  This is justified 

by the assumption that the surface-tethered ANs cannot diffuse, which leads to first-order 

kinetics even though this is technically a bimolecular reaction.  At time t=0, and given a 

total initial concentration N0, we define fA and fB to be the initial fractions of A and B 

molecules, respectively.   

 NA(0) = fA N0         (4a)  

 NB(0) = fB N0         (4b)  

 fA + fB = 1         (4c)  

The coupled rate equations (3) can be solved numerically using a MATLAB computer 

program.  Figure 5-6b shows the solutions for N0 = 0.0125 mM and N0 = 0.138 mM, with 

fA = 0.6, fB = 0.4, k1A = 0.03 min-1, k1B = 0.001 min-1, and k2 = 100 M-1min-1.  These 
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parameters do a reasonable job of reproducing the experimental decays in Figure 5-6b.  The 

fA/fB ratio is 1.5, as compared to A/B=4.1 for the fluorescence decay components, so the 

different decomposition rates do not exactly correlate with the different fluorescence decay 

rates.  However, it is physically reasonable to associate the more rapid fluorescence decay 

with a more rapid intraparticle decomposition rate, considering that specific surface 

interactions must give rise to both phenomena.   

Our analysis suggests that a significant fraction of AN molecules are lost due to 

first-order decomposition reactions occurring on the SiO2 surface.  One obvious candidate 

is photodimerization of two neighboring AN molecules on the same particle, although the 

average distance between AN molecules (~1 nm) is substantially larger than the 0.4 nm 

distance required for this reaction.30  But there is also evidence that SiO2 can accelerate the 

unimolecular photo-decomposition of polycyclic aromatic hydrocarbons and AN in 

particular.31-33  Unfortunately, there does not seem to be a well-established mechanism for 

the AN decomposition reaction on silica.  Surface-mediated reactions with H2O or O2 are 

obvious candidates.  From the absorption spectrum of concentrated samples after 

irradiation, we could identify features associated with the expected products of AN 

oxidation34 (Figure 5-7).  We suspected that the rapid loss of AN might be due to an 

oxidation reaction with O2 molecules in the liquid but degassing the suspension resulted in 

an even more rapid loss of AN (Figure 5-8).  Photoinduced aggregation was also not 

observed in degassed samples, suggesting that intraparticle decay processes outcompete 

the dimerization reaction in the absence of O2.  The ability of O2 to suppress intraparticle 
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AN decomposition suggests that the AN triplet state may play a role in this reaction.  The 

triplet state, which is known to undergo electron transfer reactions35-36, has not been 

considered previously as a culprit in the decomposition of AN on SiO2. 

 

 

 

 

Figure 5-7: Absorption spectrum of AN-SiO2 NPs after complete UV reaction.  The 

surviving absorption features can be correlated with various oxidative products observed 

in Fidder et al., J. Phys. Chem. A 2009, 113, 6289–6296. 
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Figure 5-8:  Time-dependent decay of AN absorption peak at 365 nm for AN-SiO2 NP 

suspension with calculated AN concentration of 0.023 mM.  The decay of the non-degassed 

suspension (black squares) is slower than that after degassing and removal of O2.  The 

sample was degassed by bubbling Ar gas for several minutes and then sealing the cuvette.   

 

Finally, we analyzed the kinetics of the interparticle photodimerization cross-

linking reaction.  Given the rate k2 = 100 M-1min-1, and =1100, we obtain the experimental 

kcoll = 2×107 M-1s-1.  kcoll can also be calculated using the Smoluchowski bimolecular 

reaction rate given by37   

4coll reactk DR=          (5)  
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where D is the diffusion constant of the NP and Rreact is the reaction radius.  The Stokes-

Einstein equation for D is  

 
6

Bk T
D

R
=           (6)  

where kB is the Boltzmann constant, T is the temperature,  is the viscosity, and R is the 

particle radius.  If we assume the reaction and particle radii are identical, R = Rreact and we 

have 

 
2

3

B
react

k T
k


=          (7)  

Plugging in T = 298 K and  = 0.89 centipoise, we calculate kcoll=3.1×10-12 cm3/s = 1.8×109 

M-1s-1.  This value is about 100× larger than the experimental kcoll.  The lower experimental 

rate is not surprising, since the cross-linking reaction requires a photoexcited AN molecule 

to be correctly oriented with respect to an AN molecule on the other NP during the 

collision.  This analysis shows that the NP photocross-linking reaction is far from 

diffusion-limited, consistent with previous results on photoinduced noncovalent 

aggregation.11 

 From our analysis of the NP cross-linking kinetics, it is clear that the photoinduced 

assembly of silica NPs provides several opportunities for improvement.  First, there exist 

at least two different reaction pathways on the NP surface that compete with the desired 

interparticle dimerization.  This is not too surprising:  the important role of SiO2 surface 
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heterogeneity has been recognized in a variety of chemical processes.38-40  An improved 

knowledge of the SiO2 surface and AN binding sites is probably necessary to identify 

chemical modifications that can prevent these side reactions.  Alternatively, a more robust 

photochemical cross-linking agent might avoid these side reactions altogether.  Second, the 

efficiency of the interparticle reaction after collision is estimated to be on the order of 1%.  

Improving interparticle reactivity, for example by lengthening the AN tethering chain, 

might improve the yield of this reaction.  Elimination of the non-productive intraparticle 

reactions and optimization of the desired interparticle reaction should increase the 

photoinduced assembly rate by at least one order of magnitude.   

 

5-3 Conclusion 

 From a practical standpoint, the results of this chapter demonstrate that 

photodimerization of surface ANs can be used to cross-link SiO2 NPs.  However, this 

reaction exhibits fairly complicated kinetic behavior, with at least two different 

intraparticle decomposition pathways that compete with the interparticle cross-linking 

photodimerization.  Although SiO2 is often considered to be chemically inert, its surface 

heterogeneity can provide environments that enhance the photodecomposition of surface-

bound AN.  In order to utilize the SiO2 surface as a robust platform for organic 

photochemistry that leads to photoresponsive nanomaterials, a clearer understanding of 

how its heterogeneous nature affects photochemical reactions will be necessary.  We hope 

that the kinetic model developed here will prove useful in analyzing future experiments.   
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Chapter 6 Conclusion and future work  

This dissertation studied light-responsive adhesion by embedding photochromic 

molecules in polymers and photo-induced dimerization to cross link silica nanoparticles.  

 

6-1 Conclusions 

The results in the first study demonstrated that photoswitching a molecule embedded in a 

polymer film can affect properties of the polymer at the interface, including surface 

adhesion. The adhesion changes were measured by delamination in water and lap shear 

adhesion tests.  Molecular structure of the photochrome and its concentration dictate the 

types and strength of the adhesion. Two minutes of UV irradiation to spiropyran embedded 

polystyrene showed the most dramatic results, increasing the lap shear strength by a factor 

of 7 and suppressing the delamination rate by at least 2 orders of magnitude.  We 

hypothesized that the polymer localization and molecular motion forced the polymer 

strands to fill the surface voids, and this is the main reason for the adhesion.  Our results 

demonstrated that photochromic annealing created stronger adhesion compared to bulk 

thermal annealing.  

In our second study, the focus was on de-adhesion. We used our previous findings on the 

adhesion project to engineer photo-induced de-adhesion. For this purpose, newly 

developed DASA photochromic molecule embedded in polystyrene and adhesion 

measurements illustrated that visible light exposure significantly weakened adhesive 

bonds. The pull-off adhesion, lap shear, and water delamination tests were used to illustrate 
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de-adhesion. Calculations showed that after a photochromic reaction, the DASA molecular 

volume is reduced. This phenomenon may disrupt non-covalent interactions between the 

silanols and amines in photochromic molecules. The photo-induced de-adhesion method 

can be used as a light-controlled release of encapsulated molecules.  

Although these methods are very promising in controlling adhesion and de-adhesion 

remotely, they also come with some disadvantages that we tried to address in our current 

and future works. For instance, initial studies showed that spiropyran-polystyrene adhesion 

to a surface increased significantly after UV irradiation. The main problem with this system 

was that it was almost irreversible. In the DASA project, the results prove a decrease in 

adhesion strength, but the main problem was that it happened only after many hours of 

irradiation (up to 10 hours) and this system did not show any reversibility.  

Addressing the reversibility, we decided to mix DASA and SP together using lower 

concentrations than used in chapters 3 and 4. Using the DASA-SP mixture was promising 

because they react with 2 different wavelengths to increase and decrease adhesion. This 

potentially could help induce a stronger and faster deadhesion. UV irradiation should be 

able to increase the adhesion by only reacting with SP, but UV irradiation would not have 

any interaction with DASA at all. On the other hand, both merocyanine and DASA react 

with visible light (532 nm), and from previous experiments, we illustrated that in both cases 

adhesion decreased.  The results of this experiment are illustrated in figures 6-1 and 6-2. 

Use of a relatively high concentration of photochromic molecules impacted reversibility 

and irradiation times, which is shown in chapters 3 and 4.  It means that the higher the 
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concentration of photochromes, the harder it is to reverse the photochromic reaction. 

Because DASA and SP have synergistic effects on one another, the mixture system needs 

a lower concentration of each molecule to show the optimum effect and this helps to 

significantly reduce the irradiation time needed to see the desired effect.   

 

Figure 6-1: Pull-off Adhesion Measurement: UV exposure increased adhesion initially 

(black); laser (532 nm) irradiation decreased the adhesion (red); UV exposure shows 

reversibility in adhesion and increased adhesion (purple).  
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Figure 6-2: Water detachment measurements; UV irradiated (black) showed strong 

adhesion to substrate; laser (532 nm) irradiation accelerated 100% detachment over 2 

hours; laser irradiation followed by UV exposure (purple) illustrated high adhesion and 

also reversibility of the DASA-SP mixture; UV and then laser irradiation showed a 

decrease in adhesion (brown) 

 

6-2 Effect of polymer on adhesion  

6-2-1 Zeonex (ZX)- Cyclic Olefin Polymers (COPs)  

An other approach to address the reversibility and long irradiation time was to change to a 

polymer that has a higher glass-transition temperature (Tg), and hydrophobicity. One 

hypotheses for the adhesion mechanism was that photochromic reactions induced local 

softening at the interface and made the polymer physically adhere to the glass. A higher Tg 

may make this mechanism unsuccessful by showing higher resistance to local softening. 
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Also, a polymer with higher hydrophobicity may have less adhesion to a polar surface. 

Using a polymer with higher hydrophobicity would reduce the polymer impact on adhesion 

and would only allow the adhesion from photochromes and not the polymer itself. 

Zeonex (ZX) is a relatively new polymer with low water absorption, good optical 

transparency in the near UV range, easy device fabrication, high resistance to chemicals 

including polar solvents (in contrast to other polymers used for lab-on-a-chip applications), 

and high biological inertness that makes it suitable for biomedical applications. This 

polymer is found in some applications, such as DNA analysis, blood analysis, microchips, 

and microfluidics.1–3 

Zeonex has no UV absorption in the irradiation range for the samples. It also has a much 

higher Tg (150 ºC) and hydrophobicity than polystyrene. Local heating based on 

photoswitching may have less effect on this polymer than polystyrene. 

The pull-off adhesion test of ZX-SP showed a significant increase in adhesion after UV 

irradiation and a decrease in adhesion after visible light irradiation. The experiments were 

done for mass fraction of 11%. Water detachment results were also very promising and 

illustrated a big improvement of detachment. Before any irradiation, the polymer detached 

within in 15 minutes, while after UV irradiation, zero detachments were observed. ZX-SP 

showed a good reversibility in adhesion. Laser irradiation for short time (1 hour) brought 

adhesion back to the initial state, and the ZX-SP fully detached in 10 minutes. 
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Figure 6-3: Results for pull-off adhesion testing for ZX-SP; Initially polymer presented 

very low adhesion with a cleaned glass substrate (black); UV irradiation significantly 

increased the adhesion (red); laser irradiation reduced the adhesion and showed 

reversibility of the adhesion (blue).   
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Figure 6-4: Water detachment results for ZX-SP. Initially polymer-photochrom showed a 

very insignificant adhesion to surface (black); UV irradiation significantly increased the 

adhesion (red); laser irradiation reduced the adhesion to the initial state (blue).    

 

6-3 Effects of silinols on adhesion 

6-3-1 Effects of glass types on adhesion  

Another issue to address in future work is to confirm our proposed mechanisms. 

Knowing the actual mechanism will help us to engineer a stronger adhesive with better 

reversibility. In previous chapters, some mechanisms were proposed, such as polar-polar 

interactions and physical adhesion. Polar-polar interactions might be the main reason for 

observed effects, but there was a need to increase the certainty about the mechanisms.  
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As discussed in the introduction, there are three kinds of glass with various amounts of 

silianols on the surface. Measurements showed that by increasing the concentration of 

silanols on the surface, adhesion also increased. Soda-Lime has the lowest silanol 

concentration and also the minimum amount of adhesion compared to other glass types. 

Quartz has the highest adhesion of PS-SP with 99% SiO2 concentration. These results 

illustrated the direct relation between silanol concentration and polymer adhesion. 
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Figure 6-3 PS-DASA (1%) SP (13%) was drop cast on 3 different types of glass, including 

SL (soda-lime), BS (boro-silicate), and Q (quartz). Samples were irradiated by a laser (532 

nm) in-situ in stirred water and detachment was monitored over time.   
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6-3-2 Adhesion on a heated substrate 

Chapter 2 discussed how extreme heat (250 ºC) can reduce the concentration of 

silanols on a glass surface and make it more hydrophobic since heating causes evaporation 

and condensation of silanol functional groups. Two pieces of Quartz (99% SiO2) glass 

substrate were washed with piranha solution and then with DI water and left to dry. One of 

the glass slides was heated to 250 ºC for 4 hours and then left to cool down to room 

temperature. Then, both slides were covered with polymer islands drop-cast using PS-

SP/DASA, put in stirred water, and monitored for detachment over time. As illustrated in 

figure 6-4, lowering concentration of silanols decreased adhesion of polymer to surface.  

This experiment revealed the role of silanols in the adhesion mechanism.  
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Figure 6-4: Adhesion of PS-DASA/SP on piranha-washed quartz (black) and heated 

quartz (red). Heating the substrate and decreasing the concentration of silanols led to a 

significant decrease in adhesion. 

 

6-4 Covalent adhesion 

Other than non-covalent adhesion, we studied photo-induced covalent adhesion.   

Photodimerization of AN ligands on SiO2 NPs can be used to covalently attach 

nanoparticles together. Surprisingly, UV exposure to AN-bound NPs showed a 

complicated kinetic behavior by initiating both the bimolecular and unimolecular reaction 

simultaneously.  Chapter five suggests that surface heterogeneity of SiO2 provided a 

favorable environment for AN photodecomposition which limited the efficiency of the 
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cross-linking of the nanoparticles. The role of SiO2 to accelerate the mechanism for 

unimolecular pathways is still unclear, and there is need for further study.  

For higher efficiencies, we need to address the photo-induced decomposition of AN 

by trying different derivatives of anthracene or novel molecules and also using variety of 

core-shell nanoparticle systems like gold that has minimum effect on dimerization 

moieties.  

After developing a highly efficient reversible photo dimerization system with a 

minimum photo induced unimolecular pathways, we will be able to assemble them into 

complex shapes using external magnetic force or laser trapping.  After assembly, ultraviolet 

light can initiate photochemical reactions that cross-link the nanoparticles together into a 

desired structure.  This structure can then be translated or rotated by a magnetic field.  

Afterwards, it can be disassembled by breaking the covalent bonds between the 

nanoparticles.  The nanoparticles can then be recycled to form new structures.  
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