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ABSTRACT

The dispersion relation for the axial propagation cof electro-
magnetic energy in a hollow plasma waveguide is derived. The structure
considered has a cross section consisting of a central cylindrical
vacuum regionbsurrounded by a plasmé shell contained within a metal
outer conductor. Solutions of the dispersion relation are presented
which show the variation in propagatibn characteristics attained by

varying the plasma properties, the radial dimensions, or the external

- magnetic field. Losses in the plasma region and the effect of finite

conductivity in the metal outer conductor are considered.

Propagatioﬁ characteristics of a hollow plasma waveguide resemble
those of a metal circular waveguide for large axial magneticvfields,
hut, as the axial magnetic field is reduced, ﬁhe phase characteristic
of the guidé.éhanges'to that of a slow wave structure. The attenuation
characteristic of the hollow plasma waveguide, for waves of a}TM type,
may be lower by several powers of ten than that of conventional metal

waveguides.
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" I. INTRODUCTION
Preseht-day radid-frequency linear'particle accelerators employ
metal waveguides or cavity resonators to confine the 1n£ense electro-
magnetic fiel&s réquired. This introduces two iimitations at high

energies. Large amounts of rf power are required to compensate the

copper losses in the walls of the metal structures, and great physical

lengths are required because the maximum voltage gradient is limited
to a few million volts per foot of acceleratof length by high-voltage
breakdown between conductors in vacuum. For example, the linear
accelerator at Stanford requires 240 20-MW klystrons to produce 20-GeV
electrons, with most of the supplied energy usgd to overcome copper
losses in the two-mile accelerator waveguide.

Clearly it will be of great value to develop.an accelerator structure
with sigﬁificantly less loss than metal waveguidss or cavity resonators.
A structure that is only 1/1000 as lossy as the Stanford linear accéler-
étor waveguide will require only one 5-MW klystron to cvercome wall
losseé in the waveguide. It will be of greater interest if the éame

structure can.hold'higher voltage gradients before breakdown in vacuum.

Increasing the voltage gradient the structure may hold will reduce the

length required.

It has been proposed by others to construct a guide for électromag-
netic energy, using a plasma, that has considerably lcwer loss than the
bes& metal conductors.1-3 If the plasma frequency, L]p; is highér than
the applied rf.freQUency;tj , and if the plasma collisioﬁ frequency,]/ ’
is very huch lower‘than-the rf frequency, little rf power will be

transferred to the plasma. Lichtenberg has considered a plasma waveguide
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consisting of two_semi-infinite plasma,slaﬁé‘separated by a vacuum
region.l August has considered a cylindfical vacuum region Qithin
an infinite plasma.‘2 Both have considered the caée of an infinite
axial magnetic field and have indicated thet low-léss prqpagation of
fast waves (phase velocity greater than the velocity of light) may be
achieved by using a plasmﬁ waveguide device, |

The hollow plasma waveguide, hereafter also referred to as a
plasmaguide, has the cross section shown in Fig. 1. A method of
confiﬁing the plasma, suggested by_Woédyard,_is in a Philips Ion Gauge

3 If a

type of discharge in a strong axial external magnetic field.
ring-shaped cathode is used, the plasma formed will be holiow, and the
;électromagnetic enefgy will be confined primarily to the central vacuum
;gore. " In the proposed plasmaguide, the cyclotron frequency?(A/c, is
gproportional to the axial magnetic field and will enter into the solu-
'%ﬁion as an independent variable. The presence of a finite cyclotron
E‘f‘requenc_y makes the plasma ananisotropicmedium and greatly complicates
any type of analysis except by numerical methods on a high-speed digital
éomputer. |

It may be seen from the brief discussion above that the piasmaguide
designer has a large number of independent vériables at his disposal'
to achieve a favorable.design; Theré_are at least four different fre-
quencies and at least two major lineér dimensions available. In brief,
these are the plasma ffequency, the collision fréqﬁency, the cyclotron
freéuency, the applied rf frequéncy, the vacuum region radius, and the
outer radius of the plaéma region. A computer solution of the propagae-

tion characteristics of the plasmaguide which considers all these
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:independent-variables has been developed. Several cases have been
examined which show that a hollow plasma waveguide of reasonable : E %
dimensions (theorgtically obtainable plasma conditions) and moderate
éxtérnal axial magnetic fields has powers of ten less loss than con-
ventional metal waveguidés.

The properties of the hollow plasma waveguides 1nvest1gated will ‘
be described by (/ %9 diagrams, by plots of the axial rf electric fleld
distribution, and by sttenuetion curves. No attempt will be made to
analyze the behavior of the hollow plasma wavéguide as a function of
rf signal level. The behavior of s plasma in a strong rf field and
the question of high-voltage gradients have been examined by August.4
In the foilowing'discussiqn, the‘small-signal equivalsnt dielectric
- tensor representation of the electronic properties of the plasma
region is used.

Experimental work using a plasma column to guide electromagnetic

5 The

energy has been reported by Lichtenberg, Govindan, anleOodyard.
@ of a partiiaily lonized plasma with fluctuating density, created by a
raflex discharge, is determined by a measurement of the decay of micro-
wave senergy in a cavity coaxial to the plasma column, The measurements

indicate that the plasma Q@ ie lower by a factor of 3 to 4 than the

cailculated from the theory. The results obtained in thig discussion,

™

for a theaoretically simplified ﬁlasma, rmust be considered alongside

L

the experimental difficulties and the inexplicably larger losses

reportgd by others.5
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II. DERIVATION OF THE FIELD EQUATIONS

1. Characterization of the Piasma

A plasma is definéd here as a fuily ionized gas in which the
Debye length is much smaller;than'any other length of interest, and
in which dﬁly the bulk proberties of the gas are important. In
addition, the plasma is assumed to be uniform everywhere (thé plasma-
vacuum interface is an abrupt trénsitioh).

For simplicity in calculations, the plasma is considered to be'a
fully ionized hydfogen gas. Partial ionization principally alters the
rf losses, but not the grosé electromagnetic properties of the plasma.

For use in a hollow plasma waveguide, we shall consider only low-

-temperature and low-density plasmas appropriate to microwave applica-

tions., If the plasma electron temperature ranges from 5 000 to 100 000°K
(0.5 to 10 eV approximately), the plasma will usually be from a few

per cent to 100% ionized. The densities considered will range from

'1010 to 1013 (charged) particles per cm3; For comparison, thermonuclear
fusion plasmas have temperatures and densities on the order of 108'9K
and 1011‘ particles per c:m3 and ,higher..

The plasma properties may be described by several characteristic
frequencies., They are the following:
(a) The plasma frequency, h/p’ is the characteristic relaxation fre-

quency of the plasma, Neglecting temperature corrections, it is given

.by

(1)



b=

where n_ = electron density, electrons/hB,
e = electronic charge, 1.602 x 10"19 couloﬁb, : _ a
m = electron rest mass, 9.1091 x 1071 kg, )
€y = the permittivity of vacuum, 8.8542 x 10712 farad/m. |

(b)The cyclotron frequency, (Jo» 18 the frequency of rotation of

electrons in a magnetic field; it is given by
. = (e/m)BO» : (?)

{e) The collision frequencj,]/ , represents.ﬁn energy loss mechanism
in the plasma. For a fully ionized plasma;the:e are three types of
collisions, electron-electron, ion-ion, and electron~-ion. The first
and second types do not change the total energy or momentum of the
electrons or the ions, but are useful in establishing equilibrium dis-
tributions of these ﬁarticles. Collisions of.the third type transfer
energy and momentum between the electrons and the ions, and sre a
mechanism for transferring energy from an electromagnetic wave to the
plasma, | |

(d) The average electron-ion collision frequency as gi?en by
Shkarofsky6 is

7

v = (Z%r) %Wne(3" Te) ¢

‘ LoKQTé
{KgT €o
1n - C?

] -
& { 12T €, 'KBTC) .
where K., = Boltzmann's constant and Te = the electron teﬁperature in °K.

e?.
B



For a hydrogen plésma

y o mlzead 0] (3
[8.06x10° 77 /Lg ]
For small signals, the electronic ﬁroperties of the plasma region
may be specifiéd by an equivalent dielectric tensor. VA detailed des-
cripiion of the derivation of the equivalent dielectrié tensor represen-

tation férvthe plasma region may be found in Spitzer,7 For cylindrical

or Cartesian coordinates we use

& i€, C :
Herl! =€, €, 0 ’ | . (4)
0 0 €,
where .
€=~ Lif(bj-+1L0
SR VA (WES) SV
- 2
€= i
W+ 1]
LJZ.
€é3: I - —=P__ .
W (W +iY)

The rf fields are assumed Lo have an exp (?@ - i{Jt) dependence.
1f there are any losses in the plasma region, the propagation constant,
'72 will be complex. Then, ?/ = (X + if} where (X = the attenuation

constant and jS = the phase constant,

2. Plasma Region Field Equations

Many investigators have discussed metal waveguides, filled or

8,10-12

partially filled along the center with plasma. Although the

gebmetny and operating conditions studied by these investigators differ
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from the case presented here, many of. their plasma region results
apply here. o | , ;

Maxwell's equations in the plasma region are

&1

V-elEllE=0,

where Bo = the permeability of vacuum, 47T x 10_? henry/m.
o fe)
r £ Y = C m—— el
For the case of no losses, {{ = 0 and 3z iB_, 5% /.
The above set of equations may be expanded in cylindrical coordi-
nates and manipulated to give a set of four eguations expressing the

transverse electric and magnetic fields in terms of the axial electric -

and magnetic fields:

= 1 | (5)
- A e g - Ke 3]
Kl Eq= L/B{f—‘% ok 4 4 16,1%5*] )
- b3+ Ko gl "
K1HY=A/9[K2.3_\112 _-%7"**.2%"-3—2*} | o
lFag - wa),



KlHe-xIB[ }« 2he KZB_H%J

n.ar r 38
F. . 2€n
where &[ K3B * + /B Q—EZ} ’

A = U/c.(wave number),

o = velocity of light in a vacuum (2.997925 x 108 m/sec),

T[ :‘l/‘/,l_o/\‘:o -(vacuum wave impedance),

> 2
K2=k¢€, -8,
K= k2% - k€7,

2.2 2.2 2 N
K3=k"€q7 -k €5-B7€y, -

Further manipulation of Maxwell's equations yields

A[rv:“* {‘g“gg)ﬁz —/anH?_: -i g%f}}A/gEz
v 6”* -EEE = e hBnHs

where VT is the transverse portion of the Laplar*ian aperator,
' ‘1
r Br ( 2

For convenience we shall make the following definitions:

cylindrical coordinates it is given byvg

1

s 2.
€ - €2_ Az z
_— 2 -
€/l )8
2 €2 A%
2= 533}\ - 7{73/3/9
6‘5362
fn /ﬁ/@ ’

> /{’. 'ﬁlz/k/@ ‘
, €

22}
D)
f

]

o
1]

(8)

32
362

(9)

(10)

(11)

(12)
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The scalar wave equations for the axial fields may now be written
[VF + aJ7H, = bE, e
(V:+ aE, = b,nH,. - N (14)

Equations (13) and (14) are two coupled scalar wave equations
‘relating Ez and Hz‘ This pair of coupled squations must be solved
simultaheously. Only under éertain circumstances are pure TE or T™
modes possible. If either bl or b2 is equal to zero, the scalar wave
equations are uncoupled. This may occur if the external magnetic field
is infinite or zéro. The scalarbwave'equations are also uncoupled at
the plasmaguide cutoff frequenéy at which}[} is zero.

In other research on wave propagation in gyrotropic medisa, the

rotational nature of both the electric and magnetic fields has been

included and formal equations have been obtained, 1t

Electrons under
the influence of such fields undergo transverse as well és axial
ogcillations. Beve and Everhart have defined the possiblé modes of
wave propagation as followszl1

A wave is.bfedomipantly transverse éiectric, TE, if in its transverse
components the contribution of the longitudinal magnetic field component
exceeds the contribution of the longitudinal electric field component
by at least one power of ten,

A wave -is predominantly transverse magnetic, ™, if in its transverse
’.components the contribution of the longitudinal electric field exceeds

the contribution of the longitudinal magnetic field component by at

least one power of ten,

-



w]l]le

A wave is hybrid if the contributions of the longitudinal electric

and magnetic field components to transverse field components are

approximately the same.

A practical hollow plasma wévegﬁide désigﬁ of a linear accélerator
struéture will have its oéerating parémepers selected to maintain a
™ mode of energy propagation.

Following thebmethod of Shohet, the scalﬁr wave equations, Eqs. (13)
and (14), can be uncouple@ from each other, producing two fourth-order

bi-quadratic wave equations,12
[v + V§{Q1+Q7-) + 4,0, -.bibz] EZ = 09 (15)
Vi + V2 du+ad+ as@ - byby|H, = 0. (16)

< x

The fourth-order equation for the electric or magnetic field may

be factored into the product of two second-crder wave equations:

v - TH[w - TE, =0 o
where TZ?,?.: [... _(l..z.jz_t,,@_z; + -\/[_QL_{—QSY. +blbz ] :

Solutions of the second-order wave equations for a cylindrical

geometry ere well known; they are, in fact, just Bessel's equationé.
The result is that, in general,Ez and H are the linear sums of two
sclutions, The general'fonm of the solution is’

. Ey= Zi As%el%ez%(-rir)’
Q i=1 R

where Zq(Tjr) denotes some cylinder function (& solution of Bessel's

equation).
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- In general,T? is complex; If T? is a real number, and T§ <: 0, the ;
solutions can-bevexpressed as a linear combination of Bessel functions
of the first and second kinds w;th real arguments [Jq(Tjr) and»Yq(Tjr)j.
1r T§ is a real number and T?j:> 0, the solutions can be expressed as a
linear combination of modified Bessel functions of the first and second
kinds with real arguments? [Iq(Tjr) and Kq(Tjr)]. Ir T? is complex,
either the unmodified or the ﬁodified'Bessel functions are appropriate,
but must be evaluated with complex argﬁments.

At thié point in.the discussion, it ié‘instructive to consider the
case in which the external axial magnetic fiéld is infinite or éero,
then b1 and b2 equal zero. The scalar wave eqﬁations are uncoupled;
with Ljo:> ./ » we find that T2 > 0. The solutions of the scalar.
wave equations are a linear combination of modified Bessel functions

" of the first and second kinds.

Returning tc the diséussion of the general case, the TM mode of
electromagnetic wave propagation with no circumferéntial variatiéns,
q = 0, is the only mode of interest for possible linear accelerator

applications;. - Therefore, the soluticn for the axial electric field in

the plasma region may be written

2
E,=0 AQ(Ty) + BW(THD, NS
i=1 :
where QO répresents an unmodified or a modified Bessel function of the
first kind, and wo represents an unmodified or a modified Bessel function
of the second kind., |
Substituting in the coupled scalar wave equation; Eq. (14), one

may write the expression for the axial mggnetic field,
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LA, QT + BW(TN], (19)

N:x:
L
(g
I

t

where F

| J b, |
~ Substituting the above expressioné for the.axiai fields into the

pr§viously derived expressions, Eq. (5) through (8) for the transverse

fields, one obtains the equations for the transverse fields in the plasma

region. (See Appendik A for the transverse field equations.)

3. Vacuum Region Field Equations

The field equations in the vacuum region are éasily'derived by
letting L/p go to zero in the various plasma equations. Then, E;ll'and
632 go to unity and 6'12 goes to zero. The scalar wave equations for

the axial fields become
2 -V _
[V,+K4]E, = O | (20)

[V, +K4JH, = 0, (21)

where K4 = K - }92 .
| In the vacuum region, the scalar wave equations are separable and
vure TE or TM modes may exist, but in order to satisfy the boundary
conditions, both TE and TM modes must be considered.

Solutions of the scalar wave equations are Bessel functions.
Bessel functions of the second kind, either unmodified or modifiéd,»are
not allowed as a solution, since the vacuum region includes r = O,

If K4 > 0, the solution of either scalar wave equation is the unmodified

Bessel function of the first kind. If K4 < 0, the solution is the
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modified Bessel function of the first kind. Therefore, the solutions
for the axial electric and magnetic fields in the vacuum region may

be written

B, = CQ(T,r) (22)
and  H = ;\%QO(T%V), . - (23)

2z 2 ‘/2.

where T3 = {)\ ——B J .
The equations for transverse fields in the vacuum region are
derived similarly to those for the plasma region. The transverse

field equations for the vacuum region are tabulated in Appendix A.

~
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III. DISPERSION RELATION AND METHOD OF SOLUTION

1. Determination of the Dispersion Relation

éy use of the expressions for the tangential fields, a set
of six linear homogensous equations may be written to describe the

boundary conditions. The boundary conditions that must be satis-

fied are that

(a) the téngential components of the electric and magnetic

fields must be continuous across the plasma-vacuum interface,

(b) the tangential components of the electric field must vanish

at the metal wall of the outer conductor (use of a good conductor

is assumed).

The six boundary conditions (four on Ez’ Hz’ E9 , and He at

r= RO’ and two on Ez and E, atr = Rw) result in six linear

homogeneous equations.

The resultant determinant, which must be

set equal to zero for a nontrivial solution, is the dispersion

relation for the plasmaguide; in general it is made up of complex

terms arranged as shown below

The elsments of the

Appendix B.

%2

850

&32

a5

a52

%13
323

833

1, %15 ©

8y, 0 B¢

ay, 0 a36 = 0.
"4 %5 ©

a54 0 0

8g, 0 0

above determinant are tabulated in

2

4)
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2. Method of Solution
The solution of the determinantal dispersion felation-is

cumbersome by oﬁher than numerical methods. A digital computer pro- ‘
gram was written in FORTRAN IV language to find the complex propagatioht
constant,}f , necessary to satisfy the dispersion relation at a givén

rf frequency. In general,a complex ]{ is necessar} unless there are no;
losses in the plasma region ( 1/ = 0); if there are noﬁ, the propagation;
constant is given by ?’t ;[9, In the execution of the program,thé

frequency is varied from the TM ., cutoff fraquency of the hollow

0l

plasma waveguide,bjo, to an upper frequency of three times the cutoff

{requency, (/ A logical flow chart of the digital computer pro-

max’
gram Lo {ind the ;f necessary to satisfy the dispersion relation
is shown in Fig. 2.

The independent variables used to describe the hollow plasma

waveguide are read into the computer at point A of Fig, 2. They are:

R, = vacoum radius in meters,

Rw/RO = ratlio of outer conductor radius to vacuum region radius,
LO/(Aj = ratio of collision frequency té rf frequency,

LU%A*/O = ratio of plasma frequency to plasmaguide cutoff frequency, and
LJc/Ljo_.: ratio of cyclotron frequency to plasma frequency.

At point B, Fig. 2; the cutoff frequency of the plasmaguide
-described in the input data is ccmputéd. The derivation of the
plusmaguide cutoff dispersion relation And_the solution of the cutoff
dispersion relation are described in Chapter IV.

At point C, Fig. 2, tue elements of the egquivalent dielectric

tenzor are computed for a frequency slightly higher than the cutoff

—
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frequehcy. The program is ready to seérch for the propagation constanta
necessary to'satisfy the dispersion relation aﬁ this frequency. " The
elémenhs of the dispersion relation determinant,las'given in Appendix ,
B, are evaluated at point D. The propagation constant of an equiyalent.
metal guide is used as the first guess at the }r necessary to sai-
isfy the detegminantal equation. A round metal guide operating in
the TMOl mode;with'the same cutoff frequency as the plasmaguide.is ﬁséd
for comparison purposes. ‘Itvis referred to as an equivalent metal
guide throughout the rest of this discussion.

In determining the elements of the dispersion-relation determinant,
one must evaluate unmodified and modified Bessel funchiohé fof both
real and complex arguments. The computer coding to do this must be
efficient and sufficiently accurate to enable one to solve for complex
propagati&n constants when the phase éonstant and £he atthuation con-
gtant may differ by factors as large as 109.‘ To compute the desired
Bessel functidns,_it was necessary to combine and modify sevefal sub~
routines developed by other programmérs.u‘l5 The computed results
of the Bessel function routine developed for this program were

-

compared, for a wide range of real and complex arguments, with the

16,17 The

National Bureau of Standards tables of Bessel functions.
.results agreed with the tables to six significant figures, the
axtent of the tables,

After the elements have been evaluated, the value of the deter-
minant is computed by use‘of a éubroutine deQeloped for this purpose.18
The value of the detérminant, Det(}f),'is in general, complex. The

program then proceeds to compute the change. in the assumed propagation
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constant, 7 s necessary ﬁo reduce the value of the determinant to
zero. The procedure followed at point E, Fig; 2, is to assume one

is sufficiently close to the desired 7 (that satisfies the dispersion
relation) to expand the function Det(']) by means of a Tavlor's
series expansion about 7.19 This ‘method of computing the zero of

a function is called the Newton-Raphson method, and is treated in

20,21 The result of the Taylor's

many numerical analysis texts.
.s'eries expansion, ignorirg higher-order terms, is given by

0= Det(7)'+- A 14 %——D%f-(z} + e, (_25)
where A'/V is the change -ip 7necessary to reduce the value of the
determinant to zero.

To find A}Y it is necessary to evaluate the derivative of the.
dispersion-relation determinant with respect to the propagation constant,
Differentiation of the 6X6 determinant is most easily and quickly done |
numerically., The procedure followed in evaluating the derivative
mimerically, point F, Fig. 2, is as follows: |

-{a) Compute 72 = 7 + 1077 ,
{b) evaluate the dispersion-relation determinant at 7? and store

the value in Det( 72), |
Det( %) — DQH’B/)
107y

The change in 7 necessary to resduce the value of the dispersion-

(¢) evaluate the derivative by using 343:” 2=

relation determinant to zero is found by 'solving Eq. (24) forA7;
one finds : | '
Ay = - Det(y)/20et(D)
°F
At point G, Fig. 2, a decision must be made by the program; if the

computed fractional éhange in 7 is greater than 0.0001; 4 new 7
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is calculated at H, and the program returns through I to junction D.
At I, a counter is indexed which counts the number of times }f has
been calculated. A solution usually requires two to four iterations.

If the above process is repeated too many times (eight is the maximum

numbar of iterations allowed in this program), the program is terminated:

and a set of error messages is printed. This usually occurs if an

improbable set of indepehdent variables has been submitted for analysis.?
. If the computed fractional change in ;Y is less than 0,0001,
the determinantal equation is said to be satisfied, and the program
oroceeds to éalculate other properties of the hollow plasma waveguide.
If the programmer requested, via the input data, plots of the axial
slectric field as a function of radial position, it is necessary to
determine the coefficients of the Bessel functions in the field
expressions of Eqs. (18) and (19) and Appendix A. This is accomplished
by use of a subroutine that evaluates ratiosvof five of the éoefficients

2

to the sixth.2 After the coefficient ratios have been calculsated,

point J on Fig. 2, the field in any region of the plasmaguide may

_be expressed as & percentage of the axial electric field at the center

line of the plasmaguide.

fhe wall losses may now be calculated by a perturbation technique
di#cussed in Chapter V. Just as for the axial electric field plots,
the wall loss calculations are optional, depending upon the choice
of the programmer via the data input.

At point K, the results of the calculation up to now are stored
in a form suitable for punching, upon completion of the program, a

set of output data cards containing the propagétion characteristics
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and field plot data. The program, at point L, of Fig. 2, then proceeds
to increment the rf frequency, test if the new frequency is less than

the desired maximum frequency (,/___, and return to point M to determine

max

a naw propagation constant at the new rf frequency, etc.

After the propagation constants for a series of frequencies up

ot

to a value three times the cutoff frequency have been determined; the
program will return from point N to point O if there is another seﬁ

of plasmaéuide independent variables to process. If there are nro more
input data cards, a tabulation of the calculations is printed and a
gset of‘output data is punched by the card punch associated_with the
‘digiﬁal computer. These output data cards are used to plot the
éharacteristics of severai plasmaguide designs on the same graph,gés

showr, in Figs. 3 through 16.
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IV CUTOFF
At, the cutoff frequency,(A/O, of the hol]ow plasma wavegulde,
there is no energy propagation in the axial direction (%3 = 0).
Referring to the auxiliary quantities deflned in the discussion
of the plasma region field equations (Egqs. 9 to 12), it may be seen

that, at cutoff

\y = Eii€if
1 J ’
By 7 €3ss/kz
bl =0,
b2 = 0,
¥or bl and b2 equal to zero, the TE and TM modes are uncoupled,

as may be seen by referring to the scalar wave Eqs. (13) and (14).
0 Considering only the TM mode, the scalar wave equétion for the axial
electric field at cutoff is |
(Vi +a)E, = 0. - (26)
For the case of gj5>[*/, we find a,<<O. Therefore, solutions
o the scalar wave equation in the'plasma region are linear combinations
df modified Bessel functions of thé first and second kinds, ' The
axjial electric field in the plasma region is given by
E = AIO(TCr)-+ BKO(Tcr), (27)
where T ='chi;}3~', and I, and K, are the modified Bessel functions
of the firs; and second kinds.
To determine the cutoff frequengy of the plasmaguide, it is
necessary to derive expressions for the rest of the cutoff fields. The
bouhdary conditions at cutof{ are similar to those required for the

general solution of the plasmaguide dispersibn'relation; see Chapter III,
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The required fleld expreésions may easily be derived from the general
plasmaguide fileld expresqions by letting‘fg 0 and using Eq. (27)
for the axial electrlc field in the plasma region:

H, = iT [AI (T r) - BKl(T r)]/k7z (plasma region at cutoff), (28)

e
E; o(kr) (vacugm-region at cutoff) (29)
Hg =-iCJl(kr)/7? B (vacuum region at cutoff). (30)

At cutoff, the resultant determinantal equation that must be

solved for the hollow plasma waveguide cutoff frequency is

%11 %12 ™3|
831 fpp B3 = O
§31 a32 0]

8y = Ip(TRy)s 8y, = K(T Ry), f13 7 ~ToliRg)s

-LcKl(TcRO)’ 8y = +1J, (KRo)/T)

1
a
4
=
Can Y
-3
Ie) .
o
g
o]
N
il

(‘ o= ) = '
\Tcaw),.aBZ KO(TCRW,, and L irc/k7z K

qolution oP the cutoff determinantal disperuion relation is per-
¢ormed numerlcally, o0dint B on the 1ogical flow chart of Fig. 2, by
the same.method asvused to find the Zf necessery to satisfy the
general disper;ion relation; see the "Method of Solution' discussion
in Chépter I11. :In the numerical method of sblution,a first guess at
the cutoff frequency 1s needed. The first guess 1s obtained by using
+the approximation for the cutoff frequenéy of a hollow plasma waveguide

with the same vacuum radius but with a infinite outer conductor

radius as derived by August.2 For ij/LJO greater than 3.0,



-2l
August has derived the expression

Wo = Wel = /R

where bjé = the TM. , mode cutoff frequercy of a round metal guide with

01
a radius equai to the vacuum region radius.

1t may be noted that all the elements of the cutoff determinantal
dispersion relation are independent of the axial magnetic field.

Therefore the cutoff frequencies for the TM modes are independent

of the axial magnetic‘field.
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V., ATTENUATION DUE TO FINITE WALL CONDUCTIVITY
1. Perturbation Technigue

In specifying the boundary conditions for the hollow plasma
“waveguide, Chapter III, the tangential electric fields at the metal
wall of theouter conductor were set equal to zero. Even for very
good conductors, a small tangential electric field exists; howevef,
the field distribution is’only slightly perturbed from the loss~free
‘solution.

| By the perturbation technique described by Stratton, the loss-

. free solution is used to approiximate the tangential magnetic fields

23

at the conductor surface. Assuming the conduction current in the
wall is very much greater than the displacement current (always true,
by definition, for a good conductor), the surface current density
in the wall is given by

> - T o

Jg = NXH, .
The average power dissipated per unit length in the walls is given
by

Rs A

= —Z S’:}:'st,

where HS is the surface resistivity of the wall in ohms per square.

Lo

Rs used in the calculation is, at room temperature, 2.61X10m/ f ohms

2 ¢ is the rf frequency in Hz.

for copper;
To determine the attenuation constant due to the effect of

finite wall conductivity, point P on Fig. 2, one must first detérminé

the total energy flbwiin the axial direction. - The time»average axial

energy flow calculations are carried out with the plasma losses set

equal te zero; /= 0.
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2, Time;Avex;agé.A_tial '5owéf Flow
(a) Vacuuvaegion; - O= V-< R -
The time~ave_rége axial vacuum power flow is given by
2. Ro
v
R = f do) Srdr,
v, V%

vhere S'= (l./Z) (E, He E H )

Note: A starred quant.lt.y indicates the complex conjugate of the quanti’w

(32)

From the transverse fie1d equations, Appendix A, we find

EY R AR Ciz'T r) s

K477
, £
and - E: H:: K477D Q (Ta ).

. Therefore, V_ 1 . (33
merefors, S’z e (C +D)Q(T3r) )
and | | ._. ‘ (34)
" P, = TAB(C™+ D)]rao(mdr. B

0
The definite integral expression used to evalute the time-average

axial vacuum power flow expression 'is given in Appendix C'f‘ or both

unmodified and modified Bessel's functions.

(b) Plasma Region: Ry=r <Ry,

‘The time-ave_ragé axial plasma power flow is given by

e | S
p P de Sp ’ :
A fo | jo rdr | o (35)
where  SP_ (1/2)Re (E HE -EgHY) .

Using the expressions for the transverse plasma fields given in
Appendix A, we vfind o | |
E; H, Z LJ wm [0, (Ty1) +BWe(T;v)]
[A Qlo(Tir) + BiWol(Tit) ]* | (%)

4 g Z*LJZT (LaTy) [ A; QL (TN + BWA T
[A AT + BWo(Tr) ]* (37)




The integral expression for the time-average axial plasma power
flow is evaluated by substituting the expressions of Eqs. (36) and (37)
into Eq. (35) and performing the indicated integration by numerical
means. A numerical integration subroutine developed Sy Varda525 is
used to evaluate Eq. (35).

The tobal time-average axial power flow, P 2? is the sum of two
‘ componqnts, the tlme-average>axial power flow in the vacuum region,
'Pv, and the time-average axial power flow in the piasﬁa region, Pé:
Pz = Pv + Pp.

3. Time-Average Power Loss in_the Wall

The surface current density in the wall is given by

o | |
Jo=H =2 PlAIQUTR + BVG(TRY)

4 reRw 551 ‘ \
M Ja=Hy = i (LigTi{ A QLITR,) + BowWe (T, RW)
r=Rw Ty i

The time-average power loss per unit lehgth in the wall is the
sum of twn components, one due to. the sméll HZ field in the plasma
region at the wall, and the other due to the Hg field in the plasma
region at the wall, The loss due to the Hz cémponent at the wall may ‘
be neglected with respect to the loss due to the H, component. The
loss is proportional to the square of the magnitude of the tangen£131
magnetic field. H,is typically 5everal powers of ten greater than
_ HZ;, Over the range of plasmaguide parameters considéred (see Sect#on‘
1 of Chapter VI), the ratio of thé axial magnetic field to the axial

electric field varied from 0.0001 to 0.001. The mode of.wav§¥'
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propagation 1e predominantly uransverse magnetic (as defined in .

Section 2 of Chapter II), The tlme-average power loss id the wall

is given by
_ _ } .
J,,rTTA Q. TR )+ij°_(T3Rw)] ) (38)
4. Attenuation Consfpnt : ' S
The attenuatlon constant due to flnlte condu0t1v1ty in the
walls, CX w 18 glven by. Stratton,ZB,
-'aw=£ﬂ§- | | | o (39)

if thevplésma fegiqn has losses, 1/ 30, the ;f necessary ﬁo saﬂisfy -
the dispefsion relation equation is a cémplex numbor (see_Chapter’III,,
 Section 2). The real, part of ;r iu the attenuation constant due to‘.‘
the losses in- “the nlasma replon, C%p'< he attenuation constant, 0% ,.
for a ho’low plasma wavemlide with wails of finite conduct1v1ty and
& nonzero collision freouency in the plasma region is given by,the suﬁ

of the two attenuation constants,

C! &, + CXP .
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VI. DISCUSSION OF RESULTS

1., Selection of Parameters

The operation. of the hollow plasma waveguige_may be compared with
that of a metél waveguide. In a metal waveguide, electromagnetic energy
is reflected at the walls bj in&uced conduction currentsj in a hollow

- plasma waveguide, electromagnetic energy is reflected at the plasma
“interface by induced currents that are reéctive for a lossleés plasma.
In a metal, the rf frequency is very much less than thé electron colli-
‘sion frequency inside the metal, while in a plasma, the reverse can be
true. A metal has very small skin dépths at rf frequencies; a plasma
with Ljp:>'Uj may have skin depths several thousand times as large as
the metal. The confinement properties are in fact independent of the
collision frequency. A low-loss hollow plasma uuveguide.design wili
maintainvthe plasma frequency greater than the rf frequency, ij:#-bj,<
‘and the rf ffequency very much gregﬁer than the collision fréquency;
V-

The other independent variables to be selected are the magnitude
of the externél axial magnetic field, the outer conductor radius, and
the vacuum radius. The size of the vacuum radius is determined by the
rf frequency the plasmaguide is designed to carry; see the suggested
design at the end of this section. - The losses caused by the condﬁcﬁion
currents in the outer conduétor should be kept smali; To,ensﬁfeithis,
the ratio of the outer conductor radius to the vacuum radiusvmust be
large enough so the rf fields that benetraté through the plasma region
to the outer conductor wall are sufficiently attenuated bj the inter-

vening plasma volume.
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The selection of”thefmagnitude of thevextéfﬁal axiél magnetic
field is difficult because of the complexity of the hollow_plasma
waveguide dispersion ielation.equation. 'Thé'éaldﬁlation of a propaga-
tion characteristic, from Ljo to 3(;/0, for éhe'sét éf ihdependeni
variables, requires approximgtelj 12 séc of compﬁtation time on a
CDC 6600 computer, or approximately 50 sec oh‘an IBM 7094 computer.
It is economically feasible to try a likely set of independent.variables;
compute the.propagatioﬁ characteristics, examine the results, and theﬁ.
recompute the propagation characteristics with a modified set of indepén-
dent variables. Ons does not have to repéat this brocedﬁre too many
times beforejthe results described in the following paragrgphs-are
obtained. |

2. Results

The phase characteristics obtained for several valuesvof external
axial magnetic field, with a ratio of plasma frequency to‘éutoff frequency
| of four; is given in Fig. 3. The curves are normalized as discussed in |
Chapter fII, Method of Solution. For pufposes of compariéon, thé TMOl
mode(L/-}S diagram is displayed for a metal waveguide with the same
TMCI mode cutoff frequency_as the plasmaghide. This is the equivalent
metal guide'referredvto in Chapter IiI; R(eq), Fig. 3, is its radius.

| The cutoff frequeﬁéy‘found for each of the four curves shown is
‘the same, independent of ;ﬂé exteénal axial magnetié field as derived
in Chapter IV, The cutoff frequéncynfor this ratio: of plaéma frequéncy
-to cutoff frequencj is 12% lower than the TMdi moae éutoff frequency

of a metal guide'with‘the same radius as the vacuum region radius.
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The phase and group velocity curves corresponding to the Q/—fg
diagrams of Fig. 3 are shown in Figs. 4, 5, and 6. The velocity at
which an equiphase surface travels is called the phase velocity of

the wave. It is given by

Ve = ;;T" .
Therefore, the ratio of the ordinate to the abscissa of the Q/a’fg
diagrams of Fig. 3 is the phase velocity of the wave in the plasmaguide,
The velocity of propagation of energy, the‘grbup velocity, is given by
a= 14
3 d R

The group velocity is the reciprocal of the derivative of the Ljffg

-1

diagram. The derivative of the Q}n/ﬁ? diagram is obtained numerically.
The phase and group velocity curves shown in Figs. 4, 5, and 6 are
normalized with respect to the speed of light in a vacuum.

The (/- ﬁ? diagram for a plasmaguide with a very large external
axial magnetic field (L“%/Ljp = 10.0, on Fig. 3) very closely resembles
that of the.equivalent metgl waveguide. The character of the solutions
of the dispersion_relation, Eq. (23),change$ as the external axial
magnetic field is decreased. The resulting TM wave phase velocity
becomes less than the velocity of light in a vacuum (a slow wave). The
change in the(A/-jg_ diagram caused by lowering the external axial
magnetic field is shown by the three curves for bjc/cjp ratios of

2.5, 1.25, and 0.75 on Fig., 3,
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‘The extent of penetration of the electromagnetic fields into the
pigsma ragion may be seen froﬁ the plbts of axia1>electric'field versus
radial position shown in Figs. 7, 8, and 9, with ch/bjp = 1.25 and
varying L//ij. It may be seen from the set of axial electric field :
distribution curves that the axial electric field decays to a very
small value at an appreciable distance from the outer conductor wall,
This suggests that the choice of the ratio of the outef conductor
radius to vacuum radius, for_this set of field plots, is larger -than
- necessary for a low-loss waveguide.

For slow wave solutions, the highest axial electric field is found
at the plasma-vacuum interface. Figure 8 shows the axial electric
field distribution for a plasmaguide with a normalized phase velocity
just slightly less than unity (\/p = 0.99, bu?tub = 2.0). The axial
electric field at the plasma-vacuum interface is only slightly higher
than the‘axial electric field along the plasmaguide center line., If
the rf freﬁuency is increased, the axial electric field at the plasma—
vacuum interface becomes very large and the phase velocity of the TM
mode wave decreases ( \/p = 0.76, .U/(A/O = 3,0); see Fig. 9.

Large fields at the plasma-vacuum.interface extend further into
the plasma region and cause the attenuation of the plasmaguide-to increase
very.rapidly as the phase velocity of the plasmaguide decreases. Figure
10 is a plot of the ratic of the plasmaguide attenuation to an équiva-
lent metal guide attenuation for several values of electron-ion collision
frequency in the plasma region. Ii may be noted that a large improve-
ment in the atienuation of the plasmaguidé, compared with the attenuation

of the equivalent metal guide, may still be achieved even for the slow-wave
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portion of the propagation characteristics. Thé attenuation rises
'rapidly as the phase and group velocities become very slow. The
ohase and group velocity curves are shown in Fig. il for the plasma-
guide of Fig. 10. There is no change in the‘h/-/ég diagram, or in the
phase and group velocity curves, between the |/ = O case and the case
of small but finite collision frequencies in the plasﬁa volume. Figure
12 shéws the attenuation in nepers/m for one of‘the plasmaguide designs
of Fig. 10; also shown for comparison purposes is the attenuation of
‘the equivalent metal guide. |
Figure 13 illustrates the effect of varying two of the plasmaguide
independent variables. The attenuation ratios shown in Fig. 13 arei
due only to wall losses; the collision frequency in the plasma_volﬁme
is set equal to zero. If the ratioc of the outer conductor radius to
vacuum fadius is chosen as 3.0 and 1.5 respectively, the lower and
upper attenuation curves of Fig. 13 are produced, demonstrating that a

3 may still be,achieved

reduction in wall losses by a factor of almost 10
with a comparatively thin plasma sheath surrounding the vacuum region.
Raising the'ratio of the plasma frequency to cutoff frequancy from 4.0
to 8.0‘increases the factbr bvahich the wall attenuatibn is reduced

3

from 10° to 10° (see the middle curve of Fig. 13).

| Figure 14 is a plét of the attenuation in nepers/h for the equiva-
lent metal guide and the plasmaguide of the upper attenuation ratio
curve of Fig. 13. Figure 15 showé the ratio of the real part of the
propagation constant to the imaginary part of the propagation constant

versus the normalized rf frequency. Figure 16 shows the ratio of the

axial power flow in the plasma region to -the axial power flow in the



(VsC)

NORMRLIZED VELDCITY

e

NORMALIZED PHASE AND GROUP VELOCITY US. NORMALIZED FREQUENCY
Ru/fRe = 1.5 Wpfws = 4.0 Wfw, = 1.25 Vw =0

3.0

1.0 © 1.4 1.8 = 2.2 2.6 3.0
- NORMALIZED FREQUENCY (W)fw,) ‘

XBL 675-4048

Fig. 11



ATT.

(NEPERS/METER)

HETAL GUIDE AND PLASMAGUIDE ATT, uS, NDR!‘IQLIZE.D FREQUENCY

Ry/Ro = 1.5 Wpfw, = 4.0 Gi/w, = 1.25 VY/w = .000001

10‘3 3

104t

10-‘ s

SN~

"

10"
1.0

1.4

<

1.8 2.2 2.6 3.0
NORMALIZED FREQUENCY (ayug)

XBL 675-4049

Fig. 12

P



RATIO

ATT.

Iu. METAL GUIDE ATT.) US. W]wg

(tPLASHAGUIDE ATT.)/(EQU
°© RuRo = 1.5 Wpfwe = 8.0 Wkfup = 1.26 Y/w =0
Q WRO = 1.5 Up/Uo' = 4.0 UJ(JP = 1.25 v/u =0
- RJRe = 3.0 WpfWo = 4.0 wef), = 1.28 l//w =0
10 . _
W-—M/
10-: . r
10} oww

1077

107}

10

1.00 1.40 1.80 2.20 2.60 3.00

NORMALIZED FREQUENCY (Wfw,)

XBL 675-4050

Fig. 13



(NEPERS/METER)

ATT.

10

METAL GUIDE RND PLASMAGUINDE ATT. US. NORMALIZED FRERUENCY

o

10°* ¢t

107 |

R/Ro = 1.5 W/Ws = 4.0 Wfw, = 1.25 VYw =0

i

107
1.00

1.40

1.80 2.20
NORMALIZED FREQUENCY ru/w,)

Fig. 14

.60

XBL 675-405] -



ALPHA/BETR

NORMALIZED

(ALPHA IN NEPERS/N.)/(BENG IN RAD./M ) US. FRERUENCY
RuPo = 1.5 WefWe = 4.0 hfw, = 1.25 Yfw =0

1.00¢}

.50}

.0 N R
1.00 1.40 1.80 2.20 2.60

NORMALIZED FREQUENCY (Wjft,)

Fig. 15

3.00

XBL 675-4052




PLASMA POWER/VACUUM POWER

5,

RATIO OF AXIAL POWER FLOW IN THE PLASMA REGION TO THE UACUUM REGION
RefRa = 1.5 bpf/Wo = 4.0 Wigfp = 1.25 Vfw =0

10-1 9

107 : . :
1.0 1.4 1.8 2.2 2.8 3.0

NORMALIZED FREQUENCY (Wfw,!

XBL 675-4053

Fig. 16



-48n
vacuum region versus the normalized frequency, Fignres'IS and 16
11lustrate the degradation of the plasma containment and consequent

rise in attenuation as the rf frequency approaches the plasma frequency.;

3. A’Suggestedfﬁollow Plesma Waverunide Desiem

As en illustration ofihcw one may use the curves preeented here
.to evaluate a particular design,’the following exemplevis’given. .

Choosing a vacuum radius of 5 cm as a convenient size (thc rf
vfrecuency will then be in the lo-cm band), we find the ™ mode cutoff
frequency, for L/ /LJb A O equal to 2 06 GHz.; The attenuation ratio |
~curves displayed in Fig. 10 show that for an outer conductor radius of |

-6

e»7 5 cm, the attenuatlon, for Z//(~/ = 10 7, will be approrimavely

0.018 times that of an equivalent metal guide. The rf frequency used -
is 4. 12 GHz, two timeg\the cutoff frequency; at thfs rf frequency, the
‘:normallzed phase velocity is aoproximately 1. O (see Fig. ll) The
external_magnetic‘fiendvrequired is 3'68,kG5 Lu%/ij = 1.25.

For & ’ully'ionized gee, the plasma frequency required correspcnds~
to a gas pressure of 1.2 x 10 =5 mm. For a ratio of ollision frequency
lv to rf f‘requency of 10 6, at Lj = 8, 24 x 109 rad/sec, a 100% ionized

hydrogen gas rcqulncsan electron temperature of approximately 55 OOO X

(4.9 eV).
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'VII. CONCLUSIONS AND SUGGESTIONS FOR FURTHER‘WbRK

Solutions of the dispersion relation for a hollow plasma whveguidé
with a finite external axial magnetic field may be found by numerlcal
means._ Computations of plasmaguide propagation curves. and field plots
may be performed rapidly on modern high~speed digital computers.

Hollow plasma waveguide designs sﬁpporting>predominantly transverse -
' magnetic waves with adjustable phase velocities and_significaﬁtlyilower
attenuotion than comparable metal guides have been demonstrated. The'
hollow plasma wavegﬁide is a relatively simple structure of uniform
cross section., A very modest external axial magnetic field is required.
This field performs the dual functions of confining the plasma and of _
modifying the phase velocity of the TM-mode wave.

It is suggested that further work be carried out on the validity
“of tﬁe dielectric tensor formulation when strong rf fields are present.
. This formulaﬁion may no longer be a meaningful way of describing the
electromagnetic properties of the plasma.

Further calculations should be undertaken to determine the effect
oflplasma density time variations and the effeot on the propagation
charactefistics of the existence of a nonuniform plasma density distri-
bution, |

Construction and testing ofban experimental hollow plasma wave-
guioe model could proceed concurrently with the further pheorotical

investigation required.
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APPENDIX A

‘Plasma Region Transverse Field Equations
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Vacuum _Region Transverse Field Equations
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Qé and Wé are tabulated for_both the unmodified and modified Bessel

. functions in Appendix C.
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APPENDIX B

‘ Disgersion Relation Degermmant Elements
In Row 1

From the boundary conditions on Ez at r = RO we find

2117 (T1Rg)s 8155%(ToR)s 8137Ho(T4Rg), 2, <Wo(ToRy),
and a, = -Qo(T3Ry R.).

In Row 2

~

From the boundary conditions on Hz at r = RO- we find"-

321=F1a11_, 322=F2a12, a23—Fla13, a24=F2a14, and a26=a15.
In Row 3~ :

 From the boundary conditions on Eg atr= B.o we find

’331=1L12T1Q (T R )y 8.32 il.m2 2QO(T'R )y 833=1L12 1 O(T ‘),
a34=iL22 5 O(T ), and a5 —-on(’l‘3 )/T
In_Row 4

- From the boundary conditions on Hg at r= RO we find

R e T e P T N P MYy
~and a, g=ia50/7)
- In Row 5

From the boundary conditions on E.z at r = Rw we find

&

a51=Q0(TlRw), a52=QQ(T2Rw), a53=wo(TlRw),'and asz‘ O(‘I' R ).
~ From the boundary conditions on Eé at r = R ve find
851501 T1Q0(T4R )5 8 5=, TZQO(T R, a63—L WO(T R ), and

86, Lo T MO (TR, )
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APPENDIX C
In the main body of the.text QO represehts an unquified or a
modified Bessel function of the first kind, WO represents an unhodified
or a modified Bessel function of the secoﬁd kind; Q; or’W6 represenbs
the derivéiive of the function‘with respect to its argumenﬂ.
Any of the standard texts on Bessel functions give the following
'formulas:26’27

let Zn(X) be an unmodified Bessel function of either the first or

the second kind of order n,

/
Then ZO(X) - zl(x)

/ .
and Zl(X) ZO(X) - Zl(X)/X.
For modified Bessel Functions

of the first kind

1,(x)
Io(X) = I(X)/4.

For modified Bessel Functions

/
)
IO(X’

]

"
and Il(x)

of the second kind
Ky (0)

- KO(X) - KI(X)/X.

Kg(X)

and  K;(X)
The necessary integral formulas are
for the unmodified Bessel function of the first kind
r
fmf(x)dr = (1/2) 7 [a3%) + 33(%) - 23,(X)3,(0)/%],

(0]
and for the modified Bessel function of the first kind
[

.[;Ii(X)dr = -(1/2)r2[13(x) -_Ii(x)'- 210(x)11(x)/x].
o ‘ .
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