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a b s t r a c t

Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the
opening/shearing of the fault. This can be due to subsurface (geo)engineering activities such as fluid
injections and geologic disposal of nuclear waste. Such activities are expected to rise in the future making
it necessary to assess their short- and long-term safety. Here, a new machine learning (ML) approach to
model pore pressure and fault displacements in response to high-pressure fluid injection cycles is
developed. The focus is on fault behavior near the injection borehole. To capture the temporal de-
pendencies in the data, long short-term memory (LSTM) networks are utilized. To prevent error accu-
mulation within the forecast window, four critical measures to train a robust LSTM model for predicting
fault response are highlighted: (i) setting an appropriate value of LSTM lag, (ii) calibrating the LSTM cell
dimension, (iii) learning rate reduction during weight optimization, and (iv) not adopting an indepen-
dent injection cycle as a validation set. Several numerical experiments were conducted, which demon-
strated that the ML model can capture peaks in pressure and associated fault displacement that
accompany an increase in fluid injection. The model also captured the decay in pressure and displace-
ment during the injection shut-in period. Further, the ability of an ML model to highlight key changes in
fault hydromechanical activation processes was investigated, which shows that ML can be used to
monitor risk of fault activation and leakage during high pressure fluid injections.
© 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Stress changes caused by subsurface temperature and fluid
pressure changes can lead to reactivation of pre-existing faults and
fractures (Rutqvist et al., 2007). This can be due to anthropogenic
fluid injection associated with wastewater disposal, carbon dioxide
sequestration, enhanced geothermal exploration and hydrocarbon
recovery. Fault slip during injection can induce earthquakes which
in turn can cause leakage of contaminant fluids into groundwater
(for a review, see Cheng et al., 2023). For example, industrial
wastewater disposal has led to an enormous rise in seismic activity
in the Central and Eastern United States (Keranen and Weingarten,
2018), some of which has culminated in major events such as the
2011 Prague earthquake (magnitude 5.7) and the 2016 Pawnee
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pu
earthquake (magnitude 5.8). In 2018e2019, shale gas hydraulic
fracturing induced two magnitude 5þ earthquakes in South
Sichuan Basin in China (Lei et al., 2019). In 2017, injection related to
enhanced geothermal systems led to amagnitude 5.5 earthquake in
Pohang, South Korea (Lee et al., 2019).

Fault slip is also an issue of concern in nuclear waste disposal
and needs to be assessed while evaluating the performance of any
nuclear waste repository site. Model simulations have shown that
the long-term heating of the host rock may cause stress changes
due to thermal expansion, mineral dehydration and thermal pres-
surization, which could activate pre-existing fractures and faults
thousands of years after closure of the repository (Rutqvist et al.,
2020; Urpi et al., 2019). Thermal pressurization can be particu-
larly strong in low permeability rocks such as Argillaceous clay
stone or shale (Gens et al., 2007; Rutqvist et al., 2014). Fault slip can
also be caused by fluid pressurization due to gas generation (Ortiz
et al., 2002).

The above literature highlights the widespread potential of
hazards associated with fluid injections and nuclear waste disposal.
The need for alternative energy sources to reduce dependence on
blished by Elsevier B.V. This is an open access article under the CC BY license (http://
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fossil fuels means that geological activity associated with enhanced
geothermal systems, nuclear waste disposal, and CO2 storage will
continue to rise. In the United States alone, federal investments to
the tune of $2.5 billion are expected to fund multiple large-scale
CO2 storage projects which will involve significant injection vol-
umes resulting in large-scale sub-surface pressure changes (DOE
News, 2022). As many as 24 countries are developing technology
for disposal of spent nuclear fuel in geological formations
(Faybishenko et al., 2017). As a result, there is an ever-increasing
potential for undesirable and unexpected geomechanical effects
such as reactivation of existing faults and development of new
leakage pathways.

Clearly, there is a rising need to assess the short and long-term
safety of applications related to fluid injections and geologic
disposal of nuclear waste. Typically, this is achieved with the aid of
physics-based numerical models that seek to predict the thermo-
hydro-mechanical response of a fault that eventually leads to the
nucleation of an earthquake (Cheng et al., 2023). However, such
models require a robust and complex formulation to capture the
rapid and strong coupling between temperature, fluid flow and
deformation of porous media. It is also challenging to develop
constitutive laws that can capture the nonlinear and discontinuous
slip behavior of a fault. Additionally, the models need information
about the complex three-dimensional (3D) fault geometry as well
as material properties that vary with depth e such information is
typically not easy to obtain. Finally, such models can be very time-
consuming to run, implying that their ability to assess short-term
safety of fluid injections and geological disposal of nuclear waste
is limited.

Given the challenges associated with conventional modeling
techniques, in situ field experiments are sometimes conducted to
gather data that provide insight into how fluid injections can affect
seismic activity. A prominent example includes in situ experiments
of controlled fault activation at the Mont Terri Underground Rock
Laboratory in Switzerland (Guglielmi et al., 2021). These experi-
ments involve the injection of high-pressure synthetic pore water
in a fault zone intersecting the Opalinus Clay argillite formation.
Opalinus clay is considered to be a perfect analogue for caprocks
overlaying underground reservoirs and experimenting on it pro-
vides vital information about the stability of faults during injection
(Guglielmi et al., 2020). Different types of techniques (e.g. active
seismic systems, step-rate injection sensors, distributed acoustic
sensors) are used to monitor the changes in pore pressure and fault
displacements. These experiments have shown that fault activation
can be caused by a fluid pressure increase, due to a nucleation
phase characterized by the development of fault slip and induced
seismicity (De Barros et al., 2023). A range of complex physics-
based numerical models have also been conducted to simulate
the hydro-mechanical response of one of the Mont Terri fault
activation experiments (Rutqvist et al., 2020). As discussed above,
application of thesemodels requires complex and detailed 3Dmesh
construction, constitutive fault model development and calibration
of many input parameters to achieve an acceptable match to the
field data.

Experiments such as those atMont Terri provide a large quantity
of diverse data which motivate us to explore the application of
machine learning (ML) algorithms to model injection-induced fault
slip. ML provides an alternate yet powerful modeling framework
that can address some of the limitations of physics-based numer-
ical modeling. For instance, ML models do not require prior infor-
mation about physical constraints, material properties, or
constitutive relationships, making it more straightforward to
implement such approaches. By learning from sufficient data, ML
can predict physical changes in time and space without explicitly
solving coupled physical processes.
4355
ML approaches are increasingly being used in a variety of ap-
plications of rock mechanics and geotechnical engineering. Lawal
and Kwon (2021) provided an overview of ML applications in
rock mechanics and concluded that they can perform better than
traditional empirical, mathematical, or statistical methods. Recent
applications include the work by Cevallos et al. (2023) who
developed a convolutional network to process 3D tomography
scans of soil samples and identify correctly segmented digital twins
of individual soil grains. Mital and Andrade (2022) developed a
convolutional framework that can obtain a micromechanical model
of macroscopic soil properties using incomplete data, while Hu
et al. (2021) used neural style transfer to generate and optimize
meshes from rock fracture images. Mahmoodzadeh et al. (2022)
used a suite of ML techniques to predict rock strength parameters
from laboratory experiments of sandstone, and Banerjee and
Chatterjee (2022) used probabilistic neural networks to map sub-
surface pore pressure by integrating seismic and well log data.

This study uses an ML approach to model the hydro-mechanical
fault response due to high-pressure fluid injection. Modeling the
fault response involves making predictions based on sequences (or
time-series) of data, which motivates the use of long short-term
memory (LSTM) networks. LSTM networks possess the ability to
extract temporal dependencies in data, making them an ideal
candidate to analyze and predict the sequence of pore fluid injec-
tion, fault slip, fluid pressure dissipation, and the cycling of such a
sequence. The memory aspect of LSTMs was recently utilized byMa
et al. (2022), who trained their network on massive discrete
element simulations and modeled the mechanical responses of a
wide range of granular materials subjected to complex loading
paths. Since their invention, LSTMs have been used extensively in
problems such as speech recognition, language modeling, language
translation and image captioning. In earth sciences, LSTM networks
have been used in applications such as rainfall-runoff modeling,
earthquake detection, and landslide modeling (e.g. Kratzert et al.,
2018; Yang et al., 2019; Wang et al., 2020). The proliferation of
ML applications has been aided by the advent of open-source li-
braries such as TensorFlow and PyTorch, which make it straight-
forward to implement increasingly complex ML architectures.

The central objective of this study is to investigate the general
ability of an LSTM-based ML model to predict fault displacements
and pore pressure in response to high-pressure fluid injections. It is
demonstrated that given sufficient data, ML models can learn fault
behavior. A recursive strategy is considered, where the response
predicted at one time step is used as part of the input for predicting
the next time step. It is shown that the training ofMLmodels for the
purpose of recursive predictions is not trivial, and several steps are
outlined for a modeler to ensure robust predictions. Using this
training procedure, numerical experiments are conducted that test
the general ability of an ML model to predict injection-induced
fault response. The focus of the study is on fault behavior near
the injection borehole. ML is observed to reproduce key hydro-
mechanical aspects of injection-induced fault response e such as
rapid peaks in pore pressure and displacements during fluid in-
jection, and gradual decays in pore pressure and displacements
following injection shut-in. The applicability of ML models for
quantitative prediction is found to be constrained by the nature of
physical processes prevalent in training data.

The rest of the paper is organized as follows. Section 2 starts by
presenting a brief description of the fault slip data used in this
work. This is followed by a brief overview of LSTM networks that
are used to model the fault response (Section 2.2). Sections 2.3-2.5
describe the model setup, which clearly outlines the model inputs
and outputs, as well as the steps needed to reliably capture fault
response. The experimental design is summarized next (Section
2.6), which involves an outline of various numerical experiments to
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highlight the strengths and limitations of the ML approach. Results
start by highlighting the importance of carefully training a model
(Section 3). This is followed by the outcomes of various numerical
experiments, which are used to demonstrate howML could be used
to detect key changes in fault activation processes (Section 4).
Thereafter, some salient aspects of results and some future di-
rections are briefly discussed (Section 5), followed by a conclusion
that summarizes the main results (Section 6).

As far as notations are concerned, boldface lower-case variables
correspond to vectors (e.g. b), and boldface upper-case variables
correspond to matrices (e.g. W).
Fig. 2. Injection borehole data obtained via a SIMFIP probe (Guglielmi et al., 2022).
2. Data and methods

2.1. Mont Terri fault slip FS-B experiment data

This work utilizes data from the Mont Terri fault slip FS-B
experiment. The FS-B experiment was conducted at the Mont
Terri Underground Rock Laboratory in Switzerland and was
centered on the main fault zone. The main fault intersects all the
laboratory's galleries and consists of 23 fully cored boreholes which
are used to deploy instrumentation (Fig. 1a). The main fault zone
also exhibits variations in strike, dip, and thickness (Fig. 1b). The FS-
B experiment was designed to study the integrity of a faulted
caprock (here, Opalinus clay) and involved seismic imaging of fluid
flow and stress variations during six constant flowrate pore water
injections directly in the fault zone. A detailed description of the
fault geology and the FS-B experiment along with its instrumen-
tation can be found in Guglielmi et al. (2022). This study only de-
scribes the data obtained via a SIMFIP probe (Step-Rate Injection
Method for Fracture In situ Properties, Guglielmi et al., 2014)
installed in the injection borehole (BFSB2; Fig. 1a). The SIMFIP
probe monitors the relative displacement between the hanging
wall and footwall of the main fault, in addition to pore pressure and
injection flowrate.

The FS-B experiment took place on November 21, 2020. Six in-
jections were conducted at flow rates of 2 L/min (injection 1; 1 L/
min ¼ 1.67 � 10�5 m3/s), 6 L/min (injection 2), and ~10 L/min (in-
jections 3, 4, 5, 6; Fig. 2). Injections 1e5 were 10 min long while
Injection 6 was 20min long. Instantaneous increase in pressure and
displacements were observed with injection pressure increase
(Fig. 2). During injection shut-in periods, which were about
45e90 min long, slow decays in pressure and displacements were
Fig. 1. Fault zone geology: (a) 3D view of the FS-B experiment setting showing various borehole locations (BFSB2, BFSB1, BCSD7), main fault (inclined surface) and galleries; and (b)
Vertical cross-section of the fault zone showing the Opalinus clay caprock (gray) being intersected by the main fault (red).
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observed following an initially rapid decline. Note that the sam-
pling frequency of the data was 0.5e1 kHz. For this work, the data
were downsampled to 2 Hz. The resultant time-series of injection
and response was about 9 h (or 16,000 time steps) long.

We highlight some salient features of the fault response
(Guglielmi et al., 2022). Cycle 1 is characterized by the onset of fault
rupture or fracture opening. The flow rate was kept small to induce
a gradual progression of fault slip. Cycle 2 involved an increase in
flow rate which was accompanied with an increase in permeability
and dilation of the fault. Shut-in periods after cycle 2 exhibit more
shear and more closing of the fault compared to the injection pe-
riods. This is likely because the various displacement components
are computed by projecting the SIMFIP probe displacements on an
assumed single fault plane, but the actual displacements may be
occurring across multiple planes within the thick fault zone. Cycle 3
involved the formation of a hydraulic connection (i.e. development
of a new leakage pathway) between the injection borehole (BFSB2)
and a neighboring borehole (BFSB1, which is located up-dip of
BFSB2). For more details about the hydraulic connection, see
Guglielmi et al. (2022). As fluid was now leaking in the fault zone,
the injection protocol was modified, and flow rate was not
increased for subsequent cycles. Cycle 4 induced a similar fault
response to cycle 3 (with minor differences in up-dip displacement
decay during shut-in), while cycles 5 and 6 were characterized by
an increasing dilatant behavior of the fault, where irreversible
displacements that become successively larger were observed. The
formation of a new leakage pathway after cycle 3 ostensibly con-
strains the pore pressure response for subsequent cycles.

2.2. LSTM networks

LSTM networks (Hochreiter and Schmidhuber, 1997) belong to a
family of neural networks, called recurrent neural networks
(RNNs), that process sequential data. A neural network consists of a
collection of nodes, or ‘neurons’, which are grouped into three
types of layers: input layer, hidden layer(s), and output layer. The
conceptual basis of an RNN is formed using a feedforward neural
network, which is schematically represented in Fig. 3a. The nodes
in the input layer consist of model input, while nodes in the output
layer report the model output.

Each node in the hidden layer(s) and the output layer takes in all
the nodes from the preceding layer as inputs and produces a single
output by computing a weighted sum. For any layer after the input
layer, given an n-dimensional input vector x, the output is
expressed as

by ¼ FðWxþ bÞ (1)
Fig. 3. (a) Schematic diagram of various layers in a feed-forward neural netwo
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whereW is aweightmatrix (unique to each layer), b is a bias vector,
and F is an activation function (such as sigmoid or tanh) whose
purpose is to introduce nonlinearity in the computation. by ap-
proximates the true output y. If the input consists of a sequence of
data given by ðxð1Þ;xð2Þ;xð3Þ;…;xðkÞÞ, then the above formulationwill

result in a sequence of outputs ðbyð1Þ
;byð2Þ

;byð3Þ
;…;byðkÞÞ, where byðtÞ is

the output corresponding to input xðtÞ. Each input can be thought of
an n-dimensional vector, with the superscript t corresponding to
the position in the sequence.

If the input sequence comprises of a time series, then the output

byðtÞ will depend on not just xðtÞ, but also on all the past input values
ðxð1Þ;xð2Þ;xð3Þ;…;xðt�1ÞÞ. The formulation in Eq. (1) is not capable of
accounting for this dependency since it can consider input only
from the current time step t. This motivates the use of RNNs,
schematically represented in Fig. 3b. Each RNN cell takes in two

inputs: (i) xðtÞ, the input at time step t, and (ii) hðt�1Þ, the hidden
state at the previous time step.

In an RNN cell, the output for each time step t is computed as
follows:

hðtÞ ¼ tanh
�
bþWhðt�1Þ þUxðtÞ

�
(2)

where hðtÞ is the hidden state vector at time step t, andU is aweight
matrix. The output of the RNN cell at each time step is then fed into
a fully connected layer to produce the final output by of the network:

byðtÞ ¼ F
�
dþVhðtÞ� (3)

where d is a bias vector, and V is a weight matrix. For a regression
problem, the activation function F is taken to be the identity
function (i.e. FðzÞ ¼ z).

The above RNN maps an input sequence to an output sequence
of the same length. In this study, an RNN that reads an entire
sequence and produces a single output corresponding to the final
time step is considered. To capture dependencies in sequences of
length up to 1000 time steps, it is common to consider gated var-
iants of RNNs such as LSTM networks.

Fig. 4 shows the schematic diagram of an LSTM cell typically
implemented in standardML libraries (e.g. TensorFlow, PyTorch). At
a given time step, an LSTM cell takes in three inputs: (i) xðtÞ, the
input vector at time step t; (ii) hðt�1Þ, the hidden state vector at the
previous time step; and (iii) cðt�1Þ, the cell state vector at the pre-

vious time step. xðtÞ and hðt�1Þ are used to compute the following
four quantities:
rk, and (b) Schematic diagram of an RNN (after Goodfellow et al., 2016).



Fig. 4. Schematic diagram of an LSTM cell.

U. Mital, M. Hu, Y. Guglielmi et al. Journal of Rock Mechanics and Geotechnical Engineering 16 (2024) 4354e4368
f ðtÞ ¼ s
�
bf þUf x

ðtÞ þW f h
ðt�1Þ� (4)

iðtÞ ¼ s
�
bi þ U i x

ðtÞ þW i h
ðt�1Þ� (5)

oðtÞ ¼ s
�
bo þUo xðtÞ þWo hðt�1Þ� (6)

~cðtÞ ¼ tanh
�
bc þUc xðtÞ þWc h

ðt�1Þ� (7)

where f ðtÞ is the forget gate vector; iðtÞ is the input gate vector; oðtÞ

is the output gate vector; ~cðtÞ is an intermediate cell state; bf , bi, bo
and bc are the bias vectors; Uf , U i, Uo, Uc, W f , W i, Wo and Wc are
the weight matrices; and s refers to the sigmoid function. The cell
state cðtÞ is then computed with the help of the forget gate and the
input gate vectors as follows:

cðtÞ ¼ f ðtÞ1cðt�1Þ þ iðtÞ1~cðtÞ (8)

where 1 refers to the Hadamard product (i.e. element-wise
multiplication) of two vectors. Finally, the hidden state vector hðtÞ

is computed using the output gate vector and cell state vector:

hðtÞ ¼oðtÞ1tanh cðtÞ (9)

At time step t, each LSTM cell outputs the cell state vector cðtÞ

and the hidden state vector hðtÞ. The hidden state vector can then be

used to compute the output byðtÞ as shown in Eq. (3). LSTMs have
been shown to capture long-term dependencies more effectively
when compared to basic RNNs because a higher-order temporal
interpolation is obtained by combining Eqs. (4)e(9). The use of
various gates along with the cell state vector allows for a dynamic
time scale of integration that can change based on the input
sequence (Goodfellow et al., 2016).
2.3. Model setup and training

Injecting high-pressure fluid can lead to fault slip by decreasing
the shear strength of a fault due to reduction of effective stress. This
study develops a model that outputs the hydro-mechanical
behavior of a fault (as characterized by evolution of pore pressure
and displacements near the injection borehole) in response to fluid
injection. Specifically, to model pore pressure and fault displace-
ments (normal, strike, and up-dip) at a given time step, injection at
the current time step and the previous n� 1 time steps is consid-
ered. In addition, pore pressure and displacements from the pre-
vious n time steps are considered. Incorporating a lag (of n time
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steps) enables themodel to capture temporal dependencies in data.
In functional terms, the recursive model can be expressed as

�
PðtÞ; dðtÞ

�
¼ g

�
Iðt;t�1;…;t�nþ1Þ; Pðt�1;t�2…;t�nÞ; dðt�1;t�2…;t�nÞ�

(10)

where I refers to the injection flow, P refers to the pore pressure, d
refers to the 3D vector of displacements (normal, strike, and up-
dip) and g is the function learned by the LSTM model.
Iðt;t�1;…;t�nþ1Þ is a shorthand for ðIðtÞ; Iðt�1Þ; …; Iðt�nþ1ÞÞ,
Pðt�1;t�2…;t�nÞ is a shorthand for ðPðt�1Þ; Pðt�2Þ; …; Pðt�nÞÞ, and
dðt�1;t�2…;t�nÞ is a shorthand for ðdðt�1Þ

; dðt�2Þ
;…; dðt�nÞÞ. The su-

perscript (e.g. ðtÞ) refers to the time step. Eq. (10) shows that for a
given time step t, themodel input consists of five sets of time series,
while the model output consists of four scalar predictions. The
length of each input time series, or the lag, is n (see below for de-
tails on n). Table 1 summarizes the model setup and architecture.

The function g (which is a collection of weights and biases) is
learned by minimizing the mean-squared error between the
modeled and true output. The gradients of the loss function (i.e.
mean-squared error) were calculated using back-propagation
(Rumelhart et al., 1986), and the weights (and biases) were upda-
ted using the Adam optimization algorithm (Kingma and Ba, 2017).
Training was stopped once the loss function showed no further
improvements. The models were implemented using the Tensor-
Flow platform in Python (Abadi et al., 2015).

2.4. Model evaluation

The various models were evaluated using the root mean squared
error (RMSE) and the coefficient of determination (R2). RMSE is the
square root of mean squared error and has the same units as the
target variables, making it easy to interpret the models. R2 is
defined as

R2 ¼1�MSE
MST

(11)

whereMSE is themean squared error of predicted values andMST is
the sum of squares of observed values. R2 normalizes the spread of
prediction errors by the spread of observed values and is a highly
informative metric for evaluating a regression model (Chicco et al.,
2021; Mital et al., 2022). R2 is unitless and varies from �∞ to 1.
Higher values are desirable with a value of 1 indicating a perfect
match between predictions and observations.

2.5. Model testing via recursive generation

During testing, the model is evaluated by generating fault pore
pressure and displacements in response to fluid injection. A
recursive forecasting strategy was adopted (Ben Taieb et al., 2012)
which has a significant departure from the training procedure.
During testing, the model output is predicted for one time step
which is then fed back into the model as part of the input for the
next time step, unlike in training where the actual values of pore
pressure and displacements are used. This can propagate prediction
errors from early to later time steps. To enhance the likelihood that
the training produces a robust model that is resistant to error
propagation, four measures were adopted as described below.

2.5.1. Setting the LSTM lag n
When building an LSTM network, lag is an important hyper-

parameter to consider and refers to the number of previous time
steps used to predict the output. Put differently, lag refers to the



Table 1
Model setup and LSTM network architecture.

Layer type Input layer (lag n) LSTM layer
(dimension d)

Fully connected output layer

Output shape ðn;5Þ* ðd;4Þ ð1;4Þ
Layer output

description
Injection flow rate, pore pressure, normal displacement, strike
displacement, up-dip displacement

Hidden features Pore pressure, normal displacement, strike displacement,
up-dip displacement

Note: *Each variable in the input layer is a sequence of length n. Injection flow rate corresponds to the value at the current time step and the previous n� 1 time steps. All other
inputs correspond to values at the previous n time steps.

Table 2
Values of lag and LSTM dimension considered in the study.

Lag, n LSTM dimension, d

{1, 100, 600, 900} {20, 25, 30, 35, 40, 50, 100, 200}
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length of the input sequence over which an LSTM captures de-
pendencies. A value of lag that is too small may prohibit the
network from capturing enough information about the past to
make an accurate prediction, while a value of lag that is too large
may lead to over-fitting and poor generalization. In the FS-B
experiment, injections 1e5 were about 10 min long. The in-
jections were followed by shut-in periods during which an initially
rapid decline in pressure and displacement was followed by a slow
decay. The period of rapid decline lasted less than 10 min. There-
fore, a lag of 20 min was picked to capture most of the time-
dependent behavior of the fault during and after an injection.
Since the data was down sampled to a frequency of 2 Hz, a lag of
20 min corresponded to 600 time steps. The limitations of choosing
a small value of lag are demonstrated in Section 3.

2.5.2. Calibrating the LSTM cell dimension d
Another important hyper-parameter is the LSTM cell dimension,

also referred to in literature as “LSTM units”. The LSTM cell
dimension refers to the dimension of the hidden state vector h (as
shown in Eqs. (3) and (9)), which is the same as the dimensions of
other vectors associated with an LSTM cell (as shown in Eqs.
(4)e(8)). The LSTM cell dimension influences the complexity of
relationships that can be learned by the network. Generally, a
higher cell dimension facilitates complexity but comes with added
computational cost and a potential for overfitting. A lower cell
dimension facilitates simplicity and lower computational cost but
could lead to underfitting. For the FS-B experiment, a suite of
models were trained whose cell dimension was varied manually.
Cell dimensions between 25 and 50 were found to be the most
optimal.

2.5.3. Weight optimization: learning rate reduction
The learning rate determines the rate at which the weights (and

biases) of a neural network get updated during the training process.
A high learning rate can lead to faster convergence. This is espe-
cially useful during the early stages of training as the neural
network weights are far from their optimal values. However, as the
training progresses and model weights start converging, a high
learning rate could cause the optimizer to overshoot and oscillate
near the global minimum. Therefore, the learning rate was reduced
by a factor of 2 every time the improvement in loss function
plateaued.

2.5.4. No validation cycle during training
Our objective is to train a model on the first few injection cycles

and evaluate its ability to generate pore pressure and fault
displacement response for subsequent cycles. In an ML framework,
it is a common practice to set aside a subset of data (called vali-
dation set) which is used to estimate the model's ability to gener-
alize to new unseen data. The validation set is typically also used to
make decisions such as choosing hyperparameters, reducing the
learning rate, and when to stop the training. This suggests setting
aside an injection cycle for validation. However, the various cycles
elicit distinct responses from the fault, as the fault evolves with
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each successive injection cycle (Section 2.1). This precludes the
selection of a validation set that can be used to reliably assess
model performance during training. However, a validation cycle is
still recommended to evaluate a model after training to confirm the
quality of model forecasts.
2.6. Experimental design

The model architecture consists of an input layer, an LSTM layer,
and a fully-connected layer which produces the final output. The
models were trained on Google colab GPU (free version). Each
model took approximately 10e20 min to train and 2e3 min to
generate response for each test cycle.

To highlight the need for various measures in the training pro-
cess (as outlined in Sections 2.5.1-2.5.4), a model was trained on
injection cycles 1e3, and responsewas generated for injection cycle
4. This choice of training and testing cycles was motivated by two
reasons. First, cycles 1e3 exhibit variability in response (as dis-
cussed in Section 2.1). Second, the response of cycle 4 is similar to
the response of cycle 3. Hence, the trained model should be able to
predict most of the response of cycle 4, and any major discrepancy
in predictions could be attributed to shortcomings in the training
process. While evaluating the effect of different values of lag and
LSTM dimensions on model error, a pseudo-logarithmic sampling
strategy was considered which sought to consider a wide range of
parameter selection (as shown in Table 2). After highlighting the
necessary measures for training, additional numerical experiments
were conducted which considered different combinations of in-
jection cycles used for training and testing (Table 3). As discussed in
Section 2.1, each injection cycle induces a distinct fault response,
with some cycles beingmore similar to each other. These numerical
experiments are used to investigate how the ability of an MLmodel
to predict pressure/displacements is affected by the physical vari-
ability of fault response encapsulated in the training cycles, which
could enable the ML model in detecting key changes in fault hy-
dromechanical response.
3. Results: highlighting the training process (experiment 1)

3.1. Error analysis and optimal network architecture

Fig. 5 presents an error analysis showing the effect of lag and
LSTM dimensions on forecasting cycle 4. Higher values of lag tend
to lower the forecasting error and higher values of LSTM dimension
tend to increase the forecasting error (necessitating the use of a
logarithmic scale to visualize RMSE). For smaller values of LSTM
dimension, lags of 600 and 900 yielded similar errors. This suggests



Table 3
Overview of numerical experiments.

Experiment Training cycles Testing cycles Training dataset length Testing dataset length

1 1, 2, 3 4 7900 3000
2 1, 2, 3 4, 5, 6 7900 8000
3 4, 5 6 6200 1950
4 3, 4 5 6100 3200
5 1, 2 4 4800 3000

Fig. 5. Error analysis showing the effects of lag and LSTM dimensions on forecasting cycle 4 for experiment 1 in terms of (a) RMSE and (b) R2. To enable a joint evaluation of pressure
and displacements, RMSE is expressed as a scaled quantity which is dimensionless and is computed on pressure and displacement values scaled between 0 and 1. R2 is computed
separately for each variable and then averaged over all variables. The y-axis of R2 values is truncated to 0, resulting in the omission of negative values from the plot.
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an upper limit beyond which increasing the lag does not yield
additional benefits in the current scenario. Given the physical
rationale discussed in Section 2.5.1, a lag value of 600 (or 20 min)
was picked for the remaining experiments. LSTM cell dimensions in
the range of [25, 50] tended to be optimal. For experiment 1, a cell
dimension of 35 yielded the lowest forecasting error. Table 4
summarizes the final model architecture used for experiment 1.

Sections 3.2-3.5 describe how straying away from even one of
the steps described above (Section 2.5) can hamper the predictive
ability of the model. Finally, results of the best performing model
are shown which incorporated all the above steps.
3.2. A small value of lag hampers predictions during shut-in

Fig. 6 shows the model limitations when the value of lag is too
small. Here, the model has a lag of 100, which corresponds to 200 s
or ~3.33min, and is otherwise identical to themodel architecture in
Table 4. At the onset of injection, the peak pressure is slightly over-
predicted, but otherwise the response is well captured during the
injection period. However, there are significant errors in the model
response during the shut-in period. Interestingly, the predicted
response diverges from the true values at approximately 13.33 min
(shown by the green dotted line), which corresponds to 3.33 min
(or the lag value) into the shut-in period. This is a clear indication
that amemory of more than 3.33min is needed to accuratelymodel
the decay. At about 20 min, which is about 10 min in the shut-in
period, the predictions flatten out suggesting a complete memory
loss for themodel. Table 5 shows the variation in errors for pressure
Table 4
Network architecture for the best performing model (experiment 1).

Layer type Output shape

Input (600, 5)
LSTM 35
Fully connected (output) 4
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and displacements for different values of lag. The forecasting errors
tend to be higher for smaller values of lag.

3.3. A high value of cell dimension may lead to overfitting

Fig. 7 shows the adverse impact of choosing a value of cell
dimension that is too large. Here, the model has a cell dimension of
200 and is otherwise identical to the architecture in Table 4. Once
again, the model is observed to accurately predict the response
during the injection period, while the shut-in period is character-
ized by oscillations which is reminiscent of a model that may be
overly complex. The predicted response diverges from the true
values at approximately 30 min, which corresponds to 20 min (or
the lag value) into the shut-in period. The oscillations suggest that
the model may have overfit itself to the training data. Table 6 shows
the variation in errors for pressure and displacements for different
values of the LSTM cell dimension. Note that forecasting errors tend
to initially improve with an increase in LSTM dimension and then
subsequently tend to get worse, reaching a minimum at LSTM
dimension of 35.

3.4. A constant learning rate limits learning

Fig. 8 considers the network architecture described in Table 4.
However, the learning rate is not manually reduced during the
training process and learning starts with a default rate of 0.001.
Once again, accurately forecasting response during the shut-in
period was found to be challenging. It is interesting to note that
the Adam optimizer adapts the learning rate during the training
process by considering the mean and variance of gradients during
earlier time steps. This means that as the global minimum of the
loss function is approached, the learning rate at which the neural
network weights are updated automatically slows down. However,
there are still limitations to how well the trained model can
generate the shut-in response. This suggests that the built-in
reduction in learning rate by the Adam optimizer may not be



Fig. 6. Predictive capability of the LSTM model declines when lag is small, demonstrated using a value of 100 timesteps or 3.33 min. X-axis refers to time elapsed since the onset of
injection for cycle 4.

Table 5
Forecasting errors in experiment 1 for different lag values (in timesteps). For all cases, LSTM dimension ¼ 35.

Lag Pressure Strike displacement Up-dip displacement Normal displacement

RMSE (MPa) R2 RMSE (mm) R2 RMSE (mm) R2 RMSE (mm) R2

1 0.57 0.87 84.3 �0.06 26.65 0.56 38.28 0.17
100 0.93 0.65 100.54 �0.51 10.95 0.93 30.23 0.48
600 0.34 0.95 8.49 0.99 9.39 0.95 3.9 0.99
900 0.35 0.95 10.35 0.98 8.52 0.96 7.55 0.97

Fig. 7. Predictive capability of the LSTM model that is adversely impacted when the value of LSTM dimension is too large (200 in this case). X-axis is the same as Fig. 6.

Table 6
Forecasting errors in experiment 1 for different LSTM dimensions. For all cases, lag ¼ 600 timesteps.

LSTM dimension Pressure Strike displacement Up-dip displacement Normal displacement

RMSE (MPa) R2 RMSE (mm) R2 RMSE (mm) R2 RMSE (mm) R2

20 0.31 0.96 23.34 0.92 11.54 0.92 8.43 0.96
25 0.33 0.95 11.66 0.98 12.2 0.91 3.6 0.99
30 0.33 0.95 11.35 0.98 9.83 0.94 6.91 0.97
35 0.34 0.95 8.49 0.99 9.39 0.95 3.9 0.99
40 7.63 �22.81 16.88 0.96 85.38 �3.48 10.26 0.94
50 0.35 0.95 8.87 0.99 10.41 0.93 4.47 0.99
100 19.96 �161.89 373.83 �19.92 16.08 0.84 99.33 �4.6
200 33.32 �452.86 1173.59 �205.13 210.94 �26.33 253.57 �35.51
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Fig. 8. Predictive capability of the LSTM model that is compromised when the learning rate is held constant. X-axis is the same as Fig. 6.
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sufficient, suggesting a need to manually reduce the learning rate
once the learning curve plateaus. During training, not reducing the
learning rate caused the loss function to oscillate which indicates
that the optimizer was hampered in its ability to reach the global
minimum and may have led to underfitting (learning curve not
shown for brevity). This primarily affects the modeling of the shut-
in response (as opposed to the injection response) which is char-
acterized by small magnitudes of pressure and displacements.

3.5. Using a separate injection cycle for validation limits learning

Fig. 9 shows how the predictive ability of a model gets
compromised if an injection cycle is used as a validation set during
the training process. The model setup was otherwise identical to
Table 4, the only difference being that cycle 4 was used as a vali-
dation set to make decisions about when the learning rate should
be reduced and when the training should be stopped. Once again,
the main challenge involves predicting the shut-in response. A
priori, it was expected that since the model was generating
response for the same cycle that was used for validation (i.e. cycle
4), the predictions should be very close to the true values on ac-
count of data leakage (e.g. Kaufman et al., 2011). Even though cycle
4 exhibits a response similar to cycle 3 (Section 2.1), there areminor
Fig. 9. Predictive capability of the LSTM model that is compromised when a val
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differences (as discussed in Section 3.6 below). This suggests that
cycle 4 is not representative of data in the training set. Therefore, by
assessing its performance against cycle 4 during training (which
affects learning rate reduction and early stopping), the model
effectively underfits and is not able to accurately learn all the
characteristics of fault response encapsulated in the training cycles.
This underfitting affects the overall model robustness while pre-
dicting the shut-in response.

3.6. Best performing model: incorporating all training measures

Fig. 10 shows the generated response using a model that in-
corporates all the measures described in Section 2.5. The model
(whose architecture is summarized in Table 4) captures the fault
response both qualitatively and quantitatively. At the onset of in-
jection, the peak pressure is slightly over-predicted. However, the
displacements are captured accurately throughout the injection
period. Prediction of the response during the shut-in period, which
proved to be the most challenging aspect for the modeling process,
displayed significant improvements. The evolutions of pressure,
strike and normal displacements very closely matched the true
response. There is a small under-prediction in the decay of up-dip
displacement, which suggests that the model is slightly over-
idation set is used during the training process. X-axis is the same as Fig. 6.



Fig. 10. LSTM model predictions for cycle 4, when trained on cycles 1e3. X-axis is the same as Fig. 6.
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estimating the magnitude of irreversible shear. This can be attrib-
uted to the slight discrepancy in up-dip decay following cycles 3
and 4 due to the formation of a leakage pathway in the up-dip
direction (Section 2.1, Fig. 2). Information about the leakage
pathway is not provided to the ML model.

Table 7 compares the training and forecasting errors of the best
performing model (model M1) with models that use (i) a constant
learning rate during training (model M2) and (ii) a separate injec-
tion cycle for validation during training (model M3). Models M2
and M3 are characterized by higher values of training error, sug-
gesting that their inability of models to accurately forecast the shut-
in period of cycle 4 can be attributed to underfitting. R2 values are
not shown for the sake of brevity.

3.7. Training errors vs. forecasting errors

Table 7 shows that the forecasting errors are significantly higher
than the training errors. Table 8 reports the corresponding error
ratios (or “overfitting ratios”), which can be defined as the fore-
casting error normalized by the training error (Khan et al., 2016). A
model that generalizes perfectly must yield an error ratio of 1.
However, this assumes that the training and test datasets are
derived from the same distribution. As pointed out in Section 2.1,
cycle 4 (which was the forecast cycle for experiment 1) has minor
differences compared to cycle 3. Therefore, some discrepancy is to
be expected which precludes an exact match between model and
observations. Furthermore, the experimental data are character-
ized by high-frequency noise which is challenging to replicate and
contributes to higher values of error ratios. Therefore, in the
Table 7
Training and forecasting errors in experiment 1 for different training strategies,
quantified using the root mean-squared error. For all cases, lag ¼ 600 timesteps and
LSTM dimension ¼ 35.

Case Pressure
(MPa)

Strike
displacement
(mm)

Up-dip
displacement
(mm)

Normal
displacement
(mm)

T F T F T F T F

M1 0.08 0.34 1.7 8.49 1.04 9.39 1.1 3.9
M2 0.08 0.46 3.72 48.05 1.41 27.03 1.23 21.21
M3 0.08 1.12 3.66 51.9 1.03 78.97 1.94 18.1

Note: T: Training error; F: Forecasting error; M1: Best training strategy; M2: same as
M1 but using constant learning rate; M3: same as M1 but using a separate injection
cycle for validation.
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present context, it is important to consider the absolute error
values when evaluating forecasting skill.

4. Results: detecting key changes in fault hydromechanical
activation processes (experiments 2e5)

The network architecture and training procedure for detecting
changes in fault processes (experiments 2e5) were the same as that
used for highlighting the training process (experiment 1). The only
difference was in the choice of the LSTM cell dimension, which was
found to vary between [25, 50] to yield the lowest values of fore-
casting error.

4.1. Detecting an emerging fault dilatant slip (experiments 2, 3 and
4)

Experiment 2 considered the same model that was trained in
experiment 1 and used it to generate the response for cycles 4e6
(Fig. 11 and Table 9). Cycles 5e6 show a significantly higher dilatant
behavior compared to earlier cycles, with larger magnitudes of
irreversible shear displacements (strike and normal). Since the
model is trained on cycles that exhibit lower magnitudes of irre-
versible displacements, the magnitude of reversible displacements
is overestimated. More specifically, the model reasonably captures
the decay in up-dip displacements, which suggests that the addi-
tional irreversible displacements are mostly occurring along the
strike and in the direction normal to the fault plane. For instance,
Table 9 shows that R2 for strike displacement reduces from 0.99 to
0.31 as dilative behavior increases from cycle 4 to cycle 6. This
highlights that a dilatant strike-slip movement of the activated
fault is emerging while additional high-pressure water is injected.
The model continues to accurately predict both the rise in pore
pressure during injection, and the decay in pore pressure during
shut-in. This shows that the fault pore pressure response is
consistent across all six cycles although the fault is experiencing an
irreversible dilatant strike-slip activation. One possible explanation
could be that the mechanical dilation rate is directly coupled to the
injection flow rate in the fault zone, independent of pore pressure
evolution.

Experiment 2 highlighted the shortcomings of using a model to
predict highly dilative fault slip response, when trained on early
injection cycles that do not exhibit comparable dilatant slip acti-
vation. Experiment 3 investigated if predictions of dilative fault slip
response would improve when trained on injection cycles later



Table 8
Error ratios in experiment 1 for different training strategies, defined as forecasting error normalized by training error. For all cases, lag ¼ 600 timesteps and LSTM
dimension ¼ 35.

Case Pressure Strike displacement Up-dip displacement Normal displacement

M1 4.25 4.99 9.55 3.55
M2 5.75 12.92 19.17 17.24
M3 14 14.18 76.67 9.33

Fig. 11. LSTM model predictions for experiment 2 (cycles 4e6, when trained on cycles 1e3). X-axis is the same as Fig. 6.

Table 9
Forecasting errors for different injection cycles in experiment 2. The model corresponds to the best performing model determined in experiment 1.

Cycle Pressure Strike displacement Up-dip displacement Normal displacement

RMSE (MPa) R2 RMSE (mm) R2 RMSE (mm) R2 RMSE (mm) R2

4 0.34 0.95 8.49 0.99 9.39 0.95 3.9 0.99
5 0.21 0.98 51.01 0.25 6.33 0.97 26.1 0.36
6 0.24 0.99 52.9 0.31 11.27 0.96 29.94 0.38
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than cycles 1 to 3. Therefore, a model was trained on cycles 4e5
(ignoring cycles 1e3 as they do not exhibit dilative behavior) and
used to predict response for cycle 6. Fig. 12 shows that this model is
indeed able to predict irreversible displacements more accurately,
Fig. 12. LSTM model predictions for experiment 3 (cycle 6, when trained on cycles 4e5; ce
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when compared with predictions for cycle 6 in experiment 2
(Tables 9 and 10). The model also accurately predicts variations in
fault pore-pressure as earlier. Experiment 3 thus shows that an
LSTM model can predict an increase in dilatant slip related to fault
ll dimension: 25). X-axis refers to time elapsed since the onset of injection for cycle 6.



Table 10
Forecasting errors for experiments 3e5. The injection cycle that is forecasted is reported in parenthesis to enable comparison with results on experiment 2 (Table 9).

Experiment Pressure Strike displacement Up-dip displacement Normal displacement

RMSE (MPa) R2 RMSE (mm) R2 RMSE (mm) R2 RMSE (mm) R2

3 (cycle 6) 0.26 0.99 16.34 0.93 11.36 0.96 8.55 0.95
4 (cycle 5) 0.11 0.99 32.3 0.7 6.69 0.97 16.44 0.75
5 (cycle 4) 0.69 0.8 20.64 0.94 20.07 0.75 15.31 0.87
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activation.
Experiment 3 highlighted the model's ability to predict an

emerging dilatant slip during cycle 6 by training on cycles 4e5.
Subsequently, experiment 4 investigated if it is possible to predict
the dilatant slip emerging in cycle 5 by training the model on cycles
3e4. Cycles 1e2 were excluded from training as their response is
quite distinct from cycle 5. Fig. 13 shows the best predicted
response for cycle 5. Although there are improvements in pre-
dictions of strike and normal displacements compared with
experiment 2 (Tables 9 and 10), there is still a tendency to over-
estimate their magnitude during the shut-in period. This experi-
ment suggests that there is a change in fault hydromechanical
response during cycle 5 which triggers a dilatant strike-slip
response, after a “nucleation” phase that occurred over cycles 1 to 4.
4.2. Detecting fault leakage along the up-dip direction (experiment
5)

The final numerical experiment sought to predict the response
of injection cycle 4, but by using amodel trained only on cycles 1e2.
Cycle 3 (which induces a similar response compared to cycle 4) was
excluded from training and the ability of the ML model to predict
cycle 4 was evaluated (as shown in Fig. 14). The model was found to
overestimate the peak values of pore pressure and strike and
normal displacements, while making reasonable predictions for the
shut-in period. As discussed in Section 2.1, pore pressure generation
gets constrained after cycle 3 due to development of a leakage
pathway along the up-dip direction. Since that is a new physical
process unknown to ML model, the peak pore pressure gets over-
estimated, which in turn seems to affect the peak value predictions
of strike and normal displacements (compared with the results of
experiment 2 in Tables 9 and 10).
Fig. 13. LSTM model predictions for experiment 4 (cycle 5, when trained on cycles 3e4; ce
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5. Discussion

5.1. Error propagation during shut-in period

The fault response was modeled using a recursive strategy that
predicted one time-step at a time. Predictions for the first time-step
were fed as input for the next time step. Although this is an intu-
itive modeling strategy, it is susceptible to error propagation,
especially during the shut-in period when pressure and displace-
ments gradually recover from high values obtained during the
preceding injection. During the training process, the model opti-
mizes its weights to reduce the prediction error which is dispro-
portionately affected by higher magnitudes of pressure/
displacements during injection. The shut-in response is character-
ized by declining magnitudes of pressure/displacements, and
further optimizing the model weights to reduce error during shut-
in requires careful training as outlined in Section 2.5.
5.2. Detecting changes in fault hydro-mechanical response

When trained properly, the ML model can generate robust
predictions of response to injection cycles. However, as demon-
strated in experiments 2e5 (Section 4), the accuracy of the pre-
dictions depends on the physical processes encapsulated during
training. If the fault response in training data does not capture
highly irreversible dilative fault slip response, then ML is unable to
reproduce such behavior while generating fault response (experi-
ment 2 (Fig. 11) and experiment 4 (Fig. 13)). Results also showed
that if the fault response in training data did not contain any in-
formation about the development of a leakage pathway, the model
over-estimated pore pressure (experiment 5 (Fig. 14)). This char-
acteristic of an ML framework can be exploited to highlight when
changes in fault activation occur during an injection process.
ll dimension: 30). X-axis refers to time elapsed since the onset of injection for cycle 5.



Fig. 14. LSTM model predictions for experiment 5 (cycle 4, when trained on cycles 1e2; cell dimension: 50). X-axis is the same as Fig. 6.
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5.3. Focus of this work and extension to future research directions

It is important to note that the focus of the current study is on
modeling fault pressure and displacements, and not on predicting
induced seismicity, during fluid injections. In general, predicting
seismicity is challenging as there is a lack of data on past seismic
events prior to the onset of injection activities. This data gap can be
addressed with the advent of distributed acoustic sensing fibers
eventually cemented behind the well casing that may enable strain
monitoring along the entire length of the injection borehole (e.g.
Correa et al., 2021). Such systems provide access to very high-
frequency strain and strain-rate datasets which could be coupled
with data from geophones and seismometers to develop more so-
phisticated ML models that could detect changes in strain/stress
rates associated with fault activation (e.g. Wozniakowska and
Eaton, 2020; Ma and Chen, 2022; Anikiev et al., 2023). This could
involve isolating reversible and irreversible unstable fault dis-
placements, which are key for assessing and modeling induced
seismicity.

Another focused goal of the current study is to fully explore the
usage of pressure and displacement data from a single point near
the injection site. The data came from controlled experiments
where fluid was injected directly into a fault. Ideally, fluid injection
would take place in a reservoir away from any major faults and
direct injection inside a fault would be an unanticipated result. A
more generalizable ML model will need to model pressure and
displacements in the entire reservoir. In addition to requiring a rich
set of temporal data of pressure and displacement from multiple
boreholes, a reservoir scale ML model would need information
about the spatial positions and depths of boreholes within the
reservoir, reservoir geology, and orientations and focal mechanisms
of known faults. Determination of subsurface geology and fault
mechanisms may require constructing a 3D seismic wavefield with
the aid of passive and active seismic data. Subsequently, ingesting
such information would require specialized ML architectures such
as convolutional or graph neural networks, which can consider
spatial context and correlations in data. Such ML models could
enable a deeper investigation into how subsurface geology and
faulting regimes can impact fault pressure and displacements
during subsurface fluid injections. Additionally, the scope of such
models could be extended to model multiple reservoirs by
considering data from a diverse set of field experiments such as the
EGS Collab project, fault activation experiments in crystalline for-
mations at Grimsel (Switzerland) and faulted carbonates in France
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(Amann et al., 2018; Fu et al., 2021; Guglielmi et al., 2021).
The current study focused on modeling fault multiphysics by

using multiphysical data obtained from underground laboratory
experiments without explicitly solving coupled equations of mul-
tiphysics. As demonstrated, the complex and evolving coupled
processes are implicitly considered since the MLmodel can capture
rapid and irreversible changes in pore pressure and displacements.
To develop amore general reservoir scale MLmodel, it may become
important to explicitly consider multiphysics so that a variety of
physical processes and properties can be efficiently learned and
accounted for. This could be realized by implementing physics-
informed neural networks where the loss function is augmented
using physical relationships (Raissi et al., 2019; Haghighat et al.,
2021).

6. Conclusions

This study investigated the general ability of an LSTM-based ML
model to predict fault displacement and pore pressure in response
to high-pressure geological fluid injection. Data were obtained
from an in situ experiment in Mont Terri from November 2020,
which involved controlled fault activation using six injection cycles.
The focus of this study was on fault response near the injection
borehole. A recursive modeling strategy was used where the fault
responsewas predicted for one time step and was then used as part
of the input for predicting the next time step. To prevent error
accumulation while modeling injection-induced fault pressure and
displacements, four practices were outlined and demonstrated to
train a robust model, namely (i) setting an appropriate value of lag,
(ii) calibrating the LSTM dimension, (iii) reduction of learning rate
when loss plateaus and (iv) not using a separate cycle for validation
during model training. While predicting response of cycle 4 in
experiment 1, these practices resulted in forecasts with R2 values
close to 1 for pore pressure and fault displacements.

Five numerical experiments were conducted, each comprising a
different combination of injection cycles used for training and
testing, to investigate the ability of an ML model to predict fault
pressure and displacements. The ML model captured peaks in
pressure and displacements that accompany an increase in fluid
injection. The model could also capture the decay in pressure and
displacements during the injection shut-in period. The predictive
ability of the model was highly dependent on the physical pro-
cesses of fault behavior observed during the training process,
exemplified prominently by a reduction in R2 for strike
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displacement from 0.99 to 0.31 as dilative behavior increased from
cycle 4 to cycle 6 in experiment 2. This motivates a strategy where
ML could be used to identify key changes in fault activity such as
the creation of a major leakage pathway and an emerging dilatant
slip after several injection cycles.
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