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Alaska native peoples: a retrospective cohort study
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Campus, 13055 East 17th Place, Aurora, CO 80045, USA

Summary

Background Dementia is an increasing concern among American Indian and Alaska Native (AI/AN) communities, yet
machine learning models utilizing electronic health record (EHR) data have not been developed or validated for this
population. This study aimed to develop a two-year dementia risk prediction model for AI/AN individuals actively
using Indian Health Service (IHS) and Tribal health services.

Methods Seven years of data were obtained from the IHS National Data Warehouse and related EHR databases and
divided into a five-year baseline period (FY2007-2011) and a two-year dementia prediction period (FY2012-2013).
Four algorithms were assessed: logistic regression, Least Absolute Shrinkage and Selection Operator (LASSO),
random forest, and eXtreme Gradient Boosting (XGBoost). Dementia Risk Score (DRS)-based and extended
models were developed for each algorithm, with performance evaluated by the area under the receiver operating
characteristic curve (AUC).

Findings The study cohort included 17,398 AI/AN adults aged > 65 years who were dementia-free at baseline, of
whom 59.8% were female. Over the two-year follow-up, 611 individuals (3.5%) were diagnosed with incident
dementia. Extended models for logistic regression, LASSO, and XGBoost performed comparably: AUCs (95% ClI)
of 0.83 (0.79, 0.86), 0.83 (0.79, 0.86), and 0.82 (0.79, 0.86). These top-performing models shared 12 of the 15
highest-ranked predictors, with novel predictors including service utilization.

Interpretation Machine learning algorithms utilizing EHR data can effectively predict two-year dementia risk among
AI/AN older adults. These models could aid IHS and Tribal health clinicians in identifying high-risk individuals,
facilitating timely interventions and improved care coordination.

Funding NIH.

Copyright © 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: American Indian and Alaska Native Peoples; Alzheimer’s disease and related dementia (ADRD); All-cause
dementia; LASSO; Machine learning; Risk prediction; XGBoost

Introduction

The population of older adults aged 65 and older in the
United States is rapidly growing.' In line with the
general population, the population of older American
Indian and Alaska Native (AI/AN) adults is projected to
increase nearly three-fold between 2020 and 2060.' With
age being a well-established risk factor for dementia, the

anticipated accompanying growth of dementia preva-
lence among AI/AN older adults poses a significant
challenge for AI/AN healthcare systems, clinicians,
communities, and families.

Many AI/AN peoples access health care through the
Indian Health Service (IHS) and Tribal health providers,
which face challenges from high morbidity and low
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Research in context

Evidence before this study

The observed growth in the elderly population in the United
States (US) is expected to be accompanied by a significant
increase in the prevalence of dementia, including the
American Indian and Alaska Native (Al/AN) population.
Despite being disproportionately affected by many dementia
risk factors, AI/AN individuals remain underrepresented in
dementia research. Early identification of those at high risk for
dementia is essential for timely diagnosis, intervention, and
treatment, underscoring the need for accurate and effective
risk prediction models.

To assess the existing evidence prior to this investigation, we
conducted a literature search using PubMed and Google
Scholar for articles on “machine learning,” “Al/AN,”
“dementia,” "ADRD,” “electronic health record (EHR) data,”
“risk prediction,” "LASSO,” and “XGBoost,” published before
August 2024. While various dementia risk prediction models
have been developed, few have combined machine learning
algorithms with routinely collected EHR or claims data. These
investigations demonstrated the feasibility of using machine
learning algorithms to develop dementia risk prediction
models. However, no prediction models have been developed
or validated to predict the risk of all-cause dementia in Al/AN
older adults, leaving a significant gap in this critical area.

socioeconomic status among their patients. Over recent
decades, in response to the heavy burden of diabetes among
AI/AN peoples, IHS and Tribal health systems have
implemented evidence-based, community-driven strategies
that have proven effective in diabetes prevention and man-
agement. However, these systems are not adequately pre-
pared for the upcoming challenges associated with the
anticipated rise in dementia among AI/AN peoples.

Dementia is a leading cause of disability, de-
pendency, and mortality among older adults.? While
early diagnosis can offer quality-of-life benefits,
including access to dementia-specific services and
future planning, dementia remains under-detected and
under-managed.’ In primary care settings, barriers to
timely dementia diagnosis include constraints on face-
to-face time between clinicians and patients, lack of
timely or adequate follow-up, and lack of physician
confidence in diagnosis and/or specialist referral.*
These barriers are likely compounded by systematic is-
sues faced within AI/AN healthcare systems, including
underfunding, lack of clinic accessibility, understaffed
clinics, and a shortage of specialists.” A data-driven
model to identify AI/AN individuals at high risk for
dementia, who are active users of IHS and Tribal health
services, could help address these barriers.

The development of dementia risk prediction models
using machine learning algorithms has seen significant
growth in recent years. Many existing models have

Added value of this study

This investigation is the first to develop an all-cause dementia
risk prediction model specifically for AI/AN individuals. This
study also compared the data preprocessing efforts and
model performance of three machine learning algorithms
with a traditional logistic regression model. Consistent with
previous literature, our findings suggest that using machine
learning algorithms and EHR data can effectively predict
dementia risk. Importantly, this study identified several novel
predictors of all-cause dementia that were consistent across
algorithms.

Implications of all the available evidence

The findings from this investigation will assist Indian Health
Service and Tribal health clinicians and providers in identifying
Al/AN older adults who are active users of IHS/Tribal services
and are at a higher risk of developing all-cause dementia,
enabling early diagnosis and intervention. Furthermore, our
use of EHR data from a large, geographically diverse sample of
Al/AN individuals who used IHS and Tribal services provides a
valuable framework for other healthcare systems, particularly
those serving resource-limited populations.

relied on data from the Alzheimer’s Disease Neuro-
imaging Initiative, cognitive testing, genetic informa-
tion, and biomarkers.®” While these data types can
enhance predictive accuracy, their high cost and diffi-
culty of collection limit their practicality in primary care
settings. In contrast, electronic health record (EHR) data
encompass a wide range of clinical, social, and service
use measures with high external validity in real world
settings. Given the primary care focus of IHS and Tribal
health providers, a dementia prediction model using
routinely collected EHR data and machine learning al-
gorithms could serve as a practical and valuable tool for
promoting early detection of dementia.

To the best of our knowledge, no models have been
developed or validated specifically for predicting dementia
risk among AI/AN older adults. The absence of AI/AN
representation in the datasets used for model development
and validation likely limits their generalizability to this
population. In this study, focusing on a diverse sample of
active AI/AN IHS and Tribal health service users aged 65
years and older, we aimed to develop a two-year risk pre-
diction model for all-cause, incident dementia using EHR
data and machine learning algorithms.

Methods

Data source

Approximately 27% (2.6 million) of individuals who self-
identify as AI/AN in the US Census receive health care
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funded by IHS and Tribal health programs, which
include hospitals, clinics, and health programs operated
by IHS, Tribal organizations, and urban Indian health
programs.® This investigation utilized data from the IHS
Improving Health Care Delivery Data Project (IHS Data
Project). The dataset contains health status, service use,
and treatment cost information from fiscal years (FY)
2007-2013 for over 640,000 AI/AN peoples, represent-
ing nearly 30% of AI/AN peoples who utilize services
from IHS, Tribal organizations, and urban Indian
health programs across 15 IHS Service Units (sites)
throughout the US. These 15 sites had limited urban
clinic use during the study period; therefore, we refer to
them as IHS and Tribal providers in this investigation.
The sample is comparable to the national IHS popula-
tion in terms of age and sex.

In the IHS Data Project dataset, registration, de-
mographic, IHS and Tribal service data were extracted
from the National Data Warehouse, while data for ser-
vices that were provided by non-IHS or Tribal providers
but that were paid for by IHS and Tribal programs were
obtained from Purchased and Referred Care services.
Additional details about this data source have been
published elsewhere.’

Project personnel partnered with IHS and Tribal
organizations involved in the IHS Data Project through
a collaborative network. This network convenes regular
meetings of three advisory committees (i.e., Steering,
Project Site, and Patient), travels to project sites, and
follows a process to obtain approvals from [HS National
Institutional Review Board (IRB), Tribal IRBs, Councils,
and Tribal Authorities, as well as the university’s IRB
(Colorado Multiple IRBs). The IHS National IRB
approved a Waiver of HIPAA Authorization and a
Waiver of Documentation of Informed Consent because
the study involved minimal risk and it was impractical to
obtain consent.

Study design

This retrospective cohort study covered a seven-year
period, with a five-year baseline period (FY2007-2011)
to collect clinical, demographic, and healthcare utiliza-
tion data, followed by a two-year prediction window
(FY2012-2013) to assess incident dementia. The base-
line period served as a washout to differentiate between
incident and prevalent dementia, a common approach
in EHR studies.” The index date, set as October 1, 2011
(the beginning of FY2012), marked the start of the
outcome assessment period.

A two-year prediction window was selected based on
data availability and the goal of enabling timely in-
terventions for high-risk individuals. Although de-
mentia’s gradual onset means this timeframe may not
capture all early indicators of long-term risk, it focuses
on providing actionable predictions for immediate
clinical use. To assess the robustness of our findings, we
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conducted a sensitivity analysis using a one-year pre-
diction window (FY2012).

Study population

The study cohort included AI/AN individuals aged 65 or
older, who were active users of IHS and Tribal health
services and had no documented dementia diagnosis by
the index date. Individuals were excluded if they had
fewer than one healthcare encounter in each of the last
three years of the baseline period, if their healthcare
encounters over the baseline period were limited to
encounters without diagnostic codes, or if they had no
healthcare encounters during the outcome assessment
period. These inclusion and exclusion criteria were
designed to minimize misclassification of both pre-
dictors and incident dementia by ensuring that in-
dividuals were actively receiving care.

Candidate predictors

Candidate predictors were prespecified based on exist-
ing literature, expert knowledge, and the availability of
data in the IHS Data Project dataset. Established pre-
dictors included age, sex, diabetes, systolic and diastolic
blood pressure, body mass index (BMI), history of stroke
or ischemic attack, atrial fibrillation, cardiovascular dis-
ease subtypes, tobacco use disorder, alcohol use disor-
der, depression, mood or anxiety disorders, hearing loss,
traumatic brain injury, and the use of anti-hypertensive
medications, antidiabetic medications, and cardiovas-
cular disease medications.*”'%!!

Emerging evidence suggests that patients with de-
mentia experience increased healthcare utilization in
the years preceding diagnosis.”” Therefore, we included
emergency room visits, hospital observations, and
inpatient admissions as indicators of preclinical
dementia-related healthcare needs. Studies have also
identified associations between preclinical dementia and
reductions in BMI, as well as increased variability in
systolic and diastolic blood pressure.'* These factors
were assessed by calculating the coefficient of variation
for each metric over the baseline period. Given the high
prevalence of diabetes in AI/AN communities and its
association with dementia, we included acute diabetic
events as markers of disease severity and instability.”
Additionally, we considered healthcare coverage types
(Medicaid, Medicare, private insurance) to account for
potential disparities in care access and quality. Other
comorbidities considered, based on data availability,
included cancer, chronic kidney disease, and liver
disease.

Predictor definitions

Comorbid conditions were identified using ICD-9 codes
from inpatient and outpatient service utilization records,
supplemented by medication data. Sightlines™ DxCG
Risk Solutions software, commonly used by private
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insurers and the federal government to identify chronic
conditions, was used to detect baseline histories of car-
diovascular disease, malignant cancer, hypertension,
chronic kidney disease, hearing loss, mental health
conditions, and alcohol and tobacco use disorders.
Diabetes was identified using a validated algorithm
from national studies, which incorporates diagnostic
codes, medication codes, and blood glucose levels.'
Acute diabetic complication events were defined as
hospital admissions or emergency department visits
during the baseline period with a principal discharge
diagnosis of hyperglycemia, hypoglycemia, or diabetic
ketoacidosis. Stroke or ischemic attack and traumatic
brain injury were identified using ICD-9 codes based on
prior research (Supplementary Table S1).

Clinical measurements of systolic blood pressure,
diastolic blood pressure, and BMI were averaged over
the baseline period, and the coefficient of variation was
calculated for each measure. Medication use was
categorized using the Generic Product Identifier sys-
tem, a 14-character hierarchical classification system
that groups medications based on primary therapeutic
use.'” Medications of interest included anti-diabetic
medications (such as metformin, sulfonylureas, thia-
zolidinediones, and insulin), anti-hypertensive medi-
cations (such as diuretics, beta blockers, calcium
channel blockers, angiotensin converting enzyme in-
hibitors, angiotensin receptor blockers, and other
antihypertensive medications), and cardiovascular dis-
ease medications (such as statins and other anti-
hyperlipidemic medication). Service utilization was
represented by the average number of emergency room
visits and hospital observations, as well as the average
number of inpatient hospitalizations per fiscal year
across the baseline period.

Assessment of dementia

Individuals were identified as having been diagnosed
with incident, all-cause dementia if they had at least one
qualifying ICD-9 code in their National Data Warehouse
or Purchased and Referred Care inpatient and outpa-
tient service utilization records. ICD-9 codes used for
identification of dementia are inclusive of those for
Alzheimer’s disease (331.0) as well as vascular (290.40,
290.41, 290.42, 290.43), Lewy body (331.82,
332.0 + 331.0), frontotemporal (331.1, 331.11, 331.19),
alcohol-induced (291.2), and other types of dementia
(046.11, 046.19, 292.82, 333.4, 290.0, 290.10, 290.11,
290.12, 290.13, 290.20, 290.21, 290.3, 290.9, 294.1,
294.10, 294.11, 294.20, 294.21, 294.8, 331.2, 797) that
have been used in previous investigations.'®

Modelling approaches

Modeling was performed in stages. First, we developed
an age-only logistic regression model to establish a
baseline performance, as age is a well-established pre-
dictor of dementia. This model served as a reference

point for evaluating the added predictive value of other
clinical and demographic variables.

For each of the four modeling techniques, we then
developed two models: (1) a Dementia Risk Score
(DRS)-based model and (2) an extended model. The
DRS-based model utilized a targeted set of predictors
derived from the DRS, a model initially developed using
primary care data from a representative United
Kingdom cohort, aged 60 to 95, through the Health
Improvement Network.” The DRS is one of the few
dementia prediction models based on EHR data that has
been externally validated across diverse racial and ethnic
groups.”” However, some variables, such as the social
deprivation score, were unavailable in the IHS dataset,
limiting its full external validation.

The extended model incorporated additional pre-
dictors based on literature and clinical insights, allowing
for a more comprehensive set of dementia-related fac-
tors beyond those included in the DRS. This expansion
allowed us to assess whether incorporating a broader
range of predictors would improve model performance,
particularly with ensemble methods like random forest
and XGBoost, which are well-suited to handle high-
dimensional data.

Modelling algorithms

Four algorithms commonly used in the field of dementia
prediction were employed: logistic regression with back-
ward stepwise selection, Least Absolute Shrinkage
Operator (LASSO) regression, random forest, and
eXtreme Gradient Boosting (XGBoost). Logistic regres-
sion served as a benchmark model, valued for its inter-
pretability and ability to provide clear insights into the
influence of each predictor. However, logistic regression
is constrained by strict statistical assumptions and is less
suited for handling high-dimensional data, multi-
collinearity, sparsity, and missing data.’’ LASSO, an
extension of logistic regression, mitigates some of these
limitations by incorporating variable selection and regu-
larization, which improves its suitability for high-
dimensional data and reduces overfitting, although it
still shares logistic regression’s underlying statistical as-
sumptions and sensitivity to multicollinearity.”’ Random
forest and XGBoost, tree-based ensemble methods, are
designed to capture complex, non-linear relationships
and interactions, which may be missed by linear models.
XGBoost, in particular, requires minimal data pre-
processing and often achieves higher predictive accuracy
through gradient boosting, an iterative process that en-
hances precision.” However, tree-based methods gener-
ally offer lower interpretability than traditional statistical
models. Additional details on each algorithm type are
available in the Supplementary Methods.

Data pre-processing

Model-specific pre-processing steps are outlined in
Table 1. For logistic regression and LASSO, scatter plots
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of each continuous predictor against the logit values
were visually inspected to assess linearity. Nonlinear
relationships were addressed by categorizing predictors
when necessary. Since random forest and XGBoost are
not constrained by linearity assumptions, no categori-
zation was required for these models. To prevent over-
fitting, inaccurate feature importance, and high
variance, sparse features were removed in logistic
regression and LASSO, while random forest and
XGBoost naturally accommodate sparse data. Stan-
dardization (mean of zero, standard deviation of one)
was applied to LASSO features to ensure comparability
of coefficients under penalization.

To address missing data, model-specific approaches
were used. XGBoost’s sparsity-aware split-finding algo-
rithm handled missing data internally, while logistic
regression and LASSO required imputation before
model training. For predictors with less than 5%
missing data, a commonly used threshold,” k nearest
neighbor imputation was applied to fill gaps based on
similar cases. For predictors with more than 5%
missing data, we categorized missing values separately.

Model building and internal validation

The full study sample was split into training (80%) and
testing (20%) datasets through simple random sam-
pling, stratified by incident dementia status. The
training dataset was used for hyperparameter tuning
and model training, while the testing dataset was
reserved for internal validation to assess the perfor-
mance of each model. Fig. 1 illustrates the overall
workflow for model building and validation.

Before training the LASSO, random forest, and
XGBoost models, hyperparameter tuning was per-
formed using grid search. A semi-random grid of 50
hyperparameter combinations, generated through Latin
Hypercube Sampling, was evaluated with 10-fold cross-
validation. The optimal hyperparameter values were
selected based on the highest area under the receiver
operating characteristic curve (AUC). Each model was
then trained on the processed training data using these
optimized hyperparameter values.

The predictive performance of each model was
evaluated on the testing dataset and compared based on
AUC. To evaluate clinical applicability, sensitivity and
specificity were examined across a range of thresholds,
given the imbalanced nature of the dataset, with de-
mentia being a rare outcome. To ensure robust perfor-
mance estimates, 95% confidence intervals (Cls) for
AUC, sensitivity, and specificity were calculated using
bootstrap resampling with 200 iterations.

Feature importance

Feature importance is quantified differently for each
machine learning algorithm. In this investigation, we
used the vip package in R software (version 4.2.0) to
calculate and visualize feature importance for the top-
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Candidate predictor LR/LASSO® modeling RF/XGBoost
modeling

Age Continuous Continuous
Body mass index (BMI)

Average Categoricalb: < 18.5,18.5 to < 25, 25 to < 30, Continuous

> 30, Missing®

Coefficient of variation Categorical”: tertiles and Missing® Continuous
Systolic blood pressure

Average Categoricalbd: <120, 120-129, 130-139, Continuous

and > 140 mmHg

Coefficient of variation Categorical™: tertiles Continuous
Diastolic Blood Pressure

Average Categorical®™: quartiles Continuous

Coefficient of variation Categorical™: tertiles Continuous
Emergency room visits and hospital ~ Categorized”: <1, 1-2, >2 Continuous
observations
Inpatient hospitalizations Categorical®: 0, 0-1, >1 Continuous
Health care coverage

Private Yes/No Yes/No

Medicaid Yes/No Yes/No

Medicare Omitted” Yes/No

IHS only Omitted® Yes/No
Sex Male/Female Male/Female
Cardiovascular conditions/events

Stroke or Ischemic attack Yes/No Yes/No

Atrial fibrillation Yes/No Yes/No
Cardiovascular disease subtype

Cerebrovascular disease Yes/No Yes/No

Ischemic heart disease Yes/No Yes/No

Vascular disease Yes/No Yes/No

Congestive heart failure/other Yes/No Yes/No
Other comorbidities

Diabetes Yes/No Yes/No

Hypertension Yes/No Yes/No

Cancer (All) Yes/No Yes/No

Chronic kidney disease Yes/No Yes/No

Traumatic brain injury Yes/No Yes/No

Hearing loss Yes/No Yes/No
Mental health diagnoses

Depression Yes/No Yes/No

Mood/anxiety disorder Yes/No Yes/No
Substance use disorder

Alcohol use disorder Yes/No Yes/No

Tobacco use disorder Yes/No Yes/No
Antidiabetic medications

Metformin Yes/No Yes/No

Sulfonylureas Yes/No Yes/No

Thiazolidinediones Yes/No Yes/No

Insulin Yes/No Yes/No
Anti-hypertensive medications Yes/No Yes/No
Cardiovascular disease medications ~ Yes/No Yes/No
Severe acute diabetic event Yes/No Yes/No

LR: Logistic Regression; LASSO: Least Absolute Shrinkage Operator; RF: Random Forest, XGBoost: Extreme Gradient
Boosting. *All predictors were standardized prior to entry into LASSO algorithm. ®Continuous variable categorized
due to evidence of non-linearity with the predictor and the log-odds of dementia. “Missing category was created
when predictor missingness was greater than 5%. %k nearest neighbor (kNN) imputation used when predictor
missingness was less than 5%. “Omission due to low feature variance and unstable estimates in LR and LASSO.

Table 1: Candidate predictors and pre-processing by model type.
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Study Cohort Selection

}

Model-Specific Data Pre-Processing

|

Divide the full dataset into training (80%) and testing (20%) datasets using simple
random sampling stratified on dementia and a random seed for reproducibility

} |

Training Dataset Testing Dataset
H ter tuning (LASSO, RF, imi i
yperparameter unmg ( : Optimized, Fitted Model
and XGBoost only) using Grid Search
and 10-fold cross validation l
l Model Evaluation
(Internal Validation)
Model Training/Development

Fig. 1: Dementia prediction model development and validation workflow. Abbreviations: LASSO: Least Absolute Shrinkage Operator; RF:
Random Forest; XGBoost: Extreme Gradient Boosting.

Starting sample:

633,357 individuals in IHS Data Project dataset

l

40,956 individuals aged > 65 years by the end of the

baseline period” Exclude 2,812 individuals
with prevalent all-cause
l > dementia during baseline
period”

38,144 individuals without a diagnosis of all-cause
dementia by the end of the baseline period”

Exclude 20,566 individuals
1 > with incomplete follow-up
data
17,578 individuals with healthcare encounters in each
of the final three years of the baseline period and
during the outcome assessment period’
1 R Exclude 180 individuals
" without diagnostic codes

Final Study Cohort: 17,398 individuals

Fig. 2: Flowchart of study cohort identification from IHS Data Project dataset for the development and internal validation of a two-year
all-cause dementia prediction model. *Five-year baseline period defined from fiscal year FY2007-2011. "Two-year outcome assessment period
defined from FY2012-2013.
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performing models.”” For logistic regression and
LASSO, feature importance was assessed based on the
magnitude of the coefficients and their associated z-
statistics, reflecting the statistical significance of each
predictor. In random forest, feature importance was
determined by impurity reduction, which indicates each
feature’s contribution to reducing node impurity and
improving prediction accuracy. For XGBoost, feature
importance was based on Gain, which quantifies the
impact of each feature on improving the model’s
objective function. We compared the top 15 variables
most predictive of dementia across all algorithms.

Role of the funding source

The study sponsors were not involved in the design of
the study; the collection, analysis, and interpretation of
data; the writing of the report; or the decision to submit
the paper for publication.

Results

Characteristics of excluded participants

The THS Data Project dataset initially included 38,144
individuals aged 65 years and older who were
dementia-free at the index date. Of these, 20,746 in-
dividuals (54.4%) were excluded due to incomplete
follow-up according to the specified inclusion criteria,
resulting in a final study cohort of 17,398 individuals
(Fig. 2).

Supplementary Table S2 compares the baseline
characteristics of the included and excluded cohorts.
Individuals in the included cohort were more likely to
have Medicare coverage (97.5% vs. 47.0%) and less
likely to be uninsured (2.0% vs. 4.2%), although Medi-
care coverage data were missing for 48.2% of in-
dividuals in the excluded cohort. Additionally, the
included cohort had a higher prevalence of comorbid
conditions, including obesity (42.3% vs. 17.2%), hyper-
tension (85.2% vs. 48.4%), diabetes (47.5% vs. 23.7%),
and congestive heart failure (37.1% vs. 22.1%).

Study population

Among the 17,398 adults aged 65 years and older, the
mean (SD) age was 73.1 (6.3) years, and 10,409 (59.8%)
were women. During the two-year follow-up, 611 (3.5%)
individuals were diagnosed with incident all-cause
dementia.

Those diagnosed with dementia were older, with a
mean (SD) age of 79.1 (7.5) years, compared to 72.9 (6.1)
years in the non-dementia group. Additionally, the de-
mentia cohort had a higher proportion of individuals
with Medicaid coverage (25.2% vs. 13.1%) and a greater
prevalence of cardiovascular conditions, including ce-
rebrovascular disease (22.8% vs. 11.5%), stroke or
ischemic attack (12.3% vs. 6.2%), and atrial fibrillation
(12.6% vs. 6.5%). A detailed comparison of baseline
characteristics is provided in Table 2.
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No dementia
N = 16,787 N (%)

Full cohort
N = 17,398 N (%)

Incident
dementia
N = 611 N (%)

Age
Mean (SD)
Range
Sex
Female
Insurance coverage
Private
Medicaid
Medicare
None
Body mass index (BMI)®
Underweight
Normal weight
Overweight
Obese
Missing
Blood pressure”
Normal
Elevated
High
Missing
Cardiovascular disease subtypes*
Cerebrovascular disease
Ischemic heart disease
Vascular disease
Congestive heart failure/other
Cardiovascular conditions/events®
Stroke or Ischemic attack
Atrial fibrillation
Other comorbidities®
Diabetes
Hypertension
Cancer (All)
Chronic kidney disease
Traumatic brain injury
Hearing loss
Mental health diagnoses®
Depression

Mood/anxiety disorder (excluding
depression)

Substance use disorder

Alcohol use disorder

Tobacco use disorder
Antidiabetic medications

Metformin

Sulfonylureas

Thiazolidinediones

Insulin
Anti-hypertensive medications”
Cardiovascular disease medications®

Average inpatient hospitalizations per
fiscal year

0

72.9 (6.1)
(65.0-103.0)

10,027 (59.7)

2867 (17.1)
2200 (13.1)
16,364 (97.5)
331 (2.0)
105 (0.6)
2855 (17.0)
5719 (34.1)
7194 (42.9)
914 (5.4)

1542 (9.2)
3887 (23.2)
11,085 (66.0)

273 (1.6)

1930 (11.
4359 (26.
4939 (

6157 (

5)
0)
29.4)
36.7)
1046 (6.2)
1092 (6.5)

7943 (47.3)
14,289 (85.1)
1660 (9.9)
3216 (19.2)
414 (2.5)
2674 (15.9)
3626 (21.6)
914 (5.4)

801 (4.8)
2549 (15.2)

4992 (29.7)
3905 (23.3)
3313 (19.7)
2627 (15.7)
14,177 (84.5)
10,674 (63.6)

12,482 (74.4)

791 (7.5) 731 (6.3)
(65.2-99.0) (65.0-103.0)
382 (62.5) 10,409 (59.8)
75 (12.3) 2942 (16.9)
154 (25.2) 2354 (13.5)
595 (97.4) 16,959 (97.5)
15 (2.5) 346 (2.0)
8 (1.3) 113 (0.7)
160 (26.2) 3015 (17.3)
233 (38.1) 5952 (34.2)
164 (26.8) 7358 (42.3)
46 (7.5) 960 (5.5)
56 (9.2) 1598 (9.2)
153 (25.0) 4040 (23.2)
399 (65.3) 11,484 (66.0)
3 (0.5) 276 (1.6)
139 (22.8) 2069 (11.9)
201 (32.9) 4560 (26.2)
257 (42.1) 5196 (29.9)
305 (49.9) 6462 (37.1)
75 (12.3) 1121 (6.4)
77 (12.6) 1169 (6.7)
321 (52.5) 8264 (47.5)
540 (88.4) 14,829 (85.2)
69 (11.3) 1729 (9.9)
168 (27.5) 3384 (19.5)
28 (4.6) 442 (2.5)
170 (27.8) 2844 (16.4)
168 (27.5) 3794 (21.8)
45 (7.4) 959 (5.5)
61 (10.0) 862 (5.0)
70 (11.5) 2619 (15.1)
162 (26.5) 5154 (29.6)
147 (24.1) 4052 (23.3)
113 (18.5) 3426 (19.7)
125 (20.5) 2752 (15.8)
537 (87.9) 14,714 (84.6)
356 (58.3) 11,030 (63.4)
326 (53.4) 12,808 (73.6)

(Table 2 continues on next page)
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Full cohort
N = 17398 N (%)

No dementia Incident
N = 16,787 N (%) dementia
N = 611 N (%)

(Continued from previous page)

>0 to <1 3935 (23.4) 236 (38.6) 4171 (24.0)
21 370 (2.2) 49 (8.0) 419 (2.4)
Average emergency room visits or
hospital observations per fiscal year
<1 13,697 (81.6) 389 (63.7) 14,086 (81.0)
>1to <2 1979 (11.8) 124 (203) 2103 (12.1)
>2 1111 (6.6) 98 (16.0) 1209 (7.0)
Severe acute diabetic event 552 (3.3) 52 (8.5) 604 (3.5)

“Average BMI across baseline period with WHO algorithm for BMI categorization. Underweight: BMI < 18.5;
Normal Weight: BMI 18.5 to 25; Overweight: 25 < BMI < 30; Obese: BMI > 30. bAverage blood pressure across
baseline period with the following definitions: Normal: Systolic Blood Pressure (SBP) < 120 mmHg and Diastolic
Blood Pressure (DBP) < 80 mmHg; Elevated: 120 mmHg < SBP < 130 mmHg and DBP < 80 mmHg; High: SBP >
130 mmHg or DBP > 80 mmHg. ‘Comorbidities present in electronic health records during the baseline period.
dAnti-hypertensive medications included diuretics, beta blockers, calcium channel blockers, angiotensin
converting enzyme inhibitors, angiotensin receptor blockers, and other anti-hypertensive medications.
“Cardiovascular disease medications included statins and antihyperlipidemic medications.

Table 2: Baseline clinical and demographic characteristics of the study cohort by incident all-cause
dementia status.

Model performance

The optimized hyperparameter values for each model
are provided in Supplementary Table S3. Table 3 pre-
sents the discriminative performance of each model on
the testing dataset, as evaluated by AUC. The age-only
logistic regression model achieved an AUC of 0.76
(95% CI: 0.71, 0.80). The DRS-based models demon-
strated generally comparable performance, with AUCs
of 0.80 (95% CI: 0.77, 0.83) for logistic regression, 0.80
(95% CI: 0.77, 0.83) for LASSO, 0.76 (95% CI: 0.73,
0.80) for random forest, and 0.80 (95% CI: 0.75, 0.84)
for XGBoost.

The inclusion of additional candidate predictors in
the extended models improved discriminatory perfor-
mance across most models. The extended logistic
regression, LASSO, and XGBoost models were the top

Model AUC (95% CI)

0.76 (0.71, 0.80)

LR (age-only)

LR (DRS-based) 0.80 (0.77, 0.83)
LR (extended) 0.83 (0.79, 0.86)
LASSO (DRS-based) 0.80 (0.77, 0.83)
LASSO (extended) 0.83 (0.79, 0.86)
RF (DRS-based) 0.76 (0.73, 0.80)
RF (extended) 0.76 (0.72, 0.81)
XGBoost (DRS-based) 0.80 (0.75, 0.84)
XGBoost (extended) 0.82 (0.79, 0.86)

LR: Logistic Regression; LASSO: Least Absolute Shrinkage Operator; RF: Random
Forest; XGBoost: Extreme Gradient Boosting; DRS: Dementia Risk Score; Cl:
Confidence Interval.

Table 3: Model performance on the testing dataset, measured by area
under the receiver operator characteristic curve (AUC).

performers, with AUCs of 0.83 (95% CI: 0.79, 0.86),
0.83 (95% CI: 0.79, 0.86), and 0.82 (95% CI: 0.79, 0.86),
respectively. In contrast, the extended random forest
model did not demonstrate an improved performance
over the DRS-based model, with an AUC of 0.76 (95%
CI: 0.72-0.81). Receiver operating characteristic (ROC)
curves for the age-only, extended logistic regression,
LASSO, random forest, and XGBoost models are shown
in Fig. 3.

In the sensitivity analysis with a 1-year follow-up
window, the AUCs (95% CI) for the top-performing
extended logistic regression, LASSO, and XGBoost
models were 0.79 (0.57, 0.80), 0.79 (0.56, 0.80) and 0.79
(0.68, 0.83), respectively (Supplementary Table S4).

Sensitivity and specificity for the top-performing
models were largely consistent (Table 4). At a 2% clas-
sification threshold, XGBoost demonstrated a sensitivity
of 90% (95% CI: 86%, 95%) and a specificity of 53%
(95% CI: 51%, 54%), while LASSO had a sensitivity of
89% (95% CI: 83%, 94%), and a specificity of 52% (95%
CI: 51%, 54%). At a higher threshold of 4%, where both
models showed decreasing sensitivity and increasing
specificity, XGBoost achieved 73% sensitivity (95% CI:
65%, 80%) and 75% specificity (95% CI: 74%, 76%),
while the LASSO showed a sensitivity of 74% (95% CI:
68%, 83%) and a specificity of 77% (95% CI: 75%, 78%).

Feature importance

Fig. 4 shows the feature importance plots for the top-
performing models: extended logistic regression,
LASSO, and XGBoost, with age identified as the most

1.0 ——
r—F-;r
T L ——
e
o
0.75 f/lf;
>
2 /
2 f
g 0.50
0 Models
'] w Age only
025 | == | ASSO (Extended)
) " LR (Extended)
( RF (Extended)
XGBoost (Extended)
0.00
0.00 0.25 0.50 0.75 1.0
1-Specificity

Fig. 3: Receiver operating characteristic curves for the age-only,
LASSO (extended), LR (extended), RF (extended) and XGBoost
(extended) two-year incident, all-cause dementia prediction
models*. Abbreviations: LR: Logistic Regression; LASSO: Least Ab-
solute Shrinkage Operator; RF: Random Forest; XGBoost: Extreme
Gradient Boosting.
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Model Threshold Sensitivity (%) Specificity (%)
(95% Cl) (95% Cl)

LR (Extended)
0.010 97% (93%, 99%)  28% (27%, 30%)
0.020 89% (84%, 94%)  55% (54%, 57%)
0.025 86% (81%, 91%)  64% (62%, 65%)
0.030 81% (74%, 86%)  69% (67%, 71%)
0.040 72% (64%, 79%)  77% (76%, 79%)
0.050 68% (60%, 75%)  83% (82%, 84%)

LASSO

(Extended)
0.010 98% (97%, 100%) 20% (19%, 21%)
0.020 89% (83%, 94%)  52% (51%, 54%)
0.025 86% (80%, 92%)  61% (59%, 62%)
0.030 81% (75%, 88%)  67% (65%, 69%)
0.040 74% (68%, 83%)  77% (75%, 78%)
0.050 67% (59%, 75%)  82% (81%, 84%)

XGBoost

(Extended)
0.010 99% (96%, 100%) 19% (18%, 21%)
0.020 90% (86%, 95%)  53% (51%, 54%)
0.025 86% (80%, 91%)  61% (59%, 62%)
0.030 83% (76%, 88%)  67% (65%, 68%)
0.040 73% (65%, 80%)  75% (74%, 76%)
0.050 68% (58%, 75%)  81% (80%, 82%)

LR: Logistic Regression; LASSO: Least Absolute Shrinkage Operator; XGBoost:

Extreme Gradient Boosting; Cl: Confidence Interval.

Table 4: Sensitivity and specificity of top-performing dementia risk

models at various threshold values on the testing dataset.

important predictor across all three models. The top 15
predictors from each model are presented in a Venn
diagram (Fig. 5). Of these, 12 predictors (80%) were

consistently identified as important across all three
models. These include age, alcohol use disorder, cerebro-
vascular disease, inpatient hospitalizations, Medicaid
coverage, BMI coefficient of variation, hearing loss,
emergency room visits and hospital observations, BMI,
diastolic Dblood pressure, diabetes, and insulin use.
Depression and acute diabetic complication events
ranked among the top 15 predictors in both LASSO
and logistic regression models, while systolic blood
pressure coefficient of variation appeared in the top
15 predictors for both LASSO and XGBoost. Atrial
fibrillation was identified as a top predictor only in the
logistic regression model, while diastolic blood pres-
sure coefficient of variation and systolic blood pres-
sure were unique to XGBoost.

Discussion

This study demonstrates that machine learning algo-
rithms utilizing EHR data can effectively predict two-
year all-cause dementia risk in AI/AN adults aged 65
years and older who actively use IHS and Tribal health
services. The extended logistic regression, LASSO, and
XGBoost models each showed strong, and comparable
discriminative abilities, with enhanced performance in
extended models that incorporated additional health and
service use features.

Prediction model development is inherently explor-
atory, with each algorithm offering distinct strengths
and limitations depending on the dataset characteristics.
Our findings are consistent with previous research,
demonstrating that machine learning models like
XGBoost perform similarly to traditional logistic

Age-

Alcohol Use Disorder -
Cerebrovascular Disease -
Inpatient Hospitalization (0-1/Y)
BMI CV missing -

Medicaid Coverage -

Inpatient Hospitalization (>1/Y) -

BMICV (>75% . S
L% Inpatient Hospitalization (21/Y) -

Hearing loss
ER/HO (32/Y) BMI CV missing -
ER/HO (1-2Y)- = Hearing loss-
Depression- BMICV (>75%)-
Acute Diabetic Event- o ERHO (1-2/Y)-
Diabetes- o Depression-
Insulin use Acute Diabetic Event-

BMI CV (25-50%)

BMI (>30)- « DBP (67.7-72.3)-
DBP (67.7-72.3)- « Diabetes -
Atrial Fibrillation- SBP CV (>75%)-

LR

Importance (|z-statistic|)

Age-

Inpatient Hospitalization (0-1/Y)-
BMI (>30)-

Alcohol Use Disorder-
Cerebrovascular Disease -
Medicaid Coverage -

ER/HO (22/Y) -

Insulin use-

LASSO

Importance (|z-statistic|)

BMI CV
DBPCV

ER/HO

SBPCV -
SBP-

DBP-

Inpatient Hospitalization
Hearing loss

Cerebrovascular Disease

Medicaid Coverage -

Alcohol Use Disorder-

Diabetes - «

Insulin use - o

XGBoost

Importance (Gain)

Fig. 4: Model-specific feature importance plots for extended LR, LASSO", and XGBoost Models predicting the two-year risk of incident
all-cause dementia. Abbreviations: LR: Logistic Regression; LASSO: Least Absolute Shrinkage Operator; XGBoost: Extreme Gradient Boosting;
BMI: Body Mass Index; CV: Coefficient of Variation; SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; ER/HO: Emergency Room Visits
and Hospital Observations. "All predictors were standardized prior to entry into the LASSO model.
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LASSO Regression

Depression,
SBP CV Acute diabetic
Age, Alcohol use disorder, complication
Cerebrovascular disease, events
Frequency of inpatient
hospitalization, Medicaid
coverage, BMI CV, Hearing
DBP CV, loss, ER/HO, BMI, DBP, Atrial
SBP Diabetes, Insulin use Fibrillation
LR with Backwards
XGHoast Stepwise Selection

Fig. 5: Venn Diagram comparison of the top 15 predictors for two-year incident, all-cause dementia across XGBoost, LASSO, and LR
algorithms. Abbreviations: LR: Logistic Regression; LASSO: Least Absolute Shrinkage Operator; XGBoost: Extreme Gradient Boosting; BMI: Body
Mass Index; CV: Coefficient of Variation; SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; ER/HO: Emergency Room Visits and

Hospital Observation.

regression in predicting dementia risk using EHR
data.””’

XGBoost offers advanced capabilities, including its
ability to handle missing data autonomously and assess
complex relationships and interactions, which can
streamline the model development process. However,
due to the relatively limited set of candidate predictors
in this study, the performance improvements from
XGBoost were minimal. In future studies with a broader
range of predictors, XGBoost could provide greater
advantages.

While XGBoost demonstrated comparable perfor-
mance to simpler models like logistic regression and
LASSO, the interpretability and simplicity of logistic
regression and LASSO may make them more practical
for clinical use. These models provide clear feature
weights, which can help clinicians understand and
confidently apply the models in real-world settings.

The strong performance of the age-only model
highlights age as a primary driver of prediction accu-
racy, consistent with prior studies.” Reporting the per-
formance of the age-only model provides valuable
insights into the influence predictors beyond age alone.

The overlap in top predictors across algorithms re-
inforces the robustness of the identified dementia risk
factors for AI/AN individuals. While these predictors

are largely consistent, variations in their rankings across
models highlight the different ways algorithms process
data. For example, tree-based models, which use metrics
like Gain and Gini importance to rank features, tend to
prioritize continuous or high-cardinality variables,
leading to differences in ranking compared to linear
models.” Additionally, LASSO regularization shrinks
larger coefficients, effectively selecting a subset of fea-
tures and refining their relative importance, which re-
sults in slightly different rankings compared to logistic
regression, which does not use regularization.

To address potential violations of linearity and
missing data, continuous predictors (except age) were
categorized for LASSO and logistic regression, while
XGBoost required no transformation. However, subop-
timal categorization can reduce both information and
statistical power. A sensitivity analysis using continuous
variables for logistic regression and LASSO revealed
lower performance, highlighting these models’ limita-
tions in  handling  non-linear  relationships
(Supplementary Table S5). This suggests that optimized
categorization could enhance performance, whereas
XGBoost was able to effectively capture non-linear pat-
terns without requiring transformation.

A novel finding of this investigation is the predictive
significance of service utilization during the baseline
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period. While service utilization is rarely considered a
predictor in dementia prediction models, this finding
aligns with evidence suggesting that increased hos-
pitalizations and emergency room visits often precede
dementia diagnoses.'” Incorporating service utiliza-
tion measures in future models could enhance pre-
dictive accuracy and provide valuable insights into
early dementia risk.

Cerebrovascular disease also emerged as a top pre-
dictor across all models, consistent with prior research
linking cerebrovascular disease to dementia risk."
Given the disproportionately high incidence of stroke
among AI/AN individuals, this finding highlights the
importance of preventive measures targeting cerebro-
vascular health. Additionally, comorbidities such as
depression, diabetes, hearing loss, and BMI variability
were significant predictors, reinforcing the need to
consider these factors in dementia risk assessments.
Medicaid coverage also emerged as an important pre-
dictor, potentially reflecting socioeconomic vulnerabil-
ities, as well as varying levels of healthcare access and
need.

The strengths of this study include the use of data
from a large, geographically diverse cohort of AI/AN
older adults. The EHR data source provided longitu-
dinal insights across a broad range of potential risk
factors, including health status measurements, medi-
cal history, diagnoses, and prescription data. This
comprehensive dataset allowed for the consideration of
a large number of candidate features. Additionally, the
use of a five-year washout/baseline period helped
minimize missing data for baseline predictors and
assisted in differentiating prevalent and incident de-
mentia cases.

This investigation has several limitations. The low
incidence of dementia, combined with the 80%/20%
train/test split, reduced the number of cases available
for performance evaluation, resulting in wider confi-
dence intervals. Despite this, the performance estimates
suggest model robustness with the available data.
Additionally, under-detection of dementia diagnoses,
particularly from non-IHS and Tribal providers unless
Purchased and Referred Care coverage was utilized,
may have led to an underestimation of dementia inci-
dence. The observed 3.5% two-year incidence rate in our
dataset, which is lower than the 3.1-3.7% one-year
incidence reported among AI/AN Medicare benefi-
ciaries,” supports this possibility, though the pop-
ulations are not directly comparable.

Routinely collected EHR data present inherent
limitations for prediction modeling. Key sociodemo-
graphic factors, such as education, income, and marital
status, were unavailable, which limited the model’s
ability to fully account for social determinants of de-
mentia risk. Furthermore, diagnoses of comorbidities
and dementia were not externally validated, intro-
ducing potential misclassification. The seven-year EHR

www.thelancet.com Vol 43 March, 2025

data window also restricted the ability to capture long-
term medical histories, such as prior traumatic brain
injury, and constrained the prediction period for
dementia.

The IHS is currently funding initiatives aimed at
increasing dementia awareness and improving ser-
vices, including training programs through its Alz-
heimer’s Disease and Dementia Program to address
the needs of patients with dementia. Dementia risk
prediction models show promise as valuable tools for
IHS and Tribal clinicians, enabling the early identi-
fication of high-risk individuals. Future research
should focus on translating these models into clinical
practice, with an emphasis on establishing opera-
tional thresholds that balance sensitivity and speci-
ficity to ensure accurate detection while minimizing
unnecessary alarm. Additionally, developing practical
guidelines for implementation is essential, particu-
larly those that incorporate culturally sensitive ap-
proaches tailored to the unique needs of AI/AN
communities.
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