
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Verifiable Integrity and Availability for Code and Execution in Simple Embedded Systems

Permalink
https://escholarship.org/uc/item/7983n05g

Author
De Oliveira Nunes, Ivan

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7983n05g
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Verifiable Integrity and Availability for Code and Execution in Simple Embedded Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Networked Systems

by

Ivan De Oliveira Nunes

Dissertation Committee:
Dr. Gene Tsudik, Chair
Dr. Ardalan Amiri Sani

Dr. N. Asokan

2021

Portion of Chapter 3 c© 2019 The USENIX Association
Portion of Chapter 5 c© 2020 The USENIX Association

All other materials c© 2021 Ivan De Oliveira Nunes

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE xi

ABSTRACT OF THE DISSERTATION xiv

1 Introduction 1
1.1 Dissertation Structure . 4

2 Background 6
2.1 Scope: Low-end Embedded Devices . 8
2.2 Attestation in Low-end Devices . 9
2.3 Linear Temporal Logic, Model Checking, and Formal Verification 13

3 VRASED: Verifiable Remote Attestation for Simple Embedded Systems 17
3.1 Introduction . 19
3.2 Overview of VRASED . 20

3.2.1 Adversary Capabilities & Verification Axioms 21
3.2.2 Secure RA Properties at a High-Level (Informally) 23
3.2.3 System Architecture . 25
3.2.4 Verification Pipeline . 26

3.3 Verifying VRASED . 28
3.3.1 Notation . 28
3.3.2 Formalizing RA Soundness and Security 31
3.3.3 VRASED SW-Att . 33
3.3.4 Key Access Control (HW-Mod) . 35
3.3.5 Atomicity and Controlled Invocation (HW-Mod) 36
3.3.6 Key Confidentiality (HW-Mod) . 38
3.3.7 DMA Support . 40
3.3.8 HW-Mod Composition . 42
3.3.9 Secure Reset (HW-Mod) . 42

ii

3.4 Alternative Designs . 44
3.4.1 Erasure on SW-Att . 44
3.4.2 Compiler-Based Clean-Up . 45
3.4.3 Double-HMAC Call . 45

3.5 Evaluation . 46
3.5.1 Implementation . 46
3.5.2 Verification Results . 47
3.5.3 Performance and Hardware Cost . 48
3.5.4 Comparison with Other Low-End RA Architectures 49

3.6 Related Work . 50
3.7 Conclusion . 52
3.8 Appendix: RA Soundness and Security Proofs 53

3.8.1 Proof Strategy . 53
3.8.2 Machine Model . 53
3.8.3 RA Soundness Proof . 54
3.8.4 RA Security Proof . 56

3.9 Appendix: Verifier Authentication . 58
3.10 Appendix: FPGA Deployment and Sample Application 61

4 RATA: Remote Attestation with TOCTOU Avoidance 63
4.1 Introduction . 65
4.2 Problem Scope & Definitions . 67

4.2.1 Detection, Prevention & Memory Immutability 67
4.2.2 Device Model & MCU Assumptions 68
4.2.3 RA Definitions, Architectures & Adversary Model 69

4.3 RA TOCTOU . 72
4.3.1 Notation . 72
4.3.2 TOCTOU-Security Definition . 73
4.3.3 TOCTOU-Secure RA vs. Consecutive Self-Measurements 75

4.4 RATAA: RTC-Based TOCTOU-Secure Technique 77
4.4.1 RATAA: Design & Security . 78
4.4.2 RATAA: Implementation & Verification 80

4.5 RATAB: Clockless TOCTOU-Secure RA Technique 82
4.5.1 RATAB – Design & Security . 82
4.5.2 RATAB: Implementation & Verification 85

4.6 Evaluation . 87
4.7 Using RATA to Enhance RA & Related Services 89

4.7.1 Constant-Time RA . 90
4.7.2 Atomicity & Real-Time Settings . 91
4.7.3 Collective RA Protocols and Device-to-Device Malware Relocation . . 93
4.7.4 Runtime Attestation . 95

4.8 Related Work . 96
4.9 Conclusions . 97
4.10 Appendix: Proof of Theorem 3 . 99
4.11 Appendix: Proof of Theorem 4 . 101

iii

4.12 Appendix: RATA Implementation with SANCUS 103

5 APEX: From Remote Attestation to Verified Proofs of Execution 106
5.1 Introduction . 108
5.2 Related Work . 110
5.3 Proof of Execution (PoX) Schemes . 112

5.3.1 PoX Adversary Model & Security Definition 115
5.3.2 MCU Assumptions . 116

5.4 APEX: A Secure PoX Architecture . 117
5.4.1 Protocol and Architecture . 119
5.4.2 APEX Sub-Properties at a High-Level 122

5.5 Formal Specification & Verified Implementation 125
5.5.1 Machine Model . 125
5.5.2 Security & Implementation Correctness 126
5.5.3 APEX Sub-Properties in LTL . 129

5.6 Implementation & Evaluation . 131
5.6.1 Evaluation Results . 131
5.6.2 Comparison with CFA . 133
5.6.3 Proof of Concept: Authenticated Sensing and Actuation 134

5.7 Limitations & Future Directions . 136
5.8 Conclusion . 138
5.9 Appendix: Sub-Module Verification . 139
5.10 Appendix: Proofs of Implementation Correctness & Security 141
5.11 Appendix: Software Transformation . 147

6 TAROT: Trigger-based Active Root Of Trust 148
6.1 Introduction . 150
6.2 TAROT Overview . 153
6.3 TAROT in Detail . 156

6.3.1 Notation, Machine Model, & Assumptions 156
6.3.2 TAROT End-To-End Goals Formally 162
6.3.3 TAROT Sub-Properties . 163
6.3.4 TAROT Composition Proof . 165
6.3.5 Sub-Module Implementation+Verification 166
6.3.6 TCB Confidentiality . 170
6.3.7 Resets & Availability . 171

6.4 Sample Applications . 172
6.4.1 GPIO-TCB: Critical Sensing+Actuation 172
6.4.2 TimerTCB: Secure Real-Time Scheduling 174
6.4.3 NetTCB: Network Event-based trigger 175
6.4.4 Comparison with [115] and [60] . 176

6.5 Implementation & Evaluation . 177
6.6 Related Work . 180
6.7 Conclusions . 182

iv

7 Final Remarks 183

Bibliography 185

v

LIST OF FIGURES

Page

2.1 Attestation interaction . 9
2.2 Overall Verification strategy . 16

3.1 Properties of secure RA. 23
3.2 VRASED system architecture . 24
3.3 VRASED’s submodule verification . 26
3.4 Verification framework for the composition of sub-modules (HW-Mod). . . . 28
3.5 RA security definition for VRASED . 32
3.6 SW-Att C Implementation . 33
3.7 Verified FSM for Key AC . 36
3.8 Verified FSM for atomicity and controlled invocation. 38
3.9 Verified FSM for Key Confidentiality . 40
3.10 Verified FSM for DMA protection . 42
3.11 HW-Mod composition from sub-modules . 43
3.12 Comparison between RA architectures targeting low-end devices 51
3.13 SW-Att Implementation with Vrf authentication 59
3.14 Basys3 FPGA running VRASED’s HW architecture depicted in Figure 3.2 61
3.15 Toy MSP430 application demo running VRASED’s RA in real HW 62

4.1 Consecutive Self-Measurements . 75
4.2 TOCTOU-Secure RA . 77
4.3 RATA module in the overall system architecture 78
4.4 RATAA FSM for RTC-based TOCTOU-secure RA 80
4.5 RATAB FSM for clock-less TOCTOU-secure RA 86
4.6 Hardware overhead. Comparison between RATA and techniques based on

self-measurements . 89
4.7 Comparison of LMT attestation time Case-1) with regular attestation of AR

(Case-2), as a function of |AR|. |LMT | is 32 Bytes. Results on the MSP430
MCU running at 8MHz. 90

5.1 Overview of APEX workflow . 120
5.2 HW-Mod composed of APEX and VRASED hardware modules. Shaded area

represents APEX METADATA. 121

vi

5.3 Illustration of time intervals that each memory region must remain unchanged
in order to produce a valid H (EXEC = 1). t(X) denotes the time when
PC = X. 128

5.4 Overhead comparison between APEX and CFA architectures. Dashed lines
represent total hardware cost of MSP430. 134

5.5 Hardware setup for a fire sensor using APEX 136
5.6 Verified FSM for LTLs 5.5-5.7, a.k.a., EP2- Ephemeral Atomicity. 140
5.7 Verified FSM for LTL 5.11, a.k.a., MP3- Challenge Temporal Consistency. . 141
5.8 Code snippets for (a) fire sensor described in Section 5.6.3 (b) linker script . 145

6.1 TAROT Software Execution Flow . 152
6.2 TAROT in the MCU architecture . 153
6.3 MCU machine model (subset) in LTL. 161
6.4 Formal Specification of TAROT end-to-end goals. 162
6.5 Formal specification of sub-properties verifiably implemented by TAROT hard-

ware module. 164
6.6 Verified FSM for LTL 6.6. 167
6.7 Verified FSM for LTL 6.8. 168
6.8 Verified FSM for LTLs 6.9–6.11. 169
6.9 Verified FSM for LTL 6.12. 171
6.10 Program Entry Point . 172
6.11 Trigger Setup . 173
6.12 GPIO Handling Routine . 174
6.13 IRQcfg initialization . 174
6.14 Timer Trigger Setup . 175
6.15 Timer Handle Routine . 175
6.16 UART Trigger Setup . 176
6.17 NetTCB Handler Routine and TCB Implementation 176
6.18 Comparison with passive RoTs: Hardware overhead 180

vii

LIST OF TABLES

Page

3.1 Summary of VRASED-relevant notation . 30
3.2 Verification results running on a desktop @ 3.40 GHz. 47
3.3 Evaluation of cost, overhead, and performance of RA 48
3.4 Qualitative comparison between RA architectures targeting low-end devices . 48

4.1 Summary of RATA-relevant notation . 73
4.2 Additional hardware and verification cost . 87

5.1 Summary of APEX-relevant notation . 119
5.2 Evaluation results. 131

6.1 Summary of TAROT-relevant notation . 156
6.2 TAROT Hardware overhead and verification costs. 179
6.3 Qualitative Comparison . 180

viii

ACKNOWLEDGMENTS

Wow, looks like it’s time to end this chapter of my life! Looking back, these past five years
were unbelievable. I feel very lucky and I thank God for putting all the amazing people
that I list below in my path. At this point, there’s probably one thing I am sure about: I
couldn’t have come this far without these people. Tell me about “standing on the shoulders
of giants”, Google Scholar (or whoever said it originally)!

I must start by thanking the person who brought me this far, my Ph.D. advisor, Gene Tsudik.
For teaching me everything I know in computing security. For offering amazing feedback
and seminal ideas that were instrumental to this entire process. For genuinely caring about
my success and for helping me to pursue the career that I’ve always dreamed of.

I would also like to thank my committee members, Ardalan Amiri Sani and N. Asokan, for
their interest in my research and for taking the time to provide me with their mentorship
and constructive criticism. It was a great pleasure to have such outstanding researchers on
my Ph.D. committee.

In addition to my Ph.D. mentors, I could not have come this far without my early mentors
and educators. I am immensely thankful to all of them for the many, many lessons. I would
like to cite and especially thank my M.Sc. advisors – Antonio Loureiro and Pedro Vaz De
Melo – and my Bachelor’s advisors – Magnos Martinello and Roberta Lima Gomes – who
were the very first to introduce me to the “research world”.

I am immensely thankful to all of my co-authors. Someone once told me: “If you’re not
smart, you need smart co-authors.” Well... guilty as charged. I do have pretty amazing
co-authors! The list is too long, so I won’t risk trying to name one by one. It has been
really amusing and humbling to work with such a fantastic and diverse group of people. Out
of these many co-authors, I especially thank Norrathep Rattanavipanon (who worked along
with me in major parts of this dissertation), Sashidhar Jakkamsetti, Seoyeon Hwang, Chris
Wood, and Esmerald Aliaj. These were/are also Ph.D. students at UCI who were directly
involved on some of the hands-on parts of my Ph.D. research.

Out of the friends I’ve made during my five years at UCI, I couldn’t forget to mention the
Sprout Lab members that overlapped with my generation: Norrathep Rattanavipanon, Ercan
Ozturk, Tyler Kaczmarek, Chris Wood, Yoshimichi Nakatsuka, Seoyeon Hwang, Sashidhar
Jakkamsetti, and Gene Tsudik. Thanks for all the fun times together! I hope to see you
around very soon!

Sorry if this is starting to take too long, but outside UCI, the list of personal friends and
family that deserve my gratitude isn’t small either. I am truly blessed to have all of you in
my life.

First and foremost, I thank my wife, Renata, for her unconditional love and support. For
being there for me at every step of the way. For being my best friend. I am so proud of
what we’ve achieved together so far and I can’t wait to start this new chapter of our lives.

ix

I thank my parents – Joao and Angelica – and my brother – Igor. I’ve always felt all of
you close to my heart, no matter how physically distant. You’ve been my strongest and
longest-term supporters. You gave me everything. Knowing that you were there for me and
seeing your genuine joy in each and every one of my accomplishments (no matter how small)
is what always kept me moving forward.

Finally, I thank all my family members – especially my grandparents (Nilo, Venina, Rolando,
and Marina), parents in law (Renato and Rosangela), my sister-in-law (Fernanda), and all
my many uncles, aunts, and cousins. I am also thankful to all my friends – especially from
Darwin, CsF-Irvine, UFES-09, and WiseMap-UFMG. Thank you for your best wishes and
for staying in touch despite the distance!

x

CURRICULUM VITAE

Ivan De Oliveira Nunes

EDUCATION

Ph.D. in Networked Systems 2021
University of California, Irvine Irvine, California

M.S. in Computer Science 2016
Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil

B.S. in Computer Engineering 2014
Universidade Federal do Espirito Santo Vitoria, ES, Brazil

PROFESSIONAL EXPERIENCE

Assistant Professor 2021–Current
Rochester Institute of Technology Rochester, New York

Graduate Research Assistant 2016–2021
University of California, Irvine Irvine, California

Summer Associate (Ph.D. Intern) Summer 2017, Spring & Summer 2018
Visa Research Palo Alto, California

Ph.D. Intern Summer 2019, Summer 2020

SRI International Menlo Park, California

PAPERS IN SUBMISSION OR UNDER REVIEW

Esmerald Aliaj, Ivan De Oliveira Nunes, and Gene Tsudik. TAROT : Trigger-based
Active Root-Of-Trust (for Tiny Embedded Devices). Undergoing Major Revisions
to (conditionally) appear at USENIX Security Symposium. 2022.

REFEREED CONFERENCE PUBLICATIONS

Mahmoud Ammar, Bruno Crispo, Ivan De Oliveira Nunes, and Gene Tsudik. Delegated
Attestation: Scalable Remote Attestation of Commodity CPS by Blending Proofs
of Execution with Software Attestation. ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec). 2021.

Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Norrathep Rattanavipanon, and Gene Tsudik.
On the TOCTOU Problem in Remote Attestation. ACM Conference on Computer
and Communications Security (CCS). 2021.

xi

Ivan De Oliveira Nunes, Sashidhar Jakkamsetti and Gene Tsudik. DIALED: Data In-
tegrity Attestation for Low-end Embedded Devices. Design Automation Conference
(DAC). 2021.

Ivan De Oliveira Nunes, Xuhua Ding, and Gene Tsudik. On the Root of Trust Identi-
fication Problem. In 20th ACM/IEEE Conference on Information Processing in Sensor
Networks (IPSN). 2021.

Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik. Tiny-CFA: A Mini-
malistic Approach for Control Flow Attestation Using Verified Proofs of Execu-
tion. In Design, Automation & Test in Europe Conference & Exhibition (DATE). 2021.

Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik.
APEX: A Verified Architecture for Proofs of Execution on Remote Devices under
Full Software Compromise. In 29th USENIX Security Symposium (USENIX Security
20). 2020.

Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael Steiner, and
Gene Tsudik. VRASED: A verified hardware/software co-design for remote
attestation. In 28th USENIX Security Symposium (USENIX Security 19), pp. 1429-1446.
2019.

Ivan De Oliveira Nunes, Ghada Dessouky, Ahmad Ibrahim, Norrathep Rattanavipanon,
Ahmad-Reza Sadeghi, and Gene Tsudik. Towards systematic design of collective re-
mote attestation protocols. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pp. 1188-1198. IEEE, 2019.

Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik.
PURE: Using Verified Remote Attestation to Obtain Proofs of Update, Reset
and Erasure in low-End Embedded Systems. In IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pp. 1-8. 2019.

Ivan O. Nunes and Gene Tsudik. KRB-CCN: Lightweight Authentication and Ac-
cess Control for Private Content-Centric Networks. In International Conference on
Applied Cryptography and Network Security (ACNS), pp. 598-615. Springer, Cham, 2018.

Ivan De Oliveira Nunes, Karim Eldefrawy, and Tancrede Lepoint. Secure Non-interactive
User Re-enrollment in Biometrics-Based Identification and Authentication Sys-
tems. In International Symposium on Cyber Security Cryptography and Machine Learning
(CSCML), pp. 162-180. Springer, Cham, 2018.

Ivan O. Nunes, Gene Tsudik, and Christopher A. Wood. Namespace tunnels in content-
centric networks. In 2017 IEEE 42nd Conference on Local Computer Networks (LCN),
pp. 35-42. IEEE, 2017.

Ivan O. Nunes, Clayson Celes, Michael D. Silva, Pedro OS Vaz de Melo, and Antonio AF

xii

Loureiro. GRM: Group Regularity Mobility Model. In Proceedings of the 20th ACM
International Conference on Modelling, Analysis and Simulation of Wireless and Mobile
Systems (MSWIM), pp. 85-89. 2017.

Michael D. Silva, Ivan O. Nunes, Raquel AF Mini, and Antonio AF Loureiro. ST-Drop: A
novel buffer management strategy for D2D opportunistic networks. In 2017 IEEE
Symposium on Computers and Communications (ISCC), pp. 1300-1305. IEEE, 2017.

Antonio L. Maia Neto, Artur LF Souza, Italo Cunha, Michele Nogueira, Ivan Oliveira Nunes,
Leonardo Cotta, Nicolas Gentille et al. AoT: Authentication and access control for the
entire iot device life-cycle. In Proceedings of the 14th ACM Conference on Embedded
Network Sensor Systems (SenSys), pp. 1-15. 2016.

Ivan Oliveira Nunes, Pedro OS Vaz de Melo, and Antonio AF Loureiro. Group mobility:
Detection, tracking and characterization. In 2016 IEEE International Conference on
Communications (ICC), pp. 1-6. IEEE, 2016.

REFEREED JOURNAL PUBLICATIONS

Ivan De Oliveira Nunes, Karim Eldefrawy, and Tancrede Lepoint. SNUSE: A secure com-
putation approach for large-scale user re-enrollment in biometric authentication
systems. Future Generation Computer Systems 98 (2019): 259-273.

Ivan O. Nunes, Clayson Celes, Igor Nunes, Pedro OS Vaz de Melo, and Antonio AF Loureiro.
Combining spatial and social awareness in D2D opportunistic routing. IEEE
Communications Magazine 56, no. 1 (2018): 128-135.

Ivan O. Nunes, Clayson Celes, Pedro OS Vaz de Melo, and Antonio AF Loureiro. GROUPS-
NET: Group meetings aware routing in multi-hop D2D networks. Computer Net-
works 127 (2017): 94-108.

Ivan O. Nunes, Pedro OS Vaz de Melo, and Antonio AF Loureiro. Leveraging D2D
multihop communication through social group meeting awareness. IEEE Wireless
Communications 23, no. 4 (2016): 12-19.

xiii

ABSTRACT OF THE DISSERTATION

Verifiable Integrity and Availability for Code and Execution in Simple Embedded Systems

By

Ivan De Oliveira Nunes

Doctor of Philosophy in Networked Systems

University of California, Irvine, 2021

Dr. Gene Tsudik, Chair

Modern society is increasingly surrounded by, and is growing accustomed to, a wide range

of Cyber-Physical Systems (CPS), Internet-of-Things (IoT), and smart devices. They often

perform safety-critical functions, e.g., personal medical devices, automotive CPS as well as

industrial and residential automation (such as sensor-alarm combinations). On the lower end

of the scale, these devices are small, cheap, and specialized sensors and/or actuators. They

tend to host small CPUs, have small amounts of memory, and run simple software. If such

devices are left unprotected, consequences of forged sensor readings or ignored actuation

commands can be catastrophic, particularly, in safety-critical settings. This prompts the

following questions: (1) How to trust data produced, or guarantee that actions will be

performed, by a simple remote embedded device?, (2) How to bind actions and results to

the execution of expected software? and, (3) Can (1) and (2) be attained even if all software

on a device can be modified and/or compromised (e.g., by malware) at any given time?

This dissertation presents a set of hardware/software co-designs for obtaining several security

services – namely remote attestation, TOCTOU-avoidance, proofs of execution, and root of

trust availability – which can be used to assure the integrity and availability of software and

its execution, even on some of the most resource-constrained micro-controllers. We realize

these services with four formally verified and publicly available architectures (VRASED,

xiv

RATA, APEX, and TAROT) and show how they have been securely implemented atop the

TI MSP430 micro-controller at a relatively low-cost.

xv

Chapter 1

Introduction

The number and diversity of special-purpose computing devices has been increasing dra-

matically. This includes all kinds of embedded devices, cyber-physical systems (CPS) and

Internet-of-Things (IoT) gadgets, utilized in various “smart” or instrumented settings, such

as homes, offices, factories, automotive systems, and public venues. Tasks performed by

these devices are often safety-critical. For example, a typical industrial control system de-

pends on physical measurements (e.g., temperature, pressure, humidity, speed) reported by

sensors, and on actions taken by actuators, such as: turning on the A/C, sounding an alarm,

or reducing speed.

A cyber-physical control system is usually composed of multiple sensors and actuators, at

the core of each is a micro-controller unit (MCU), typically running simple software, often

on ”bare metal”, i.e., with no microkernel or hypervisor. They tend to be operated by a

remote central control unit and despite their potential importance to overall system func-

tionality, low-end devices are typically designed to minimize cost, physical size and energy

consumption.

A compromised MCU can spoof sensed quantities or ignore actuation commands, leading to

1

potentially catastrophic results. For example, in a smart city, large-scale erroneous reports of

electricity consumption by smart meters might lead to power outages. A medical device that

returns incorrect values when queried by a remote physician might result in a wrong drug

being prescribed to a patient. A compromised car engine temperature sensor that reports in-

correct (low) readings can lead to undetected overheating and major damage. Unfortunately,

these examples are not theoretical or hypothetical. Actuation devices have been abused by

malware to impact both security and safety in the Stuxnet [111] case. Whereas malware on

sensors can undermine privacy by obtaining ambient information [51]. Furthermore, clever

malware can turn vulnerable IoT devices into zombies that can become sources for DDoS

attacks. For example, in 2016, a multitude of compromised smart cameras and DVRs formed

the Mirai Botnet [12] which was used to mount a massive-scale DDoS attack (the largest in

history). However, despite very real risks of remote software compromise, most users believe

that these devices execute expected software and thus perform their expected function.

At the lower-end of the spectrum, MCUs are designed with extremely strict constraints on

monetary cost, physical size, and energy consumption (e.g, TI MSP4301 and Atmel ATMega

AVR2). Therefore, it is unrealistic to expect such devices, by themselves, to prevent malware

infection via sophisticated security mechanisms (e.g., similar to those available on laptops,

smartphones, and other types of higher-end embedded devices).

To address this problem, several tiny Roots-of-Trust (RoTs) [49, 87, 10, 22, 68] were proposed

to enable Remote Attestation (RA), i.e., remote verification of an embedded device’s software

state. These tiny RoTs are typically designed as hardware/software (hybrid) co-designs,

aiming to achieve the same level of security of more expensive hardware-based architectures

(see Chapter 2 for details) at much lower hardware cost. Despite substantial progress over the

past decade, to the best of our knowledge, prior architectures have the following limitations:

1http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/applications.html
2https://www.microchip.com/design-centers/8-bit/avr-mcus

2

http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/applications.html
https://www.microchip.com/design-centers/8-bit/avr-mcus

1. Little or no attention has been devoted to formal verification. In particular, no hybrid

RA designs and implementations have been formally verified with respect to claimed

security properties. We argue that the high-assurance and rigor derivable from utilizing

computer-aided formal verification to guarantee security of the design and implemen-

tation of RA techniques can increase RA robustness and thus its potential for practical

adoption.

2. Prior RA techniques verify the remote device at the time when RA functionality is

executed, thus providing no information about the state of the device before the current

RA execution or between consecutive RA executions. Therefore, presence of transient

malware that infects the device and leaves prior to the next RA instance can not be

detected. This important problem, called Time-Of-Check-Time-Of-Use (TOCTOU),

is well-known in the research literature and remained unaddressed in the context of

hybrid RA.

3. Prior techniques can be used to prove that a given binary is present on a remote

device, but cannot prove successful execution of that binary. They are also cannot

bind claimed execution outputs/results (e.g., a sensed value) to the correct execution

of the attested binary (e.g., a sensing task).

4. All prior techniques operate reactively. Therefore, they can not guarantee that a desired

action will be performed, since malware controlling the device can trivially block access

to the RoT by ignoring/discarding received commands. This is a major and important

problem because it allows malware to effectively “brick” or incapacitate a potentially

huge number of (possibly mission-critical) devices.

In this dissertation we address these limitations by presenting four core architectures. Specif-

ically, we describe the design, implementation, and formal verification of:

1. VRASED: the first formally verified hybrid RA architecture.

3

2. RATA: the first hybrid RA architecture secure against TOCTOU attacks.

3. APEX: an architecture for generating unforgeable proofs of software execution in low-

end embedded systems.

4. TAROT: an active RoT architecture, which guarantees that safety-critical tasks are

always performed upon specific trigger-s, despite compromise of the MCU application

software.

1.1 Dissertation Structure

Chapter 2 overviews concepts that are relevant to the dissertation as a whole, including its

scope, the foundational security service – Remote Attestation (RA) – and the proof strat-

egy and verification methodology used to argue security of architectures proposed in the

following chapters. Chapter 3 presents VRASED: a verified hardware/software co-design for

remote attestation targeting low-end embedded devices. Chapter 4 provides a systematic

treatment and a formal definition for the Time-Of-Check Time-Of-Use (TOCTOU) problem

in RA, as well as RATA: a hardware component that makes hybrid RA techniques TOCTOU-

Secure (e.g., it detects presence of transient malware). Chapter 5 focuses on the problem of

proving correct execution of attested software in a low-end embedded device, a functionality

referred to as Proof of Execution (PoX). This chapter presents APEX: a formally verified

PoX architecture built atop (and securely composed with) VRASED. Next, Chapter 6 ex-

plores guaranteed execution of expected safety-critical tasks/actions on low-end MCUs. It

introduces TAROT: a trigger-based active root of trust that is also formally specified and

verified.

We note that Chapter 2 only includes background on topics relevant to the dissertation

as a whole. Background specific to a particular chapter is provided within that chapter.

4

Similarly, system and adversary models are defined on a per-chapter basis. For the most

part, notation is consistent across chapters.

5

Chapter 2

Background

6

Abstract

This chapter overviews background concepts for dissertation. We start, in Section 2.1, by

defining the scope of targeted devices. We motivate this choice and discuss some general

intended contributions (specific contributions are outlined in subsequent chapters). Next, in

Section 2.2, we overview Remote Attestation (RA): a security service that enables verification

of the software state of a potentially compromised remote device – a prover (Prv) – by a

trusted verifier (Vrf). RA also serves as a foundation to many other security services. We

review RA in detail since one of the contributions presented in this dissertation is VRASED

(Chapter 3): a formally verified RA architecture. Additionally, Chapter 4 discusses an

important RA security feature (RA TOCTOU-Security) and Chapter 5 develops a verified

architecture for proofs of execution that is built upon RA. Lastly, in Section 2.3, we present

the formal verification methodology and proof strategy used across the remaining chapters

to prove security of the proposed security architectures at both protocol and implementation

levels. We note that this chapter only overviews concepts that are relevant to the dissertation

as a whole. Concepts and definitions that are only relevant or applicable to a particular

chapter are discussed within that chapter.

2.1 Scope: Low-end Embedded Devices

This work focuses on CPS/IoT sensors and actuators (or hybrids thereof) with low computing

power. These are some of the smallest and weakest devices based on low-power single-core

Micro-Controller Units (MCUs) with only a few KBytes of program and data memory. Two

prominent examples are: Atmel AVR ATmega and TI MSP430: 8- and 16-bit CPUs, typ-

ically running at 1-16MHz clock frequencies, with ≈ 64 KBytes of addressable memory.

SRAM is used as data memory with the size normally ranging between 4 and 16KBytes,

while the rest of address space is available for program memory. They have neither Mem-

ory Management Units (MMUs) to support virtual memory nor Memory Protection Units

(MPUs) to control access to any parts of memory. They also lack architectural support for

privileged/exception layers. Therefore, such devices usually run software atop “bare metal”

and execute instructions in place (physically from program memory).

In terms of practicality and applicability, we believe that a security architecture suitable for

these lowest-end MCU-s could be adapted (and potentially enriched) for higher-end devices

with larger hardware budgets, while the other direction is more challenging. In addition,

simpler devices are easier to model and reason about formally. Hence, they represent a good

starting point for the design and verification of provably secure architectures such as the

ones proposed in this work.

Our implementations are based on MSP430. This choice is due to public availability of a

well-maintained open-source MSP430 hardware design from Open Cores [56]. Nevertheless,

we believe that our machine models and methodology are applicable to other low-end MCUs

in the same class, such as Atmel AVR ATmega. We also hope that some lessons learned in

this work can be useful to design and prove security of similar services targeting higher-end

devices in the future.

8

2.2 Attestation in Low-end Devices

Attestation facilitates detection of malware presence on a remote device. Specifically, it

allows a trusted verifier (Vrf) to remotely measure the software state of an untrusted remote

device (Prv). As shown in Figure 2.1, attestation is typically obtained via a simple challenge-

response protocol:

1. Vrf sends an attestation request containing a challenge (Chal) to Prv. This request

might also contain a token derived from a secret that allows Prv to authenticate Vrf.

2. Prv receives the attestation request and computes an authenticated integrity check over

its memory and Chal. The memory region might be either pre-defined, or explicitly

specified in the request.

3. Prv reports the result to Vrf.

4. Vrf receives the result from Prv, and checks whether it corresponds to a valid memory

state.

ProverVerifier

(2) Authenticated

Integrity Check

(4) Verify

Report

(1) Request

(3) Report

Figure 2.1: Attestation interaction

The authenticated integrity check can be realized as a Message Authentication Code (MAC)

over Prv’s memory. Computing a MAC requires Prv to have a unique secret key, denoted

by K – either a symmetric key shared with Vrf, or a private key for which the corresponding

public key is known to Vrf. In this dissertation we assume the former, noting that security

differences between the two cases are small. This K must reside in secure storage, where it is

9

not accessible to any software running on Prv, except for trusted and typically immutable

attestation code (or attestation hardware engine, when present). Since most RA threat

models assume a fully compromised software state on Prv, secure storage implies some level

of hardware support. Most attestation techniques fall into three groups: software-based,

hardware-based, and hybrid.

Software-based (or timing-based) attestation is the only viable approach for legacy

devices with no hardware security features. Without hardware support, it is (currently)

impossible to guarantee that K is not accessible by malware that fully compromises Prv

software state. Therefore, security of software-based approaches [98, 76] is attained by

setting strict thresholds for communication delays between Vrf and Prv (instead of relying

on cryptographic secrets). Thus, software-based attestation is unsuitable for multi-hop and

jitter-prone communication (not remote), or settings where a compromised Prv is aided

(during attestation) by a more powerful accomplice device. It also requires strong constraints

and assumptions on the hardware platform and attestation usage [71, 75].

Hardware-based approaches, on the other extreme, enable attestation to happen remotely

but require either i) Prv’s attestation functionality to be housed entirely within dedicated

hardware, e.g., Trusted Platform Modules (TPMs) [109]; or ii) modifications to the CPU

semantics or instruction sets to support the execution of trusted software, e.g., SGX [64] or

TrustZone [14]. Such hardware features are too expensive (in terms of physical area, energy

consumption, and actual cost) for low-end devices. SANCUS [87] developed a hardware-

based RA architecture specifically targeting low-end devices (MSP430, in particular). How-

ever, its footprint is heavy, increasing the total hardware cost by more than 100% that of

the unmodified MSP430 CPU core.

While neither hardware- nor software-based approaches are well-suited for settings where

low-end devices are not directly connected (e.g, remote IoT settings), hybrid RA (based

on HW/SW co-design) is a more promising approach. Hybrid RA aims at providing the

10

same security guarantees as hardware-based techniques with minimal hardware support.

SMART [49] is the first hybrid RA architecture targeting low-end MCUs. In SMART, the

authenticated integrity check is implemented in software. SMART’s small hardware footprint

guarantees that the attestation code runs safely and that the attestation key is not leaked.

HYDRA [48] is a hybrid RA scheme that relies on a secure boot hardware feature and on

a formally verified secure micro-kernel. Trustlite [68] modifies MPU and CPU exception

engine hardware to implement RA on the Intel Siskiyou Peak research platform [108]. Ty-

tan [22] is built on top of Trustlite, extending its capabilities for applications with real-time

requirements.

Most RA architectures (including the ones mentioned thus far) focus on measuring a snap-

shot of Prv’s memory at the time of the attestation computation1. As such, they are useful

to measure executables, i.e., to prove to Vrf that a particular binary is currently installed on

Prv. however, they are usually insufficient to prove execution or execution properties. For

example, they can not prove that the attested binary is ever executed. Additionally, con-

sider runtime/data-oriented attacks [106] that tamper with execution state on the program’s

stack or heap to arbitrarily divert the program’s execution flow and/or corrupt computation

results. Such attacks need not modify the executable itself. Thus, they are not detectable

by RA alone. Runtime attacks can be launched by a variety of means. For instance, in

languages such as C, C++, and Assembly (which are widely used to program MCU-s), buffer

overflows [39] can overwrite functions’ return addresses, hijacking the program’s control-flow

and launching well-known Return-Oriented Programming (ROP) attacks [102]. These at-

tacks are especially dangerous for low-end MCU-s that can not avail themselves of more

sophisticated OS-based mitigations, e.g., canaries, Address Space Layout Randomization

(ASLR), and Control-Flow Integrity (CFI) techniques, available in high-end platforms.

1We note that the term RA may be used more broadly to refer to other forms of attestation (e.g., content
attestation). In the context of this dissertation, RA reffers specifically to a service used to measure memory
in remote devices.

11

Runtime attestation [6, 45, 44, 116, 43, 105, 91], including both control-flow attesta-

tion (CFA) and data-flow attestation (DFA), augments RA capability to enable detection of

control-flow and data-only attacks. In a nutshell, CFA techniques provide Vrf with a report

that allows it to not only learn if the expected code is loaded on Prv, but also which partic-

ular instruction path was taken during each execution of this program. In other words, CFA

provides Vrf with an authentic and unforgeable report that allows Vrf to learn if instructions

of a given program were executed in a particular expected/legal order, or a set thereof. This

is typically achieved by securely logging information associated with the destination of each

control-flow altering instruction, e.g., jumps, branches, returns, during program execution.

Similarly, DFA allows Vrf to detect whether intermediate computation values (e.g., stored

in local variables) were corrupted throughout the attested program’s execution by securely

logging modifications to these variables into an authenticated report log.

Prior CFA and DFA techniques have been implemented on medium- to high-end embedded

devices (e.g., Raspberry Pi, and RISC-V based processors), by leveraging trusted hardware

support, such as ARM TrustZone (in [6, 105]) or hardware branch monitors/hardware hash

engines (in [45, 44, 116]). However, for the lowest-end MCU-s, these requirements are too

costly, as their hardware overhead is often higher than the total cost of the MCU’s core itself,

in terms of size, energy and monetary cost.

Despite much progress, a major missing aspect in RA research is high-assurance and rigor

obtained by using formal methods to guarantee security of a concrete RA design and its

implementation (hardware and software). We believe that verifiability and formal security

guarantees are particularly important for hybrid RA designs aimed at low-end embedded and

IoT devices, as hybrid designs are hard to implement correctly and their proliferation keeps

growing. This serves as the main motivation for our efforts to develop a formally verified RA

architecture (Chapter 3) and subsequent verified TOCTOU-Secure RA architecture (Chap-

ter 4) which enhances hybrid RA against migratory and self-relocating malware, as well as

12

makes RA substantially more efficient.

Given the lack of suitable approaches to prove execution properties in low-end devices, our

work also proposes the development and formal verification of an architecture for proofs of

execution (Chapter 5) in low-end devices. In subsequent work [43, 91], this architecture was

also shown to be sufficient, as the only hardware feature, to obtain CFA and DFA.

Finally, we observe that the aforementioned architectures focus on the problem of “proving

integrity”, i.e., they offer proofs for Prv’s state or that actions (e.g., execution, updates,

erasure & reset/reboot [41, 9, 15]) have happened. However, they can not guarantee that

actions/commanded tasks will be performed by a low-end (and potentially compromised)

Prv. This problem – related to availability – is the focus of Chapter 6.

2.3 Linear Temporal Logic, Model Checking, and For-

mal Verification

Computer-aided formal verification typically involves three basic steps. First, the system

of interest (e.g., hardware, software, communication protocol) is described using a formal

model, e.g., a Finite State Machine (FSM). Second, properties that the model should satisfy

are formally specified. Third, the system model is checked against formally specified prop-

erties to guarantee that the system retains them. This can be achieved by either Theorem

Proving [79] or Model Checking [36]. In this work, we use the latter to verify the imple-

mentation of system sub-modules, and the former to prove new properties derived from the

combination (conjunction) of machine model axioms and sub-properties that were proved

for the implementation of individual sub-modules.

In one instantiation of model checking, properties are specified as formulae using Linear

13

Temporal Logic (LTL) and system models are represented as FSMs. Hence, a system is

represented by a triple (S, S0, T), where S is a finite set of states, S0 ⊆ S is the set of

possible initial states, and T ⊆ S × S is the transition relation set – it describes the set

of states that can be reached in a single step from each state. The use of LTL to specify

properties allows representation of expected FSM behavior over time.

Our verification strategy applies the widely used model checker NuSMV [34], geared for ver-

ifying generic HW or SW models. For digital hardware described at Register Transfer Level

(RTL) – which is the case in this work – conversion from Hardware Description Language

(HDL) to NuSMV models is simple. Furthermore, it can be automated [65], because the

standard RTL design already relies on describing hardware as an FSM. We rely on this au-

tomated verification pipeline to verify several sub-modules of all architectures discussed in

this dissertation. Details of this pipeline are presented in Chapter 3.

LTL specifications are is particularly useful for verifying sequential systems. In addition

to propositional connectives, such as conjunction (∧), disjunction (∨), negation (¬), and

implication (→), LTL extends propositional logic with temporal quantifiers, thus enabling

sequential reasoning. In this work, we are interested in the following LTL quantifiers:

• Xφ – neXt φ: holds if φ is true at the next system state.

• Fφ – Future φ: holds if there exists a future state where φ is true.

• Gφ – Globally φ: holds if for all future states φ is true.

• φ U ψ – φ Until ψ: holds if there is a future state where ψ holds and φ holds for all

states prior to that.

• φ W ψ – φ Weak until ψ: holds if, assuming a future state where ψ holds, φ holds

for all states prior to that. If ψ never becomes true, φ must hold forever. Or, more

formally: φWψ ≡ (φUψ) ∨G(φ)

• φ B ψ – φ Before ψ: holds if the existence of state where ψ holds implies the existence

of an earlier state where φ holds. This temporal quantifier can be expressed using U

14

through the equivalence: φ B ψ ≡ ¬(¬φ U ψ).

This set of temporal connectives combined with propositional connectives (with their usual

meanings) allows us to specify powerful rules. NuSMV works by checking LTL specifications

against the system FSM for all reachable states in such FSM.

A model checker (NuSMV in our case) performs proofs through automated and exhaustive

enumeration of all possible system states. If the desired specification is found not to hold

for specific states (or transitions between states), a trace of the model that leads to the

erroneous state is provided, and the implementation can then be fixed accordingly. As a

consequence of exhaustive enumeration, proofs for complex systems that involve complex

properties often do not scale well due to so-called “state explosion” problem.

To cope with this problem, our verification approach is to specify smaller LTL sub-properties

separately and verify each respective sub-module for compliance. In this process, our ver-

ification pipeline automatically converts digital hardware, described at RTL using Verilog,

to Symbolic Model Verifier (SMV) [85] FSMs using Verilog2SMV [65] (see Chapter 3 for

details). The SMV representation is then fed to NuSMV [35] for verification. Finally, the

composition of the LTL sub-properties (verified in the model checking phase) is proven to

achieve the end-to-end implementation goals (which are more complex LTL statements) of

the particular system using an LTL theorem prover [47]. The verification strategy is depicted

in Figure 2.2.

Depending on the security service, end-to-end goals for the implementation may themselves

capture the overall security definition (e.g., Chapter 6) for the system. In other cases,

especially when security depends on cryptographic assumptions, end-to-end implementation

goals are required so that a cryptographic security proof (e.g., cryptographic reduction)

holds. The latter is the case in Chapters 3, 4, and 5.

15

Figure 2.2: Overall Verification strategy

16

Chapter 3

VRASED: Verifiable Remote

Attestation for Simple Embedded

Systems

17

Abstract

This chapter presents the first step towards formal verification of RA. We design and verify an

architecture called VRASED: Verifiable Remote Attestation for Simple Embedded Devices.

VRASED instantiates a hybrid (HW/SW) RA co-design aimed at low-end embedded systems,

e.g., simple IoT devices. VRASED provides a level of security comparable to HW-based

approaches, while relying on SW to minimize additional HW costs. Since security properties

must be jointly guaranteed by HW and SW, verification is a challenging task. To demonstrate

VRASED’s practicality and low overhead, we instantiate and evaluate it on a commodity

platform (TI MSP430). VRASED was deployed using the Basys3 Artix-7 FPGA and its

implementation is publicly available. The contributions described in this chapter appeared

in the Proceedings of the USENIX Security Symposium – 2019 (see [40]).

3.1 Introduction

Even though numerous RA techniques with different assumptions, security guarantees, and

designs, have been proposed [97, 92, 76, 49, 68, 22, 48, 50, 87, 89, 31, 32, 61, 87, 29], a major

missing aspect of RA is the high-assurance and rigor derivable from utilizing computer-aided

formal verification to guarantee security of the design and implementation of RA techniques.

Because all aforementioned architectures and their implementations are not systematically

designed from abstract models, their soundness and security can not be formally argued.

In fact, our RA verification efforts revealed that a previous hybrid RA design – SMART [49]

– assumed that disabling interrupts is an atomic operation and hence opened the door

to compromise of Prv’s secret key in the window between the time of the invocation of

disable interrupts functionality and the time when interrupts are actually disabled. Another

low/medium-end architecture – Trustlite [68] – does not achieve our formal definition of

RA soundness. As a consequence, this architecture is vulnerable to self-relocating malware

(See [27] for details). Formal specification of RA properties and their verification significantly

increases our confidence that such subtle issues are not overlooked.

In this work we take a “verifiable-by-design” approach and develop, from scratch, an ar-

chitecture for Verifiable Remote Attestation for Simple Embedded Devices (VRASED).

VRASED is the first formally specified and verified RA architecture accompanied by a for-

mally verified implementation. Verification is carried out for all trusted components, includ-

ing hardware, software, and the composition of both, all the way up to end-to-end notions for

RA soundness and security. The resulting verified implementation – along with its computer

proofs – is publicly available [1]. Formally reasoning about, and verifying, VRASED involves

overcoming major challenges not previously encountered in the context of RA:

1 – Formal definitions of: (i) end-to-end notions for RA soundness and security; (ii) a

realistic machine model for low-end embedded systems; and (iii) VRASED’s guarantees.

19

These definitions must be made within a single formal system that is powerful enough to

provide a common ground for reasoning about their interplay. In particular, our end goal

is to prove that the definitions of RA soundness and security are implied by VRASED’s

guarantees when applied to our machine model. As discussed in Chapter 2, our formal

system of choice is Linear Temporal Logic (LTL).

2 – Automatic end-to-end verification of complex systems such as VRASED is challenging

from the computability perspective, as the space of possible states is extremely large. To

cope with this challenge, we take a “divide-to-conquer” approach. We start by dividing

the end-to-end goal of RA soundness and security into smaller sub-properties that are also

defined in LTL. Each HW sub-module, responsible for enforcing a given sub-property, is

specified as a Finite State Machine (FSM), and verified using a Model Checker. VRASED’s

SW relies on an F* verified implementation (see Section 3.3.3) which is also specified in LTL.

This modular approach allows us to efficiently prove sub-properties enforced by individual

building blocks in VRASED.

3 – All proven sub-properties must be composed in order to reason about RA security

and soundness of VRASED. To this end, we use a theorem prover to show (by using LTL

equivalences) that the sub-properties that were proved for each of VRASED’s sub-modules,

when composed, imply the end-to-end definitions of RA soundness and security. This modular

approach enables efficient system-wide formal verification.

3.2 Overview of VRASED

VRASED is composed of a HW module (HW-Mod) and a SW implementation (SW-Att) of

Prv’s behavior according to the RA protocol. HW-Mod enforces access control to K in addition

to secure and atomic execution of SW-Att (these properties are discussed in detail below).

20

HW-Mod is designed with minimality in mind. The verified FSMs contain a minimal state

space, which keeps hardware cost low. SW-Att is responsible for computing an attestation

report. As VRASED’s security properties are jointly enforced by HW-Mod and SW-Att, both

must be verified to ensure that the overall design conforms to the system specification.

3.2.1 Adversary Capabilities & Verification Axioms

We consider an adversary, Adv, that can control the entire software state, code, and data

of Prv. Adv can modify any writable memory and read any memory that is not explicitly

protected by access control rules, i.e., it can read anything (including secrets) that is not

explicitly protected by HW-Mod. It can also re-locate malware from one memory segment to

another, in order to avoid being detected. Adv may also have full control over all Direct

Memory Access (DMA) controllers on Prv. DMA allows a hardware controller to directly

access main memory (e.g., RAM, flash or ROM) without going through the CPU.

We focus on attestation functionality of Prv; verification of the entire MCU architecture is

beyond the scope of this work. Therefore, we assume the MCU architecture strictly adheres

to, and correctly implements, its specifications. In particular, our verification approach relies

on the following simple axioms:

• A1 - Program Counter: The program counter (PC) always contains the address of

the instruction being executed in a given cycle.

• A2 - Memory Address: Whenever memory is read or written, a data-address signal

(Daddr) contains the address of the corresponding memory location. For a read access,

a data read-enable bit (Ren) must be set, and for a write access, a data write-enable

bit (Wen) must be set.

• A3 - DMA: Whenever a DMA controller attempts to access main system memory,

a DMA-address signal (DMAaddr) reflects the address of the memory location being

21

accessed and a DMA-enable bit (DMAen) must be set. DMA can not access memory

when DMAen is off (logical zero).

• A4 - MCU reset: At the end of a successful reset routine, all registers (including PC)

are set to zero before resuming normal software execution flow. Resets are handled by

the MCU in hardware; thus, reset handling routine can not be modified.

• A5 - Interrupts: When interrupts happen, the corresponding irq signal is set.

SW-Att uses the HACL* [117] HMAC-SHA256 function which is implemented and verified

in F*1. F* can be automatically translated to C and the proof of correctness for the trans-

lation is provided in [94]. However, even though efforts have been made to build formally

verified C compilers (CompCert [74] is the most prominent example), there are currently no

verified compilers targeting lower-end MCUs, such as MSP430. Hence, we assume that the

standard compiler can be trusted to semantically preserve its expected behavior, especially

with respect to the following:

• A6 - Callee-Saves-Register: Any register touched in a function is cleaned by default

when the function returns.

• A7 - Semantic Preservation: Functional correctness of the verified HMAC imple-

mentation in C, when converted to assembly, is semantically preserved.

Remark: Axioms A6 and A7 reflect the corresponding compiler specification (e.g., msp430-

gcc).

Invasive physical hardware attacks are out of scope in this work. Specifically, Adv can

not modify code stored in ROM, induce hardware faults, or retrieve Prv secrets via physical

presence side-channels. Protection against physical attacks is considered orthogonal and

could be supported via standard tamper-resistance techniques [95]. Non-invasive attacks

that require physical presence, such as reprogramming the MCU software using appropriate

1https://www.fstar-lang.org/

22

https://www.fstar-lang.org/

Figure 3.1: Properties of secure RA.

interfaces (without tampering with hardware), are still considered within our scope.

3.2.2 Secure RA Properties at a High-Level (Informally)

We now describe, in high level, the sub-properties required for RA. In section 3.3, we for-

malize these sub-properties in LTL and provide single end-to-end definitions for RA sound-

ness and security. Then we prove that VRASED’s design satisfies the aforementioned sub-

properties and that the end-to-end definitions for soundness and security are implied by

them. The properties, shown in Figure 3.1, fall into two groups: key protection and safe

execution.

Key Protection:

As mentioned earlier, K must not be accessible by regular software running on Prv. To

guarantee this, the following features must be correctly implemented:

• P1- Access Control: K can only be accessed by SW-Att.

• P2- No Leakage: Neither K (nor any function of K other than the correctly computed

HMAC) can remain in unprotected memory or registers after execution of SW-Att.

• P3- Secure Reset: Any memory holding any function of K and all registers (includ-

23

MCU CORE

MEM.

BACK-
BONE

HW-Mod

SW-Att

K

SW-Att
STACK

(XS)

App.
Avail.
RAM

App.
Code

PC,
irq,
Ren,
Wen,
Daddr,
DMAen,
DMAaddr

reset

ROM

RAM

FLASH

Figure 3.2: VRASED system architecture

ing PC) must be erased (or be inaccessible to regular software) after MCU reset. Since

a reset might be triggered during SW-Att execution, lack of this property could result

in leakage of privileged information about the system state or K. Erasure of registers

as part of the reset ensures that no state from a previous execution persists. Therefore,

the system must return to the default initialization state.

Safe Execution:

Safe execution ensures that K is properly and securely used by SW-Att for its intended

purpose. Safe execution is divided into four sub-properties:

• P4- Functional Correctness: SW-Att must implement expected behavior of Prv’s

role in the RA protocol. For instance, if Vrf expects a response containing an HMAC

of memory in address range [A,B], SW-Att implementation should always reply accord-

24

ingly. Moreover, SW-Att must always finish in finite time, regardless of input size and

other parameters.

• P5- Immutability: SW-Att executable must be immutable. Otherwise, malware re-

siding in Prv could modify SW-Att, e.g., to always generate valid RA measurements or

to leak K.

• P6- Atomicity: SW-Att execution can not be interrupted. The first reason for atomic-

ity is to prevent leakage of intermediate values in registers and SW-Att’s data memory

(including locations that could leak functions of K) during SW-Att execution. This

relates to P2 above. The second reason is to prevent roving malware from relocating

itself to escape being measured by SW-Att.

• P7- Controlled Invocation: SW-Att must always start from the first instruction and

execute until the last instruction. Even though correct implementation of SW-Att is

guaranteed by P4, isolated execution of chunks of a correctly implemented code could

lead to catastrophic results. Potential ROP attacks could be constructed using gadgets

of SW-Att (which, based on P1, have access to K) to forge valid attestation results or

leak K.

Beyond aforementioned core security properties, in some settings, Prv might need to authen-

ticate Vrf’s attestation requests in order to mitigate potential DoS attacks on Prv [50]. This

functionality is also provided (and verified) as an optional feature in the design of VRASED.

The differences between the standard design and the one with support for Vrf authentication

are discussed in Appendix 3.9.

3.2.3 System Architecture

VRASED architecture is depicted in Figure 3.2. VRASED adds HW-Mod to the MCU architec-

ture, e.g., MSP430. MCU memory layout is extended to include Read-Only Memory (ROM)

25

that houses SW-Att code and K used in the HMAC computation. Because K and SW-Att code

are stored in ROM, we have guaranteed immutability, i.e., P5. VRASED also reserves a fixed

part of the memory address space for SW-Att stack. This amounts to ≈ 3% of the address

space, as discussed in Section 3.5 2. Access control to dedicated memory regions, as well as

SW-Att atomic execution are enforced by HW-Mod. The memory backbone is extended to sup-

port multiplexing of the new memory regions. HW-Mod takes 7 input signals from the MCU

core: PC, irq, Daddr, Ren, Wen, DMAaddr and DMAen. These inputs are used to determine

a one-bit reset signal output, that, when set to 1, resets the MCU core immediately, i.e.,

before execution of the next instruction. The reset output is triggered when HW-Mod detects

any violation of security properties 3.

3.2.4 Verification Pipeline

Figure 3.3: VRASED’s submodule verification

An overview of HW-Mod verification is shown in Figures 3.3 and 3.4. We start by formalizing

RA sub-properties discussed in this section using LTL to define invariants that must hold

throughout the entire system execution. HW-Mod is implemented as a composition of sub-

2A separate region in RAM is not strictly required. Alternatives and trade-offs are discussed in Section 3.4
3Resets due to VRASED violations do not give malware advantages as malware can always trigger resets

on the unmodified MCU by inducing software faults.

26

modules written in the Verilog HDL. Each sub-module implements the hardware responsible

for ensuring a given subset of the LTL specifications. Each sub-module is described as an

FSM in: (1) Verilog at Register Transfer Level (RTL); and (2) the Model-Checking language

SMV [34]. We then use the NuSMV model checker to verify that the FSM complies with

the LTL specifications. If verification fails, the sub-module is re-designed.

Once each sub-module is verified, they are combined into a single Verilog design. The

composition is converted to SMV using the automatic translation tool Verilog2SMV [65].

The resulting SMV is simultaneously verified against all LTL specifications to prove that the

final Verilog design for HW-Mod complies with all secure RA properties.

We clarify that the individual SMV sub-modules’ design and verification steps are not strictly

required in the verification pipeline. This is because verifying SMV that is automatically

translated from the composition of HW-Mod would suffice. Nevertheless, we design FSMs in

SMV first so as to facilitate sub-modules’ development and reasoning with an early additional

check before going into their actual implementation and composition in Verilog.

Remark: Automatic conversion of the composition of HW-Mod from Verilog to SMV rules

out the possibility of human mistakes in representing Verilog FSMs as SMV.

For the SW-Att part of VRASED, we use the HMAC-SHA-256 from the HACL* library [117]

to compute an authenticated integrity check of attested memory and Chal received from Vrf.

This function is formally verified with respect to memory safety, functional correctness, and

cryptographic security. However, key secrecy properties (such as clean-up of memory tainted

by the key) are not formally verified in HACL* and thus must be ensured by HW-Mod.

As the last step, we prove that the conjunction of the LTL properties guaranteed by HW-Mod

and SW-Att implies soundness and security of the RA architecture. These are formally spec-

ified in Section 3.3.2.

27

Figure 3.4: Verification framework for the composition of sub-modules (HW-Mod).

3.3 Verifying VRASED

In this section we formalize RA sub-properties. For each sub-property, we represent it as a set

of LTL specifications and construct an FSM that is verified to conform to such specifications.

Finally, the conjunction of these FSMs is implemented in Verilog HDL and translated to

SMV using Verilog2SMV. The generated SMV description for the conjunction is proved to

simultaneously hold for all specifications. We also define end-to-end soundness and security

goals which are derived from the verified sub-properties (See Appendix 3.8 for the proof).

3.3.1 Notation

To facilitate generic LTL specifications that represent VRASED’s architecture (see Fig-

ure 3.2) we use the following:

28

• ARmin and ARmax: first and last physical addresses of the memory region to be at-

tested;

• CRmin and CRmax: physical addresses of first and last instructions of SW-Att in ROM;

• Kmin and Kmax: first and last physical addresses of the ROM region where K is stored;

• XSmin and XSmax: first and last physical addresses of the RAM region reserved for

SW-Att computation;

• MACaddr: fixed address that stores the result of SW-Att computation (HMAC);

• MACsize: size of HMAC result in bytes;

Table 3.1 uses the above definitions and summarizes the notation used in our LTL specifi-

cations throughout the rest of this chapter.

To simplify specification of defined security properties, we use [A,B] to denote a contiguous

memory region between A and B. Therefore, the following equivalence holds:

C ∈ [A,B]⇔ (C ≤ B ∧ C ≥ A) (3.1)

For example, expression PC ∈ CR holds when the current value of PC signal is within

CRmin and CRmax, meaning that the MCU is currently executing an instruction in CR, i.e,

a SW-Att instruction. This is because in the notation introduced above: PC ∈ CR⇔ PC ∈

[CRmin, CRmax]⇔ (PC ≤ CRmax ∧ PC ≥ CRmin).

FSM Representation. As discussed in Section 3.2, HW-Mod sub-modules are represented as

FSMs that are verified to hold for LTL specifications. These FSMs correspond to the Verilog

hardware design of HW-Mod sub-modules. The FSMs are implemented as Mealy machines,

where output changes at any time as a function of both the current state and current input

values4. Each FSM has as inputs a subset of the following signals and wires: {PC, irq,

4This is in contrast with Moore machines where the output is defined solely based on the current state.

29

Table 3.1: Summary of VRASED-relevant notation

Notation Description

PC Current Program Counter value

Ren Signal that indicates if the MCU is reading from memory (1-bit)

Wen Signal that indicates if the MCU is writing to memory (1-bit)

Daddr Address for an MCU memory access

DMAen Signal that indicates if DMA is currently enabled (1-bit)

DMAaddr Memory address being accessed by DMA, if any

irq Signal that indicates if and interrupt is occurring (1-bit)

CR (Code ROM) Memory region where SW-Att is stored: CR = [CRmin, CRmax]

KR (K ROM) Memory region where K is stored: KR = [Kmin,Kmax]

XS (eXclusive Stack) secure RAM region reserved for SW-Att computations: XS =
[XSmin, XSmax]

MR (MAC RAM) RAM region in which SW-Att computation result is written: MR =
[MACaddr,MACaddr + MACsize − 1]. The same region is also used to pass the
attestation challenge as input to SW-Att

AR (Attested Region) Memory region to be attested. Can be fixed/predefined or specified
in an authenticated request from Vrf: AR = [ARmin, ARmax]

reset A 1-bit signal that reboots the MCU when set to logic 1

A1, A2, ..., A7 Verification axioms (outlined in section 3.2.1)

P1, P2, ..., P7 Properties required for secure RA (outlined in section 3.2.2)

Ren,Wen, Daddr, DMAen, DMAaddr}.

Each FSM has only one output, reset, that indicates whether any security property was

violated. For the sake of presentation, we do not explicitly represent the value of the reset

output for each state. Instead, we define the following implicit representation:

1. reset output is 1 whenever an FSM transitions to the Reset state;

2. reset output remains 1 until a transition leaving the Reset state is triggered;

3. reset output is 0 in all other states.

30

3.3.2 Formalizing RA Soundness and Security

We now define the notions of soundness and security. Intuitively, RA soundness corresponds

to computing an authenticated integrity ensuring function over a snapshot of attested mem-

ory range AR at time some time t. In our case, this function is an HMAC computed on

memory AR with a one-time key derived from K and Chal. Since SW-Att computation is

not instantaneous, RA soundness must ensure that attested memory does not change during

computation of the HMAC. This is the notion of temporal consistency in remote attesta-

tion [29]. In other words, the result of SW-Att call must reflect the entire state of the attested

memory at the time when SW-Att is called. This notion is captured in LTL by Definition 1.

Definition 1. End-to-end definition for soundness of RA computation

G : { PC = CRmin ∧AR = M ∧MR = Chal ∧ [(¬reset) U (PC = CRmax)]→
F : [PC = CRmax ∧MR = HMAC(KDF (K, Chal),M)] }

where M is any AR value and KDF is a secure key derivation function.

In Definition 1, PC = CRmin captures the time when SW-Att is called (execution of its

first instruction). M and Chal are the values of AR and MR at that time. From this pre-

condition, Definition 1 asserts that there is a time in the future when SW-Att computation

finishes and, at that time, MR stores the result of HMAC(KDF (K, Chal),M). Note that,

to satisfy Definition 1, Chal and M in the resulting HMAC must correspond to the values in

AR and MR, respectively, when SW-Att was called.

RA security is defined using the security game in Figure 3.5. It models an adversary Adv

(as a probabilistic polynomial time machine) that has full control of the software state of

Prv (as the one described in Section 3.2.1). It can modify AR at will and call SW-Att a

polynomial number of times in the security parameter (the security parameter corresponds

to K and Chal bit-lengths). However, Adv can not modify SW-Att code, which is stored in

immutable memory. The game assumes that Adv does not have direct access to K, and only

31

learns Chal after receiving it from Vrf as part of the attestation request.

Definition 2.
2.1 RA Security Game (RA-game):
Assumptions:

- SW-Att is immutable, and K is not known to Adv
- l is the security parameter and |K| = |Chal| = |MR| = l
- AR(t) denotes the content in AR at time t
- Adv can modify AR and MR at will; however, it loses its ability to modify them while SW-Att

is running

RA-game:
1. Setup: Adv is given oracle access to SW-Att.
2. Challenge: A random challenge Chal ← ${0, 1}l is generated and given to Adv. Adv

continues to have oracle access to SW-Att.
3. Response: Eventually, Adv responds with a pair (M,σ), where σ is either forged by
Adv, or the result of calling SW-Att at some arbitrary time t.

4. Adv wins if and only if σ = HMAC(KDF (K, Chal),M) and M 6= AR(t).

2.2 RA Security Definition:
An RA protocol is considered secure if there is no ppt Adv, polynomial in l, capable of winning
the game defined in 2.1 with Pr[Adv,RA-game] > negl(l)

Figure 3.5: RA security definition for VRASED

In the following sections, we define SW-Att functional correctness, LTL specifications 3.2-3.10

and formally verify that VRASED’s design guarantees such LTL specifications. We derive

LTL specifications from the intuitive properties discussed in Section 3.2.2 and depicted in

Figure 3.1. In Appendix 3.8 we prove that the conjunction of such properties achieves

soundness (Definition 1) and security (Definition 2). For the security proof, we first show

that VRASED guarantees that Adv can never learn K with more than negligible probability,

thus satisfying the assumption in the security game. We then complete the proof of security

via reduction, i.e., show that existence of an adversary that wins the game in Definition 2

implies the existence of an adversary that breaks the conjectured existential unforgeability

of HMAC.

Remark: The rest of this section focuses on conveying the intuition behind the specification

of LTL sub-properties. Therefore, our references to the MCU machine model are via Axioms

A1 - A7 which were described at high level. An LTL machine model formalizing these

32

1 void Hacl HMAC SHA2 256 hmac entry() {
2 uint8 t key[64] = {0};
3 memcpy(key, (uint8 t∗) KEYADDR, 64) ;
4 hacl hmac((uint8 t∗) key, (uint8 t∗) key, (uint32 t) 64, (uint8 t∗) CHALLADDR, (uint32 t) 32) ;
5 hacl hmac((uint8 t∗) MACADDR, (uint8 t∗) key, (uint32 t) 32, (uint8 t∗) ATTESTDATAADDR, (uint32 t) ATTESTSIZE) ;
6 return () ;
7 }

Figure 3.6: SW-Att C Implementation

notions is described in Appendix 3.8.

3.3.3 VRASED SW-Att

To minimize required hardware features, hybrid RA approaches implement integrity ensuring

functions (e.g., HMAC) in software. VRASED’s SW-Att implementation is built on top of

HACL*’s HMAC implementation [117]. HACL* code is verified to be functionally correct,

memory safe and secret independent. In addition, all memory is allocated on the stack

making it predictable and deterministic.

SW-Att is simple, as depicted in Figure 3.6. It first derives a new unique context-specific

key (key) from the master key (K) by computing an HMAC-based key derivation function,

HKDF [73], on Chal. This key derivation can be extended to incorporate attested memory

boundaries if Vrf specifies the range (see Appendix 3.9). Finally, it calls HACL*’s HMAC,

using key as the HMAC key. ATTEST DATA ADDR and ATTEST SIZE specify the

memory range to be attested (AR in our notation). We emphasize that SW-Att resides in ROM,

which guarantees P5 under the assumption of no hardware attacks. Moreover, as discussed

below, HW-Mod enforces that no other software running on Prv can access memory allocated

by SW-Att code, e.g., key[64] buffer allocated in line 2 of Figure 3.6.

HACL*’s verified HMAC is the core for guaranteeing P4 (Functional Correctness) in VRASED’s

design. SW-Att functional correctness means that, as long as the memory regions storing val-

ues used in SW-Att computation (CR, AR, and KR) do not change during its computation,

33

the result of such computation is the correct HMAC. This guarantee can be formally ex-

pressed in LTL as in Definition 3. We note that since HACL*’s HMAC functional correctness

is specified in F*, instead of LTL, we manually convert its guarantees to the LTL expressed

by Definition 3. By this definition, the value in MR does not need to remain the same, as

it will be eventually overwritten by the result of SW-Att computation.

Definition 3. SW-Att functional correctness

G : { PC = CRmin ∧MR = Chal ∧ [(¬reset ∧ ¬irq ∧ CR = SW-Att ∧ KR = K ∧ AR = M) U PC = CRmax]

→ F : [PC = CRmax ∧MR = HMAC(KDF (K, Chal),M)] }

where M is any arbitrary value for AR.

In addition, some HACL* properties, such as stack-based and deterministic memory alloca-

tion, are used in alternative designs of VRASED to ensure P2 – see Section 3.4.

Functional correctness implies that the HMAC implementation conforms to its published

standard specification on all possible inputs, retaining the specification’s cryptographic se-

curity. It also implies that HMAC executes in finite time. Secret independence ensures

that there are no branches taken as a function of secrets, i.e., K and key in Figure 3.6.

This mitigates leakage of K (or derived key) via timing side-channel attacks. Memory safety

guarantees that implemented code is type safe, meaning that it never reads from, or writes

to: invalid memory locations, out-of-bounds memory, or unallocated memory. This is par-

ticularly important for preventing ROP attacks, as long as P7 (controlled invocation) is also

preserved5.

Having all memory allocated on the stack allows us to either: (1) confine SW-Att execution

to a fixed size protected memory region inaccessible to regular software (including malware)

running on Prv; or (2) ensure that SW-Att stack is erased before the end of execution. Note

that HACL* does not provide stack erasure. Therefore, P2 does not follow from HACL*

5Otherwise, even though the implementation is memory-safe and correct as a whole, chunks of a memory-
safe code could still be used in ROP attacks.

34

implementation. This practice is common because inter-process memory isolation is usually

provided by the Operating System (OS). However, erasure before SW-Att terminates must

be guaranteed. Recall that VRASED targets low-end MCUs that might run applications on

bare-metal and thus can not rely on any OS features.

As discussed above, even though HACL* implementation guarantees P4 and storage in ROM

guarantees P5, these must be combined with P6 and P7 to provide safe execution. P6 and

P7 – along with the key protection properties (P1, P2, and P3) – are ensured by HW-Mod

and are described next.

3.3.4 Key Access Control (HW-Mod)

If malware manages to read K from ROM, it can reply to Vrf with a forged result. HW-Mod

access control (AC) sub-module enforces that K can only be accessed by SW-Att (P1).

LTL Specification

The invariant for key access control (AC) is defined in LTL Specification (3.2). It stipulates

that the system must transition to the Reset state whenever code from outside CR tries to

read from Daddr within the key space.

G : {¬(PC ∈ CR) ∧Ren ∧ (Daddr ∈ KR)→ reset } (3.2)

35

Run Reset

otherwise otherwise

¬(PC ∈ CR) ∧Ren ∧ (Daddr ∈ KR)

PC = 0

Figure 3.7: Verified FSM for Key AC

Verified Model

Figure 3.7 shows the FSM implemented by the AC sub-module which is verified to hold for

LTL Specification 3.2. This FSM has two states: Run and Reset. It outputs reset = 1 when

the AC sub-module transitions to state Reset. This implies a hard-reset of the MCU. Once

the reset process completes, the system leaves the Reset state.

3.3.5 Atomicity and Controlled Invocation (HW-Mod)

In addition to functional correctness, safe execution of attestation code requires immutability

(P5), atomicity (P6), and controlled invocation (P7). P5 is achieved directly by placing

SW-Att in ROM. Therefore, we only need to formalize invariants for the other two properties:

atomicity and controlled execution.

LTL Specification

To guarantee atomic execution and controlled invocation, LTL Specifications (3.3), (3.4) and

(3.5) must hold:

G : {[¬reset ∧ (PC ∈ CR) ∧ ¬(X(PC) ∈ CR)]→ [PC = CRmax ∨X(reset)] } (3.3)

36

G : {[¬reset ∧ ¬(PC ∈ CR) ∧ (X(PC) ∈ CR)]→ [X(PC) = CRmin ∨X(reset)] } (3.4)

G : {irq ∧ (PC ∈ CR) → reset } (3.5)

LTL Specification (3.3) enforces that the only way for SW-Att execution to terminate is

through its last instruction: PC = CRmax. This is specified by checking current and next

PC values using LTL neXt operator. In particular, if current PC value is within SW-Att

region, and next PC value is out of SW-Att region, then either current PC value is the

address of the last instruction in SW-Att (CRmax), or reset is triggered in the next cycle.

Also, LTL Specification (3.4) enforces that the only way for PC to enter SW-Att region is

through the very first instruction: CRmin. Together, these two invariants imply P7: it is

impossible to jump into the middle of SW-Att, or to leave SW-Att before reaching the last

instruction.

P6 is satisfied through LTL Specification (3.5). Atomicity could be violated by interrupts.

However, LTL Specification (3.5) prevents an interrupt to happen while SW-Att is executing.

Therefore, if interrupts are not disabled by software running on Prv before calling SW-Att,

any interrupt that could violate SW-Att atomicity will necessarily cause an MCU reset.

Verified Model

Figure 3.8 presents a verified model for atomicity and controlled invocation enforcement.

The FSM has five states. Two basic states notCR and midCR represent moments when

PC points to an address: (1) outside CR, and (2) within CR, respectively, not including

37

Reset

notCR

fstCR

midCR

lastCR

PC = 0

otherwise

PC < CRmin ∨ PC > CRmax

PC = CRmin ∧ ¬ irq
otherwise

PC = CRmin

∧¬ irq

(PC > CRmin ∧ PC < CRmax)

∧¬ irq

otherwise

(PC > CRmin ∧ PC < CRmax)

∧¬ irq

PC = CRmax ∧ ¬ irq
otherwise

PC = CRmax

∧¬ irq

(PC < CRmin ∨ PC > CRmax)

∧¬ irq

otherwise

Figure 3.8: Verified FSM for atomicity and controlled invocation.

the first and last instructions of SW-Att. Another two: fstCR and lastCR represent states

when PC points to the first and last instructions of SW-Att, respectively6. Note that the

only possible path from notCR to midCR is through fstCR. Similarly, the only path from

midCR to notCR is through lstCR. The FSM transitions to the Reset state whenever: (1)

any sequence of values for PC does not obey the aforementioned conditions; or (2) irq is

logical 1 while executing SW-Att.

3.3.6 Key Confidentiality (HW-Mod)

To guarantee secrecy of K and thus satisfy P2, VRASED must enforce the following:

6Note that this distinction is possible because SW-Att implementation has a single legal entry-point and
a single legal exit.

38

1. No leaks after attestation: any registers and memory accessible to applications must

be erased at the end of each attestation instance, i.e., before application execution

resumes.

2. No leaks on reset: since a reset can be triggered during attestation execution, any

registers and memory accessible to regular applications must be erased upon reset.

Per Axiom A4, all registers are zeroed out upon reset and at boot time. Therefore, the only

time when register clean-up is necessary is at the end of SW-Att. Such clean-up is guaranteed

by the Callee-Saves-Register convention: Axiom A6.

Nonetheless, the leakage problem remains because of RAM allocated by SW-Att. Thus, we

must guarantee that K is not leaked through ”dead” memory, which could be accessed

by application (possibly, malware) after SW-Att terminates. A simple and effective way of

addressing this issue is by reserving a separate secure stack in RAM that is only accessible

(i.e., readable and writable) by attestation code. All memory allocations by SW-Att must be

done on this stack, and access control to the stack must be enforced by HW-Mod. As discussed

in Section 3.5, the size of this stack is constant – 2.3KBytes. This corresponds to ≈ 3% of

MSP430 16-bit address space. We discuss VRASED variants that do not require a reserved

stack and trade-offs between them in Section 3.4.

LTL Specification

Recall that XS denote a contiguous secure memory region reserved for exclusive access by

SW-Att. LTL Specification for the secure stack sub-module is as follows:

G : {¬(PC ∈ CR) ∧ (Ren ∨Wen) ∧ (Daddr ∈ XS)→ reset } (3.6)

39

Run Reset

otherwise otherwise

(¬(PC ∈ CR) ∧ (Ren ∨Wen) ∧ (Daddr ∈ XS))

∨

((PC ∈ CR) ∧ (Wen) ∧ ¬(Daddr ∈ XS) ∧ ¬(Daddr ∈MR))

PC = 0

Figure 3.9: Verified FSM for Key Confidentiality

We also want to prevent attestation code from writing into application memory. Therefore,

it is only allowed to write to the designated fixed region for the HMAC result (MR).

G : {(PC ∈ CR) ∧ (Wen) ∧ ¬(Daddr ∈ XS) ∧ ¬(Daddr ∈MR)→ reset } (3.7)

In summary, invariants (3.6) and (3.7) enforce that only attestation code can read from/write

to the secure reserved stack and that attestation code can only write to regular memory

within the space reserved for the HMAC result. If any of these conditions is violated, the

system resets.

Verified Model

Figure 3.9 shows the FSM verified to comply with invariants (3.6) and (3.7).

3.3.7 DMA Support

So far, we presented a formalization of HW-Mod sub-modules under the assumption that DMA

is either not present or disabled on Prv. However, when present, a DMA controller can access

arbitrary memory regions. Such memory access is performed concurrently in the memory

40

backbone and without MCU intervention, while the MCU executes regular instructions.

DMA data transfer is performed using dedicated memory buses, e.g., DMAen and DMAaddr.

Hence, regular memory access control (based on monitoring Daddr) does not apply to memory

access by DMA controller. Thus, if DMA controller is compromised, it may lead to violation

of P1 and P2 by directly reading K and values in the attestation stack, respectively. In

addition, it can assist Prv-resident malware to escape detection by either copying it out of

the measurement range or deleting it, which results in a violation of P6.

LTL Specification

We introduce three additional LTL Specifications to protect against aforementioned attacks.

First, we enforce that DMA cannot access K.

G : {DMAen ∧ (DMAaddr ∈ KR)→ reset } (3.8)

Similarly, LTL Specification for preventing DMA access to the attestation stack is defined

as:

G : {DMAen ∧ (DMAaddr ∈ XS)→ reset } (3.9)

Finally, invariant (3.10) specifies that DMA must be always disabled while PC is in SW-Att

region. This prevents DMA controller from helping malware escape during attestation.

G : {(PC ∈ CR) ∧DMAen → reset } (3.10)

41

Verified Model

Figure 3.10 shows the FSM verified to comply with invariants (3.8) to (3.10).

Run Reset

otherwise otherwise

(DMAen ∧ (DMAaddr ∈ KR))

∨

((PC ∈ CR) ∧DMAen) ∨ (DMAen ∧ (DMAaddr ∈ XS))→ reset;

PC = 0

Figure 3.10: Verified FSM for DMA protection

3.3.8 HW-Mod Composition

Thus far, we designed and verified individual HW-Mod sub-modules according to the method-

ology in Section 3.2.4 and illustrated in Figure 3.3. We now follow the workflow of Figure 3.4

to combine the sub-modules into a single Verilog module. Since each sub-module individu-

ally guarantees a subset of properties P1–P7, the composition is simple: the system must

reset whenever any sub-module reset is triggered. This is implemented by a logical OR of

sub-modules reset signals. The composition is shown in Figure 3.11.

To verify that all LTL specifications still hold for the composition, we use Verilog2SMV [65]

to translate HW-Mod to SMV and verify SMV for all of these specifications simultaneously.

3.3.9 Secure Reset (HW-Mod)

Finally, we define an LTL Specification for secure reset (P3). According to Axiom A4, all

registers (including PC) are set to 0 on reset. However, the reset routine implemented by

42

Figure 3.11: HW-Mod composition from sub-modules

the MCU might take several clock cycles. Ensuring that reset = 1 until the point when

registers are wiped is important in order to guarantee that K is not leaked through registers

after a reset. That is because some part of K might remain in some of the registers if a reset

happens during SW-Att execution.

LTL Specification

To guarantee that the reset signal is active for long enough so that the MCU reset finishes

and all registers are cleaned-up, it must hold that:

G : {reset→ [(reset U PC = 0) ∨ G(reset)] } (3.11)

Invariant (3.11) states: when reset signal is triggered, it can only be released after PC = 0.

Transition from Reset state in all sub-modules presented in this section already takes this

invariant into account. Thus, HW-Mod composition also verifies LTL Specification (3.11).

43

3.4 Alternative Designs

We now discuss alternative designs for VRASED that guarantee verified properties without

requiring a separate secure stack region for SW-Att operations. Recall that HW-Mod enforces

that only SW-Att can access this stack. Since memory usage in HACL* HMAC is deter-

ministic, the size of the separate stack can be pre-determined – 2, 332bytes, in this specific

implementation. Even though resulting in overall (HW and SW) design simplicity, dedicat-

ing 3% of addressable memory to secure RA might not be desirable. Therefore, we consider

several alternatives. In Section 3.5 the costs involved with these alternatives are quantified

and compared to the standard design of VRASED.

3.4.1 Erasure on SW-Att

The most intuitive alternative to a reserved secure stack (which prevents accidental key

leakage by SW-Att) is to encode corresponding properties into the HACL* implementation

and proof. Specifically, it would require extending the HACL* implementation to zero out

all allocated memory before every function return. In addition, to retain verification of P2

(in Section 3.2.2) and ensure no leakage, HACL*-verified properties must be extended to

incorporate memory erasure. This is not yet supported in HACL* and doing so would incur

a slight performance overhead. However, the trade-off between performance and RAM savings

might be worthwhile.

At the same time, we note that, even with verified erasure as a part of SW-Att, P2 is

still not guaranteed if the MCU does not guarantee erasure of the entire RAM upon boot.

This is necessary in order to consider the case when Prv re-boots in the middle of SW-Att

execution. Without a reserved stack, K might persist in RAM. Since the memory range for

SW-Att execution is not fixed, hardware support is required to bootstrap secure RAM erasure

44

before starting any software execution. In fact, such support is necessary for all approaches

without a separate secure stack.

3.4.2 Compiler-Based Clean-Up

While stack erasure in HACL* would integrate nicely with the overall proof of SW-Att, the

assurance would be at the language abstraction level, and not necessarily at the machine

level. The latter would require additional assumptions about the compilation tool chain.

We could also consider performing stack erasure directly in the compiler. In fact, a recent

proposal to do exactly that was made in zerostack [103], an extension to Clang/LLVM. In case

of VRASED, this feature could be used on unmodified HACL* (at compilation time), to add

instructions to erase the stack before the return of each function enabling P2, assuming the

existence of a verified RAM erasure routine upon boot. We emphasize that this approach may

increase the compiler’s trusted code base. Ideally, it should be implemented and formally

verified as part of a verified compiler suite, such as CompCert [74].

3.4.3 Double-HMAC Call

Finally, complete stack erasure could also be achieved directly using currently verified HACL*

properties, without any further modifications. This approach involves invoking HACL*

HMAC function a second time, after the computation of the actual HMAC. The second

“dummy” call would use the same input data, however, instead of using K, an independent

constant, such as {0}512, would be used as the HMAC key.

Recall that HACL* is verified to only allocate memory on the stack in a deterministic manner.

Also, due to HACL*’s verified properties that mitigate side-channels, software flow does not

change based on the secret key. Therefore, this deterministic allocation implies that, for

45

inputs of the same size, any variable allocated by the first “real” HMAC call (tainted by K),

would be overwritten by the corresponding variable in the second “dummy” call. Note that

the same guarantee discussed in Section 3.4.1 is provided here and secure RAM erasure at boot

would still be needed for the same reasons. Admittedly, this double-HMAC approach would

consume twice as many CPU cycles. Still, it might be a worthwhile trade-off, especially,

if there is memory shortage and lack of previously discussed HACL* extension or compiler

extension.

3.5 Evaluation

We now discuss implementation details and evaluate VRASED’s overhead and performance.

Section 3.5.2 reports on verification complexity. Section 3.5.3 discusses performance in terms

of time and space complexity as well as its hardware overhead. We also provide a com-

parison between VRASED and other RA architectures targeting low-end devices, namely

SANCUS [87] and SMART [49], in Section 3.5.4.

3.5.1 Implementation

As mentioned earlier, we use OpenMSP430 [56] as an open core implementation of the

MSP430 architecture. OpenMSP430 is written in the Verilog HDL and can execute software

generated by any MSP430 toolchain with near cycle accuracy. We modified the standard

OpenMSP430 to implement the hardware architecture presented in Section 3.2.3, as shown in

Figure 3.2. This includes adding ROM to store K and SW-Att, adding HW-Mod, and adapting the

memory backbone accordingly. We use Xilinx Vivado [113] – a popular logic synthesis tool

– to synthesize an RTL description of HW-Mod into hardware in FPGA. FPGA synthesized

hardware consists of a number of logic cells. Each consists of Look-Up Tables (LUTs) and

46

registers; LUTs are used to implement combinatorial boolean logic while registers are used for

sequential logic elements, i.e., FSM states and data storage. We compiled SW-Att using the

native msp430-gcc [107] and used Linker scripts to generate software images compatible with

the memory layout of Figure 3.2. Finally, we evaluated VRASED on the FPGA platform

Artix-7 [114].

3.5.2 Verification Results

As discussed in Section 3.2.2, VRASED’s verification consists of properties P1–P7. P5

is achieved directly by executing SW-Att from ROM. Meanwhile, HACL* HMAC verification

implies P4. All other properties are automatically verified using NuSMV model checker.

Table 3.2 shows the verification results of VRASED’s HW-Mod composition as well as results

for individual sub-modules. It shows that VRASED successfully achieves all the required

security properties. These results also demonstrate feasibility of our verification approach,

since the verification process – running on a commodity desktop computer – consumes only

small amount of memory and time: < 14MB and 0.3sec, respectively, for all properties.

Table 3.2: Verification results running on a desktop @ 3.40 GHz.

HW Submod. LTL Spec. Mem. (MB) Time (s) Verified
Key AC 3.2,3.11 7.5 .02 3

Atomicity 3.3,3.4,3.5,3.11 8.5 .05 3

Exclusive Stack 3.6,3.7,3.11 8.1 .03 3

DMA Support 3.8-3.11 8.2 .04 3

HW-Mod 3.2-3.11 13.6 .28 3

47

Table 3.3: Evaluation of cost, overhead, and performance of RA

Method
RAM Erasure

Required Upon Boot?
FPGA Hardware Verilog

LoC
Memory (byte) Time to attest 4KB

LUT Reg Cell ROM Sec. RAM CPU cycles ms (at 8MHz)

Core (Baseline) N/A 1842 684 3044 4034 0 0 N/A N/A
Secure Stack (Section 3.3) No 1964 721 3237 4621 4500 2332 3601216 450.15
Erasure on SW-Att (Section 3.4.1) Yes 1954 717 3220 4516 4522 0 3613283 451.66
Compiler-based Clean-up (Section 3.4.2) 7 Yes 1954 717 3220 4516 4522 0 3613283 451.66
Double-HMAC Call (Section 3.4.3) Yes 1954 717 3220 4516 4570 0 7201605 900.20

Table 3.4: Qualitative comparison between RA architectures targeting low-end devices

VRASED SMART SANCUS
Design Type Hybrid (HW/SW) Hybrid (HW/SW) Pure HW
RA function HMAC-SHA256 HMAC-SHA1 SPONGENT-128/128/8
ROM for RA code Yes Yes No
DMA Support Yes No No
Formally Verified Yes No No

3.5.3 Performance and Hardware Cost

We now report on VRASED’s performance considering the standard design (described in

Section 3.3) and alternatives discussed in Section 3.4. We evaluate the hardware footprint,

memory (ROM and secure RAM), and run-time. Table 3.3 summarizes the results.

Hardware Footprint. VRASED’s standard approach (with the exclusive stack) adds

around 587 lines of code in Verilog HDL. This corresponds to around 15% of the code

in the original OpenMSP430 core. In terms of synthesized hardware, it requires 122 (6.6%)

and 37 (5.4%) additional LUTs and registers, respectively. Overall, VRASED contains 193

logic cells more than the unmodified OpenMSP430 core, corresponding to a 6.3% increase.

Memory. VRASED requires ∼4.5KB of ROM; most of which (96%) is for storing HACL*

HMAC-SHA256 code. The secure stack approach has the smallest ROM size, as it does not

need to perform a memory clean-up in software. However, this advantage is attained at the

price of requiring 2.3KBytes of reserved RAM. This overhead corresponds to 3.5% of MSP430

16-bit address space.

Attestation Run-time. Attestation run-time is dominated by the time it takes to com-

pute the HMAC of Prv’s memory. The secure stack, erasure on SW-Att and compiler-based

7As mentioned in Section 3.4.2, there is no formally verified msp430 compiler capable of performing stack
erasure. Thus, we estimate overhead of this approach by manually inserting code required for erasing the
stack in SW-Att.

48

clean-up approaches take roughly .45s to attest 4KB of RAM on an MSP430 device with a

clock frequency at 8MHz. Whereas, the double MAC approach requires invoking the HMAC

function twice, leading its run-time to roughly double.

Discussion. We consider VRASED’s overhead to be affordable. The additional hardware,

including registers, logic gates and exclusive memory, resulted in only a 3-6% increase. The

number of cycles required by SW-Att exhibits a linear increase with the size of attested

memory. As MSP430 typically runs at 8-25MHz, attestation of the entire RAM on a typical

MSP430 can be computed in less than a second. VRASED’s RA is relatively cheap to the

Prv. As a point of comparison we can consider a common cryptographic primitive such as

the Curve25519 Elliptic-Curve Diffie-Hellman (ECDH) key exchange. A single execution of

an optimized version of such protocol on MSP430 has been reported to take ≈ 9 million

cycles [59]. As Table 3.3 shows, attestation of 4KBytes (typical size of RAM in some MSP430

models) can be computed three times faster.

3.5.4 Comparison with Other Low-End RA Architectures

We here compare VRASED’s overhead with two previous RA architectures targeting low-

end embedded systems: SMART [49] and SANCUS [87]. We emphasize, however, that

both SMART and SANCUS were designed in an ad hoc manner. Thus, they can not be

formally verified and do not provide any guarantees offered by VRASED’s verified architec-

ture. Nevertheless, we contrast VRASED’s cost with such architectures to demonstrate its

affordability.

Table 3.4 presents a comparison between features offered and required by aforementioned

architectures. SANCUS is, to the best of our knowledge, the cheapest pure HW-based

architecture, while SMART is a minimal HW/SW RA co-design. Since SANCUS’s RA routine

is implemented entirely in HW, it does not require ROM to store the SW implementation of

49

the integrity ensuring function. VRASED implements a MAC with digest sizes of 256-

bits. SMART and SANCUS, on the other hand, use SHA1-based MAC and SPONGENT-

128/128/8 [20], respectively. Such MACs do not offer strong collision resistance due to the

small digest sizes (and known collisions). Of the three architectures, VRASED is the only

one secure in the presence of DMA and the only one to be rigorously specified and formally

verified.

Figure 3.12 presents a quantitative comparison between the RA architectures. It considers

additional overhead in relation to the latest version of the unmodified OpenMSP430 (avail-

able at [56]). Compared to VRASED, SANCUS requires 12× more Look-Up Tables, 22×

more registers, and its (unverified) TCB is 2.5 times larger in lines of Verilog code. This

comparison demonstrates the cost of relying on a HW-only approach even when designed

for minimality. SMART’s overhead is slightly smaller than that of VRASED due to lack

of DMA support. In terms of attestation execution time, SMART is the slowest, requiring

9.2M clock cycles to attest 4KB of memory. SANCUS achieves the fastest attestation time

(1.3M cycles) due to the HW implementation of SPONGENT-128/128/8. VRASED sits in

between the two with a total attestation time of 3.6M cycles.

3.6 Related Work

We are unaware of any previous work that yielded a formally verified RA design. Nevertheless,

formal verification has been widely used as the de facto means to guarantee that a system is

free of implementation errors and bugs. In recent years, several efforts focused on verifying

security-critical systems.

In terms of cryptographic primitives, Hawblitzel et al. [58] verified new implementations

of SHA, HMAC, and RSA. Beringer et al.[17] verified the Open-SSL SHA-256 implemen-

50

VRASED SMART SANCUS

0
20

40
60

80
10

0

(a) Additional HW overhead (%) in Number
of Look-Up Tables

VRASED SMART SANCUS

0
20

40
60

80
10

0
12

0
14

0

(b) Additional HW overhead (%) in Number
of Registers

VRASED SMART SANCUS

0
50

0
10

00
15

00

(c) Additional Verilog Lines of Code

VRASED SMART SANCUS

0
2

4
6

8

(d) Time to attest 4KB (in millions of CPU
cycles)

Figure 3.12: Comparison between RA architectures targeting low-end devices

tation. Bond et al. [21] verified an assembly implementation of SHA-256, Poly1305, AES

and ECDSA. More recently, Zinzindohoué, et al. [117] developed HACL*, a verified crypto-

graphic library containing the entire cryptographic API of NaCl [18]. As discussed earlier,

HACL*’s verified HMAC forms the core of VRASED’s software component.

Larger security-critical systems have also been successfully verified. For example, Bharga-

van [19] implemented the TLS protocol with verified cryptographic security. CompCert[74]

is a C compiler that is formally verified to preserve C code semantics in generated assembly

code. Klein et al. [67] designed and proved functional correctness of seL4 – the first verified

51

general-purpose microkernel. More recently, Tuncay et al. verified a design for Android OS

App permissions model [110].

The importance of verifying RA has been recently acknowledged by Lugou et al. [80], which

discussed methodologies for specifically verifying HW/SW RA co-designs. A follow-on result

proposed the SMASH-UP tool [81]. By modeling a hardware abstraction, SMASH-UP allows

automatic conversion of assembly instructions to the effects on hardware representation.

Similarly, Cabodi et al. [26, 25] discussed the first steps towards formalizing hybrid RA

properties. However, none of these results yielded a fully verified (and publicly available)

RA architecture, such as VRASED.

3.7 Conclusion

This chapter presented VRASED – the first formally verified hybrid RA method that uses

a verified cryptographic software implementation and combines it with a verified hardware

design to guarantee correct implementation of RA security properties. VRASED is also the

first verified security service implemented as a HW/SW co-design. VRASED was designed

with simplicity and minimality in mind. It results in efficient computation and low hardware

cost, realistic even for low-end embedded systems. VRASED’s practicality is demonstrated

via publicly available implementation using the low-end MSP430 platform.

52

APPENDIX

3.8 Appendix: RA Soundness and Security Proofs

3.8.1 Proof Strategy

We present the proofs for RA soundness (Definition 1) and RA security (Definition 2). Sound-

ness is proved entirely via LTL equivalences. In the proof of security we first show, via LTL

equivalences, that VRASED guarantees that adversary Adv can never learn K with more

than negligible probability. We then prove security by showing a reduction of HMAC’s exis-

tential unforgeability to VRASED’s security. In other words, we show that existence of Adv

that breaks VRASED implies existence of HMAC-Adv able to break conjectured existential

unforgeability of HMAC. The full machine-checked proofs for the LTL equivalences (using

Spot 2.0 [47] proof assistant) discussed in the remainder of this section are available in [1].

3.8.2 Machine Model

To prove that VRASED’s design satisfies end-to-end definitions of soundness and security

for RA, we start by formally defining (in LTL) memory and execution models corresponding

to the architecture introduced in Section 3.2.

Definition 4 (Memory model).

1. K is stored in ROM ↔ G : {KR = K}

2. SW-Att is stored in ROM ↔ G : {CR = SW-Att}

3. MR, CR, AR, KR, and XS are non-overlapping memory regions

53

The memory model in Definition 4 captures that KR and CR are ROM regions, and are thus

immutable. Hence, the values stored in those regions always correspond to K and SW-Att

code, respectively. Finally, the memory model states that MR, CR, AR, KR, and XS are

disjoint regions in the memory layout, corresponding to the architecture in Figure 3.2.

Definition 5 (Execution model).

1. Modify Mem(i) → (Wen ∧Daddr = i) ∨ (DMAen ∧DMAaddr = i)

2. Read Mem(i) → (Ren ∧Daddr = i) ∨ (DMAen ∧DMAaddr = i)

3. Interrupt → irq

Our execution model, in Definition 5, translates MSP430 behavior by capturing the effects

on the processor signals when reading and writing from/to memory. We do not model the

effects of instructions that only modify register values (e.g., ALU operations, such as add

and mul) because they are not necessary in our proofs.

The execution model defines that a given memory address can be modified in two cases:

by a CPU instruction or by DMA. In the first case, the Wen signal must be on and Daddr

must contain the memory address being accessed. In the second case, DMAen signal must

be on and DMAaddr must contain the address being modified by DMA. The requirements

for reading from a given address are similar, except that instead of Wen, Ren must be on.

Finally, the execution model also captures the fact that an interrupt implies setting the irq

signal to 1.

3.8.3 RA Soundness Proof

The proof follows from SW-Att functional correctness (expressed by Definition 3) and LTL

specifications 3.3, 3.5, 3.7, and 3.10

54

Theorem 1. VRASED is sound according to Definition 1.

Proof.

Definition 3 ∧ LTL3.3 ∧ LTL3.5 ∧ LTL3.7 ∧ LTL3.10 → Theorem 1

The formal computer proof for Theorem 1 can be found in [1]. The intuition for this proof

is two-part. First, SW-Att functional correctness (Definition 3) would imply Theorem 1 if

AR, CR, KR never change and an interrupt does not happen during SW-Att computation.

However, memory model Definitions 4.1 and 4.2 already guarantee that CR and KR never

change. Also, LTL 3.5 states that an interrupt cannot happen during SW-Att computation,

otherwise the device resets. Therefore, it remains for us to show that AR does not change

during SW-Att computation. This is stated in Lemma 1.

Lemma 1. Temporal Consistency – Attested memory does not change during SW-Att compu-
tation

G : {
PC = CRmin ∧AR = M ∧ ¬reset U (PC = CRmax)→
(AR = M) U (PC = CRmax) }

In turn, Lemma 1 can be proved by:

LTL3.3 ∧ LTL3.7 ∧ LTL3.10 → Lemma 1 (3.12)

The reasoning for Equation 3.12 is as follows:

• LTL3.3 prevents the CPU from stopping execution of SW-Att before its last instruction.

55

• LTL3.7 guarantees that the only memory regions written by the CPU during SW-Att

execution are XS and MR, which do not overlap with AR.

• LTL3.10 prevents DMA from writing to memory during SW-Att execution.

Therefore, there are no means for modifying AR during SW-Att execution, implying Lemma 1.

As discussed above, it is easy to see that:

Lemma 1 ∧ LTL3.5 ∧Definition 3→ Theorem 1 (3.13)

3.8.4 RA Security Proof

Recall the definition of RA security in the game in Figure 3.5. The game makes two key

assumptions:

1. SW-Att call results in a temporally consistent HMAC of AR using a key derived from

K and Chal. This is already proved by VRASED’s soundness.

2. Adv never learns K with more than negligible probability.

Lemma 2. Key confidentiality – K can not be accessed directly by untrusted software (¬(PC ∈
CR)) and any memory written to by SW-Att can never be read by untrusted software.

G : {
(¬(PC ∈ CR) ∧Read Mem(i) ∧ i ∈ KR→ reset)∧
(DMAen ∧DMAaddr = i ∧ i ∈ KR→ reset)∧
[¬reset ∧ PC ∈ CR ∧Modify Mem(i) ∧ ¬(i ∈MR)→
G : {(¬(PC ∈ CR) ∧Read Mem(i) ∨DMAen ∧DMAaddr = i)

→ reset}]
}

By proving that VRASED’s design satisfies assumptions 1 and 2, we show that the capa-

bilities of untrusted software (any DMA or CPU software other than SW-Att) on Prv are

56

equivalent to the capabilities of Adv in RA-game. Therefore, we still need to prove item 2

before we can use such game to prove VRASED’s security. The proof of Adv’s inability to

learn K with more than negligible probability is facilitated by A6 - Callee-Saves-Register

convention stated in Section 3.2. A6 directly implies no leakage of information through reg-

isters on the return of SW-Att. This is because, before the return of a function, registers

must be restored to their state prior to the function call. Thus, untrusted software can only

learn K (or any function of K) through memory. However, if untrusted software can never

read memory written by SW-Att, it never learns anything about K (the secret-independence

of SW-Att at the HACL* level even implies a lack of timing side-channels, subject to our

assumption that this property is preserved by msp430-gcc and the MCU implementation).

Now, it suffices to prove that untrusted software can not access K directly and that it can

never read memory written by SW-Att. These conditions are stated in LTL in Lemma 2. We

prove that VRASED satisfies Lemma 2 by writing a computer proof (available in [1]) for

Equation 3.14. The reasoning for this proof is similar to that of RA soundness and omitted.

LTL3.2 ∧ LTL3.6 ∧ LTL3.7 ∧ LTL3.8 ∧ LTL3.9 ∧ LTL3.10 → Lemma 2 (3.14)

We emphasize that Lemma 2 does not restrict reads and writes to MR, since this memory

is used for inputting Chal and receiving SW-Att result. Nonetheless, the already proved RA

soundness and LTL 3.4 (which makes it impossible to execute fractions of SW-Att) guarantee

that MR will not leak anything, because at the end of SW-Att computation it will always

contain an HMAC result, which does not leak information about K. After proving Lemma 2,

the capabilities of untrusted software on Prv are equivalent to those of adversary Adv in RA-

game of Definition 2. Therefore, in order to prove VRASED’s security, it remains to show a

reduction from HMAC security according to the game in Definition 2. VRASED’s security

is stated and proved in Theorem 2.

57

Theorem 2. VRASED is secure according to Definition 2 as long as HMAC is a secure

MAC.

Proof. A MAC is defined as tuple of algorithms {Gen, Mac, Vrf}. For the reduction we con-

struct a slightly modified HMAC′, which has the same Mac and Vrf algorithms as standard

HMAC but Gen ← KDF (K, Chal) where Chal ← ${0, 1}l. Since KDF function itself is

implemented as a Mac call, it is easy to see that the outputs of Gen are indistinguishable from

random. In other words, the security of this slightly modified construction follows from the se-

curity of HMAC itself. Assuming that there exists Adv such that Pr[Adv,RAgame] > negl(l),

we show that such adversary can be used to construct HMAC-Adv that breaks existential

unforgeability of HMAC’ with probability Pr[HMAC-Adv ,MAC-game] > negl(l). To that

purpose HMAC-Adv behaves as follows:

1. HMAC-Adv selects msg to be the same M 6= AR as in RA-game and asks Adv to

produce the same output used to win RA-game.

2. HMAC-Adv outputs the pair (msg,σ) as a response for the challenge in the standard

existential unforgeability game, where σ is the output produced by Adv in step 1.

By construction, (msg,σ) is a valid response to a challenge in the existential unforgeability

MAC game considering HMAC′ as defined above. Therefore, HMAC-Adv is able to win the

existential unforgeability game with the same > negl(l) probability that Adv has of winning

RA-game in Definition 2.

3.9 Appendix: Verifier Authentication

Depending on the setting where Prv is deployed, authenticating the attestation request

before executing SW-Att may be required. For example, if Prv is in a public network, the

58

1 void Hacl HMAC SHA2 256 hmac entry() {
2 uint8 t key[64] = {0};
3 uint8 t verification [32] = {0};
4 if (memcmp(CHALLADDR, CTRADDR, 32) > 0)
5 {
6 memcpy(key, KEYADDR, 64) ;
7
8 hacl hmac((uint8 t∗) verification , (uint8 t∗) key,
9 (uint32 t) 64, ∗((uint8 t∗)CHALLADDR) ,

10 (uint32 t) 32) ;
11
12 if (!memcmp(VRFAUTH, verification , 32)
13 {
14 hacl hmac((uint8 t∗) key, (uint8 t∗) key,
15 (uint32 t) 64, (uint8 t∗) verification ,
16 (uint32 t) 32) ;
17 hacl hmac((uint8 t∗) MACADDR, (uint8 t∗) key,
18 (uint32 t) 32, (uint8 t∗) ATTESTDATAADDR,
19 (uint32 t) ATTESTSIZE) ;
20 memcpy(CTRADDR, CHALLADDR, 32) ;
21 }
22 }
23
24 return () ;
25 }

Figure 3.13: SW-Att Implementation with Vrf authentication

adversary may try to communicate with it. In particular, the adversary can impersonate

Vrf and send fake attestation requests to Prv, attempting to cause denial-of-service. This is

particularly relevant if Prv is a safety-critical device. If Prv receives too many attestation

requests, regular (and likely honest) software running on Prv would not execute because

SW-Att would run all the time. Thus, we now discuss an optional part of VRASED’s design

suitable for such settings. It supports authentication of Vrf as part of SW-Att execution. Our

implementation is based on the protocol in [50], where the attestation challenge becomes a

monotonically increasing counter.

Figure 3.13 presents an implementation of SW-Att that includes Vrf authentication. It also

builds upon HACL* verified HMAC to authenticate Vrf, in addition to computing the au-

thenticated integrity check. In this case, Vrf’s request contains an HMAC of the challenge

computed using K. Before calling SW-Att, software running on Prv is expected to store

the received challenge on a fixed address CHALL ADDR and the corresponding received

HMAC on V RF AUTH. SW-Att discards the attestation request if (1) the received chal-

lenge is less than or equal to the latest challenge, or (2) HMAC of the received challenge

is mismatched. After that, it derives a new unique key using HKDF [73] from K and the

59

received HMAC and uses it as the attestation key.

HW-Mod must also be slightly modified to ensure security of Vrf’s authentication. In particular,

regular software must not be able modify the memory region that stores Prv’s counter.

Notably, the counter requires persistent and writable storage, because SW-Att needs to modify

it at the end of each attestation execution. Therefore, CTR region resides on FLASH

(FLASH is persistent). We denote this region as:

• CTR = [CTRmin, CTRmax];

LTL Specifications (3.15) and (3.16) must hold (in addition to the ones discussed in Sec-

tion 3.3).

G : {¬(PC ∈ CR) ∧Wen ∧ (Daddr ∈ CTR)→ reset } (3.15)

G : {DMAen ∧ (DMAaddr ∈ CTR)→ reset} (3.16)

LTL Specification (3.15) ensures that regular software does not modify Prv’s counter, while

(3.16) ensures that the same is not possible via the DMA controller. FSMs in Figures 3.7

and 3.10, corresponding to HW-Mod access control and DMA sub-modules, must be mod-

ified to transition into Reset state according to these new conditions. In addition, LTL

Specification (3.7) must be relaxed to allow SW-Att to write to CTR. Implementation and

verification of the modified version of these sub-modules are publicly available at VRASED’s

repository [1] as an optional part of the design.

60

3.10 Appendix: FPGA Deployment and Sample Ap-

plication

VRASED can be synthesized and deployed in real IoT/CPS environments. To demonstrate

its practicality and ease of use we provide, as part of VRASED’s repository [1], a ready-to-go

synthesize-able version of the architecture for the commodity FPGA Basys3 8 (depicted in

Figure 3.14). The design can be easily ported to other FPGA models by mapping the input

and output ports accordingly in the Verilog constraints file.

Figure 3.14: Basys3 FPGA running VRASED’s HW architecture depicted in Figure 3.2

Figure 3.15 presents a toy sample application written in MSP430 C. In it, P3 is an 8-bit

General Purpose Input Output (GPIO) port which, in the synthesized HW, is connected

to LEDs 0-7 of Basys3 FPGA. Lines 2-4 allocate buffers for the attestation challenge and

response and initialize the challenge buffer. In practice, the challenge is received from Vrf

via communication channels such as MSP430 Universal Asynchronous Receiver/Transmitter

(UART). For the sake of clarity and brevity we omit the communication step from the

example and set the challenge to a constant. Line 6 in Figure 3.15 sets P3 GPIO as output

(i.e., an actuator port) and line 7 initializes all 8 bits to zero, making all LEDs initially off.

8https://store.digilentinc.com/basys-3-artix-7-fpga-trainer-board-recommended-for-introductory-users/

61

1 int main() {
2 uint8 t challenge [32] ;
3 uint8 t response [32] ;
4 my memset(challenge , 32, 1) ;
5
6 P3DIR = 0xFF;
7 P3OUT = 0x00;
8 uint32 t count = 0;
9 volatile uint8 t buffer = 0;

10 while (1) {
11 while (count < 3000000) {
12 count ++;
13 }
14 count = 0;
15 P3OUT++;
16 if (P3OUT% 10 == 0) {
17 buffer = P3OUT;
18 P3OUT = 0xFF;
19 VRASED(challenge , response) ;
20 count = 0;
21 P3OUT = buffer ;
22 }
23
24 }
25 return 0;
26 }

Figure 3.15: Toy MSP430 application demo running VRASED’s RA in real HW

The main application loop starts at line 10; at every iteration an artificial delay of 3 million

integer increments is introduced and then P3 output value is incremented. This results in

a binary counter being displayed on the 8 LEDs. At every time the counter value reached

a multiple of 10 (line 16), all LEDs turn on (line 18) and the RA procedure is called in line

19 (by default, VRASED computes an attestation result over the entire program memory,

although the range is configurable and allows for data memory attestation as well). The

LEDs remain on until the end of RA computation. After completion of attestation, the

attestation result is saved in the response buffer and the counter resumes. In practical

applications, the result can be reported back to Vrf (e.g., via UART). A demo video of this

application running on real hardware and computing RA in a small fraction of a second is

available on VRASED’s repository [1].

62

Chapter 4

RATA: Remote Attestation with

TOCTOU Avoidance

63

Abstract

Prior RA techniques (including VRASED, discussed in Chapter 3) verify the remote device’s

binary at the time when RA functionality is executed, thus providing no information about

the device’s binary before current RA execution or between consecutive RA executions. This

implies that presence of transient malware (in the form of modified binary) may be un-

detected. In other words, if transient malware infects a device (by modifying its binary),

performs its nefarious tasks, and erases itself before the next attestation, its temporary pres-

ence will not be detected. This important problem, called Time-Of-Check-Time-Of-Use

(TOCTOU), is well-known in the research literature and thus far remained unaddressed in

the context of hybrid RA.

In this chapter, we propose Remote Attestation with TOCTOU Avoidance (RATA): a

provably secure approach to address the RA TOCTOU problem. With RATA, even malware

that erases itself before execution of the next RA, can not hide its ephemeral presence. RATA

targets hybrid RA architectures, which are aimed at low-end embedded devices. We present

two alternative techniques – RATAA and RATAB – suitable for devices with and without

real-time clocks, respectively. Each is shown to be secure and accompanied by a publicly

available and formally verified implementation. Our evaluation demonstrates low hardware

overhead of both techniques. Compared with current hybrid RA architectures – that offer

no TOCTOU protection – RATA incurs no extra runtime overhead. In fact, it substantially

reduces the time complexity of RA computations: from linear to constant time.

The contributions described in this chapter will appear in the Proceedings of ACM CCS –

2021 (see preprint at [90]).

4.1 Introduction

Current hybrid RA architectures share a common limitation: they measure the state of

Prv’s executables at the time when RA is executed by Prv. They provide no information

about Prv’s executables before RA measurement or its state in between two consecutive

RA measurements. We refer to this problem as Time-Of-Check Time-Of-Use or TOCTOU.

While variants of this problem have been discussed before [31, 28, 52, 23, 104], it remains

unsolved in the context of hybrid RA.

We emphasize that the RA–TOCTOU problem (as formulated in this chapter) is distinct from

ensuring temporal consistency between attestation and execution of a binary. The latter is

tackled by runtime attestation techniques, e.g., [42, 6, 43, 44] (see Chapter 5). Nonetheless,

static RA (i.e., RA of binaries) is still relevant in that context because most runtime attesta-

tion techniques for low-end devices rely on it as a building block (one exception is [55], which,

instead, assumes that binaries never change 1). Additionally, as we discuss in Section 4.7,

an RA architecture secure against TOCTOU makes runtime attestation techniques that rely

on static RA substantially more efficient.

In practice, the TOCTOU problem leaves devices vulnerable to transient malware which

erases itself after completing its tasks. This is harmful in settings where numerous MCUs

report measurements collected over extended periods. For example, consider several MCU-

based sensors that measure energy consumption in a smart city, where large scale erroneous

measurement may lead to power outages. If regular RA schemes that are not secure against

TOCTOU are used in this case (e.g., by performing RA once a day, or once per billing

cycle), security can be subverted by (i) changing the sensor software to spoof measurements

during regular usage, and (ii) reprogramming the sensor back with the expected executable

immediately before the scheduled RA computation. In particular, since the RA request

1In many settings involving low-end MCUs this assumption is unrealistic. See Section 4.2.1 for details.

65

must be received through an untrusted communication channel, malware may simply erase

itself upon detecting an incoming attestation request, even if RA schedule is not known a

priori. We note that, in settings where detection of runtime violations (e.g., code-reuse

and data corruption attacks) is also desirable (e.g., MCU code is written with memory-

unsafe languages), TOCTOU-Security of the underlying static RA makes the overall runtime

attestation more efficient (see Section 4.7).

Our approach is rooted in the observation that current hybrid RA techniques use trusted

hardware only to detect security violations that compromise execution of RA software itself

and take action (e.g., by resetting the device) if such a violation is detected. Whereas,

RATA’s main new feature is the use of a minimal (formally verified) hardware component

to additionally provide historical context about the state of Prv’s program memory. This

is achieved via secure logging of the latest timing of program memory modifications in a

protected memory region that is covered by RA’s integrity-ensuring function. This enables

Vrf to later check authenticity and integrity of Prv’s memory modifications. This new feature

is integrated seamlessly into the underlying RA architecture and the composition is shown

to be secure. We believe this results in the following contributions:

– RA TOCTOU-Security Formulation: We motivate and formalize TOCTOU in the

context of RA. We define RA TOCTOU-Security using a security game (see Definition 8) and

discuss why current RA techniques based on consecutive self-measurements do not satisfy

this definition. We believe our work to be the first formal treatment of this matter. Further-

more, we evaluate practicality of RA techniques based on consecutive self-measurements and

argue that using them to obtain TOCTOU-Security incurs extremely high runtime overhead,

possibly starving benign applications on Prv.

– RATA Design, Implementation & Verification: We propose two techniques: RATAA

and RATAB. The former assumes that Prv has a secure read-only Real-Time Clock (RTC)

synchronized with Vrf. Since this assumption is unrealistic for many low-end Prv-s, we

66

construct RATAB which trades off the need for a secure clock for the need to authenticate

Vrf’s attestation requests; this feature is already included in several hybrid RA architectures.

We show that both techniques satisfy the formal definition of TOCTOU-Security, assum-

ing that their implementations adhere to a set of formal specifications, stated in Linear

Temporal Logic (LTL). Finally, the implementation itself is formally verified to adhere to

these LTL specifications, yielding security at both design and implementation levels. Our

implementation is publicly available at [4]. It is realized on a real-world low-end MCU –

TI MSP430 – and is deployed using commodity FPGAs. Experimental results show low

hardware overhead, affordable even for cost-sensitive low-end devices.

– RATA Enhancements to RA and Related Services: We discuss the implications

of RATA on RA and related services beyond TOCTOU-Security. In particular, we show

that RATA can, in most cases, lower RA computational complexity from linear (in terms

of attested memory size) to constant time, resulting in significant savings. We also dis-

cuss RATA’s benefits for specialized RA applications: (i) real-time systems; (ii) run-time

integrity/control-flow attestation; and (iii) collective RA, where a multitude of provers need

to be attested simultaneously.

4.2 Problem Scope & Definitions

4.2.1 Detection, Prevention & Memory Immutability

As a detection-oriented security service, RA does not prevent future binary modifications.

Therefore, the term TOCTOU should be considered in retrospective. In particular, techniques

presented in this chapter allow Vrf to understand “since when” Prv’s memory remained the

same as reported in the present RA result.

67

While malware infections can be trivially prevented by making all executable memory read-

only (e.g., storing code in ROM), such a drastic approach would sacrifice reconfigurability:

it would make legitimate software updates impossible and would essentially transform the

MCU into an Application-Specific Integrated Circuit (ASIC). However, reconfigurability is

one of the most important MCU features, perhaps even its entire “raison d’être”.

A less drastic approach is to prevent program memory modifications that occur at run-

time. This approach is vulnerable to modifications by adversaries with physical access to

re-program Prv directly. More importantly, (even if attacks that require physical access

are out of scope) it makes remote updates impossible, requiring physical access whenever

a device’s binary needs to be updated. Since these devices are often remote or physically

inaccessible (inside a larger systems, e.g., a vehicle) low-end MCUs (including aforemen-

tioned MSP430 and ATMega) typically do not prevent modifications to program memory.

Our detection-based approach conforms with that necessity, allowing changes to binaries and

reporting them to Vrf: even if they happen in between subsequent attestations. In turn, Vrf

is informed about binary changes, and can distinguish illegal modifications from expected

ones.

4.2.2 Device Model & MCU Assumptions

Below, we overview MCU assumptions relevant to RATA. They reflect the behavior of the

class of low-end embedded systems discussed in Section 4.2.1 and are in accordance with

previous work on securing low-end MCUs [49, 88, 40, 42, 41]. In particular, we assume that

the MCU hardware correctly implements its specifications, as follows:

A1 – Program Counter (PC): PC always contains the address of the instruction being

executed in a given CPU cycle.

A2 – Memory Address: Whenever memory is read or written, a data-address signal

68

(Daddr) contains the address of the corresponding memory location. For a read access, a

data read-enable bit (Ren) must be set, while, for a write access, a data write-enable bit

(Wen) must be set.

A3 – DMA: Whenever the Direct Memory Access (DMA) controller attempts to access the

main system memory, a DMA-address signal (DMAaddr) reflects the address of the memory

location being accessed and a DMA-enable bit (DMAen) must be set. DMA cannot access

memory when DMAen is off (logical zero).

A4 – MCU Reset: At the end of a successful reset routine, all registers (including PC) are

set to zero before resuming normal software execution flow. Resets are handled by the MCU

in hardware. Thus, the reset handling routine cannot be modified. When a reset happens,

the corresponding reset signal is set. The same signal is also set when the MCU initializes

for the first time.

A5 – No Data Execution: Instructions must reside (physically) in program memory

(PMEM) in order to execute. They are not loaded to DMEM to execute. Data execution

is impossible in most low-end devices, including OpenMSP430 used in our prototype. For

example, in Harvard-based low-end devices (e.g., AVR Atmega), there is no hardware support

to fetch/execute instructions from data memory (DMEM). In other low-end devices that do

not prevent data execution by default, this is typically enforced by the underlying hybrid

RA architecture. Therefore, even if malware resides in DMEM, it must be copied to, and

thus reside in, PMEM before executing.

4.2.3 RA Definitions, Architectures & Adversary Model

Recall that RA is typically realized as a challenge-response protocol between Vrf (challenger)

and Prv, a potentially compromised remote low-end device. This notion is captured by a

69

generic syntax for RA protocols in Definition 62.

Definition 6 (syntax). RA is a tuple (Request, Attest, Verify) of algorithms:

• RequestVrf→Prv(...): algorithm initiated by Vrf to request a measurement of Prv memory range
AR (attested range). As part of Request, Vrf sends a challenge Chal to Prv.

• AttestPrv→Vrf(Chal, ...) : algorithm executed by Prv upon receiving Chal from Vrf. Computes
an authenticated integrity-ensuring function over AR content. It produces attestation token H,
which is returned to Vrf, possibly accompanied by auxiliary information to be used by the Verify
algorithm (see below).

• VerifyVrf(H, Chal,M, ...) : algorithm executed by Vrf upon receiving H from Prv. It verifies
whether Prv’s current AR content corresponds to some expected value M (or one of a set of
expected values). Verify outputs: 1 if H is valid, and 0 otherwise.

Note: In the parameter list, (· · ·) denotes that additional parameters might be included, depending on
the specific RA construction.

Definition 6 specifies RA as a tuple (Request, Attest,Verify). Request is computed by

Vrf to produce challenge Chal and send it to Prv. Attest is performed by Prv by using Chal

to compute an authenticated integrity-ensuring function (e.g., MAC) over attested memory

range (denoted by AR) and producing H, which is sent back to Vrf for verification. For

example, if Attest is implemented using a MAC, H is computed as:

H = HMAC(KDF (K, Chal), AR) (4.1)

where KDF is a key derivation function and K is a symmetric key shared by Prv and Vrf.

Upon receiving H, Vrf executes algorithm Verify by checking if H corresponds to the MAC

of some value M , i.e., the expected content of AR.

Although techniques discussed in this chapter are not tied to a specific RA architecture, we

chose to compose RATA with VRASED due to VRASED’s formal security definitions, which

allow reasoning about RATA’s secure composition with the underlying RA architecture.

2For simplicity, this definition omits a typical provisioning/initialization phase, in which Prv is assigned
a key and has the RA code imprinted/burned into ROM.

70

For instance, Theorems 3 and 4 are proven by reduction using VRASED’s security game

(reviewed in Definition 7).

Definition 7. VRASED’s Security Game (Adapted from [40])
Notation:
- l is the security parameter and |K| = |Chal| = |MR| = l
- AR(t) denotes the content of AR at time t
RA-game:

1. Setup: Adv is given oracle access to Attest (SW-Att) calls.
2. Challenge: A challenge Chal is generated by calling Request (Definition 6) and given to Adv.
3. Response: Adv responds with a pair (M,σ), where σ is either forged by Adv, or is the result

of calling Attest (Definition 6), at some arbitrary time t.
4. Adv wins iff M 6= AR(t) and σ = HMAC(KDF (K, Chal),M).

Note: If, as a part of Attest, AR attestation is preceded by a procedure to authenticate Vrf, t defined
in step 3 is the time immediately after successful authentication, when AR attestation starts.

Recall that VRASED guarantees that no probabilistic polynomial time (PPT) adversary

wins the RA security game in Definition 7 with non-negligible probability in the security

parameter l, i.e., Pr[Adv,RA-game] ≤ negl(l).

Remark 1: While aforementioned guarantees ensure consistency of attested memory during

attestation computation, VRASED or any prior low-end RA scheme is not TOCTOU-Secure,

as modifications before attestation remain undetected.

Adversary Model. The adversary model considered in this chapter remains the same as

Chapter 3. We review it below.

We consider a fairly strong adversary Adv that controls the entire software state of Prv,

including both code and data. Adv can modify any writable memory and read any memory

(including secrets) that is not explicitly protected by trusted hardware. Also, Adv has full

access to all DMA controllers, if any are present on Prv. Recall that DMA allows direct

access and memory modifications without going through the CPU.

Even though Adv may physically re-program Prv’s software through wired connection to

71

flash, invasive/tampering hardware attacks are out of scope: we assume that Adv can not:

(1) alter hardware components, (2) modify code in ROM, (3) induce hardware faults, or (4)

retrieve Prv secrets via physical side-channels. Protection against physical hardware attacks

is orthogonal to our goals and attainable via tamper-resistance techniques [95].

4.3 RA TOCTOU

This section defines the notion of TOCTOU-Security in the context of RA. We start by

formalizing this notion using a security game. Next, we consider the practicality of this

problem and overview existing mechanisms, arguing that they do not achieve TOCTOU-

Security (neither according to TOCTOU-Security definition, nor in practice) and incur high

overhead.

4.3.1 Notation

We summarize our notation in Table 4.1. We keep it mostly consistent with Chapter 3, with

a few additional elements to denote RATA-specific memory regions and signals. To simplify

the notation, when the value of a given signal (e.g., Daddr) is within a certain range (e.g.,

AR = [ARmin, ARmax]), we write that Daddr ∈ AR, i.e.:

Daddr ∈ AR ≡ ARmin ≤ Daddr ≤ ARmax (4.2)

In conformance with axioms discussed in Section 4.2.2, we use Mod Mem(x) to denote a

modification to memory address address x. Given our machine model, the following logical

equivalence holds:

Mod Mem(x) ≡ (Wen ∧Daddr = x) ∨ (DMAen ∧DMAaddr = x) (4.3)

72

this captures the fact that a memory modification can be caused by either the CPU (reflected

in signals Wen = 1 and Daddr = x) or by the DMA (signals DMAen = 1 and DMAaddr = x).

We also use this notation to represent a modification to a location within a contiguous

memory region R as:

Mod Mem(R) ≡ (Wen ∧Daddr ∈ R) ∨ (DMAen ∧DMAaddr ∈ R) (4.4)

Table 4.1: Summary of RATA-relevant notation

PC Current Program Counter value
Ren Signal that indicates if the MCU is reading from memory (1-bit)
Wen Signal that indicates if the MCU is writing to memory (1-bit)

Daddr Address for an MCU memory access
DMAen Signal that indicates if DMA is currently enabled (1-bit)

DMAaddr Memory address being accessed by DMA, if any
irq Signal that indicates if an interrupt is happening
CR Memory region where SW-Att is stored: CR = [CRmin, CRmax]
MR (MAC Region) Memory region in which SW-Att computation result is written: MR =

[MRmin,MRmax]. The same region is also used to pass the attestation challenge as input
to SW-Att

AR (Attested Region) Memory region to be attested. Corresponds to all executable memory
(program memory) in the MCU: AR = [ARmin, ARmax]

LMT (Latest Modification Time) Memory region that stores a timestamp/challenge corresponding
to the last AR modification

CRAuth The first instruction in VRASED’s SW-Att that is executed after successful authentication
of Vrf’s request.

setLMT (RATAA) A 1-bit signal overwrites LMT with the current RTC time, when set to logical 1.
UPLMT (RATAB) A 1-bit signal overwrites LMT with the content of MR when set to logical 1.

4.3.2 TOCTOU-Security Definition

Definition 8 captures the notion of TOCTOU-Security. In it, the game formalizes the threat

model discussed in Section 4.2.3, where Adv controls Prv’s entire software state, including

the ability to invoke Attest at will. The game starts with the challenger (Vrf) choosing a

time t0. At a later time (tatt), Adv receives Chal and wins the game if it can produce HAdv

73

that is accepted by Verify as a valid response for expected AR value M , when, in fact, there

was a time between t0 and tatt when AR 6= M .

Definition 8.
8.1 RA-TOCTOU Security Game: Challenger plays the following game with Adv:

1. Challenger chooses time t0.

2. Adv is given full control over Prv software state and oracle access to Attest calls.

3. At time tatt > t0, Adv is presented with Chal.

4. Adv wins if and only if it can produce HAdv, such that:

Verify(HAdv, Chal,M, · · ·) = 1 (4.5)

and

∃t0≤ti≤tatt
{AR(ti) 6= M} (4.6)

where AR(ti) denotes the content of AR at time ti.

8.2 RA-TOCTOU Security Definition: An RA scheme is considered TOCTOU-Secure if – for
all PPT adversaries Adv – there exists a negligible function negl, such that:

Pr[Adv,RA-TOCTOU-game] ≤ negl(l)

where l is the security parameter.

This definition augments RA security (Definition 7) to incorporate TOCTOU attacks, by

additionally allowingAdv to win if it can produce the expected response andAR was modified

at any point after t0, where t0 is chosen by Vrf. For example, if Vrf wants to know if AR

remained in a valid state for the past two hours, Vrf chooses t0 as t0 = tatt − 2h. Note

that this definition also captures security against transient attacks wherein Adv changes

modified memory back to its expected state and leaves the device, thus attempting to hide its

ephemeral modification from the upcoming attestation request. This attack is undetectable

by all RA schemes that are not TOCTOU-Secure.

Remark 2: Recall that, in the context of this chapter, AR corresponds to the executable

part of Prv’s memory, i.e., program memory. Since data memory is not executable (see

Section 4.2.2), changes to data memory are not taken into account by Definition 8. RATA’s

relation to runtime/data-memory attacks is discussed in Section 4.7.4.

74

4.3.3 TOCTOU-Secure RA vs. Consecutive Self-Measurements

RA schemes based on consecutive self-measurements [31, 61] attempt to detect transient

malware that comes and goes between two successive RA measurements. The strategy is for

Prv to intermittently (based on an either periodic or unpredictable schedule) and unilaterally

invoke its RA functionality. Then, either Prv self-reports to Vrf [61], or it accumulates

measurements locally and waits for Vrf to explicitly request them [31]. Upon receiving RA

response(s), Vrf checks for malware presence at the time of each RA measurement. Time

intervals used in these RA schemes are depicted in Figure 4.1.

Time

Memory
Integrity

Attest.
Compute.

Vulnerability Windows

Capp Capp Capp CappCRA CRA CRA

Figure 4.1: Consecutive Self-Measurements

Note that consecutive measurements always leave time gaps during which transient malware

presence would not be detected. The only way to detect all transient malware with self-

measurement schemes is to invoke RA functionality on Prv with a sufficiently high frequency,

such that the fastest possible transient malware cannot come and go undetected. However,

even if it were easy (which it is not) to determine such “sufficiently high frequency”, doing

so is horrendously costly, as we show below. We define CPU utilization (U) in a consecutive

scheme as the percentage of CPU cycles that can be used by a regular application (Capp),

i.e, cycles other than those spent on self-measurements (CRA):

U =
Capp

Capp + CRA
(4.7)

75

As discussed above, guaranteed detection of transient malware via consecutive self-

measurements requires that:

Capp < CAdv (4.8)

where CAdv is the hypothetical number of instruction cycles used by the fastest transient

malware, capable of infecting Prv, performing its tasks, and erasing itself. To illustrate this

point, we assume a conservative number for CAdv to be 106 cycles. In this case:

CAdv = 106 =⇒ Capp < 106 =⇒ U <
106

106 + CRA
(4.9)

For example with CRA, consider the number of CPU cycles required by VRASED (other

hybrid RA architectures, e.g., [49], have similar costs) to attest a program memory of 4KB:

CRA = 3.6× 106 CPU cycles (about half a second in a typical 8MHz low-end MCU).

U <
106

106 + 3.6× 106
=⇒ U < 21.74% (4.10)

To detect transient malware, a large fraction of CPU cycles (almost 80% in this toy example)

is spent on RA computation. In practice, it is hard to determine CAdv and, in some cases

(e.g., changing a general-purpose input/output value to trigger actuation), it is likely to

be much less than 106 cycles, resulting in even lower CPU utilization left for legitimate

applications running on Prv. Therefore, detection of all transient malware using consecutive

self-measurements is impractical. This also applies to the case where the interval between

successive measurements is variable and/or randomly selected from a range [0, tmax]. As

discussed in [61], this is because it must be that tmax < CAdv in order to achieve negligible

probability of malware evasion.

As shown in Figure 4.2, TOCTOU-Secure RA (per Definition 8) allows Vrf to ascertain mem-

ory integrity independently from the time between successive RA measurements, regardless of

76

Time

Memory
Integrity

Attest.
Compute.

TOCTOU-Security

Capp Capp CappCRA CRA

Figure 4.2: TOCTOU-Secure RA

transient malware’s speed. In the next sections, we propose two TOCTOU-Secure techniques

and show their security with respect to Definition 8.

4.4 RATAA: RTC-Based TOCTOU-Secure Technique

In hybrid RA, trusted software (SW-Att) is usually responsible for generating the authenti-

cated RA response (H) and all semantic information therein. Meanwhile, trusted hardware

(HW-Mod) is responsible for ensuring that SW-Att executes as expected, preventing leakage of

its cryptographic secrets, and handling unexpected or malicious behavior during execution.

To address TOCTOU, we propose a paradigm shift by allowing (formally verified) HW-Mod to

also provide some context about Prv’s memory state.

We now overview RATAA– a simple technique that requires Prv to have a reliable read-only

Real-Time Clock (RTC) synchronized with Vrf. However, RTCs are not readily available on

low-end MCUs and secure clock synchronization in distributed systems is challenging [13,

11, 86], especially for low-end embedded systems [46, 53]. Nonetheless, we start with this

simple approach to show the main idea behind TOCTOU-Secure RA. Next, Section 4.5

proposes an alternative variant that removes the RTC requirement, as long as Vrf requests

are authenticated by Prv. Note that Vrf authentication is already included in some current

77

hybrid RA architectures, including VRASED.

4.4.1 RATAA: Design & Security

MCU CORE

VRASED

RATA

HW-Mod

PC,
irq,
Ren,
Wen,
Daddr,
DMAen,
DMAaddr

reset

LMT

Program
Memory

Figure 4.3: RATA module in the overall system architecture

RATAA is illustrated in Figure 4.3; it is designed as a verified hardware module behaving

as follows:

(1) It monitors a set of CPU signals and detects whenever any location within AR is

written. This is achieved by checking the value of signals Daddr, Wen, DMAaddr, and DMAen

(see Section 4.2.3). These signals allow for detection of memory modifications either by CPU

or by DMA.

(2) Whenever a modification to AR is detected, RATAA logs the timestamp by reading

the current time from the RTC and storing it in a fixed memory location, called Latest

Modification Time (LMT).

(3) In the memory layout, LMT ∈ AR. Also, RATAA enforces that LMT is always

78

Construction 1 (RATAA). Let LMT be a memory region within AR (LMT ∈ AR):

• RequestVrf→Prv(): Vrf generates a random l-bit challenge Chal← ${0, 1}l and sends it to Prv.

• AttestPrv→Vrf(Chal): Upon receiving Chal, Prv calls VRASED SW-Att’s RA function to compute
H = HMAC(KDF (K, Chal), AR) and sends tLMT ||H to Vrf, where tLMT is the value stored in
LMT .
At all times, RATAA hardware in Prv enforces the following invariants:

– LMT is read-only to software:

Formal statement (LTL): G{Mod Mem(LMT)→ reset} (4.11)

– LMT is overwritten with the current time from RTC if, and only if, AR is modified:

Formal statement (LTL): G{Mod Mem(AR)↔ setLMT } (4.12)

where reset is a 1-bit signal that triggers an immediate reset of the MCU, and setLMT is a 1-bit
output signal of RATAA controlling the value of LMT reserved memory. Whenever setLMT = 1,
LMT is updated with the current value from the real-time clock (RTC). LMT maintains its
previous value otherwise.

• VerifyVrf(H, Chal,M, t0, tLMT): t0 is an arbitrary time chosen by Vrf, as in Definition 8. Upon
receiving tLMT ||H Vrf checks:

tLMT < t0 (4.13)

H ≡ HMAC(KDF (K, Chal),M) (4.14)

where M is the expected value of AR reflecting LMT = tLMT , as received from Prv. Verify
returns 1 if and only if both checks succeed.

read-only for all software executing on the MCU, and for DMA.

Note that, by enforcing LMT ∈ AR, the attestation result H = HMAC(KDF (K,MR), AR)

includes the authenticated value of LMT – the time corresponding to the latest modification

of AR. As part of the Verify algorithm, Vrf compares this information with the time of the

last authorized modification (t0 of Definition 8) of AR to check whether any unauthorized

modifications occurred since then. The general idea is further specified in Construction 1,

which shows how RATAA can be seamlessly integrated into VRASED, enforcing two addi-

tional properties in hardware to obtain TOCTOU-Security. These properties are formalized

in LTL in Equations 4.11 and 4.12 of Construction 1.

79

MOD NotMOD

RESET

(Mod_Mem(AR)) ∧
(Mod_Mem(LMT))⎦

Mod_Mem(AR) ∧
(Mod_Mem(LMT))⎦

⎦

M
od_M

em(LM
T) M

od
_M

em
(L

M
T)

PC = 0

M
U
X

RATAAsetLMT

RTC

LMT

Program
Memory

Figure 4.4: RATAA FSM for RTC-based TOCTOU-secure RA

We show that Construction 1 is secure as long as RATAA implementation adheres to LTL

statements in Equations 4.11 and 4.12. This verification is discussed in Section 4.4.2. The

cryptographic proof is by reduction from VRASED security (per Definition 7) to TOCTOU-

Security (per Definition 8) of Construction 1. For its part, VRASED is shown secure accord-

ing to Definition 7 as long as HMAC is a secure, i.e., existentially unforgeable [78], MAC (as

discussed in Chapter 3). The proof of Theorem 3 is presented in Appendix 4.10.

Theorem 3. Construction 1 is TOCTOU-Secure according to Definition 8 as long as

VRASED is secure according to Definition 7.

4.4.2 RATAA: Implementation & Verification

Construction 1 (and respective security proof) assumes that properties in Equations 4.11

and 4.12 are enforced by RATAA. Figure 4.4 shows a formally verified FSM corresponding

80

to this implementation. It enforces two properties of Equations 4.11 and 4.12. This FSM is

implemented as a Mealy machine, where output changes anytime based on both the current

state and current input values. The FSM takes as an input a subset of signals, shown in

Figure 4.3, and produces two 1-bit outputs: reset to trigger an immediate reset and setLMT

to control the value of LMT memory location (see Construction 1). reset is 1 whenever

FSM transitions to RESET state and while it remains in that state; it remains 0 otherwise.

Whereas, setLMT is 1 when FSM transitions to MOD state, and becomes 0 whenever it

transitions out of MOD state. setLMT = 0 in all other cases.

The FSM works by monitoring write access to LMT and transitioning to RESET whenever

such attempt happens. When the system is running (i.e., reset = 0), FSM also monitors

write access to AR and transitions to MOD state whenever it happens. The FSM transitions

back to NotMOD state if AR is not being modified. We design the FSM in Verilog HDL

and automatically translate into SMV using Verilog2SMV [65]. Finally, we use NuSMV

model checker [35] to prove that the FSM complies with invariants 4.11 and 4.12. The

implementation and correspondent verification are available in [4].

Remark 3: Since deletion is a “write” operation, malware can not erase itself at runtime

without being detected by RATA. Conversely, any attempt to reprogram flash (AR) directly

via wired connection requires device re-initialization. Both RATAA/RATAB always update

LMT on initialization/reset/reboot. Hence, these modifications are also detected.

Remark 4: The ability to cause a reset by attempting to write to LMT yields no advantage

for Adv, since any bare-metal software (including malware) can always trigger a reset on an

unmodified low-end device, e.g., by inducing software faults.

81

4.5 RATAB: Clockless TOCTOU-Secure RA Technique

We now describe RATAB: a TOCTOU-Secure technique that requires no clock on Prv. We

apply the ideas from RATAA by using hardware to convey authenticated information about

the time of the latest memory modification as part of the attestation result. However, lack

of RTC precludes any notion of “time” on Prv’s end. To cope with this, we rely on Vrf

to convey information tied to a given point in time, according to Vrf’s own local clock.

This is done as a part of RA Request algorithm. In fact, RATAB uses the attestation

challenge (Chal) itself in this task, taking advantage of the fact that Chal is unique per

Request and is available in any RA technique, thus incurring no additional communication

overhead. Security of RATAB is tightly coupled with authentication of Vrf Request, which

is supported by VRASED architecture [40].

4.5.1 RATAB – Design & Security

The design of RATAB remains consistent with Figure 4.3. RATAB monitors the same

set of MCU signals as RATAA and also works by overwriting the special memory region

LMT ∈ AR. However, instead of logging an RTC timestamp to LMT , it logs Chal, which

was sent by Vrf as a part of its Request and given as input to Attest(Chal, ...). LMT is

overwritten with the currently received Chal if and only if, a modification of AR occurred

since the previous Attest instance. In summary, RATAB security relies on the following

properties, enforced by its verified hardware implementation (see Section 4.5.2):

(1) Similar to RATAA, no software running on Prv can overwrite LMT , i.e., LMT is

only modifiable by RATAB hardware.

(2) An update to LMT is triggered only immediately after a successful authentication

during Attest computation.

82

Construction 2 (RATAB). Let LMT be a memory region of size |LMT | = |Chal|, within AR (i.e.,
LMT ∈ AR), and P is a challenge-time association pair, stored by Vrf. Initially P = (⊥,⊥). RATAB

is specified as follows:

• RequestVrf→Prv(): Vrf generates a pair [Chal,Auth] according to VRASED authentication algo-
rithm (see Appendix 3.9 for details) and sends it Prv.

• AttestPrv→Vrf(Chal,Auth): Upon receiving [Chal,Auth], Prv behaves as follows:

1. Call VRASED RA function to use Auth to authenticate Chal. If authentication succeeds,
proceed to next step. Otherwise, ignore the request.

2. Compute H = HMAC(KDF (K, Chal), AR).

3. Send LMT ||H to Vrf.
To support this operation, at all times, RATAB hardware on Prv enforces the following:
– LMT is read-only to software:

Formal statement (LTL): G{Mod Mem(LMT)→ reset} (4.15)

– LMT is never updated without authentication:

Formal statement (LTL): G{[¬UPLMT ∧X(UPLMT)]→ X(PC = CRauth)} (4.16)

– Modification(s) to AR imply updating LMT in the next authenticated Attest call:

Formal statement (LTL):
G{Mod Mem(AR)∨reset→ [(PC = CRauth → UPLMT) W (PC = CRmax∨reset)]} (4.17)

where reset is a 1-bit signal that triggers an immediate reset of the MCU, and UPLMT is a 1-bit
signal that, when set to 1, replaces the content of LMT with the current value stored in MR
region (i.e., Chal). LMT maintains its previous value otherwise.

• VerifyVrf(H, Chal,M, t0, P, LMT): Let t0 denote a time chosen by Vrf, as in Definition 8. Denote
the current values in the challenge-time association pair stored by Vrf as P = (ChalP , tP). Upon
receiving LMT ||H, Vrf behaves as follows:

1. Check if H ≡ HMAC(KDF (K, Chal),M), where M is the expected AR value. Since AR
includes LMT , M is set to contain the value of LMT , as received from Prv. Hence, this
checks also assures integrity of LMT in AR. If this check fails, return 0, otherwise,
proceed to step 2;

2. If LMT = ChalP and t0 > tP , return 1, otherwise, proceed to step 3;

3. Set P = (LMT, current time) and return 0;

83

(3) The first successful authentication happening after a modification of AR always

causes LMT to be updated with the current value of Chal which is stored in MR. (Recall

from Table 4.1 that MR is the memory location from which Attest reads the value of Chal.)

Let Chal1 and H1 denote the attestation challenge and response successfully sent/received by

Vrf, in a given RA interaction. Vrf interprets RA results as follows: if H1 is a valid response,

i.e., it corresponds to an expected AR value, time t1 when such response is received is saved

locally by Vrf, associated to Chal1. In subsequent attestation results (H2, H3, ...), Vrf checks

the value of LMT for correspondence with Chal1. If LMT 6= Chal1, Vrf learns that AR was

modified after t1. This stems from RATAB verified module, which guarantees that LMT

is always overwritten with the newly received challenge if a TOCTOU happens between

consecutive calls to Attest. In this design, we highlight the following observations:

– Authentication of Vrf Request is instrumental to RATAB security. Without it,

Adv can simply choose ChalAdv and call Attest(ChalAdv) after an unauthorized modification

of AR, thus setting LMT = ChalAdv of its choice. By choosing ChalAdv as a value previously

used by Vrf, Adv can easily convince Vrf that no TOCTOU occurred between measurements.

In other words, lack of Request authentication allowsAdv to modify LMT at will, rendering

write protection of LMT useless.

– Uniqueness of LMT must be enforced, e.g., by having Vrf randomly sample Chal

from a sufficiently large space or use Chal as a monotonically increasing counter, depending

on specifics of Request algorithm. If Chal is reused after n instances of Request, Adv can

wait for the n-th authentic Request to complete, infect Prv, perform its tasks, and leave

Prv before the (n+ 1)-st Request occurs (with a reused Chal), resulting in a valid response

and compromised TOCTOU-Security. For example, if we use LMT as a dirty-bit (instead

of Chal), security can be subverted in two Request-s, even if they are properly authenticated.

84

RATAB is specified in Construction 2. Prv’s hardware module controls the value of a 1-bit

signal UPLMT . When set to 1, UPLMT updates LMT with the current value of MR; other-

wise, LMT maintains its current value. RATAB hardware detects successful authentication

of Vrf by checking whether the program counter PC points to the instruction reached imme-

diately after successful authentication. Note that the instruction at location CRauth is never

reached unless authentication succeeds. Note that, unlike RATAA, Vrf in RATAB learns

whether a modification occurred since a previous successful attestation response, though not

the exact time of that modification. RATAB security is stated in Theorem 4.

Theorem 4. Construction 2 is TOCTOU-Secure according to Definition 8 as long as

VRASED is secure according to Definition 7.

Proof of Theorem 4 is deferred to Appendix 4.11.

4.5.2 RATAB: Implementation & Verification

Proof of Theorem 4 assumes that RATAB hardware adheres to properties in Equations 4.15

to 4.17. Figure 4.5 shows RATAB implementation as an FSM formally verified to adhere to

these properties. It takes as input a subset of signals, shown in Figure 4.3 and outputs two

1-bit signals: reset triggers an immediate system-wide reset and UPLMT controls updates to

LMT region. UPLMT = 1 whenever the FSM transitions to state UPDATE and has value

0 in all other states. reset = 1 whenever the FSM transitions to state RESET and remains

unchanged while in this state; it remains 0 otherwise. The FSM operates as follows:

1. If a software modification of LMT is attempted, FSM triggers reset immediately,

regardless of what state it is in.

2. If no modifications are made to AR since the previous computation of Attest, FSM

remains in NotMOD state.

85

NotMOD UPDATE

MODRESET

Mod_Mem
(LMT)

PC = CRauth

PC = CRmax

(PC = 0) ∧
(Mod_Mem(LMT))⎦

LMT

MR

M
U
X

RATABUPLMT

Program
Memory

ATTEST (PC = CRauth)

⎦

PC
 =

 C
R au

th

M
od

_M
em

(A
R)

Mod_Mem(AR)

M
od_M

em
(A

R)

Mod_Mem(LMT)

M
od_M

em
(LM

T)

M
od

_M
em

(L
M

T)

Figure 4.5: RATAB FSM for clock-less TOCTOU-secure RA

3. At any point in time, if a modification to AR is detected, FSM transitions to state

MOD. This transition indicates that a modification occurred, although it neither

alters any output, nor modifies LMT . This is because the information to be written

to LMT (the value of Chal in the next Request) is not available at this time.

4. When a call to Attest is made, two possible actions can occur:

(a) If FSM is in NotMOD state, Attest is computed normally and FSM remains in

the same state.

(b) Otherwise, FSM stays in MOD state until condition PC = CRauth is met, im-

plying successful authentication of Vrf Request. Then, FSM transitions to state

UPDATE causing UPLMT to be set during the transition. Hence, LMT is over-

written with Chal passed as a parameter to the current Attest call. Note that

update to LMT happens before the computation of the integrity-ensuring func-

tion (HMAC) over AR, which happens in state ATTEST . Therefore, attestation

86

result H will reflect LMT = Chal as part of AR. Once Attest is completed

(PC = CRmax), FSM transitions back to NotMOD.

The same verification tool-chain discussed in Section 4.4.2 is used to prove that this FSM

adheres to LTL statements in Equations 4.15, 4.16, and 4.17.

4.6 Evaluation

Similar to VRASED, we implemented both RATA variants on the TI MSP430 MCU [63].

It extends VRASED to enable TOCTOU detection. It is synthesized and executed using

Basys3 commodity FPGA prototyping board.

Hardware Overhead. Table 4.2 reflects the analysis of RATA hardware overhead. Similar

to some related work [40, 116, 45, 44, 42, 41], we consider the hardware overhead in terms

of additional LUTs and registers. The increase in the number of LUTs can be used as

an estimate of the additional chip cost and size required for combinatorial logic, while the

number of extra registers offers an estimate on state registers required by sequential logic

in RATA FSMs. Compared to VRASED, the verified implementation of RATAA module

takes 4 additional registers and 13 additional LUTs, while RATAB increases the number

of LUTs and registers by 57 and 27, respectively. As far as the unmodified OpenMSP430

architecture, this represents the overhead of 1.4% LUTs and 1.4% registers for RATAA and

3.8% LUTs and 4.8% registers for RATAB.

Architecture
Hardware Verification

LUT Reg Verified LoC Time (s) Memory (MB)
OpenMSP430 1849 692 - - -
VRASED 1862 698 474 0.4 13.6
RATAA 1875 702 601 0.6 19.7
RATAB 1919 725 656 0.8 26.1

Table 4.2: Additional hardware and verification cost

Runtime Overhead. RATA does not require any modification to RA execution. It only

87

ensures that information about the latest modification of attested memory is factored into

the attestation result. Hence, it incurs no extra runtime cycles or additional RAM allocation,

on top of that of VRASED architecture. In fact, as we discuss next, in Section 4.7, Attest

runtime can be reduced to the time to attest only LMT. The runtime reduction is presented

in Figure 4.7. This represents a reduction of ≈ 10 times compared, e.g., to the number of

cycles to attest an AR of size 4KBytes. The runtime savings increase linearly with the size

of AR.

Memory Overhead. RATAA requires 128-bit of additional storage: 64 bits for RTC and

64 bits for LMT . RTC is implemented using a 64-bit memory cell incremented at every

clock cycle. This guarantees that RTC does not wrap around during Prv’s lifetime since it

would take more than 70, 000 years for that to happen on MSP430 running at 8MHz and

incrementing RTC at every cycle. In RATAA, LMT is implemented as a 64-bit memory

storage and updates its content with RTC value whenever setLMT bit is on. For RATAB,

the memory overhead increases to a total of 512 bits. 256 bits of memory are required by

the implementation of VRASED authentication module, while another 256 bits are used

to implement LMT that updates its content with Chal when applicable (as described in

Section 4.5). This small reserved memory corresponds to 0.1% of MSP430 memory address

space (64KBytes in total).

Verification resources. We verify RATA on an Ubuntu 18.04 machine running at

3.40GHz. Results are shown in Table 4.2. RATAA adds 127 lines of verified Verilog code

on top of VRASED. These are needed to enforce 2 invariants in Equations 4.11 and 4.12.

RATAB incurs 182 additional lines of verified Verilog code, needed to enforce the 3 invari-

ants in Equations 4.15, 4.16, and 4.15. Besides that, RATA verification requires checking

existing VRASED invariants. Overall verification process takes less than one second and

consumes at most 26MB of memory, making it suitable for a commodity desktop.

Comparison. We compare RATA’s hardware overhead with that of two recent self-

88

RATAa RATAb SeED ERASMUS

N
um

be
r

of
 A

dd
iti

on
al

 L
oo

k−
U

p
Ta

bl
es

0
10

0
20

0
30

0
40

0

(a) Additional LUTs

RATAa RATAb SeED ERASMUS

N
um

be
r

of
 A

dd
iti

on
al

 R
eg

is
te

rs

0
50

10
0

15
0

20
0

(b) Additional Registers

Figure 4.6: Hardware overhead. Comparison between RATA and techniques based on self-
measurements

measurement RA techniques: SeED [61] and ERASMUS [31]. Even though, as discussed

in Section 4.3.3, these techniques do not achieve TOCTOU-Security (per Definition 8), we

believe that they are the most closely related approaches to RATA. SeED extends a 32-bit

Intel architecture, which is higher-end than TI MSP430. Whereas, ERASMUS was im-

plemented on MSP430. Figure 4.6 compares RATA to SeED and ERASMUS in terms of

numbers of additional LUTs and registers. RATAA require fewer LUTs, compared to both

SeED and ERASMUS. Whereas, RATAB necessitates more registers, compared to ERAS-

MUS, it uses less LUTs than both self-measurements techniques. In summary, both RATA-s

incur low overhead: < 5% increase for both LUTs and registers.

4.7 Using RATA to Enhance RA & Related Services

We now discuss how RATA can make RA and related services simpler and more efficient.

89

1 2 3 4 5 6 7 8
Attested Memory Region (AR) Size (in KB)

100

200

300

400

500

600

700

800
Ru

n-
tim

e
(in

 m
s)

Regular AR Attestation
LMT Attestation (RATA)

Figure 4.7: Comparison of LMT attestation time Case-1) with regular attestation of AR
(Case-2), as a function of |AR|. |LMT | is 32 Bytes. Results on the MSP430 MCU running
at 8MHz.

4.7.1 Constant-Time RA

One notable and beneficial feature of RATA is that, most of the time, RA no longer needs

to be computed over the entire AR, which significantly reduces RA execution time on Prv.

If Vrf already knows AR contents from a previous attestation result, it suffices to show that

AR was not changed since then. This can be done by attesting LMT by itself, instead of

AR in its entirety, resulting in substantial reduction of computation time from linear in the

size of AR to constant: |LMT |, i.e., 32 bytes. As such, RA is performed differently, in two

possible cases:

– Case-1: if no modification to AR happened since the last attestation (denoted by tatt),

call Attest on LMT region only. Verify checks for H ≡ HMAC(KDF (K, Chal), LMT).

Vrf then learns whether AR was modified since the previous measurement, solely based

on LMT . By checking that LMT corresponds to t0 < tatt, this result confirms that AR

remained the same in the interim. Therefore, measuring AR again is unnecessary and doing

so would be redundant.

90

– Case-2: If AR was modified since the last attestation, call Attest covering entire AR.

Verify is computed normally as described in Constructions 1 or 2, depending on the imple-

mentation, i.e., RATAA or RATAB.

Remark 5: Note that Prv’s RA functionality can easily detect whether AR was modified (in

order to decide between attesting with Case-1 or Case-2) by checking the value of LMT ,

which is readable in software, though not writable.

Most of the time, Prv is expected to be in a benign state (i.e., no malware), especially if Adv

knows that its presence is guaranteed to be detectable. In such times, size of attested memory

can be reduced reduced from several KBytes (e.g., when AR is the entire program memory

on a low-end Prv) to a mere 32 Bytes (LMT size), Figure 4.7 depicts an empirical result

on the MSP430 MCU showing how this optimization can significantly reduce RA runtime

overhead.

In the rest of this section, we discuss some implications of this optimization, along with

security improvements offered by RATA, to different branches of RA and related security

services.

4.7.2 Atomicity & Real-Time Settings

Security of hybrid RA architectures generally depends on temporal consistency of attested

memory. Simply put, temporal consistency means “no modifications to AR during RA com-

putation”. Lack thereof allows self-relocating malware to move itself within Prv’s memory

during attestation, in order to avoid detection, e.g., if malware interrupts attestation execu-

tion, relocates itself to the part of AR that has already been covered by the integrity-ensuring

function (HMAC in our case), and restarts attestation.

In higher-end devices, memory locking can be used to prevent modifications until the end

91

of attestation, as discussed in [30]. However, in low-end devices, where applications run on

bare-metal and there is no architectural support for memory locking, temporal consistency

is attained by enforcing that attestation software (SW-Att) runs atomically: once it starts,

it can not be interrupted by any software running on Prv, thus preventing malware from

interrupting RA and relocating itself. While effective for security purposes, this require-

ment conflicts with real-time requirements if Prv serves a safety-critical and time-sensitive

function.

Some prior remediation techniques proposed to enable interrupts while maintaining temporal

consistency, with high probability. SMARM [32] is one such approach. (Others similar

techniques are discussed in [27]). SMARM divides attested memory (AR) into a set of blocks

which are attested in a randomized order. Attestation of one block remains atomic. However,

interrupts are allowed between attestation of two blocks. Assuming that malware can not

guess the index of the next block to be attested, even if interrupts are allowed, malware

only has a certain probability of avoiding detection. If the entire attestation procedure is

repeated multiple times, this probability can be made arbitrarily small.

We note that, given the RATA optimization discussed in Section 4.7.1, attestation can be

computed faster. In particular, since most Pseudo Random Function (PRF) implementations

use block sizes of at least 32 bytes, the atomic attestation of one block in a SMARM-type

strategy cannot be faster than the attestation on LMT in RATA (|LMT | = 32 Bytes). In

addition, attestation of LMT provides information about the content of AR in its entirety,

with no probability of evasion. We believe this makes RATA more friendly to safety-critical

operations than existing approaches.

In such settings, we envision that AR would be attested in its entirety at system boot time

(Case-2 in Section 4.7.1), while subsequent RA would be computed on LMT only (Case-1

in Section 4.7.1). We note that, if AR is eventually modified, Prv would need to fall back to

Case-2 for the next RA computation, which takes time to run atomically. However, after an

92

unauthorized modification to Prv’s memory, it is unclear why one would still want to offer

real-time guarantees to compromised software.

4.7.3 Collective RA Protocols and Device-to-Device Malware Re-

location

Collective RA protocols (CRA) (aka swarm attestation) [16, 8, 28, 62, 69, 70, 89] are a set of

techniques that attest a large number of devices that operate together as a part of a larger

system. CRA schemes typically assume hybrid RA architectures on individual devices and

look into how to attest many devices efficiently. One security problem that is typically out

of scope on single-device RA and becomes relevant in CRA settings is caused by migratory

malware. This is an analog of intra-device self-relocating malware (discussed in Section 4.7.2)

that appears in collective settings. Specifically, instead of moving around inside the memory

of the same device, it migrates from device to device to avoid detection.

To guarantee detection of migratory malware, CRA result must convince Vrf that all de-

vices were in a safe state within the same time window, implying that malware had

no destination device to which to migrate and avoid detection. Consequently, if a single-

device attestation result conveys a safe state only at some point in between the execution of

Request and Verify algorithms, it is nearly impossible (especially, in the presence of net-

work delays) to conclude that migratory malware is not present in the swarm. Although this

problem is discussed in the CRA literature existing approaches either place it outside their

adversary model [28, 16, 8, 70], or make a strong assumption about clock synchronization

among all devices in the swarm [61, 62, 69, 89], so that all devices can be scheduled to run

Attest at the same time.

93

Construction 3 (CRA-RATA). Let S = {Prv1, ...,Prvn} denote a swarm of n devices indi-

vidually equipped with RATAB hybrid RA facilities. Let LMTi be the value of LMT in Prvi. Also,

Verify(Prvi) denotes the verification algorithm of Construction 2 for Prvi. Consider a protocol in

which:

1. Vrf executes RATAB protocol, as defined in Construction 2 with each Prvi in parallel. Let t(Reqi)

denote the time when Vrf issued the request to Prvi.

2. Vrf collects all responses and computes Verify(Prvi) for all Prvi ∈ S. It then uses the values of

LMTi to learn “since when” Prvi has been in a valid state. We denote this time as t(LMTi).

We argue that, by addressing the TOCTOU problem in the single-device setting, RATAB

can be utilized to construct the first CRA protocol secure against migratory malware with-

out relying on synchronization of the entire swarm. To see why this is the case, consider

Construction 3. In this construction, TOCTOU-Security on individual devices allows Vrf

to conclude that each Prv was in a valid state within a fixed time interval. Therefore, by

checking the overlap in the valid interval of all Prv-s, Vrf can learn the time window in which

the entire swarm was safe as a whole, or detect migratory malware when such time window

does not exist. Theorem 5 states the concrete guarantee offered by Construction 3.

Theorem 5. In Construction 3, if for all Prvi ∈ S, Verify(Prvi) in step 2 succeeds for some

t(LMTi), then it must be the case that entire S was in a valid state in the time window defined

by the interval:

(max[t(LMT1), ..., t(LMTn)] , min[t(Req1), ..., t(Reqn)]) (4.18)

assuming equation 4.18 constitutes a valid interval.

Note: (a, b) is a valid interval if a < b.

Proof. (Sketch) It follows directly from the observations that:

– Given RA-Security, for each Prvi ∈ S, a valid response can not be produced before the

94

time when Prvi receives Chal, which is strictly greater than t(Reqi).

– Given TOCTOU-Security, for each Prvi ∈ S with Verify(Prvi) = 1, its memory could not

have been changed between t(LMTi) and the first call to Attest after t(Reqi).

In addition, running RATA in a CRA setting with heterogeneous devices (with different

processing power and AR sizes) helps to minimize the variability in terms of Prv-s time to

respond.

4.7.4 Runtime Attestation

Runtime attestation focuses on detection of runtime/data-memory attacks, providing au-

thenticated information about software execution on Prv. While it seems unrelated to de-

tection of retrospective program memory modifications, we argue that RATA can also offer

improvement to runtime attestation techniques.

Proofs of execution (PoX) for embedded systems, which were recently explored in [42]

(APEX) and are the subject of Chapter 5, are used to prove that a given operation on

Prv was performed through the execution of the expected code and to verify that outputs

were indeed produced by this execution. Control Flow Attestation (CFA) introduced in [6]

(C-FLAT) allows Vrf to also verify whether software that executed on Prv took a specific

(or a set of) valid control path(s) enabling detection of ROP/code-reuse type attacks to

vulnerable code.

We note that regular (or static) RA is a common stepping stone in these respective function-

alities. In C-FLAT, OAT [105], and Tiny-CFA [43], the executable must be instrumented

with specific instructions to enable CFA and RA is used to verify that such instructions were

not removed or modified. Besides, even executions with the same control-flow may differ

in behavior/outputs if their instructions differ. Similarly, in APEX execution is proven to

95

Vrf with attestation of execution metadata. However, without attesting the corresponding

executable (in program memory), this proof would have no meaning other than: “some code

executed successfully”.

In many applications, the same executable is expected to remain in memory for long periods

of time, while its proper execution (or control-flow) must be verified repeatedly, per safety-

critical embedded operation [105]. RATA’s optimization discussed in 4.7.1 can minimize the

overhead of such successive runtime attestations.

To illustrate this concept we combined RATA with APEX and Tiny-CFA (which itself is

implemented atop APEX). In APEX, all runtime overhead vis-a-vis cost of executing the

same software without proving its successful execution to Vrf is caused by the cost of static

RA. Since APEX is implemented atop VRASED, implementing an RATA-compliant version

of APEX does not require any further modifications, aside from those described in this

Chapter. (APEX details are presented in Chapter 5). As such, this approach substantially

reduced PoX and CFA computational costs (these savings are consistent with Figure 4.7)

while requiring the same additional hardware cost as reported in Table 4.2.

4.8 Related Work

– Temporal Aspects of RA: Besides TOCTOU, two other temporal aspects are essential for

RA security: First, temporal consistency [30] means guaranteeing that the RA result reflects

an instantaneous snapshot of Prv’s attested memory at some point in time during RA. Lack

thereof allows self-relocating malware to escape detection by copying and/or erasing itself

during RA. Temporal consistency is achieved by enforcing atomic (uninterruptible) execution

of attestation code, or by locking attested memory (i.e., making it unmodifiable) during RA

execution. Second, when RA is used on safety-critical and/or real-time devices [27], atom-

96

icity requirement might interfere with the real-time nature of Prv’s application. To address

this issues, SMARM [32] relaxes this requirement by using probabilistic malware detection.

Meanwhile, ERASMUS [31] and SeED [61] are based on Prv’s self-measurements, in order

to detect transient malware that infects Prv and leaves before the next RA instance. See

Section 4.3.3 for further discussion on these types of techniques. Atrium [116] deals with

physical-hardware adversaries that intercept instructions as they are fetched to the CPU

during attestation. Atrium refers to that issue as TOCTOU. Despite nomenclature, that

issue is clearly not the same as RATA’s goal.

– Formal Verification and RA: Formal verification provides significantly higher level of

assurance, yielding provable security for protocol specifications and implementations thereof.

Recently, several efforts focused on formal verification of security-critical services and sys-

tems [58, 17, 117, 19, 74, 67]. VRASED [40] realized a formally verified RA architecture

targeting low-end devices. Other formally verified security services were obtained by extend-

ing VRASED to derive remote proofs of software update, memory erasure and system-wide

MCU reset [41]. APEX [42] (see Chapter 5) builds on top of VRASED to develop a veri-

fied architecture for proofs of remote software execution on low-end devices [42]. RATA also

builds on top of VRASED, extending it to provide TOCTOU security while retaining original

verified guarantees. Relying on VRASED allows us to reason about RATA design and to

formally verify its security properties. Nonetheless, RATA’s main concepts are applicable

to other hybrid (and possibly hardware-based, such as [87]) RA architectures.

4.9 Conclusions

In this chapter, we design, prove security of, and formally verify two designs (RATAA and

RATAB) to secure RA against TOCTOU-related attacks, which perform binary modifications

on a low-end embedded system, in between successive RA instances. RATAA and RATAB

97

modules are formally specified and verified using a model-checker. They are also composed

with VRASED – a verified RA architecture. We show that this composition is TOCTOU-

secure using a reduction-based cryptographic proof. Our evaluation demonstrates that a

TOCTOU-Secure design is affordable even for cost-sensitive low-end embedded devices. Ad-

ditionally, in most cases, it reduces RA time complexity from linear to constant, in the size

of the attested memory.

98

APPENDIX

4.10 Appendix: Proof of Theorem 3

Proof. By contradiction, assume a polynomial Adv that wins the game in Definition 8 with

probability Pr[Adv,RA-TOCTOU-game] > negl(l). Therefore, Adv can produce tLMT ||HAdv

such that:

VerifyVrf(HAdv, Chal,M, t0, tLMT) = 1

and

∃t0≤ti≤tatt{AR(ti) 6= M}

By definition, Verify in Construction 1 results in 1 only if tLMT < t0. If Adv simply replies

with the actual value tLMT = LMT ≥ ti, Verify result would be 0, since ti ≥ t0, failing to

satisfy Verify condition: tLMT < t0. Thus, to obtain Verify = 1, Adv must spoof the value

of tLMT to tLMT < t0.

Upon receiving the spoofed value of tLMT the Verify now expects:

HAdv ≡ HMAC(KDF (K,MR),M) (4.19)

where expected M reflects LMT = tLMT , i.e., LMT < t0.

Also, hardware enforced properties 4.11 and 4.12 guarantee that LMT ∈ AR always contains

the time of the most recent modification of AR. Thus, because tatt ≥ ti, it must be the case

that AR(tatt) reflects LMT ≥ ti implying LMT 6= tLMT , and consequently AR(tatt) 6= M .

Under such restriction, Adv ability to win the game implies its capability to produce

99

HAdv such that VerifyVrf(H, Chal,M, t0, tLMT) = 1, even though modifying AR such that

AR(tatt) = M is not possible. To conclude the proof, we show that the existence of such

an Adv implies the existence of another adversary AdvRA that wins the RA security game in

Definition 7 against VRASED, contradicting the theorem’s assumption.

To win the game in Definition 7 AdvRA behaves as follows:

1. At time ti where t0 ≤ ti ≤ tatt, AdvRA modifies AR causing LMT ∈ AR to store the

value of ti.

2. AdvRA receives Chal from the challenger in step (2) of RA security game of Definition 7

and executes the same algorithm of Adv with inputs Chal and tatt = t to produce HAdv,

such that VerifyVrf(HAdv, Chal,M, t0, tLMT) = 1 with probability:

Pr[Adv,RA-TOCTOU-game] > negl(l),

even though tLMT < t0 < ti.

3. As a response in step 3 of the game in Definition 7, AdvRA replies with: σ = HAdv.

Since VerifyVrf(HAdv, Chal,M, t0, tLMT) = 1, it follows that σ = HAdv =

HMAC(KDF (K,MR),M), for expected M containing LMT = tLMT . However, due to

the AR modification at time ti, AR(t) must reflect LMT ≥ ti, satisfying the condition that

AR(t) 6= M and allowing AdvRA to win the game in Definition 7 with probability:

Pr[Adv,RA-game] = Pr[Adv,RA-TOCTOU-game] > negl(l) (4.20)

100

4.11 Appendix: Proof of Theorem 4

We show that, if properties in Equations 4.15, 4.16 and 4.17 hold, existence of Adv that wins

the TOCTOU security game against RATAB implies the existence of another Adv that wins

RA security game against VRASED, thus contradicting the initial premise.

Proof. By contradiction, assume a polynomial Adv that wins the game in Definition 8 with

probability Pr[Adv,RA-TOCTOU-game] > negl(l). Therefore, Adv is able to produce re-

sponse LMTAdv||HAdv such that:

VerifyVrf(HAdv, Chal,M, t0, T, LMTAdv) = 1

and

∃t0≤ti≤tatt{AR(ti) 6= M}

By definition, in Construction 2, Verify outputs 0 if LMTAdv differs from ChalP stored by Vrf

in the challenge-time association pair P = (ChalP , tP). If LMTAdv = ChalP , it corresponds

to a challenge value sent before t0 (assuming sensible choices of t0 by Vrf). Therefore, in

order to win, Adv must choose LMTAdv = ChalP .

Since LMT ∈ AR, by claiming a value for LMTAdv fitting the restriction above, Adv causes

the expected memory value M to also reflect, LMT = LMTAdv. At this point, Adv has two

possible actions: to modify AR to call Attest with AR(tatt) = M ; or to obtain HAdv even

with AR(tatt) 6= M . First we show that the latter is Adv’s only option.

Let us say that Adv attempts to set AR(tatt) = M to call Attest. In this case, we highlight

three observations about RATAB:

101

1. By LTL statement 4.17, any modification to AR in between the i-th and (i + 1)-th

authenticated computations of Attest, will cause AR to change to reflect LMT =

Chali+1 in following RA responses. Therefore, the premise that

∃t0≤ti≤tatt{AR(ti) 6= M}

will necessarily update LMT .

2. From VRASED authentication (see Appendix 3.9), for subsequent RA challenges Chali

and Chali+1 that authenticate successfully, it is always the case that Chali < Chali+1.

3. From LTL statement 4.16, RATAB never updates LMT with a challenge if it does

not authenticate successfully. Since authentication implies Chali < Chali+1, a call to

Attest never causes LMT to be updated to a previously used Chal.

From observations 1, 2, and 3 above, it is impossible to set AR = M by calling Attest,

because any modification to LMT caused by Attest will always change LMT to a value

that was never used before and thus different from ChalP . At this point Adv last resource

is to try to write to LMT directly. However, this is immediately in conflict with LTL

property 4.15.

Since making AR(tatt) = M is impossible after a modification at time ti, the assumption that

Adv wins the game in Definition 8 implies that Adv is able to produce HAdv that verifies

successfully even when AR(tatt) 6= M . To conclude the proof, we show that existence of

such Adv implies existence of another adversary AdvRA that wins the RA security game in

Definition 7.

To win the game in Definition 7 AdvRA is constructed as follows:

1. At time some ti, where t0 ≤ ti ≤ t, AdvRA modifies memory in AR.

2. AdvRA receives Chal in step 2 of RA security game of Definition 7, and executes

102

the same algorithm as Adv on Chal and with tatt = t to produce HAdv such that

VerifyVrf(HAdv, Chal,M, t0, T, LMTAdv) = 1 with probability:

Pr[Adv,RA-TOCTOU-game] > negl(l).

3. As a response in step 3 of the game in Definition 7, AdvRA replies with σ = HAdv.

Since VerifyVrf(HAdv, Chal,M, t0, T, LMTAdv) = 1, it follows that σ =

HMAC(KDF (K, Chal),M) (first condition for AdvRA to win), for expected M con-

taining LMT = LMTAdv. On the other hand, because memory was modified at time ti, it

must be the case that AR(t) has LMT 6= LMTAdv. Thus satisfying the remaining condition

that AR(t) 6= M implying that AdvRA wins the game in Definition 7 with probability:

Pr[Adv,RA-game] = Pr[Adv,RA-TOCTOU-game] > negl(l) (4.21)

4.12 Appendix: RATA Implementation with SANCUS

To demonstrate RATA generality, we also implemented it atop SANCUS [87]: a hardware-

based RA architecture targeting the same class of embedded devices. To the best of our

knowledge, aside from VRASED (used in our verified implementation), SANCUS is the only

other open-source RA architecture for low-end embedded systems, which justifies our choice.

We note that this implementation is intended to demonstrate RATA generality and that

provable security guarantees derived from RATA-with-VRASED do not apply here. Since

SANCUS does not provide a formal security model and analysis, provable composition of

RATA atop SANCUS is not currently possible.

103

Since RATA operates as a standalone monitor that does not interfere with neither the CPU

nor the underlying RA architecture functionality, adapting RATA to work with SANCUS is

almost effortless. We describe this implementation in terms of RATAA, which is simpler

and does not depend on Vrf’s authentication. The main difference from the VRASED-based

implementation is due to SANCUS support for isolated software modules (SMs), where each

SM is attested individually as an independent program. We note that even SANCUS’ sup-

port for attestation and inter-process isolation is insufficient to provide TOCTOU-Security,

since Prv’s program memory could be physically re-programmed or modified via exploits to

vulnerabilities in the code of the isolated application itself, without Vrf’s knowledge. Hence,

similar to VRASED’s RA case, RATA also complements SANCUS security guarantees.

To enable RATA functionality over SANCUS one must be careful (when programming Prv)

to configure the software binary such that the program memory of a particular SM of interest

coincides with RATA’s AR region. As such, program memory of the SM will be automat-

ically checked by RATA module and SANCUS attestation of such SM’s program memory

will also cover LMT (since LMT ∈ AR) providing an authenticated proof to Vrf of the time

of the latest modification of such SM’s program memory.

We note that this approach requires one RATA module per SM, since multiple SMs im-

ply dividing Prv’s program memory into multiple ARs and corresponding LMT regions.

Nonetheless, since low-end devices typically run very few processes, we expect the cost to

remain manageable.

Because SANCUS is implemented on the same MCU as VRASED (OpenMSP430), no inter-

nal modifications are required to RATA hardware module, and its additional hardware cost

remains consistent with that reported in Table 4.2. To support TOCTOU-Secure attestation

of multiple SMs, this cost grows linearly, i.e., the cost incurred by one RATA hardware

module multiplied by the number of independent SMs that should support TOCTOU-Secure

attestation. We note that, in RATAA’s case, the same secure read-only synchronized clock

104

can be shared by all such modules.

105

Chapter 5

APEX: From Remote Attestation to

Verified Proofs of Execution

106

Abstract

As discussed in previous chapters, RA offers unforgeable proofs that the expected software

binary is currently installed in a remote Prv. However, by itself, it cannot prove that this

software was executed properly and it cannot prove that claimed outputs/results were indeed

produced by the timely and correct execution of this software. In this chapter, we turn our

attention to the problem of proving correct execution, by designing, demonstrating security

of, and formally verifying, APEX: an Architecture for Provable Execution. To the best of

our knowledge, this is the first of its kind result for low-end embedded systems. APEX has

a range of applications, especially, authenticated sensing and trustworthy actuation, which

are increasingly relevant in the context of safety-critical systems. APEX is publicly available

and our evaluation shows that it incurs low overhead, affordable even for very low-end

embedded devices. Research results described in this chapter appeared in the Proceedings

of the USENIX Security Symposium – 2020 (see [42]).

5.1 Introduction

In this chapter, we show that Proofs of Execution (PoX) are both important and necessary

for securing low-end MCUs. Specifically, PoX schemes can be used to construct sensors and

actuators that “can not lie”, even under the assumption of full software compromise. In a

nutshell, a PoX conveys that an untrusted remote (and possibly compromised) device really

executed specific software, and all execution results are authenticated and cryptographically

bound to this execution. This functionality is similar to authenticated outputs that can be

produced by software execution in SGX-alike architectures [64, 37] on high-end devices, such

as desktops and servers.

While many RA architectures have been proposed with different assumptions and guaran-

tees [97, 76, 49, 68, 22, 48, 50, 89, 87, 29, 40], RA alone is insufficient to obtain proofs

of execution. RA allows Vrf to check integrity of software residing in the attested memory

region on Prv. However, by itself, RA offers no guarantee that the attested software is ever

executed or that any such execution completes successfully. Even if the attested software

is executed, there is no guarantee that it has not been modified (e.g., by malware resid-

ing elsewhere in memory) during the time between its execution and its attestation. This

phenomenon can be viewed as a type of TOCTOU: between the RA measurement and the

execution of the measured software (which is different from the retrospective type of TOC-

TOU discussed in Chapter 4). Finally, RA does not guarantee authenticity and integrity of

any output produced by the execution of the attested software.

To bridge this gap, we design and implement APEX: an Architecture for Provable Execution.

In addition to RA, APEX allows Vrf to request an unforgeable proof that the attested soft-

ware executed successfully and (optionally) produced certain authenticated output. These

guarantees hold even in case of full software compromise on Prv. Contributions of this work

include:

108

– New security service: we design and implement APEX for unforgeable remote proofs of

execution (PoX). As discussed in the rest of this chapter, obtaining provably secure PoX re-

quires significant architectural support on top of a secure RA functionality (see Section 5.6).

Nonetheless, we show that, by careful design, APEX achieves all necessary properties of

secure PoX with fairly low overhead. To the best of our knowledge, this is the first security

architecture for PoX on low-end devices.

– Provable security & implementation verification: secure PoX involves considering,

and reasoning about, several details which can be easily overlooked. Ensuring that all

necessary PoX components are correctly implemented, composed, and integrated with the

underlying RA functionality is not trivial. In particular, early RA architectures oversimplified

PoX requirements, leading to the incorrect conclusion that PoX can be obtained directly

from RA; see examples in Section 5.2. In this work, we show that APEX yields a secure

PoX architecture. All security properties expected from APEX implementation are formally

specified using Linear Temporal Logic (LTL) and APEX modules are verified to adhere to

these properties. We also prove that the composition of APEX new modules with a formally

verified RA architecture (VRASED) implies a concrete definition of PoX security.

– Evaluation, publicly available implementation and applications: APEX was

implemented on a real-world low-end MCU (TI MSP430) and deployed using commodity

FPGAs. Both design and verification are publicly available at [2]. Our evaluation shows low

hardware overhead, affordable even for low-end MCUs. The implementation is accompanied

by a sample PoX application; see Section 5.6.3. As a proof of concept, we use APEX to

construct a trustworthy safety-critical device, whereupon malware can not spoof execution

results (e.g., fake sensed values) without detection.

109

5.2 Related Work

RA and Execution –The first hybrid RA architecture – SMART [49] – acknowledged the

importance of proving remote code execution on Prv, in addition to just attesting Prv’s

memory. Using an attest-then-execute approach (see Algorithm 4 in [49]), SMART attempts

to provide software execution by specifying the address of the first instruction to be executed

after completion of attestation. However, SMART offers no guarantees beyond “invoking the

executable”. It does not guarantee that execution completes successfully or that any produced

outputs are tied to this execution. For example, SMART can not detect if execution is

interrupted (e.g., by malware) and never resumed. A reset (e.g., due to software bugs,

or Prv running low on power) might happen after invoking the executable, preventing its

successful completion. Also, direct memory access (DMA) can occur during execution and it

can modify the code being executed, its intermediate values in data memory, or its output.

SMART neither detects nor prevents DMA-based attacks, since it assumes DMA-disabled

devices.

Another notable RA architecture is TrustLite [68], which builds upon SMART to allow secure

interrupts. TrustLite does not enforce temporal consistency of attested memory; it is thus

conceptually vulnerable to self-relocating malware and memory modification during attesta-

tion [30]. Consequently, it is challenging to deriving secure PoX from TrustLite. Several other

prominent low-to-medium-end RA architectures – e.g., SANCUS [87], HYDRA [48], and Ty-

TaN [22] – do not offer PoX. In this chapter, we show that the execute-then-attest approach,

using a temporally consistent RA architecture, can be designed to provide unforgeable proofs

of execution that are only produced if the expected software executes correctly and its results

are untampered.

Control Flow Attestation (CFA)– In contrast with RA, which measures Prv’s software

integrity, CFA techniques [6, 45, 116, 44] provide Vrf with a measurement of the exact control

110

flow path taken during execution of specific software on Prv. Such measurements allow Vrf

to detect run-time attacks. We believe that it is possible to construct a PoX scheme that relies

on CFA to produce proofs of execution based on the attested control flow path. However,

in this chapter, we advocate a different approach – specific for proofs of execution – for two

main reasons:

• CFA requires substantial additional hardware features in order to attest, in real time,

executed instructions along with memory addresses and the program counter. For

example, C-FLAT [6] assumes ARM TrustZone, while LO-FAT [45] and LiteHAX[44]

require a hardware branch monitor and a hash engine. We believe that such hardware

components are not viable for low-end devices, since their cost (in terms of price, size,

and energy consumption) is typically higher than the cost of a low-end MCU itself. For

example, the hardware cost of hardware branch monitors and hash engines reported

in the aforementioned CFA architectures are considerably more expensive than the

low-end MCUs themselves and hence not realistic in our device context.

• CFA assumes that Vrf can enumerate a large (potentially exponential!) number of

valid control flow paths for a given program, and verify a valid response for each. This

burden is unnecessary for determining if a proof of execution is valid, because one does

not need to know the exact execution path in order to determine if execution occurred

(and terminated) successfully; see Section 5.3.1 for a discussion of run-time threats.

In contrast, we propose a PoX-specific architecture – APEX– that enables low-cost PoX

for low-end devices. APEX is non-invasive (i.e., it does not modify MCU behavior and

semantics) and incurs low hardware overhead: around 2% for registers and 12% for LUTs.

Also, Vrf is not required to enumerate valid control flow graphs and the verification burden

for PoX is nearly the same as the effort to verify a typical remote attestation response for

the same code.

Formally Verified Security Services– In recent years, several efforts focused on formally

111

verifying security-critical systems. In terms of cryptographic primitives, Hawblitzel et al.

[58] verified implementations of SHA, HMAC, and RSA. Bond et al. [21] verified an as-

sembly implementation of SHA-256, Poly1305, AES and ECDSA. Zinzindohoué, et al. [117]

developed HACL*, a verified cryptographic library containing the entire cryptographic API

of NaCl [18]. Larger security-critical systems have also been successfully verified. Bharga-

van [19] implemented the TLS protocol with verified cryptographic security. CompCert[74]

is a C compiler that is formally verified to preserve C code semantics in generated assembly

code. Klein et al. [67] designed and proved functional correctness of the seL4 microkernel.

More recently, VRASED [40] realized a formally verified hybrid RA architecture. APEX

architecture, proposed in this chapter, uses VRASED RA functionality (see Chapter 3 for

details) composed with additional formally verified architectural components to obtain prov-

ably secure PoX.

Proofs of Execution (PoX)– Flicker [83] offers a means for obtaining PoX in high-end

devices. It uses TPM-based attestation and sealed storage, along with late launch support

offered by AMD Secure Virtual Machine extensions[112] to implement an infrastructure for

isolated code execution and attestation of the executed code, associated inputs, and outputs.

Sanctum [37] employs a similar approach by instrumenting Intel SGX enclaved code to convey

information about its own execution to a remote party. Both of these approaches are only

suitable for high-end devices and not for low-end devices targeted in this work. As discussed

earlier, no prior hybrid RA architecture for low-end devices provides PoX.

5.3 Proof of Execution (PoX) Schemes

A Proof of Execution (PoX) is a scheme involving two parties: (1) a trusted verifier Vrf, and

(2) an untrusted (potentially infected) remote prover Prv. Informally, the goal of PoX is to

allow Vrf to request execution of specific software S by Prv. As part of PoX, Prv must reply

112

Definition 9 (Proof of Execution (PoX) Scheme).
A Proof of Execution (PoX) scheme is a tuple of algorithms [XRequest,XAtomicExec,XProve,XVerify]

performed between Prv and Vrf where:

1. XRequestVrf→Prv(S, ·): is an algorithm executed by Vrf which takes as input some software S
(consisting of a list of instructions {s1, s2, ..., sm}). Vrf expects an honest Prv to execute S.
XRequest generates a challenge Chal, and embeds it alongside S, into an output request message
asking Prv to execute S, and to prove that such execution took place.

2. XAtomicExecPrv(ER, ·): an algorithm (with possible hardware-support) that takes as input
some executable region ER in Prv’s memory, containing a list of instructions {i1, i2, ..., im}.
XAtomicExec runs on Prv and is considered successful iff: (1) instructions in ER are executed
from its first instruction, i1, and end at its last instruction, im; (2) ER execution is atomic, i.e.,
if E is the sequence of instructions executed between i1 and im, then {e|e ∈ E} ⊆ ER; and (3)
ER execution flow is not altered by external events, i.e., MCU interrupts or DMA events. The
XAtomicExec algorithm outputs result string O. Note that O may be a default string (⊥) if ER
execution does not result in any output.

3. XProvePrv(ER, Chal,O, ·): an algorithm (with possible hardware-support) that takes as input

some ER, Chal and O and is run by Prv to output H, i.e., a proof that XRequestVrf→Prv(S, ·)
and XAtomicExecPrv(ER, ·) happened (in this sequence) and that O was produced by
XAtomicExecPrv(ER, ·).

4. XVerifyPrv→Vrf(H,O,S, Chal, ·): an algorithm executed by Vrf with the following inputs: some
S, Chal, H and O. The XVerify algorithm checks whether H is a valid proof of the execution of
S (i.e., executed memory region ER corresponds to S) on Prv given the challenge Chal, and if
O is an authentic output/result of such an execution. If both checks succeed, XVerify outputs 1,
otherwise it outputs 0.

Remark: In the parameters list, (·) denotes that additional parameters might be included, de-
pending on the specific PoX construction.

to Vrf with an authenticated unforgeable cryptographic proof (H) that convinces Vrf that

Prv indeed executed S. To accomplish this, verifying H must prove that: (1) S executed

atomically, in its entirety, and that such execution occurred on Prv (and not on some other

device); and (2) any claimed result/output value of such execution, that is accepted as

legitimate by Vrf, could not have been spoofed or modified. Also, the size and behavior

(i.e., instructions) of S, as well as the size of its output (if any), should be configurable

and optionally specified by Vrf. In other words, PoX should provide proofs of execution

for arbitrary software, along with corresponding authenticated outputs. (Note that Vrf is

trusted to specify a functionally correct , bug-free, S. See Section 5.3.1 for a discussion of

vulnerabilities in S itself.) Definition 9 specifies PoX schemes in detail.

113

Definition 10 (PoX Security Game).
– Let treq denote time when Vrf issues Chal← XRequestVrf→Prv(S).

– Let tverif denote time when Vrf receives H and O back from Prv in response to XRequestVrf→Prv.

– Let XAtomicExecPrv(S, treq → tverif) denote that XAtomicExecPrv(ER, ·), such that ER ≡ S, was
invoked and completed within the time interval [treq, tverif].

– Let O ≡ XAtomicExecPrv(S, treq → tverif) denote that XAtomicExecPrv(S, treq → tverif) pro-

duces output O. Conversely, O 6≡ XAtomicExecPrv(S, treq → tverif) indicates O is not produced by

XAtomicExecPrv(S, treq → tverif).
10.1 PoX Security Game (PoX-game): Challenger plays the following game with Adv:

1. Adv is given full control over Prv software state and oracle access to calls to the algorithms
XAtomicExecPrv and XProvePrv.

2. At time treq, Adv is presented with software S and challenge Chal.
3. Adv wins in two cases:

(a) None or incomplete execution: Adv produces (HAdv,OAdv), such that
XVerify(HAdv,OAdv,S, Chal, ·) = 1,
without calling XAtomicExecPrv(S, treq → tverif).

(b) Execution with tampered output: Adv calls XAtomicExecPrv(S, treq → tverif) and can
produce (HAdv,OAdv),
such that XVerify(HAdv,OAdv,S, Chal, ·) = 1 and OAdv 6≡ XAtomicExecPrv(S, treq → tverif)

10.2 PoX Security Definition:
A PoX scheme is considered secure for security parameter l if, for all PPT adversaries Adv, there exists
a negligible function negl such that:

Pr[Adv, PoX-game] ≤ negl(l)

We now justify the need to include atomic execution of S in the definition of PoX. On low-end

MCUs, software typically runs on “bare metal” and, in most cases, there is no mechanism

to enforce memory isolation between applications. Therefore, allowing S execution to be

interrupted would permit other (potentially malicious) software running on Prv to alter the

behavior of S. This might be done, for example, by an application that interrupts execution

of S and changes intermediate computation results in S data memory, thus tampering with

its output or control flow. Another example is an interrupt that resumes S at different

instruction modifying S execution flow. Such actions could modify S behavior completely

via Return Oriented Programming (ROP).

114

5.3.1 PoX Adversary Model & Security Definition

The adversary model considered by APEX is the same considered in Chapters 3 and 4. We

review it below.

We consider an adversary Adv that controls Prv’s entire software state, code, and data.

Adv can modify any writable memory and read any memory that is not explicitly protected

by hardware-enforced access control rules. Adv may also have full control over all Direct

Memory Access (DMA) controllers of Prv. Recall that DMA allows a hardware controller

to directly access main memory (e.g., RAM, flash or ROM) without going through the CPU.

We consider a PoX = (XRequest, XAtomicExec, XProve, XVerify) scheme to be secure if the

aforementioned Adv has only negligible probability of convincing Vrf that S executed suc-

cessfully when, in reality, such execution did not take place, or was interrupted. In addition

we require that, if execution of S occurs, Adv can not tamper with, or influence, this execu-

tion’s outputs. These notions are formalized by the security game in Definition 10.

We note that Definition 10 binds execution of S to the time between Vrf issuing the request

and receiving the response. Therefore, if a PoX scheme is secure according to this definition,

Vrf can be certain about freshness of the execution. In the same vein, the output produced by

such execution is also guaranteed to be fresh. This timeliness property is important to avoid

replays of previous valid executions; in fact, it is essential for safety-critical applications. See

Section 5.6.3 for examples.

Correctness of the Executable: we stress that the purpose of PoX is to guarantee that

S, as specified by Vrf, was executed. Similar to Trusted Execution Environments (TEEs)

targeting high-end CPUs, such as Intel SGX, PoX schemes do not aim to check correctness and

absence of implementation bugs in S. As such, it is not concerned with run-time attacks that

exploit bugs and vulnerabilities in S implementation itself, to change its expected behavior

115

(e.g., by executing S with inputs crafted to exploit S bugs and hijack its control flow). In

particular, correctness (or termination) of S need not be assured by the low-end Prv. Since

Vrf is a more powerful device and knows S, it has the ability (and more computational

resources) to employ various vulnerability detection methods (e.g., fuzzing [33] or static

analysis [38]) or even software formal verification (depending on the level of rigor desired) to

avoid or detect implementation bugs in S. This type of techniques can be performed offline

before sending S to Prv and the whole issue is orthogonal to the PoX functionality. We also

note that, if S needs to be instrumented for PoX (see Section 5.4.1), it is important to ensure

that this instrumentation does not introduce any bugs/vulnerabilities into S.

Physical Attacks: physical and hardware-focused attacks are out of scope of this work.

Specifically, we assume that Adv can not modify code in ROM, induce hardware faults, or

retrieve Prv secrets via physical presence side-channels. Protection against such attacks is

considered orthogonal and could be supported via standard physical security techniques [95].

This assumption is inline with other hybrid architectures [49, 40, 68, 22].

5.3.2 MCU Assumptions

We assume the same machine model as in Chapter 3 and make no additional assumptions.

We review relevant assumptions throughout the rest of this section and then formalize them

as an LTL machine model in Section 5.5.

Verification of the entire CPU is beyond the scope of this work. Therefore, we assume

the CPU architecture strictly adheres to, and correctly implements, its specifications. In

particular, our design and verification rely on the following simple axioms:

A1 – Program Counter (PC): PC always contains the address of the instruction being

executed in a given CPU cycle.

116

A2 – Memory Address: Whenever memory is read or written, a data-address signal

(Daddr) contains the address of the corresponding memory location. For a read access, a

data read-enable bit (Ren) must be set, while, for a write access, a data write-enable bit

(Wen) must be set.

A3 – DMA: Whenever the DMA controller attempts to access the main system memory, a

DMA-address signal (DMAaddr) reflects the address of the memory location being accessed

and a DMA-enable bit (DMAen) must be set. DMA can not access memory when DMAen

is off (logical zero).

A4 – MCU Reset: At the end of a successful reset routine, all registers (including PC)

are set to zero before resuming normal software execution flow. Resets are handled by the

MCU in hardware. Thus, the reset handling routine can not be modified. When a reset

happens, the corresponding reset signal is set. The same signal is also set when the MCU

initializes for the first time.

A5 – Interrupts: Whenever an interrupt occurs, the corresponding irq signal is set.

5.4 APEX: A Secure PoX Architecture

We now present APEX, a PoX architecture that satifies PoX-Security per Definition 10.

This section first provides some intuition behind APEX design. All APEX properties are

overviewed informally in this section and formalized in Section 5.5.

In the rest of this section we use the term “unprivileged software” to refer to any software

other than SW-Att code from VRASED. Adv is allowed to overwrite or bypass any “un-

privileged software”. Meanwhile, “trusted software” refers to VRASED implementation of

SW-Att (see Chapter 3) which is formally verified and can not be modified by Adv, since it

117

Definition 11 (Proof of Execution Protocol). APEX instantiates a PoX = (XRequest, XAtomicExec,
XProve, XVerify) scheme behaving as follows:

1. XRequestVrf→Prv(S, ERmin, ERmax, ORmin, ORmax): includes a set of configuration parameters
ERmin, ERmax, ORmin, ORmax. The Executable Range (ER) is a contiguous memory
block in which S is to be installed: ER = [ERmin, ERmax]. Similarly, the Output Range
(OR) is also configurable and defined by Vrf’s request as OR = [ORmin, ORmax]. If S
does not produce any output ORmin = ORmax =⊥. S is the software to be installed in
ER and executed. If S is unspecified (S =⊥) the protocol will execute whatever code was
pre-installed on ER on Prv, i.e., Vrf is not required to provide S in every request, only
when it wants to update ER contents before executing it. If the code for S is sent by Vrf,
untrusted auxiliary software in Prv is responsible for copying S into ER. Prv also receives
a random l-bit challenge Chal (|Chal| = l) as part of the request, where l is the security parameter.

2. XAtomicExecPrv(ER,OR,METADATA): This algorithm starts with unprivileged auxiliary
software writing the values of: ERmin, ERmax, ORmin, ORmax and Chal to a special pre-defined
memory region denoted by METADATA. APEX verified hardware enforces immutability,
atomic execution and access control rules according to the values stored in METADATA;
details are described in Section 5.4.1. Finally, it begins execution of S by setting the program
counter to the value of ERmin.

3. XProvePrv(ER, Chal, OR): produces proof of execution H. H allows Vrf to decide whether: (1)
code contained in ER actually executed; (2) ER contained specified (expected) S code during
execution; (3) this execution is fresh, i.e., performed after the most recent XRequest; and (4)
claimed output in OR is indeed produced by this execution. As mentioned earlier, APEX uses
VRASED RA architecture to compute H by attesting at least the executable, along with its output,
and corresponding execution metadata. More formally:

H = HMAC(KDF (K, Chal), ER,OR,METADATA, ...) (5.1)

METADATA also contains the EXEC flag that is read-only to all software running in
Prv and can only be written to by APEX formally verified hardware. This hardware
monitors execution and sets EXEC = 1 only if ER executed successfully (XAtomicExec)
and memory regions of METADATA, ER, and OR were not modified between the end of
ER execution and the computation of H. The reasons for these requirements are detailed
in Section 5.4.2. If any malware residing on Prv attempts to violate any of these properties
APEX verified hardware (provably) sets EXEC to zero. After computing H, Prv returns it and
contents of OR (O) produced by ER execution to Vrf.

4. XVerifyPrv→Vrf(H,O,S,METADATAVrf) : Upon receiving H and O, Vrf checks whether H
is produced by a legitimate execution of S and reflects parameters specified in XRequest, i.e.,
METADATAVrf = Chal||ORmin||ORmax||ERmin||ERmax||EXEC = 1. This way, Vrf con-
cludes that S successfully executed on Prv and produced output O if:

H ≡ HMAC(KDF (K, ChalVrf),S,O,METADATAVrf , ...) (5.2)

is stored in ROM. APEX is designed such that no changes to SW-Att are required. Therefore,

both functionalities (RA and PoX, i.e., VRASED and APEX) can co-exist on the same device

118

Table 5.1: Summary of APEX-relevant notation

PC Current Program Counter value
Ren Signal that indicates if the MCU is reading from memory (1-bit)
Wen Signal that indicates if the MCU is writing to memory (1-bit)

Daddr Address for an MCU memory access
DMAen Signal that indicates if DMA is currently enabled (1-bit)

DMAaddr Memory address being accessed by DMA, if any
irq Signal that indicates if an interrupt is happening
CR Memory region where SW-Att is stored: CR = [CRmin, CRmax]
MR (MAC Region) Memory region in which SW-Att computation result is written: MR =

[MRmin,MRmax]. The same region is used to pass the attestation challenge as input
to SW-Att

AR (Attested Region) Memory region to be attested. Can be fixed/predefined or specified
in an authenticated request from Vrf: AR = [ARmin, ARmax]

KR (Key Region) Memory region that stores K
XS (Exclusive Stack Region) Exclusive memory region that contains SW-Att stack and

can be only accessed by SW-Att

reset A 1-bit signal that reboots/resets the MCU when set to logical 1
ER (Execution Region) Memory region that stores an executable to be executed: ER =

[ERmin, ERmax]
OR (Output Region) Memory region that stores execution output: OR =

[ORmin, ORmax]
EXEC 1-bit execution flag indicating whether a successful execution has happened

METADATA Memory region containing APEX metadata

without interfering with each other (i.e., it is still possible to attest memory without proving

its execution, if that is the desired behavior).

Notation is summarized in Table 5.1.

5.4.1 Protocol and Architecture

APEX implements a secure PoX scheme conforming to Definition 11. The steps in APEX

workflow are illustrated in Figure 5.1. The main idea is to first execute code contained

in ER. Then, at some later time, APEX invokes VRASED to attest the code in ER and

include, in the attestation result, additional information that allows Vrf to verify that ER

code actually executed. If ER execution produces an output (e.g., Prv is a sensor running

S to obtain some physical/ambient quantity), authenticity and integrity of this output can

119

Figure 5.1: Overview of APEX workflow

also be verified. That is achieved by including the EXEC flag among inputs to HMAC

computed as part of VRASED RA. The value of this flag is controlled by APEX formally

verified hardware and its memory can not be written by any software running on

Prv. APEX hardware module runs in parallel with the MCU, monitoring its behavior and

deciding the value of EXEC accordingly.

Figure 5.2 depicts APEX architecture. In addition to VRASED hardware that provides se-

cure RA by monitoring a set of CPU signals (see Chapter 3), APEX monitors values stored in

the dedicated physical memory region called METADATA. It contains addresses/pointers

to memory boundaries of ER (i.e., ERmin and ERmax) and memory boundaries of expected

output: ORmin and ORmax. These addresses are sent by Vrf as part of XRequest, and are

configurable at run-time. The code S to be stored in ER is optionally sent by Vrf. Sending

S is optional because S might be pre-installed on Prv. In that case the proof of execution

will allow Vrf to conclude that the pre-installed S was unmodified and executed.

METADATA includes the EXEC flag, which is initialized to 0 and only changes from 0 to

1 (by APEX hardware) when ER execution starts, i.e., when the PC = ERmin. Afterwards,

any violation of APEX security properties (detailed in Section 5.4.2) immediately changes

120

EXEC back to 0. After a violation, the only way to set EXEC back to 1 is to re-start

execution of ER from the very beginning, i.e., with PC=ERmin. In other words, APEX

verified hardware makes sure that EXEC value covered by the HMAC result (represented

byH) is 1, if and only if ER code executed successfully. As mentioned earlier, we consider an

execution to be successful if it runs atomically (i.e., from beginning to end and interrupted).

MCU CORE

VRASED

APEX

HW-Mod

PC,
irq,
Ren,
Wen,
Daddr,
DMAen,
DMAaddr

reset

Chal
ORmax

ORmin

ERmax

ERmin

EXEC

ER

OR

MCU’s Address Space

Figure 5.2: HW-Mod composed of APEX and VRASED hardware modules. Shaded area
represents APEX METADATA.

In addition to EXEC, HMAC covers a set of parameters (in METADATA mem-

ory region) that allows Vrf to check whether executed software was indeed located in

ER = [ERmin, ERmax]. If any output is expected, Vrf specifies a memory range OR =

[ORmin, ORmax] for storing output. Contents of OR are also covered by HMAC, allowing

Vrf to verify authenticity of the output.

Remark: Our notion of successful execution requires S to have a single exit point – ERmax.

Any self-contained code with multiple legal exits can be trivially instrumented to have a single

exit point by replacing each exit instruction with a jump to the unified exit point ERmax.

121

This notion also requires S to run atomically. Since this constraint might be undesirable

for some real-time systems, we discuss how to relax it in Section 5.7. In addition, Vrf is

responsible for defining OR memory region according to S behavior. OR should be large

enough to fit all output produced by S and OR boundaries should correspond to addresses

where S writes its output values to be sent to Vrf. To ensure freshness of OR content,

Vrf may enforce ER to clear OR contents as the first step in its execution. This may be

necessary if not all ER execution paths overwrite OR entirely.

5.4.2 APEX Sub-Properties at a High-Level

We now describe sub-properties enforced by APEX. Section 5.5 formalizes them in LTL and

provides a single end-to-end definition of APEX correctness. This end-to-end correctness

notion is provably implied by the composition of all sub-properties. Sub-properties fall into

two major groups: Execution Protection and Metadata Protection. A violation of any of

these properties implies one or more of:

• Code in ER was not executed atomically and in its entirety;

• Output in OR was not produced by ER execution;

• Code in ER was not executed in a timely manner, i.e., after receiving the latest

XRequest.

Whenever APEX detects a violation, EXEC is set to 0. Since EXEC is included among

inputs to the computation of HMAC (conveyed in Prv’s response), it will be interpreted by

Vrf as failure to prove execution of code in ER.

Remark: We emphasize that properties discussed below are specific to PoX and are required

in addition to VRASED verified properties. They should not be viewed as replacements

for any of VRASED properties that are used to enforce RA security.

122

Execution Protection:

EP1 – Ephemeral Immutability: Code in ER can not be modified from the start of its

execution until the end of SW-Att computation in XProve routine. This property is necessary

to ensure that the attestation result reflects the code that executed. Lack of this property

would allow Adv to execute some other code ERAdv, overwrite it with expected ER and

finally call XProve. This would result in a valid proof of execution of ER even though

ERAdv was executed instead.

EP2 – Ephemeral Atomicity: ER execution is only considered successful if ER runs

starting from ERmin until ERmax atomically, i.e., without any interruption. This property

conforms with XAtomicExec routine in Definition 9 and with the notion of successful execution

in the context of our work. As discussed in Section 5.3, ER must run atomically to prevent

malware residing on Prv from interrupting ER execution and resuming it at a different

instruction, or modifying intermediate execution results in data memory. Without this

property, Return-Oriented Programming (ROP) and similar attacks on ER could change its

behavior completely and unpredictably, making any proof of execution (and corresponding

output) useless.

EP3 – Output Protection: Similar to EP1, APEX must ensure that OR is unmodified

from the time after ER code execution is finished until completion of HMAC computation

in XProve. Lack of this property would allow Adv to overwrite OR and successfully spoof

OR produced by ER, thus convincing Vrf that execution produced some forged output.

Metadata Protection:

MP1 - Executable/Output (ER/OR) Boundaries: APEX hardware ensures prop-

erties EP1, EP2, and EP3 according to values: ERmin, ERmax, ORmin, ORmax. These

123

values are configurable by Vrf based on application needs. They are written into metadata-

dedicated physical addresses in Prv memory before ER execution. Therefore, once ER

execution starts, APEX hardware must ensure that such values remain unchanged until

XProve completes. Otherwise, Adv could generate valid attestation results, by attesting

[ERmin, ERmax], while, in fact, having executed code in a different region: [ERAdvmin, ERAdvmax].

MP2 - Response Protection: The appropriate response to Vrf’s challenge must be un-

forgeable and non-invertible. Therefore, in the XProve routine, K must never be leaked

(with non-negligible probability) and HMAC implementation must be functionally correct,

i.e., adhere to its cryptographic specification. Moreover, contents of memory being attested

must not change during HMAC computation. We rely on VRASED to ensure these proper-

ties. Also, to ensure trustworthiness of the response, APEX guarantees that no software in

Prv can ever modify EXEC flag and that, once EXEC = 0, it can only become 1 if ER

execution re-starts afresh.

MP3 - Challenge Temporal Consistency: APEX must ensure that Chal can not be

modified between ER execution and HMAC computation in XProve. Without this property,

the following attack is possible: (1) Prv-resident malware executes ER properly (i.e., by not

violating EP1-EP3 and MP1-MP2), resulting in EXEC = 1 after execution stops, and

(2) at a later time, malware receives Chal from Vrf and simply calls XProve on this Chal

without executing ER. As a result, malware would acquire a valid proof of execution (since

EXEC remains 1 when the proof is generated) even though no ER execution occurred

before Chal was received. Such attacks are prevented by setting EXEC = 0 whenever the

memory region storing Chal is modified.

124

5.5 Formal Specification & Verified Implementation

Our formal verification approach starts by formalizing APEX sub-properties Linear Temporal

Logic (LTL) to define invariants that must hold throughout the MCU operation. We then

use a theorem prover [47] to write a computer-aided proof that the conjunction of the LTL

sub-properties imply an end-to-end formal definition for the guarantee expected from APEX

hardware. APEX correctness, when properly composed with VRASED guarantees, yields

a PoX scheme secure according to Definition 10. This is proved by showing that, if the

composition between the two is implemented as described in Definition 11, VRASED security

can be reduced to APEX security.

APEX hardware module is composed of several sub-modules written in Verilog Hardware

Description Language (HDL). Each sub-module is responsible for enforcing a set of LTL

sub-properties and is described as an FSM in Verilog at Register Transfer Level (RTL). In-

dividual sub-modules are combined into a single Verilog design. The resulting composition

is converted to the SMV model checking language using the automatic translation tool Ver-

ilog2SMV [65]. The resulting SMV is simultaneously verified against all LTL specifications,

using the model checker NuSMV[35], to prove that the final implementation APEX complies

with all necessary properties.

5.5.1 Machine Model

Definition 12 models, in LTL, the behavior of low-end MCUs considered in this work. It

consists of a subset of the machine model introduced by VRASED. Nonetheless, this subset

models all MCU behavior relevant for stating and verifying correctness of APEX implemen-

tation.

Modify Mem models that a given memory address can be modified by a CPU instruction or

125

Definition 12. Machine Model (subset)

1. Modify Mem(i) → (Wen ∧Daddr = i) ∨ (DMAen ∧DMAaddr = i)
2. Interrupt → irq
3. MR, CR, AR, KR, XS, and METADATA are non-overlapping memory regions

by a DMA access. In the former, Wen signal must be set and Daddr must contain the target

memory address. In the latter, DMAen signal must be set and DMAaddr must contain

the target DMA address. The requirements for reading from a memory address are similar,

except that instead of Wen, Ren must be on. We do not explicitly state this behavior since it

is not used in APEX proofs. For the same reason, modeling the effects of instructions that

only modify register values (e.g., ALU operations, such as add and mul) is also unnecessary.

The machine model also captures the fact that, when an interrupt happens during execution,

the irq signal in MCU hardware is set to 1.

With respect to memory layout, the model states that MR, CR, AR, KR, XS, and

METADATA are disjoint memory regions. The first five memory regions are defined in

VRASED. As shown in Figure 5.2, METADATA is a fixed memory region used by APEX

to store information about software execution status.

5.5.2 Security & Implementation Correctness

We use a two-part strategy to prove that APEX is a secure PoX architecture, according to

Definition 10:

[A]: We show that properties EP1-EP3 and MP1-MP3, discussed in Section 5.4.2 and

formally specified next in Section 5.5.3, are sufficient to guarantee that EXEC flag

is 1 iff S indeed executed on Prv. To show this, we compose a computer proof using

SPOT LTL proof assistant [47].

[B]: We use cryptographic reduction proofs to show that, as long as part A holds, VRASED

126

security can be reduced to APEX PoX security from Definition 10. In turn, HMAC

existential unforgeability can be reduced to VRASED security [40]. Therefore, both

APEX and VRASED rely on the assumption that HMAC is a secure MAC.

Definition 13. Formal specification of APEX correctness.

{
PC = ERmin ∧ [(PC ∈ ER ∧ ¬Interrupt ∧ ¬reset ∧ ¬DMAen) U PC = ERmax] ∧
[(¬ Modify Mem(ER) ∧ ¬ Modify Mem(METADATA) ∧ (PC ∈ ER ∨ ¬ Modify Mem(OR))) U PC = CRmin]

} B {EXEC ∧ PC ∈ CR}
(5.3)

Definition 14. Sub-Properties needed for Secure Proofs of Execution in LTL.
Ephemeral Immutability:

G : {[Wen ∧ (Daddr ∈ ER)] ∨ [DMAen ∧ (DMAaddr ∈ ER)]→ ¬EXEC} (5.4)

Ephemeral Atomicity:

G : {(PC ∈ ER) ∧ ¬(X(PC) ∈ ER)→ PC = ERmax ∨ ¬X(EXEC) } (5.5)

G : {¬(PC ∈ ER) ∧ (X(PC) ∈ ER)→ X(PC) = ERmin ∨ ¬X(EXEC)} (5.6)

G : {(PC ∈ ER) ∧ irq → ¬EXEC} (5.7)

Output Protection:

G : {[¬(PC ∈ ER) ∧ (Wen ∧Daddr ∈ OR)] ∨ (DMAen ∧DMAaddr ∈ OR) ∨ (PC ∈ ER ∧DMAen)→ ¬EXEC}
(5.8)

Executable/Output (ER/OR) Boundaries & Challenge Temporal Consistency:

G : {ERmin > ERmax ∨ORmin > ORmax → ¬EXEC} (5.9)

G : {ERmin ≤ CRmax ∨ ERmax > CRmax → ¬EXEC} (5.10)

G : {[Wen ∧ (Daddr ∈METADATA)] ∨ [DMAen ∧ (DMAaddr ∈METADATA)]→ ¬EXEC} (5.11)

Remark: Note that Chalmem ∈METADATA.

Response Protection:

G : {¬EXEC ∧X(EXEC)→ X(PC = ERmin)} (5.12)

G : {reset→ ¬EXEC} (5.13)

In the rest of this section, we convey the intuition behind both of these steps. Proof details

127

treq t(ERmin) t(ERmax) t(CRmin) t(CRmax) tverif Time

OR

ER

META
DATA

Region
State S0 State S1 State S2 H ready

ER execution Attestation

Memory immutability

required by APEX

Memory immutability

enforced by VRASED

Figure 5.3: Illustration of time intervals that each memory region must remain unchanged
in order to produce a valid H (EXEC = 1). t(X) denotes the time when PC = X.

are in Appendix 5.10.

The goal of part A is to show that APEX sub-properties imply Definition 13. LTL speci-

fication in Definition 13 captures the conditions that must hold in order for EXEC to be

set to 1 during execution of XProve, enabling generation of a valid proof of execution. This

specification ensures that, in order to have EXEC = 1 during execution of XProve (i.e, for

[EXEC ∧ PC ∈ CR] to hold), at least once before such time the following must have

happened:

1. The system reached state S0 where software stored in ER started executing from its

first instruction (PC = ERmin).

2. The system eventually reached a state S1 when ER finished executing (PC = ERmax).

In the interval between S0 and S1 PC kept executing instructions within ER, there

were no interrupts, no resets, and DMA remained inactive.

3. The system eventually reached a state S2 when XProve started executing (PC =

CRmin). In the interval between S0 and S2, METADATA and ER regions were

not modified.

4. In the interval between S0 and S2, OR region was only modified by ER execution, i.e.,

PC ∈ ER ∨ ¬ Modify Mem(OR).

128

Figure 5.3 shows the time windows wherein each memory region must not change during

APEX PoX as implied by APEX correctness (Definition 13). Violating any of these conditions

will cause EXEC have value 0 during XProve computation. Consequently, any violation will

result in Vrf rejecting the proof of execution since it will not conform to the expected value

of H, per Equation 5.2 in Definition 11.

The intuition behind the cryptographic reduction (part B) is that computingH involves sim-

ply invoking VRASED SW-Att with MR = Chal, ER ∈ AR, OR ∈ AR, and METADATA ∈

AR. Therefore, a successful forgery of APEXH implies breaking VRASED security. Since H

always includes the value of EXEC, this implies that APEX is PoX-secure (Definition 10).

The complete reduction is presented in Appendix 5.10.

5.5.3 APEX Sub-Properties in LTL

We formalize the necessary sub-properties enforced by APEX as LTL specifications 5.4–5.13

in Definition 14. We describe how they map to high-level notions EP1-EP3 and MP1-MP3

discussed in Section 5.4.2. Appendix 5.10 discusses a computer proof that the conjunction

of this set of properties is sufficient to satisfy a formal definition of APEX correctness from

Definition 13.

LTL 5.4 enforces EP1 – Ephemeral immutability by making sure that whenever ER

memory region is written by either CPU or DMA, EXEC is immediately set to logical 0

(false).

EP2 – Ephemeral Atomicity is enforced by a set of three LTL specifications. LTL 5.5

enforces that the only way for ER execution to terminate, without setting EXEC to logical

0, is through its last instruction: PC = ERmax. This is specified by checking the relation

between current and next PC values using LTL neXt operator. In particular, if current PC

129

value is within ER, and next PC value is outside SW-Att region, then either current PC

value is the address of ERmax, or EXEC is set to 0 in the next cycle. Also, LTL 5.6 enforces

that the only way for PC to enter ER is through the very first instruction: ERmin. This

prevents ER execution from starting at some point in the middle of ER, thus making sure

that ER always executes in its entirety. Finally, LTL 5.7 enforces that EXEC is set to zero if

an interrupt happens in the middle of ER execution. Even though LTLs 5.5 and 5.6 already

enforce that PC can not change to anywhere outside ER, interrupts could be programmed

to return to an arbitrary instruction within ER. Although this would not violate LTLs 5.5

and 5.6, it would still modify ER behavior. Therefore, LTL 5.7 is needed to prevent that.

EP3 – Output Protection is enforced by LTL 5.8: (1) DMA controller does not write

into OR; (2) CPU can only modify OR when executing instructions within ER; and 3)

DMA can not be active during ER execution; otherwise, a compromised DMA could change

intermediate results of ER computation in data memory, potentially modifying ER behavior.

Similar to EP3, MP1 – Executable/Output Boundaries and MP3 – Challenge Tem-

poral Consistency are enforced by LTL 5.11. Since Chal as well as ERmin, ERmax, ORmin,

and ORmax are all stored in METADATA, it suffices to ensure that EXEC is set to 0

whenever this region is modified. Also, LTL 5.9 enforces that EXEC is only set to 1 if ER

and OR are configured (by METADATA values ERmin, ERmax, ORmin, ORmax) as valid

memory regions.

Finally, LTLs 5.12, and 5.13 (in addition to VRASED verified RA architecture) are responsi-

ble for ensuring MP2- Response Protection by making sure that EXEC always reflects

what is intended by APEX hardware. LTL 5.8 specifies that the only way to change EXEC

from 0 to 1 is by starting ER execution over. Finally, LTL 5.13 states that, whenever a reset

happens (this also includes the system initial booting state) and execution is initialized, the

initial value of EXEC is 0. To conclude, recall that EXEC is read-only to all software

running on Prv. Therefore, malware can not change it directly.

130

Hardware Reserved Verification
Reg LUT RAM (bytes) # LTL Invariants Verified Verilog LoC Time (s) Mem (MB)

OpenMSP430 [56] 691 1904 0 - - - -
VRASED [40] 721 1964 2332 10 481 0.4 13.6
APEX +VRASED 735 2206 2341 20 1385 183.6 280.3

Table 5.2: Evaluation results.

APEX is designed as a set of seven hardware sub-modules, each verified to enforce a subset

of properties discussed in this section. Examples of implementation of verified sub-modules

as FSMs are discussed in Appendix 5.9.

5.6 Implementation & Evaluation

APEX is implemented on OpenMSP430 [56] core as illustrated in Figure 5.2. In addition to

APEX and VRASED modules in HW-Mod, the prototype includes a peripheral module respon-

sible for storing and maintaining METADATA. As a peripheral, contents of METADATA

can be accessed in a pre-defined memory address via standard peripheral memory access.

We also ensure that EXEC (located inside METADATA) is unmodifiable in software by

removing software-write wires in hardware. Finally, as a proof of concept, we use Xilinx

Vivado to synthesize an RTL description of the modified HW-Mod and deploy it on the Artix-7

FPGA class.

5.6.1 Evaluation Results

Hardware & Memory Overhead. Table 5.2 reports APEX hardware overhead as com-

pared to plain OpenMSP430 [56] and VRASED [40]. Similar to the related work [40, 116,

45, 44], we consider the hardware overhead in terms of additional LUTs and registers. The

increase in the number of LUTs can be used as an estimate of the additional chip cost and

size required for combinatorial logic, while the number of registers offers an estimate on the

131

memory overhead required by the sequential logic in APEX FSMs. APEX hardware over-

head is small compared to the baseline VRASED; it requires 2% and 12% additional registers

and LUTs, respectively. In absolute numbers, it adds 44 registers and 302 Look-Up Tables

(LUTs) to the underlying MCU. In terms of memory, APEX needs 9 extra bytes of RAM

for storing METADATA. This overhead corresponds to 0.01% of MSP430 16-bit address

space.

Run-time. We do not observe any software runtime overhead on the APEX-enabled Prv

since APEX does not introduce new instructions or modifications to the MSP430 ISA. APEX

hardware runs in parallel with the original MSP430 CPU. Run-time to produce a proof of

S execution includes: (1) time to execute S (XAtomicExec), and (2) time to compute an

attestation token (XProve). The former only depends on S behavior itself (e.g., SW-Att can

be a small sequence of instructions or have long loops). As mentioned earlier, APEX does

not affect S run time. XProve run-time is linear in the size of ER + OR. In the worst-

case scenario where these regions occupy the entire program 8kBytes memory, XProve takes

around 900ms on an 8MHz device.

Verification Cost. We verify APEX on an Ubuntu 16.04 machine running at 3.40GHz.

Results are shown in Table 5.2. APEX verification requires checking 10 extra invariants

(shown in Definition 14) in addition to existing VRASED invariants. It also consumes

significantly higher run-time and memory usage than VRASED verification. This is because

additional invariants introduce five additional variables (ERmin, ERmax, ORmin, ORmax and

EXEC), resulting in an exponential increase in complexity of the model checking process.

Nonetheless, the overall verification process is still reasonable for a commodity desktop – it

takes around 3 minutes and consumes 280MB of memory.

132

5.6.2 Comparison with CFA

To the best of our knowledge, APEX is the first PoX architecture for low-end devices. There-

fore, no other prior architecture is directly comparable. However, to provide a (performance

and overhead) point of reference and a comparison, we contrast APEX overhead with state-

of-the-art CFA architectures. As discussed in Section 5.2, even though CFA does not yield

PoX with authenticated outputs, we consider it to be the closest-related service, since it

reports on the exact execution path of a program.

We consider three recent CFA architectures: Atrium [116], LiteHAX [44], and LO-FAT [45].

Figure 5.4.a compares them to APEX in terms of number of additional LUTs. In this

figure, the black dashed line represents the total cost of the MSP430 MCU: 1904 LUTs.

Figure 5.4.b presents a similar comparison for the amount of additional registers required

by these architectures. In this case, the total cost of the MSP430 MCU core is of 691

registers. Finally, Figure 5.4.c presents the amount of dedicated RAM required by these

architectures (APEX dedicated RAM corresponds to the exclusive access stack implemented

by VRASED).

As expected, APEX incurs much lower overhead. The cheapest CFA architecture, LiteHAX,

would entail an overhead of nearly 100% LUTs and 300% registers. In addition, LiteHAX

would require 150 kB of dedicated RAM. This amount exceeds entire addressable memory

(64 kB) of 16-bit processors, such as MSP430. Results support our claim that CFA is not

applicable to this class of low-end devices. Meanwhile, APEX needs a total of 12% additional

LUTs and 2% additional registers. VRASED requires about 2 kB of reserved RAM, which

is not increased by APEX.

133

APEX Atrium LiteHAX LO-FAT

N
um

be
r o

f A
dd

iti
on

al
 L

oo
k-

U
p

Ta
bl

es

0
20

00
40

00
60

00
80

00
10

00
0

(a) % extra HW overhead: # Look-Up Ta-
bles

APEX Atrium LiteHAX LO-FAT

N
um

be
r o

f A
dd

iti
on

al
 R

eg
is

te
rs

0
50

00
10

00
0

15
00

0

(b) % extra HW overhead: # Registers

APEX Atrium LiteHAX LO-FAT

Ad
di

tio
na

l D
ed

ic
at

ed
 R

AM
 (k

B)

0
50

10
0

15
0

20
0

(c) Dedicated RAM

Figure 5.4: Overhead comparison between APEX and CFA architectures. Dashed lines
represent total hardware cost of MSP430.

5.6.3 Proof of Concept: Authenticated Sensing and Actuation

As discussed in Section 5.1 an important functionality attainable with PoX is authenticated

sensing/actuation. In this section, we demonstrate how to use APEX to build sensors and

actuators that “can not lie”.

As a running example we use a fire sensor: a safety-critical low-end embedded device com-

monly present in households and workplaces. It consists of an MCU equipped with analog

hardware for measuring physical quantities, e.g., temperature, humidity, and CO2 level. It

134

is also usually equipped with actuation-capable analog hardware, such as a buzzer. Ana-

log hardware components are directly connected to MCU General Purpose Input/Output

(GPIO) ports. GPIO ports are physical wires directly mapped to fixed memory locations

in MCU memory. Therefore, software running on the MCU can read physical quantities

directly from GPIO memory.

In this example, we consider that MCU software periodically reads these values and transmits

them to a remote safety authority, e.g., a fire department, which then decides whether to take

action. The MCU also triggers the buzzer actuator whenever sensed values indicate a fire.

Given the safety-critical nature of this application, the safety authority must be assured

that reported values are authentic and were produced by execution of expected software.

Otherwise, malware could spoof such values (e.g., by not reading them from the proper

GPIO port or simply modifying them). PoX guarantees that reported values were read from

the correct GPIO port (since the memory address is specified by instructions in the ER

executable), and produced output (stored in OR) was indeed generated by execution of ER

and was unmodified thereafter. Thus, upon receiving sensed values accompanied by a PoX,

the safety authority is assured that the reported sensed value can be trusted.

As a proof of concept, we use APEX to implement a simple fire sensor that operates with

temperature and humidity quantities. It communicates with a remote Vrf (e.g., the fire

department) using a low-power ZigBee radio1 typically used by low-end CPS/IoT devices.

Temperature and humidity analog devices are connected to a APEX-enabled MSP430 MCU

running at 8MHz and synthesized using a Basys3 Artix-7 FPGA board. As shown in Fig-

ure 5.5, MCU GPIO ports are connected to the temperature/humidity sensor and to the

buzzer. APEX is used to prove execution of the fire sensor software. This software is

shown in Figure 5.8a in Appendix 5.11. It consists of two main functions: ReadSensor and

SoundAlarm. Proofs of execution are requested by the safety authority via XRequest to issue

1https://www.zigbee.org/

135

Figure 5.5: Hardware setup for a fire sensor using APEX

commands to execute these functions. ReadSensor reads and processes the value generated

by temperature/humidity analog device memory-mapped GPIO, and copies this value to

OR. The SoundAlarm function turns the buzzer on for 2 seconds, i.e., it writes “1” to the

memory address mapped to the buzzer, busy-waits for 2 seconds, and then writes “0” to the

same memory location. This implementation was taken from an open-source repository 2

and ported to an APEX-enabled MCU. The porting effort was minimal: it involved around

30 additional lines of C code, mainly for re-implementing sub-functions originally imple-

mented as shared APIs, e.g., digitalRead/Write. Finally, we transformed ported code to

be compatible with APEX. Details can be found in Appendix 5.11.

5.7 Limitations & Future Directions

In the following we discuss some limitations of APEX and directions for future work.

Shared libraries. In order to produce a valid proof, Vrf must ensure that the execution of

S does not depend on external code located outside the executable range ER (e.g., shared

libraries). A call to such code would violate LTL 5.5, resulting in EXEC = 0 during the

2https://github.com/Seeed-Studio/LaunchPad Kit

136

attestation computation. To support this type of executable one can transform it into a

self-contained executable by statically linking all dependencies during the compilation time.

Self-modifying code (SMC). SMC is a type of executable that alters itself while executing.

Clearly, this executable type violates LTL 5.4 that requires code in ER to remain unchanged

during ER execution. It is unclear how APEX can be adapted to support SMC; however,

we are unaware of any realistic useful use-case of SMC in our targeted platforms.

Atomic Execution & Interrupts. The notion of successful execution, defined in Sec-

tion 5.4.1, prohibits interruptions during ER execution. This limitation can be problematic

especially on systems with strict real-time constraints. In this case, the PoX executable might

be interrupted by a higher priority task and, in order to provide a valid proof of execution,

execution of S must start over. On the other hand, simply resuming S execution after an in-

terrupt may result in attacks where malware modifies intermediate execution results, in data

memory, consequently influencing this execution’s output. One way to remedy this issue is

to allow interrupts as long as all interrupt handlers are: (1) immutable and uninterruptible

from the start of execution until the end of attestation; and (2) included in the attested

memory range during the attestation process. Vrf could then use the PoX result H to deter-

mine whether an interrupt that may have happened during the execution is malicious. This

idea needs to be examined carefully, because even the accurate definition of PoX correctness

and security in this case becomes challenging. The practicality and formal security analysis

of such an approach also remain an open problem.

Future Directions. There is a number of interesting future directions related to PoX.

Developing formally verified PoX architectures for high-end devices is an interesting challenge.

While architectures based on Flicker [83] and SGX [64] can provide PoX on high-end devices,

the trusted components in these architectures (i.e., TPM and architectural support) are

not yet verified. It would also be interesting to investigate whether APEX can be designed

and implemented as a standalone device (e.g., a tiny verified TPM-alike device) that can

137

be plugged into legacy low-end devices. Feasibility and cost-effectiveness of this approach

require further investigation; because hybrid-architectures (such as SMART, VRASED, and

APEX) monitor internal MCU signals (e.g., PC, or DMA) that are not exposed to external

devices via communication/IO channels. It would also be interesting to see what kinds

of trusted applications can be bootstrapped and built on top of a PoX service for low-end

devices. Finally, in the near-future, we plan to look into techniques that can automatically

transform legacy code into PoX-compatible software (see Appendix 5.11) and to investigate

how to enable stateful PoX, where one large PoX code could be broken down into multiple

smaller pieces of atomic code and secure interruptions are allowed in between the execution

of two pieces.

5.8 Conclusion

This chapter introduced APEX, the first formally verified PoX architecture targeting low-

end embedded devices. It allows a remote untrusted prover to generate unforgeable proofs of

remote software execution. We envision APEX use in many IoT application domains, such

as authenticated sensing and actuation. APEX is prototyped on a real embedded system

platform, MSP430, synthesized on an FPGA, and the verified implementation is publicly

available. Our evaluation shows that APEX has low overhead for both hardware footprint

and time for generating proofs of execution.

138

APPENDIX

5.9 Appendix: Sub-Module Verification

APEX is designed as a set of seven sub-modules. We now describe APEX verified imple-

mentation, by focusing on two of these sub-modules and their corresponding properties. The

Verilog implementation of omitted sub-modules is available in [2]. Each sub-module enforces

a sub-set of the LTL specifications in Definition 14. As discussed in Section 5.5, sub-modules

are designed as FSMs. In particular, we implement them as Mealy FSMs, i.e, their output

changes as a function of both the current state and current input values. Each FSM takes

as input a subset of the signals shown in Figure 5.2 and produces only one output – EXEC

– indicating violations of PoX properties.

To simplify the presentation, we do not explicitly represent the value of EXEC for each

state transition. Instead, we define the following implicit representation:

1. EXEC is 0 whenever an FSM transitions to NotExec state.

2. EXEC remains 0 until a transition leaving NotExec state is triggered.

3. EXEC is 1 in all other states.

4. Sub-modules composition: Since all PoX properties must simultaneously hold, the

value of EXEC produced by APEX is the conjunction (logical AND) of all sub-

modules’ individual EXEC flags.

Figure 5.6 represents a verified model enforcing LTLs 5.5-5.7, corresponding to the high-

level property EP2- Ephemeral Atomicity. The FSM consists of five states. notER

and midER represent states when PC is: (1) outside ER, and (2) within ER respectively,

excluding the first (ERmin) and last (ERmax) instructions. Meanwhile, fstER and lstER

correspond to states when PC points to the first and last instructions, respectively. The

139

NotExec

notER

fstER

midER

lastER

otherwise

PC = ERmin

∧¬ irq

(PC < ERmin ∨ PC > ERmax)

PC = ERmin ∧ ¬ irq
otherwise

PC = ERmin

∧¬ irq

(PC > ERmin ∧ PC < ERmax)

∧¬ irq

otherwise

(PC > ERmin ∧ PC < ERmax)

∧¬ irq

PC = ERmax ∧ ¬ irq
otherwise

PC = ERmax

∧¬ irq

(PC < ERmin ∨ PC > ERmax)

∧¬ irq

otherwise

Figure 5.6: Verified FSM for LTLs 5.5-5.7, a.k.a., EP2- Ephemeral Atomicity.

only possible path from notER to midER is through fstER. Similarly, the only path

from midER to notER is through lstER. A transition to the NotExec state is triggered

whenever: (1) any sequence of values for PC do not follow the aforementioned conditions,

or (2) irq is logical 1 while PC is inside ER. Lastly, the only way to transition out of the

NotExec state is to restart ER execution.

Figure 5.7 shows the FSM verified to comply with LTL 5.11 (MP3- Challenge Temporal

Consistency). The FSM has two states: Run and NotExec. The FSM transitions to

the NotExec state and outputs EXEC = 0 whenever a violation happens, i.e., whenever

METADATA is modified in software. It transitions back to Run when ER execution is

restarted without such violation.

140

Run NotExec

otherwise otherwise

[Wen ∧ (Daddr ∈METADATA)]∨
[DMAen ∧ (DMAaddr ∈METADATA)]

PC = ERmin∧
¬[Wen ∧ (Daddr ∈METADATA)]∧

¬[DMAen ∧ (DMAaddr ∈METADATA)]

Figure 5.7: Verified FSM for LTL 5.11, a.k.a., MP3- Challenge Temporal Consistency.

5.10 Appendix: Proofs of Implementation Correctness

& Security

In this section we discuss the computer proof for APEX implementation correctness (The-

orem 6) and the reduction, showing that APEX is a secure PoX architecture as long as

VRASED is a secure RA architecture (Theorem 7). A formal LTL computer proof for The-

Theorem 6. Definition 12 ∧ LTLs 5.4 –5.13→ Definition 13.

orem 6 is available at [2]. We here discuss the intuition behind such proof. Theorem 6

states that LTLs 5.4 – 5.13, when considered in conjunction with the machine model in

Definition 12, imply APEX implementation correctness.

Recall that Definition 13 states that, in order to have EXEC = 1 during the computation of

XProve, at least once before such event (EXEC = 1) the following must have happened:

1. The system reached state S0 in which the software stored in ER started executing from

its first instruction (PC = ERmin).

2. The system eventually reached a state S1 when ER finished executing (PC = ERmax).

In the interval between S0 and S1 PC remained executing instructions within ER, and

there were no interrupts, no resets, and DMA remained inactive.

3. The system eventually reached a state S2 when XProve started executing (PC =

141

CRmin). In the interval between S0 and S2 the memory regions of METADATA

and ER were not modified.

4. In the interval between S0 and S2 the OR memory region was only modified by ER

software execution (PC ∈ ER ∨ ¬ Modify Mem(OR)).

The first two properties to be noted are LTL 5.13 and LTL 5.12. LTL 5.13 establishes the

default state of EXEC is 0. LTL 5.12 enforces that the only possible way to change EXEC

from 0 to 1 is by having PC = ERmin. In other words, EXEC is 1 during the computation

of XProve only if, at some point before that, the code stored in ER started to execute (state

S0).

To see why state S1 (when ER execution finishes, i.e., PC = ERmax) is reached with ER

executing atomically until then, we look at LTLs 5.5, 5.6, 5.7, and 5.10. LTLs 5.5, 5.6 and

5.7 enforce that PC will stay inside ER until S1 or otherwise EXEC will be set to 0. On the

other hand, it is impossible to execute instructions of XProve (PC ∈ CR) without leaving

ER, because LTL 5.10 guarantees that ER and CR do not overlap, or EXEC = 0.

So far we have argued that to have a token H that reflects EXEC = 1 the code contained

in ER must have executed successfully. What remains to be shown is: producing this token

implies the code in ER and METADATA are not modified in the interval between S0 and

S2 and only ER execution can modify OR in the same time interval.

Clearly, the contents of ER can not be modified after S0 because Modify Mem(ER) directly

implies that LTL 5.4 will set EXEC = 0. The same reasoning is applicable for modifications

to METADATA region with respect to LTL 5.11. The same argument applies to modifying

OR, with the only exception that OR modifications are allowed only by the CPU and when

PC ∈ ER (LTL 5.8). This means that OR can only be modified by the execution of ER. In

addition, LTL 5.8 also ensures that DMA is disabled during the execution of ER to prevent

unauthorized modification of intermediate results in data memory. Therefore, the timeline

142

presented in Figure 5.3 is strictly implied by APEX implementation. This concludes the

reasoning behind Theorem 6.

Theorem 7. APEX is secure according to Definition 10 as long as VRASED is a secure RA architecture
according to Definition 15.

Definition 15. VRASED Security Game [40]
15.1 RA Security Game (RA-game):
Notation:
- l is the security parameter and |K| = |Chal| = |MR| = l
- AR(t) denotes the content of AR at time t
RA-game:

1. Setup: Adv is given oracle access to SW-Att calls.
2. Challenge: A random challenge Chal← ${0, 1}l is generated and given to Adv.
3. Response: Adv responds with a pair (M,σ), where σ is either forged by Adv, or is the result of

calling SW-Att at some arbitrary time t.
4. Adv wins if and only if M 6= AR(t) and σ = HMAC(KDF (K, Chal),M).

15.2 RA Security Definition:
An RA scheme is considered secure if for all PPT adversaries Adv, there exists a negligible function
negl such that:

Pr[Adv,RA-game] ≤ negl(l)

Proof. (Theorem 7) Assume that AdvPoX is an adversary capable of winning the security game in

Definition 10 against APEX with more than negligible probability. We show that, if such AdvPoX

exists, then it can be used to construct (in a polynomial number of steps)AdvRA that wins VRASED

security game (Definition 15) with more than negligible probability. Therefore, by contradiction,

nonexistence of AdvRA (i.e., VRASED security) implies nonexistence of AdvPoX (APEX security).

First we recall that, to win APEX security game, AdvPoX must provide (HAdv, OAdv), such that

XVerify(HAdv,OAdv,S, Chal, ·) = 1. To comply with conditions 3.a and 3.b in Definition 10, this

must be done in either of the following two ways:

Case1 AdvPoX does not execute S in the time window between treq and tverif (i.e.,

¬XAtomicExecPrv(S, treq → tverif)).

Case2 AdvPoX calls XAtomicExecPrv(S, treq → tverif) but modifies its output O in between the time

when the execution of S completes and the time when XProve is called.

143

1 #define P4IN (∗(volatile unsigned char ∗) 0x001C)
2 #define P4OUT (∗(volatile unsigned char ∗) 0x001D)
3 #define P4DIR (∗(volatile unsigned char ∗) 0x001E)
4 #define P4SEL (∗(volatile unsigned char ∗) 0x001F)
5 #define BIT4 (0x0010)
6 #define MAXTIMINGS 85
7 #define OR 0xEEE0 // OR is in AR
8 #define HIGH 0x1
9 #define LOW 0x0

10 #define INPUT 0x0
11 #define OUTPUT 0x1
12 attribute ((section (".exec.entry") , naked)) void ReadSensorEntry() {
13 // ERmin

14 ReadSensor() ;
15 asm volatile("br #__exec_leave" "\n\t") ;
16 }
17 attribute ((section (".exec.body"))) int digitalRead() {
18 if(P3IN & BIT4) return HIGH;
19 else return LOW;
20 }
21 attribute ((section (".exec.body"))) void digitalWrite(uint8 t val) {
22 if (val ==LOW)
23 P3OUT&= ˜BIT4;
24 else

25 P3OUT |= BIT4;
26 }
27 attribute ((section (".exec.body"))) void pinMode(uint8 t val) {
28 if (val == INPUT)
29 P3DIR &= ˜BIT4;
30 else if (val ==OUTPUT)
31 P3DIR |= BIT4;
32 }
33
34 attribute ((section (".exec.body"))) void ReadSensor() {
35 // Tell the sensor that we are about to read

36 digitalWrite(HIGH) ;
37 delayMS(250) ;
38 pinMode(OUTPUT) ;
39 digitalWrite(LOW) ;
40 delayMS(20) ;
41 digitalWrite(HIGH) ;
42 delayMicroseconds(40) ;
43 pinMode(INPUT) ;
44 uint8 t laststate = HIGH, counter = 0, j = 0, i ;
45 uint8 t data [5] = {0};
46 // Read the sensor’s value

47 for (i=0; i<MAXTIMINGS; i++) {
48 counter = 0;
49 while (digitalRead() == laststate) {
50 counter++;
51 if (counter == 255) {
52 break ;
53 }
54 }
55 laststate = digitalRead() ;
56 if (counter == 255) break ;
57 if ((i >= 4) && (i%2 == 0)) {
58 data [j /8] <<= 1;
59 if (counter > 100) {
60 data [j /8] |= 1;
61 avg += counter ;
62 k++;
63 }
64 j++;
65 }
66 }
67 // Copy the reading to OR

68 memcpy(OR, data , 5) ;
69 }
70
71 attribute ((section (".exec.exit") , naked)) void ReadSensorExit() {
72 asm volatile("ret" "\n\t") ;
73 // ERmax

74 }

(a) Fire Sensor code written in C

144

1 . . .
2 SECTIONS
3 {
4 . . .
5 . text :
6 {
7 . . .
8 ∗(.exec . entry)
9 . = ALIGN(2) ;

10 ∗(.exec .body)
11 . = ALIGN(2) ;
12 PROVIDE (exec leave = .) ;
13 ∗(.exec . exit)
14 } > REGIONTEXT
15 . . .
16 }
17 . . .

(b) Linker script

Figure 5.8: Code snippets for (a) fire sensor described in Section 5.6.3 (b) linker script

However, according to the specification of APEX XVerify algorithm (see Definition 11), a token

HAdv will only be accepted if it reflects an input value with EXEC = 1, as expected by Vrf. In

APEX implementation, O is stored in region OR and S in region ER. Moreover, given Theorem 6,

we know that having EXEC = 1 during XProve implies three conditions have been fulfilled:

Cond1 The code in ER executed successfully.

Cond2 The code in ER and METADATA were not modified after starting ER execution and

before calling XProve.

Cond3 Outputs in OR were not modified after completing ER execution and before calling XProve.

The third condition rules out the possibility of Case2 since that case assumes Adv can modify O,

resided in OR, after ER execution and EXEC stays logical 1 during XProve. We further break

down Case1 into three sub-cases:

Case1.1 AdvPoX does not follow Cond1-Cond3. The only way for AdvPoX to produce (HAdv, OAdv)

in this case is not to call XProve and directly guess H.

Case1.2 AdvPoX follows Cond1-Cond3 but does not execute S between treq and tverif . Instead, it

produces (HAdv, OAdv) by calling:

OAdv ≡ XAtomicExecPrv(ERAdv, treq → tverif) (5.14)

145

where ERAdv is a memory region different from the one specified by Vrf on XRequest (AdvPoX

can do this by modifying METADATA to different values of ERmin and ERmax before

calling XAtomicExec).

Case1.3 Similar to Case1.2, with ERAdv being the same region specified by Vrf on XRequest, but

instead containing a different executable SAdv.

We show that an adversary that succeeds in any of these cases can be used win VRASED security

game. To see why this is the case, we note that APEX XProve function is implemented by using

VRASED SW-Att. SW-Att covers memory regions MR (challenge memory) and AR (attested

region). Hence, APEX instantiates these memory regions as:

1. MR = Chal;

2. ER ⊂ AR;

3. OR ⊂ AR;

4. METADATA ⊂ AR;

Doing so ensures that all sensitive memory regions used by APEX are included among the inputs

to VRASED attestation. Let X(t) denote the content in memory region X at time t. AdvRA can

then be constructed using AdvPoX as follows:

1. AdvRA receives Chal from the challenger in step (2) of RA security game of Definition 15.

2. At arbitrary time t, AdvRA has 3 options to write AR(t) = ARAdv and call AdvPoX:

(a) Modify ER(t) 6= S or OR(t) 6= O or METADATA(t) 6= METADATAVrf . It then

calls AdvPoX in Case1.1.

(b) Modify ER to be different from the range chosen by Vrf. Therefore, METADATA(t) 6=

METADATAVrf . It then calls AdvPoX in Case1.2.

(c) Modify ER(t) to be different from S. It then calls AdvPoX in Case1.3.

In any of these options, AdvRA will produce (HAdv,OAdv), such that

XVerify(HAdv,OAdv,S, Chal, ·) = 1 with non-negligible probability.

3. AdvRA replies to the challenger with the pair (M,HAdv), where M corresponds to the values of

146

S, O and METADATAVrf , matching HAdv and OAdv generated by AdvPoX. By construction

M 6= ARAdv = AR(t), as required by Definition 15.

4. Challenger will accept (M,HAdv) with the same non-negligible probability that AdvPoX has

of producing (HAdv,OAdv) such that XVerify(HAdv,OAdv,S, Chal, ·) = 1.

5.11 Appendix: Software Transformation

Recall that the notion of successful execution (in Section 5.4.1) requires the executable’s entry

point to be at the first instruction in ER and the exit point to be at the last instruction in

ER. In this section, we discuss how to efficiently transform arbitrary software to conform

with this requirement.

Lines 10-17 of Figure 5.8.a show a (partial) implementation of the ReadSensor function

described in Section 5.6.3. This implementation, when converted to an executable, does not

meet APEX executable requirement, since the compiler may choose to place one of its sub-

functions (instead of ReadSensor) as the entry and/or exit points of the executable. One

way to fix this issue is to implement all of its sub-functions as inline functions. However, this

may be inefficient; in this example, it would duplicate the code of the same sub-functions

(e.g., digitalWrite) inside the executable.

Instead, we create dedicated functions for entry (Line 1-4) and exit (Line 6-8) points, and

assign those functions to separate executable sections: “.exec.entry” for the entry and

“.exec.exit” for the exit. Then, we label all sub-functions used by ReadSensor as well

as ReadSensor itself to the same section – “.exec.body” – and modify the MSP430 linker

to place “.exec.body” between “.exec.entry” and “.exec.exit” sections. The modified linker

script is shown in Figure 5.8.b.

147

Chapter 6

TAROT: Trigger-based Active Root

Of Trust

148

Abstract

Several tiny Roots-of-Trust (RoTs) – including the ones described in previous chapters –

were proposed with the purpose of securing low-end devices. In general, these RoTs operate

reactively: they can prove whether a desired action (e.g., software update, or execution

of a program) was performed on a specific device. However, they can not guarantee that

a desired action will be performed, since malware controlling the device can trivially

block access to the RoT by ignoring/discarding received commands and other trigger events.

This is a major and important problem because it allows malware to effectively “brick” or

incapacitate a potentially huge number of (possibly mission-critical) devices. Though recent

work made progress in terms of incorporating more active behavior atop existing RoTs,

it relies on extensive hardware support –Trusted Execution Environments (TEEs) which

are too costly for low-end devices. In this chapter, we set out to systematically design a

minimal active RoT for tiny low-end MCU-s. We begin with the following questions: (1)

What functions and hardware support are required to guarantee actions in the presence of

malware?, (2) How to implement this efficiently?, and (3) What security benefits stem from

such an active RoT architecture? We then design, implement, formally verify, and evaluate

TAROT : Trigger-based Active Root-Of-Trust. We believe that TAROT is the first clean-

slate design of an active RoT for low-end MCU-s. We show how TAROT guarantees that

even a fully software-compromised low-end MCU performs a desired action. We demonstrate

its practicality by implementing TAROT in the context of three types of applications where

actions are triggered by: sensing hardware, network events, and timers. We also formally

specify and verify TAROT functionality and properties. The contributions described in this

chapter are currently in submission to the USENIX Security Symposium – 2022 (see pre-print

in [7]).

6.1 Introduction

Numerous architectures focused on securing low-end micro-controller units (MCU-s) by de-

signing small and affordable trust anchors [5]. However, most such techniques operate

passively. They can prove, to a trusted party, that certain property (or action) is satisfied

(or was performed) by a remote and potentially compromised low-end MCU. Examples of

such services include remote attestation [49, 87, 40, 10, 22, 68], proofs of remote software

execution [42], control-flow & data-flow attestation [44, 6, 45, 116, 105, 43], as well as proofs

of remote software update, memory erasure, and system-wide reset [41, 9, 15].

Aforementioned approaches are passive in nature. While they can detect integrity violations

of remote devices, they cannot guarantee that a given security or safety-critical task will

be performed. For example, consider a network comprised of a large number (of several

types of) simple IoT devices, e.g., an industrial control system. Upon detecting a large-scale

compromise, a trusted remote controller must fix the situation by requiring all compromised

devices to reset, erase, or update themselves in order to expunge malware. Even if each device

has a passive RoT, malware (which is in full control of the device’s software state) can easily

intercept, ignore, or discard any requests for the RoT, thus preventing its functionality from

being triggered. Therefore, the only way to repair these compromised devices requires direct

physical access (i.e, reprogramming by a human) to each device. Beyond the DoS damage

caused by the multitude of essentially “bricked” devices, physical reprogramming itself is

slow and disruptive, i.e., a logistical nightmare. Also, some devices might be deployed in

locations that are difficult to access physically. (For example, under water, encased in walls

or foundations, in the air or in space.)

Motivated by the above, recent research [115, 60] constructed trust anchors with a more

active behavior. Xu et al. [115] propose the concept of Authenticated Watch-Dog Timers

(WDT), which can enforce periodic execution of a secure component (an RoT task), unless

150

explicit authorization (which can itself include a set of tasks) is received from a trusted

controller. In [60] this concept is realized with the reliance on an existing passive RoT (ARM

TrustZone), as opposed to a dedicated co-processor as in the original approach from [115].

Both techniques are time-based, periodically and actively triggering RoT invocation, despite

potential compromise of the host device. (We discuss them in more detail in Section 6.4.4.)

In this chapter, we take the next step and design a more general active RoT, called TAROT:

Trigger-based Active Root-Of-Trust. Our goal is guaranteed execution of trusted and safety-

critical tasks based on arbitrary events captured by hardware peripherals (e.g., timers, GPIO

ports, and network interfaces) of an MCU the software state of which may be currently com-

promised. In principle, any hardware event that can be configured to cause an interruption

on the unmodified MCU can be used to trigger guaranteed execution of trusted software

in TAROT. In that vein, our work can be viewed as a generalization of concepts proposed

in [115, 60], enabling arbitrary events to trigger guaranteed execution of trusted function-

alities. In comparison, prior work has the advantage of relying on existent hardware. On

the other hand, our clean-slate approach, based on minimal hardware design, enables new

applications and is applicable to low-end resource-constrained MCU-s.

At a high level, TAROT is based on two main notions: “Guaranteed Triggering” and

“Re-Triggering on Failure”. The term trigger is used to refer to an event that causes

TAROT to take over the execution in the MCU. The “guaranteed triggering” property

ensures that a particular event of interest always triggers execution of TAROT. Whereas,“re-

triggering on failure” assures that, if RoT execution is illegally interrupted for any reason

(e.g., attempts to violate execution’s integrity, power faults, or resets), the MCU resets and

the RoT is guaranteed to be the first to execute after subsequent re-initialization. Figure 6.1

illustrates this workflow.

We use TAROT to address three realistic and compelling use-cases:

151

Figure 6.1: TAROT Software Execution Flow

• GPIO-TCB: A safety-critical sensor/actuator hybrid, guaranteed to sound an alarm

if the sensed quantity (e.g., temperature, CO2 level, etc) exceeds a certain threshold.

This use-case exemplifies hardware-based triggering.

• TimerTCB: A real-time system where a predefined safety-critical task is guaranteed

to execute periodically. This use-case exemplifies timer-based triggering, which is also

attainable by [115, 60].

• NetTCB: a trusted component that is always guaranteed to process commands re-

ceived over the network, thus preventing malware in the MCU from intercepting and/or

discarding commands destined for the RoT. This use-case exemplifies network-based

triggering.

In all three cases, the guarantees hold despite potential full compromise of the MCU software

state, as long as the RoT itself is trusted.

In addition to designing and instantiating TAROT with three use-cases, we formally specify

TAROT goals and requirements using Linear Temporal Logic (LTL). These formal speci-

fications offer precise definitions for the security offered by TAROT and its corresponding

assumptions expected from the underlying machine model. This can serve as a unambiguous

reference for future implementations and for other derived services. Finally, we use formal

verification to prove that the implementation of TAROT hardware modules adheres to a

set of sub-properties (also specified in LTL) that – when composed with the MCU machine

model – are sufficient to achieve TAROT end-to-end goals.

152

Figure 6.2: TAROT in the MCU architecture

We implement and evaluate TAROT and make its verified implementation along with re-

spective computer proofs/formal verification publicly available in [3].

6.2 TAROT Overview

The goal of TAROT is to guarantee eventual execution of a pre-defined functionality F

implemented as a trusted software executable. We refer to this executable as TAROT trusted

computing base (TCB). TAROT is agnostic to the particular functionality implemented by

F , which allows guaranteed execution of arbitrary tasks, to be determined based on the

application domain; see Section 6.4 for examples.

A trigger refers to a particular event that can be configured to cause the TCB to execute.

Examples of possible triggers include hardware events from:

• External (usually analog) inputs, e.g., detection of a button press, motion, sound or certain

temperature/CO2 threshold.

• Expiring timers, i.e., a periodic trigger.

• Arrival of a packet from the network, e.g., carrying a request to collect sensed data, perform

153

sensing/actuation, or initiate a security task, such as code update or remote attestation.

If configured correctly, these events cause interrupts, which are used by TAROT to guarantee

execution of F . Since trigger and the TCB implementation are configurable, we assume that

these initial configurations are securely provisioned before initial deployment. The trigger

configuration includes the types of interruptions and respective settings e.g., GPIO port,

type of event, its time granularity, etc. At runtime, TAROT protects the initial configura-

tion from illegal modifications, i.e., ensures correct trigger behavior. This protection includes

preserving interrupt configuration registers, interrupt handlers (a.k.a., interrupt service rou-

tines – ISRs), and interrupt vectors. This way TAROT guarantees that trigger always results

in an invocation of the TCB.

However, guaranteed invocation of the TCB upon occurrence of a trigger is not sufficient

to claim that F is properly performed, since the TCB code (and execution thereof) could

itself be tampered with. To this end, TAROT provides runtime protections that prevent any

unprivileged/untrusted program from modifying the TCB code, i.e., the program memory

region reserved for storing that code. (Recall that instructions execute in place, from program

memory). TAROT also monitors the execution of the TCB code to ensure:

1. Atomicity: Execution is atomic (i.e., uninterrupted), from the TCB first instruction

(legal entry), to its last instruction (legal exit);

2. Non-malleability: During execution, DMEM cannot be modified, other than by the

TCB code itself, e.g., no modifications by other software or DMA controllers.

These properties ensure that any potential malware (i.e., compromised software outside the

TCB or compromised DMA controllers) cannot tamper with the TCB execution.

TAROT monitors the TCB execution and, if a violation of any property (not just atom-

icity and non-malleability of the TCB, but also illegal trigger misconfiguration) occurs, it

causes an immediate MCU reset to a default trusted state where the TCB code is the first

154

component to execute. Therefore, any attempt to interfere with the TCB functionality or

execution only causes the TCB to recover and re-execute, this time with the guarantee that

unprivileged/untrusted applications cannot interfere.

Both trigger configurations and the TCB implementation are updatable at run-time, as long

as the updates are performed from within the TCB itself. While this feature is not strictly

required for security, we believe it provides flexibility/updatability, while ensuring that un-

trusted software is still unable to modify TAROT trusted components and configuration

thereof. In Section 6.3.6, we also discuss how TAROT can enforce confidentiality to the

TCB task, which is applicable to cases where F implements privacy-sensitive tasks.

Each sub-property in TAROT is implemented as a separate sub-module. These sub-modules

are then composed and shown secure (when applied to the MCU machine model) using

a combination of model-checking-based formal verification and an LTL computer-checked

proof. TAROT modular design enables verifiability and minimality, resulting in low hardware

overhead and significantly higher confidence about the security provided by its design and

implementation.

As shown in Figure 6.2, TAROT is implemented as a hardware component that monitors a

set of CPU signals to detect violations of required security properties. It does not interfere

with the CPU core implementation, e.g., by modifying its behavior or instruction set. In

subsequent sections we describe these properties in detail and discuss their implementation

and verification. Finally, we use a commodity FPGA to implement TAROT atop MSP430

and report on its overhead.

155

PC Current Program Counter value

Ren Signal that indicates if the MCU is reading from memory (1-bit)

Wen Signal that indicates if the MCU is writing to memory (1-bit)

Daddr Address for an MCU memory access (read or write)

DMAen Signal that indicates if DMA is currently enabled (1-bit)

DMAaddr Memory address being accessed by DMA, if any

gie Global Interrupt Enable: signal that indicates whether or not

interrupts are globally enabled (1-bit).

irq Signal that indicates if an interrupt is happening

DMEM Region corresponding to the entire data memory of the MCU: DMEM =
[DMEMmin, DMEMmax].

PMEM Region corresponding to the entire program memory of the MCU:

PMEM = [PMEMmin, PMEMmax].
TCB Memory region reserved for the TCB’s executable implementing F.

TCB = [TCBmin, TCBmax]. TCB ∈ PMEM.

INIT Memory region containing the MCU’s default initialization code.

INIT = [INITmin, INITmax]. INIT ∈ PMEM.

reset A 1-bit signal that reboots/resets the MCU when set to logical 1

Table 6.1: Summary of TAROT-relevant notation

6.3 TAROT in Detail

6.3.1 Notation, Machine Model, & Assumptions

This section discusses our machine and adversary models. For quick-reference, Table 6.1

summarizes the notation used in the rest of the chapter.

CPU Hardware Signals

TAROT neither modifies nor verifies the underlying CPU core/instruction set. It is as-

sumed that the underlying CPU adheres to its specification and TAROT is implemented as

a standalone hardware module that runs in parallel with the CPU, and enforcing necessary

guarantees in hardware. The following CPU signals are relevant to TAROT:

H1 – Program Counter (PC): PC always contains the address of the instruction being

executed in the current CPU cycle.

156

H2 – Memory Address: Whenever memory is read or written by the CPU, the data-

address signal (Daddr) contains the address of the corresponding memory location. For a read

access, a data read-enable bit (Ren) must be set, while, for a write access, a data write-enable

bit (Wen) must be set.

H3 – DMA: Whenever a DMA controller attempts to access the main system memory, a

DMA-address signal (DMAaddr) reflects the address of the memory location being accessed

and a DMA-enable bit (DMAen) must be set. DMA can not access memory when DMAen

is off (logical zero).

H4 – MCU Reset: At the end of a successful reset routine, all registers (including PC)

are set to zero before resuming normal software execution flow. Resets are handled by the

MCU in hardware. Thus, the reset handling routine can not be modified. Once execution

re-starts, PC is set to point to the first instruction in the boot section of program memory,

referred to as INIT (see M2 below). When a reset happens, the corresponding reset signal

is set. The same signal is also set when the MCU initializes for the first time. An MCU

reset also resets its DMA controller, and any prior configuration thereof. (DMA) behavior

is configured by user software at runtime. By default (i.e., after a reset) DMA is inactive.

H5 – Interrupts: Whenever an interrupt occurs, the corresponding irq signal is set.

Interrupts may be globally enabled or disabled in software. The 1-bit signal gie always

reflects whether or not they are currently enabled. The default gie state (i.e., at boot or

after a reset) is disabled (logical zero).

Memory: Layout & Initial Configuration

As far as MCU initial memory layout and its initial software configuration (set at, or prior

to, its deployment), the following are relevant to TAROT:

157

M1 – PMEM: Corresponds to the entire PMEM address space. Instructions are executed

in place. Hence, at runtime, PC points to the PMEM address storing the instruction being

executed.

M2 – INIT: Section of PMEM containing the MCU boot segment, i.e., the first software

to be executed whenever the MCU boots or after a reset. We assume INIT code is finite.

M3 – TCB: Section of PMEM reserved for TAROT trusted code F . TCB is located

immediately after INIT ; it is the first software to execute following successful completion

of INIT .

M4 – IRQ-Table and Handlers: IRQ-Table is located in PMEM and contains pointers

to the addresses of interrupt handlers. When an interrupt occurs, MCU hardware forces a

“jump” to the corresponding handler routine (a.k.a. ISR). The address of this routine is

specified by the IRQ-Table fixed index corresponding to that particular interrupt. Handler

routines are code segments (functions) also stored in PMEM .

M5 – IRQcfg: Set of registers in DMEM used to configure specific behavior of individ-

ual interrupts at runtime, e.g., deadline of a timer-based interrupt, or type of event on a

hardware-based interrupt.

Note that the initial memory configuration can be changed at run-time (e.g., by malware that

infects the device), unless it is explicitly protected by TAROT verified hardware modules.

Initial Trigger Configuration

T1 – trigger configuration: TAROT trigger is configured, at MCU (pre)deployment-time,

by setting the corresponding entry in IRQ-Table and respective handler to jump to the first

instruction in the TCB (TCBmin) and by configuring the registers in IRQcfg with desired

interrupt parameters, reflecting the desired trigger behavior; see Section 6.4 for examples.

158

Thus, a trigger event causes the TCB code to execute, as long as the initial configuration is

maintained.

T2 – trigger priority: TAROT trigger-s leverage MCU interrupts. We assume that inter-

rupts used as trigger-s are configured with higher priority over application interrupts. As

such, in the case where a TAROT safety critical trigger and a regular application interrupt

occur at the same clock cycle, TAROT trigger is handled by the CPU first. Different MCUs

have different ways to set interrupt priorities. In our MSP430-based implementation, this

is achieved by placing TAROT trigger-s first in the hardware layout of the IRQ-Table,

according to MSP430 specification.

T3 – trigger clock source (time-based trigger-s): We assume that the clock sources

used to implement the timers used by TAROT timer-based trigger-s cannot be disabled by

software. Many MCUs offer multiple clocks. Some of them can be disabled by going into

low-power modes. Other clock sources are always enabled. We assume that any timer-based

trigger is configured (via initial setup of IRQcfg) to use the latter option.

Our initial configuration is not much different from a regular interrupt configuration in a

typical embedded system program. It must correctly point to TAROT TCB entry point,

just as regular interrupts must correctly point to their respective handler entry points. For

example, to initially configure a timer-based trigger, the address in IRQ-Table corresponding

to the respective hardware timer is set to point to TCBmin and the correspondent registers

in IRQcfg are set to define the desired interrupt period.

Adversary Model

In comparison with previous chapters, TAROT adversary model makes one additional as-

sumption: that Adv can not access Prv physically (for instance, to re-program Prv’s software

physically, via wired interface). TAROT complete adversary model is described below.

159

We consider an adversary Adv that controls Prv’s entire software state, including code, and

data. Adv can read/write from/to any memory that is not explicitly protected by hardware-

enforced access control rules. Adv might also have full control over all Direct Memory Access

(DMA) controllers of Prv. Recall that DMA allows a hardware controller to directly access

main memory (PMEM or DMEM) without going through the CPU.

Physical Attacks: physical and hardware-focused attacks are out of the scope of TAROT.

Specifically, we assume that Adv can not modify, induce hardware faults, or interfere with

TAROT via physical presence attacks and/or side-channels. Protection against such attacks

is an orthogonal issue, which can be addressed via physical security techniques [95]. Dif-

ferent from previous chapters, we here assume that Adv can not access and re-program or

re-configure Prv physically (e.g., via wired re-writing of program memory, which requires

physical presence).

Network DoS Attacks: we also consider out-of-scope all network DoS attacks whereby

Adv drops traffic to/from Prv, or floods Prv with traffic, or simply jams communication.

Note that this assumption is relevant only to network-triggered events, exemplified by the

NetTCB instantiation of TAROT, described in Section 6.4.3.

Correctness of the TCB Executable: we recall that the main goal of TAROT is guar-

anteed execution of F , as specified by the application developer and loaded onto TAROT

TCB at provisioning (prior to deployment). Similar to existing RoTs (e.g., TEE-s in higher-

end CPUs) TAROT does not check correctness and absence of implementation bugs in

F implementation. In many applications, F code is minimal; see examples in Section 6.4.

Moreover, correctness of F need not be assured by TAROT architecture, within Prv, at run-

time. Since embedded applications are originally developed on more powerful devices (e.g.,

general-purpose computers), various vulnerability detection methods, e.g., fuzzing [33], static

analysis [38], or formal verification, can be employed to avoid or detect implementation bugs

in F . All that can be performed off-line before loading F onto TAROT TCB and the entire

160

issue is orthogonal to TAROT.

Machine Model (Formally)

Definition 16. Machine Model:

Memory Modifications:

G :{modMem(X)→ (Wen ∧Daddr ∈ X) ∨ (DMAen ∧DMAaddr ∈ X)} (6.1)

Successful Trigger Modification:

G :{mod(triggercfg)→ [(modMem(PMEM) ∨modMem(IRQcfg)) ∧ ¬reset]} (6.2)

Successful Interrupt Disablement:

G:{disable(irq)→ [¬reset ∧ gie ∧ ¬X(gie) ∧ ¬X(reset)]} (6.3)

Trigger/TCB Initialization (6.4 & 6.5):

G:{¬mod(triggercfg) ∨ PC ∈ TCB} ∧G:{¬disable(irq) ∨X(PC) ∈ TCB} → G:{trigger→ F (PC = TCBmin)}
(6.4)

G:{¬modMem(PMEM) ∨ PC ∈ TCB} → G:{reset→ F (PC = TCBmin)} (6.5)

Figure 6.3: MCU machine model (subset) in LTL.

Based on the high-level properties discussed earlier in this section, we now formalize the

subset (relevant to TAROT) of the MCU machine model using LTL. Figure 6.3 presents it

as a set of LTL statements.

LTL statement (6.1) models the fact that modifications to a given memory address (X) can

be done either via the CPU or DMA. Modifications by the CPU imply setting Wen = 1

and Daddr = X. If X is a memory region, rather than a single address, we denoted that

a modification happened within the particular region by saying that Daddr ∈ X, instead.

Conversely, DMA modifications to region X require DMAen = 1 and DMAaddr ∈ X. This

models the MCU behaviors stated informally in H2 and H3.

In accordance with M4 and M5, a successful modification to a pre-configured trigger implies

changing interrupt tables, interrupt handlers, or interrupt configuration registers (ICR-s).

Since, per M4, the first two are located in PMEM , modifying them means writing to

PMEM . The ICR is located in a DMEM location denoted IRQcfg. Therefore, the LTL

161

statement (6.2) models a successful misconfiguration of trigger as requiring a memory modi-

fication either within PMEM or within IRQcfg, without causing an immediate system-wide

reset (¬reset). This is because an immediate reset prevents the modification attempt from

taking effect (see H4).

LTL (6.3) models that attempts to disable interrupts are reflected by gie CPU signal (per

H5). In order to successfully disable interrupts, one must switch interrupts from enabled

(gie = 1) to disabled (¬X(gie) – disabled in the following cycle), without causing an MCU

reset.

Recall that (from H1) PC reflects the address of the instruction currently executing.

PC ∈ TCB implies that TAROT TCB is currently executing. LTL 6.4 models T1. As

long as the initial proper configuration of trigger is never modifiable by untrusted software

(G:{¬mod(triggercfg) ∨ PC ∈ TCB}) and that untrusted software can never globally dis-

able interrupts (G:{¬disable(irq)∨X(PC) ∈ TCB}), a trigger would always cause the TCB

execution (G:{trigger → F (PC = TCBmin)}). Recall that we assume that the TCB may

update – though not misconfigure – trigger behavior, since the TCB is trusted. Similarly,

LTL 6.5 states that, as long as PMEM is never modified by untrusted software, a reset will

always trigger the TCB execution (per H4, M2, and M3).

6.3.2 TAROT End-To-End Goals Formally

Definition 17. Guaranteed Trigger:

G:{trigger→ F(PC = TCBmin)}

Definition 18. Re-Trigger on Failure:

G:{PC ∈ TCB → [(¬irq ∧ ¬dmaen ∧ PC ∈ TCB) W (PC = TCBmax ∨ F(PC = TCBmin)]}

Figure 6.4: Formal Specification of TAROT end-to-end goals.

Using the notation from Section 6.3.1, we proceed with the formal specification of TAROT

162

end-goals in LTL. Definition 17 specifies the “guaranteed trigger” property. It states in LTL

that, whenever a trigger occurs, a TCB execution/invocation (starting at the legal entry

point) will follow.

While Definition 17 guarantees that a particular interrupt of interest (trigger) will cause the

TCB execution, it does not guarantee proper execution of the TCB code as a whole. The

“re-trigger on failure” property (per Definition 18) stipulates that, whenever the TCB starts

execution (i.e., PC ∈ TCB), it must execute without interrupts or DMA interference 1, i.e.,

¬irq ∧ ¬dmaen ∧ PC ∈ TCB. This condition must hold until:

1. PC = TCBmax: the legal exit of the TCB is reached, i.e., execution concluded suc-

cessfully.

2. F (PC = TCBmin): another TCB execution (from scratch) has been triggered to occur.

In other words, this specification reflects a cyclic requirement: either the security properties

of the TCB proper execution are not violated, or the TCB execution will re-start later.

Note that we use the quantifier Weak Until (W) instead regular Until (U), because, for

some embedded applications, the TCB code may execute indefinitely; see Section 6.4.1 for

one such example.

6.3.3 TAROT Sub-Properties

Based on our machine model and TAROT end goals, we now postulate a set of necessary

sub-properties for TAROT. Next, Section 6.3.4 shows that this minimal set of sub-properties

suffices to achieve TAROT end-to-end goals with a computer-checked proof. LTL specifica-

tions of the sub-properties are presented in Figure 6.5.

1Since DMA could tamper with intermediate state/results in DMEM .

163

Definition 19. LTL Sub-Properties implemented and enforced by TAROT.

Trusted PMEM Updates:

G : {[¬(PC ∈ TCB) ∧Wen ∧ (Daddr ∈ PMEM)] ∨ [DMAen ∧ (DMAaddr ∈ PMEM)]→ reset} (6.6)

IRQ Configuration Protection:

G : {[¬(PC ∈ TCB) ∧Wen ∧ (Daddr ∈ IRQcfg)] ∨ [DMAen ∧ (DMAaddr ∈ IRQcfg)]→ reset} (6.7)

Interrupt Disablement Protection:

G : {¬reset ∧ gie ∧ ¬X(gie)→ (X(PC) ∈ TCB) ∨X(reset)} (6.8)

TCB Execution Protection:

G : {¬reset ∧ (PC ∈ TCB) ∧ ¬(X(PC) ∈ TCB)→ PC = TCBmax ∨ X(reset) } (6.9)

G : {¬reset ∧ ¬(PC ∈ TCB) ∧ (X(PC) ∈ TCB)→ X(PC) = TCBmin ∨ X(reset)} (6.10)

G : {(PC ∈ TCB) ∧ (irq ∨ dmaen)→ reset} (6.11)

Figure 6.5: Formal specification of sub-properties verifiably implemented by TAROT hard-
ware module.

TAROT enforces that only trusted updates are allowed to PMEM . TAROT hardware is-

sues a system-wide MCU reset upon detecting any attempt to modify PMEM at runtime,

unless this modification comes from the execution of the TCB code itself. This property is

formalized in LTL (6.6). It prevents any untrusted application software from misconfiguring

IRQ-Table and interrupt handlers, as well as from modifying the INIT segment and the

TCB code itself, because these sections are located within PMEM . As a side benefit, it

also prevents attacks that attempt to physically wear off Flash (usually used to implement

PMEM in low-end devices) by excessively and repeatedly overwriting it at runtime. Sim-

ilarly, TAROT prevents untrusted components from modifying IRQcfg – DMEM registers

controlling the trigger configuration. This is specified by LTL 6.7.

LTL 6.8 enforces that interrupts can not be globally disabled by untrusted applications.

Since, each trigger is based on interrupts, disablement of all interrupts would allow un-

trusted software to disable the trigger itself, and thus the active behavior of TAROT. This

requirement is specified by checking the relation between current and next values of gie,

using the LTL neXt operator. In order to switch gie from logical 0 (current cycle) to 1 (next

cycle), the TCB must be executing when gie becomes 0 (X(PC) ∈ TCB)), or the MCU will

164

reset.

In order to assure that the TCB code is invoked and executed properly, TAROT hardware

implements LTLs 6.9, 6.10, and 6.11. LTL 6.9 enforces that the only way for the TCB

execution to terminate, without causing a reset, is through its last instruction (its only legal

exit): PC = TCBmax. This is specified by checking the relation between current and next

PC values using LTL neXt operator. If the current PC value is within the TCB, and next

PC value is outside the TCB, then either current PC value must be the address of TCBmax,

or reset is set to 1 in the next cycle. Similarly, LTL 6.10 enforces that the only way for PC

to enter the TCB is through the very first instruction: TCBmin. This prevents the TCB

execution from starting at some point in the middle of the TCB, thus making sure that

the TCB always executes in its entirety. Finally, LTL 6.11 enforces that reset is always

set if interrupts or DMA modifications happen during the TCB execution. Even though

LTLs 6.9 and 6.10 already enforce that PC can not change to point anywhere outside the

TCB, interrupts could be programmed to return to an arbitrary instruction within the TCB.

Or, DMA could change DMEM values currently in use by the TCB. Both of these events

can alter the TCB behavior and are treated as violations.

Next, Section 6.3.4 presents a computer-checked proof for the sufficiency of this set of sub-

properties to imply TAROT end-to-end goals. Then, Section 6.3.5 presents FSM-s from

our Verilog implementation, that are formally verified to correctly implement each of these

requirements.

6.3.4 TAROT Composition Proof

TAROT end-to-end sufficiency is stated in Theorems 8 and 9. The complete computer-

checked proofs (using Spot2.0 [47]) of Theorems 8 and 9 are publicly available at [4]. Below

we present the intuition behind them.

165

Theorem 8. Definition 16 ∧ LTLs 6.6,6.7,6.8→ Definition 17.

Theorem 9. Definition 16 ∧ LTLs 6.6,6.9,6.10,6.11→ Definition 18.

Proof of Theorem 8 (Intuition). From machine model’s LTL (6.4), as long as the (1) initial

trigger configuration is never modified from outside the TCB; and (2) interrupts are never

disabled from outside the TCB; it follows that a trigger will cause a proper invocation of

the TCB code. Also, successful modifications to the trigger’s configuration imply writing

to PMEM or IRQcfg without causing a reset (per LTL (6.2)). Since TAROT verified

implementation guarantees that memory modifications to PMEM (LTL (6.6)) or to IRQcfg

(LTL (6.7)) always cause a reset, illegal modifications to triggercfg are never successful.

Finally, LTL (6.8) assures that any illegal interrupt disablement always causes a reset, and

is thus never successful). Therefore, TAROT satisfies all necessary conditions to meet the

goal in Definition 17.

Proof of Theorem 9 (Intuition). The fact that a reset always causes a later call to the TCB

follows from the machine model’s LTL (6.5) and TAROT guarantee in LTL (6.6). LTLs (6.9)

and (6.9) ensure that the TCB executable is properly invoked and executes atomically, until

its legal exit. Otherwise a reset flag is set, which (from the above argument) implies a

new call to the TCB. Finally, LTL 6.11 assures that any interrupt or DMA activity during

the TCB execution will cause a reset, thus triggering a future TCB call and satisfying

Definition 18.

See [4] for the formal computer-checked proofs.

6.3.5 Sub-Module Implementation+Verification

We now proceed with the implementation and formal verification of TAROT hardware.

166

RUN RESET

otherwise
otherwise

¬(PC ∈ TCB) ∧
(Wen ∧Daddr ∈ PMEM ∨DMAen ∧DMAaddr ∈ PMEM)

PC = 0

Figure 6.6: Verified FSM for LTL 6.6.

TAROT modules are implemented as Mealy FSMs (where outputs change with the current

state and current inputs) in Verilog. Each FSM has one output: a local reset. TAROT

output reset is given by the disjunction (logic or) of local reset-s of all sub-modules. Thus,

a violation detected by any sub-module causes TAROT to trigger an immediate MCU reset.

For the sake of easy presentation we do not explicitly represent the value of reset in the

figures. Instead, we define the following implicit representation:

1. reset output is 1 whenever an FSM transitions to the RESET state (represented in

red color);

2. reset output remains 1 until a transition leaving the RESET state is triggered;

3. reset output is 0 in all other states (represented in blue color).

Note that all FSM-s remain in the RESET state until PC = 0, which signals that the MCU

reset routine finished.

Figure 6.6 illustrates TAROT sub-module responsible for assuring that PMEM modifi-

cations are only allowed from within the TCB. This minimal 2-state machine works by

monitoring PC, Wen, Daddr, DMAen, and DMAaddr to detect illegal modification attempts

by switching from RUN to RESET state, upon detection of any such action. It is verified

to adhere to LTL (6.6). A similar FSM is used to verifiably enforce LTL (6.7), with the only

distinction of checking for writes within IRQcfg region instead, i.e., Daddr ∈ IRQcfg) and

DMAaddr ∈ IRQcfg). Given the similarity, we omit the illustration of this FSM.

167

RESET

OFF ON

PC = 0

otherwise

¬ gie

gie ∧ PC ∈ TCB

otherwise

gie

¬gie ∧ PC ∈ TCB

otherwise

Figure 6.7: Verified FSM for LTL 6.8.

Figure 6.7 presents an FSM implementing LTL 6.8. It monitors the “global interrupt enable”

(gie) signal to detect attempts to illegally disable interrupts. It consists of three states: (1)

ON , representing execution periods where gie = 1; (2) OFF , for cases where gie = 0, and

(3) RESET . To switch between ON and OFF states, this FSM requires PC ∈ TCB, thus

preventing misconfiguration by untrusted software.

Finally, the FSM in Figure 6.8 verifiably implements LTLs 6.9, 6.10, and 6.11. This FSM

has 5 states, one of which is RESET . Two basic states correspond to whenever: the TCB

is executing (state “∈ TCB”), and not executing (state “/∈ TCB”). From /∈ TCB the only

reachable path to ∈ TCB is through state TCBentry, which requires PC = TCBmin – TCB

only legal entry point. Similarly, from ∈ TCB the only reachable path to /∈ TCB is through

state TCBexit, which requires PC = TCBmax – TCB only legal exit. Also, in all states where

PC ∈ TCB (including entry and exit transitions) this FSM requires DMA and interrupts

to remain inactive. Any violation of these requirements, in any of the four regular states,

causes the FSM transition to RESET , thus enforcing protection to the TCB execution.

168

RESET

/∈ TCB

TCBentry

∈ TCB

TCBexit

PC = 0

otherwise

PC < TCBmin ∨ PC > TCBmax

PC = TCBmin ∧ ¬ irq ∧ ¬ DMAen

otherwise

PC = TCBmin

∧¬ irq ∧ ¬ DMAen

(PC > TCBmin ∧ PC < TCBmax)

∧¬ irq ∧ ¬ DMAen

otherwise

(PC > TCBmin ∧ PC < TCBmax)

∧¬ irq ∧ ¬ DMAen

PC = TCBmax ∧ ¬ irq ∧ ¬ DMAen

otherwise

PC = TCBmax

∧¬ irq ∧ ¬ DMAen

(PC < TCBmin ∨ PC > TCBmax)

∧¬ irq ∧ ¬ DMAen

otherwise

Figure 6.8: Verified FSM for LTLs 6.9–6.11.

169

6.3.6 TCB Confidentiality

One instance of TAROT enables confidentiality of the TCB data and code with respect

to untrusted applications. This is of particular interest when F implements cryptographic

functions or privacy-sensitive tasks.

This goal can be achieved by including and epilogue phase in the TCB executable, with the

goal of performing a DMEM cleanup, erasing all traces of the TCB execution from the

stack and heap. While the TCB execution may be interrupted before the execution of the

epilogue phase, such an interruption will cause an MCU reset. The Re-Trigger on Failure

property assures that the TCB code will execute (as a whole) after any reset and will thus

erase remaining execution traces from DMEM before subsequent execution of untrusted

applications. In a similar vein, if confidentiality of the executable is desirable, it can be

implemented following LTL (6.12), which formalizes read attempts based on Ren signal:

G : {

[¬(PC ∈ TCB) ∧Ren ∧ (Daddr ∈ TCB)∨

DMAen ∧ (DMAaddr ∈ TCB)]→ reset

}

(6.12)

An FSM implementing this property is shown in Figure 6.9. Note that, despite visual

similarity with the FSM in Figure 6.6, the confidentiality FSM checks for reads (instead of

writes) to the TCB (instead of entire PMEM).

This property prevents external reads to the TCB executable by monitoring Ren, Daddr,

and DMA. When combined with the aforementioned erasure epilogue, it also enables secure

storage of secrets within the TCB binary (as in [9, 10, 48]). This part of TAROT design

is optional, since some embedded applications do not require confidentiality, e.g., those

discussed in Sections 6.4.1 and 6.4.2.

170

RUN RESET

otherwise
otherwise

¬(PC ∈ TCB) ∧
(Ren ∧Daddr ∈ TCB ∨DMAen ∧DMAaddr ∈ TCB)

PC = 0

Figure 6.9: Verified FSM for LTL 6.12.

6.3.7 Resets & Availability

One important remaining issue is availability. For example, malware might interrupt (or

tamper with) with INIT execution after a reset preventing the subsequent execution of the

TCB. Also, malware could to interrupt the TCB execution, after each re-trigger, with the

goal of resetting the MCU indefinitely, and thereby preventing the TCB execution from ever

completing its task.

We observe that such actions are not possible, since they would require either DMA activity

or interrupts to: (1) hijack INIT control-flow; or (2) abuse TAROT to successively reset the

MCU during the TCB execution after each re-trigger. Given H5 interrupts are disabled by

default at boot time. Additionally, H4 states that any prior DMA configuration is cleared

to the default disabled state after a reset. Hence, INIT and the first execution of the TCB

after a reset cannot be interrupted or tampered with by DMA.

Finally, we note that, despite preventing security violations by (and implementing re-trigger

based on) resetting the MCU, TAROT does not provide any advantage to malware that

aims to simply disrupt execution of (non-TCB) applications by causing resets. Any software

running on bare metal (including malware) can always intentionally reset the MCU. Resets

are the default mechanism to recover from regular software faults on unmodified (off-the-

shelf) low-end MCU-s, regardless of TAROT.

171

1 int main() {
2 TCB(0) ;
3 main loop() ;
4 return 0;
5 }

Figure 6.10: Program Entry Point

6.4 Sample Applications

Many low-end MCU use-cases and applications can benefit from trigger-based active RoTs.

To demonstrate generality of TAROT, we prototyped three concrete examples, each with

a different type of trigger-s. This section overviews these examples: (1) GPIO-TCB uses

external analog events (Section 6.4.1), TimerTCB uses timers (Section 6.4.2), and NetTCB

uses network events (Section 6.4.3). Finally, Section 6.4.4 discusses how TAROT can match

active security services proposed in [115] and [60].

6.4.1 GPIO-TCB: Critical Sensing+Actuation

The first example, GPIO-TCB, operates in the context of a safety-critical temperature sensor.

It uses TAROT to assure that the sensor’s most safety-critical function – sounding an alarm

– is never prevented from executing due to software compromise of the underlying MCU. We

use a standard built-in MCU interrupt, based on General Purpose Input/Output (GPIO)

to implement trigger. Since this is our first example, we discuss GPIO-TCB in more detail

than the other two.

As shown in Figure 6.10, MCU execution always starts by calling the TCB (at line 2).

Therefore, after MCU initialization/reset, unprivileged (non-TCB) applications can only

execute after the TCB; assuming, of course, that formal guarantees discussed in Section 6.3

hold. These applications are implemented inside main loop function (at line 3).

The correct trigger configuration in GPIO-TCB can be achieved in two ways. The first way is

172

1 void setup (void) {
2 P1DIR = 0x00;
3 P1IE = 0x01;
4 P1IES = 0x00;
5 P1IFG = 0x00;
6 }

Figure 6.11: Trigger Setup

to set IRQcfg to the desired parameters at MCU deployment time, by physically writing this

configuration to IRQcfg. The second option is to implement this configuration in software

as a part of the TCB. Since the TCB is always the first to run after initialization/reset, it

will configure IRQcfg correctly, enabling subsequent trigger-s at runtime.

Figure 6.11 shows IRQcfg configuration, implemented as part of the TCB, i.e., called from

within the TCB. This setup function is statically linked to be located inside the TCB

memory region, thus respecting “TCB Execution Protection” LTL rules (see Definition 19).

This IRQcfg setup first configures the physical port P1 as an input (line 2, “P1 direction” set

to 0x00, whereas 0x01 would set it as an output). At line 3, P1 is set as “interrupt-enabled”

(P1IE = 0x01). A value of P1IES = 0x00 (line 4) indicates that, if the physical voltage

input of P1 changes from logic 0 to 1 (“low-to-high‘ transition), a GPIO interrupt will be

triggered and the respective handler will be called. Finally, P1IFG is cleared to indicate

that the MCU is free to receive interrupts (as opposed to busy). We note that this initial

trusted configuration of IRQcfg cannot be modified afterwards by untrusted applications due

to TAROT guarantees (see Section 6.3). Based on this configuration, an analog temperature

sensing circuit (i.e., a voltage divider implemented using a thermistor (i.e., a resistance

thermometer – a resistor whose resistance varies with temperature) is connected to port P1.

Resistances in this circuit are set to achieve 5V (logic 1) when temperature exceeds a fixed

threshold, thus triggering a P1 interrupt.

P1 interrupt is handled by the function in Figure 6.12. This is configured using the

interrupt(PORT1 V ECTOR) macro. This handler essentially calls TAROT TCB. Pa-

rameter 1 in the TCB call distinguishes a regular TCB call from a TCB call following

173

1 interrupt(PORT1VECTOR) port1 isr (void) {
2 TCB(1) ;
3 }

Figure 6.12: GPIO Handling Routine

1 TCB (uint8 t init) {
2 dint() ;
3 if (! init) {
4 setup() ;
5 }
6 volatile uint 64 i=0;
7 P3DIR = 0x01;
8 P3OUT = 0x01;
9 while (i<100000000) i++;

10 P3OUT = 0x00;
11 eint () ;
12 return () ;
13 }

Figure 6.13: IRQcfg initialization

initialization/reset.

Figure 6.13 depicts the TCB implementation of F . Once triggered, the TCB disables inter-

rupts (dint), calls setup (if this is the first TCB call after initialization/reset), and activates

GPIO port P3 for a predefined number of cycles. P3 is connected to a buzzer (a high fre-

quency oscillator circuit used for generating a buzzing sound), guaranteeing that the alarm

will sound. Upon completion, the TCB re-enables interrupts and returns control to the

regular application(s).

Note that, as discussed in Section 6.3, executables corresponding to Figures 6.12 and 6.13

are also protected by TAROT. Thus, their behavior cannot be modified by untrusted/com-

promised software.

6.4.2 TimerTCB: Secure Real-Time Scheduling

The second example of TAROT, TimerTCB, is in the domain of real-time task scheduling.

Without TAROT (even in the presence of a passive RoT), a compromised MCU controlled

by malware could ignore performing its periodic security- or safety-critical tasks. We show

how TAROT can ensure that a prescribed task, implemented within the TCB, periodically

174

1 void setup (void) {
2 CCTL0 = CCIE;
3 CCR0 = 1000000;
4 TACTL= TASSEL 2 + MC1;
5 }

Figure 6.14: Timer Trigger Setup

1 interrupt(TIMERA0VECTOR) timera isr(void) {
2 TCB(1)
3 }

Figure 6.15: Timer Handle Routine

executes.

Unlike our first example in Section 6.4.1, TimerTCB only requires modifying IRQcfg, as

illustrated in Figure 6.14. This shows the relative ease of use of TAROT. The setup function

is modified to enable the MCU’s built-in timer to cause interrupts (at line 2). Interrupts are

set to occur whenever the counter reaches a desired value (at line 3). The timer is set to

increment the counter with edges of a particular MCU clock (MC1, at line 4). As in the first

example, the corresponding interrupt handler is set to always call the TCB (Figure 6.15).

In turn, the TCB can implement F as an arbitrary safety-critical periodic task.

6.4.3 NetTCB: Network Event-based trigger

The last example, NetTCB, uses network event-based trigger to ensure that the TCB quickly

filters all received network packets to identify those that carry TCB-destined commands and

take action. Incoming packets that do not contain such commands are ignored and passed

on to applications through the regular interface (i.e., reading from the UART buffer). In this

example, we implement guaranteed receipt of external reset commands from some trusted

remote entity. This functionality might be desirable after an MCU malfunction (e.g., due to

a deadlock) is detected.

In NetTCB, trigger is configured to trap network events. IRQcfg is set such that each incom-

175

1 void setup (void) {
2 UARTBAUD=BAUD;
3 UARTCTL = UARTEN | UARTIENRX;
4 }

Figure 6.16: UART Trigger Setup

1 wakeup interrupt (UARTRXVECTOR) INT uart rx(void) {
2 TCB(1) ;
3 }
4
5 TCB (uint8 t init) {
6 dint() ;
7 if (! init) {
8 setup() ;
9 }

10 rxdata = UARTRXD;
11 if (rxdata == ’r’) {
12 reset () ;
13 }
14 eint () ;
15 return () ;
16 }

Figure 6.17: NetTCB Handler Routine and TCB Implementation

ing UART message causes an interrupt, as shown in Figure 6.16. The TCB implementation,

shown in Figure 6.17, filters messages based their initial character ′r′ which is predefined

as a command to reset the MCU. Note that: in practice such critical commands should

be authenticated by the TCB. Although this authentication should be implemented within

the TCB, we omit it from this discussion for the sake of simplicity, and refer to [50] for a

discussion of authentication of external requests in this setting.

6.4.4 Comparison with [115] and [60]

Recent work proposed security services that can be interpreted as active RoTs. However,

these efforts aimed at higher-end embedded devices and require substantial hardware sup-

port: Authenticated Watchdog Timer (AWDT) implemented either using a separate (stand-

alone) microprocessor [115], or using ARM TrustZone [60]. Each requirement is, by itself,

far more expensive than the cost of a typical low-end MCU targeted in this work (recall the

scope discussed in Chapter 2).

In terms of functionality, both [115] and [60] are based on timers. They use AWDT to force

176

a reset of the device. As in TAROT the TCB is the first code to execute; this property is

referred to as “gated boot” in [115]. However, unlike TAROT, [115, 60] do not consider

active RoT behavior obtainable from other types of interrupts, e.g., as in TAROT examples

in Sections 6.4.1 and 6.4.3. We believe that this is partly because these designs were intended

as an active means to enforce memory integrity, rather than a general approach to guaranteed

execution of trusted tasks based on arbitrary trigger-s. Note that TAROT design is general

enough to realize an active means to enforce memory integrity. This can be achieved by

incorporating an integrity-ensuring function (e.g, a suitable cryptographic keyed hash) into

TAROT TCB and using it to check PMEM state upon a timer-based trigger.

Finally, we emphasize that prior results yielded neither formally specified designs nor for-

mally verified implementations. As discussed in Section 6.1, we believe these features to be

important for eventual adoption of this type of architecture.

6.5 Implementation & Evaluation

We prototyped TAROT (adhering to Figure 6.2) using an open-source implementation of

the popular MSP430 MCU – openMPS430 [56] from OpenCores. In addition to TAROT

module, 2 KBytes of PMEM are reserved for TCB functions. This size choice is configurable

at manufacturing time. In our prototype, 2 KBytes is a reasonable choice, corresponding

to 5 − 25% of the typical PMEM size in low-end MCU-s. The prototype supports one

trigger of each type: timer-based, external hardware, and network. This support is achieved

by implementing the IRQcfg protection, as described in Section 6.3. The MCU already

includes multiple timers and GPIO ports that can be selected to act as trigger-s. By default,

one of each is used by our prototype. This enables the full set of types of applications

discussed in Section 6.4.

177

As a proof-of-concept, we use Xilinx Vivado to synthesize our design and deploy it using the

Basys3 Artix-7 FPGA board. Prototyping using FPGAs is common in both research and

industry. Once a hardware design is synthesizable in an FPGA, the same design can be used

to manufacture an Application-Specific Integrated Circuit (ASIC) at larger scale.

Hardware & Memory Overhead

Table 6.2 reports TAROT hardware overhead as compared to unmodified OpenMSP430 [56].

Similar to the related work [87, 42, 40, 44, 6, 45, 116], we consider hardware overhead in terms

of additional Look-Up Tables (LUT-s) and registers. The increase in the number of LUT-s

can be used as an estimate of the additional chip cost and size required for combinatorial

logic, while the number of registers offers an estimate on the memory overhead required by

the sequential logic in TAROT FSMs.

TAROT hardware overhead is small with respect to the unmodified MCU core – it requires

2.3% and 4.8% additional LUT-s and registers, respectively. In absolute numbers, TAROT

adds 33 registers and 42 LUT-s to the underlying MCU.

Runtime & Memory Overhead

We observed no discernible overhead for software execution time on the TAROT-enabled

MCU. This is expected, since TAROT introduces no new instructions or modifications to

the MSP430 ISA and to the application executables. TAROT hardware runs in parallel with

the original MSP430 CPU. Aside from the reserved PMEM space for storing the TCB code,

TAROT also does not incur any memory overhead. This behavior does not depend on the

number of functions or triggers used inside the TCB.

Verification Cost

We verify TAROT on an Ubuntu 18.04 machine running at 3.40GHz. Results are also shown

178

in Table 6.2. TAROT implementation verification requires checking 7 LTL statements. The

overall verification pipeline is fast enough to run on a commodity desktop in quasi-real-time.

Hardware Reserved Verification
Reg LUT PMEM/Flash (bytes) # LTL Invariants Verified Verilog LoC Time (s) Mem (MB)

OpenMSP430 [56] 692 1813 0 - - - -
OpenMSP430 + TAROT 725 1855 2048 (default) 7 484 3.1 13.5

Table 6.2: TAROT Hardware overhead and verification costs.

Comparison with Prior RoTs

To the best of our knowledge, TAROT is the first active RoT targeting this lowest-end

class of devices. Nonetheless, to provide a overhead point of reference and a comparison, we

contrast TAROT’s overhead with that of state-of-the-art passive RoTs in the same class. We

note that the results from [115, 60] can not be compared to TAROT quantitatively. As noted

in Section 6.4.4, [115] relies on a standalone additional MCU and [60] on ARM TrustZone.

Both of these are (by themselves) more expensive and sophisticated than the entire MSP430

MCU (and similar low-end MCUs in the same class). Our quantitative comparison focuses

on VRASED [40], APEX [42], and SANCUS [87]: passive RoTs implemented on the same

MCU and thus directly comparable (cost-wise). Table 6.3 provides a qualitative comparison

between the aforementioned relevant designs. Figure 6.18 depicts the relative overhead (in

%) of TAROT, VRASED, APEX, and SANCUS with respect to the total hardware cost of

the unmodified MSP430 MCU core.

In comparison with prior passive architectures, TAROT presents lower hardware overhead.

In part, this is due to the fact that it leverages interrupt hardware support already present in

the underlying MCU to implement its triggers. SANCUS presents substantially higher cost

as it implements task isolation and a cryptographic hash engine (for the purpose of verifying

software integrity) in hardware. VRASED presents slightly higher cost than TAROT. It also

necessitates some properties that are similar to TAROT’s (e.g., access control to particular

memory segments and atomicity of its attestation implementation). In addition, VRASED

179

Architecture Behavior Service HW Support Verified?
VRASED [40] Passive Attestation RTL Design Yes

SANCUS [87] Passive
Attestation &
Isolation

RTL Design No

APEX [42] Passive
Attestation &
Proof of Execution

RTL Design Yes

Cider [115] Active Timer-based trigger Additional MCU No
Lazarus[60] Active Timer-based trigger ARM TrustZone No
TAROT (this work) Active IRQ-based trigger RTL Design Yes

Table 6.3: Qualitative Comparison

also requires hardware support for an exclusive stack in DMEM. APEX hardware is a super-

set of VRASED’s, providing an additional proof of execution function in hardware. As such

it requires strictly more hardware support, presenting slightly higher cost. TAROT also

reserves approximately 3.1% (2 KBytes) of the MCU-s 16-bit address space for storing the

TCB code. This value is freely configurable, and chosen as a sensible default to support our

envisioned RoT tasks (including sample applications in Section 6.4). TAROT-enabled MCUs

manufactured for different use-cases could increase or decrease this amount accordingly.

6.6 Related Work

Aside from closely related work in [115] and [60] (already discussed in Section 6.4.4), several

efforts yielded passive RoT designs for resource-constrained low-end devices, along with

formal specifications, formal verification and provable security.

TAROT VRASED SANCUS APEX

0

50

100

2
.3 6
.7

7
9
.7

1
6
.7

4
.8 5
.3

1
1
5
.5

6
.4

P
er

ce
n
ta

g
e

in
cr

ea
se

fr
o
m

b
a
se LUT-s Registers

Figure 6.18: Comparison with passive RoTs: Hardware overhead

180

Low-end RoTs fall into three general categories: software-based, hardware-based, or hy-

brid. Establishment of software-based RoTs [66, 99, 100, 101, 54, 77, 57] relies on strong

assumptions about precise timing and constant communication delays, which can be un-

realistic in the IoT ecosystem. However, software-based RoTs are the only viable choice

for legacy devices that have no security-relevant hardware support. Hardware-based meth-

ods [93, 109, 72, 96, 84, 82, 87] rely on security provided by dedicated hardware components

(e.g., TPM [109] or ARM TrustZone [14]). However, the cost of such hardware is normally

prohibitive for lower-end IoT devices. Hybrid RoTs [49, 42, 40, 22, 68] aim to achieve secu-

rity equivalent to hardware-based mechanisms, yet with lower hardware cost. They leverage

minimal hardware support while relying on software to reduce the complexity of additional

hardware.

In terms of functionality, such embedded RoTs are passive. Upon receiving a request

from an external trusted Verifier, they can generate unforgeable proofs for the state of

the MCU or that certain actions were performed by the MCU. Security services imple-

mented by passive RoTs include: (1) memory integrity verification, i.e., remote attestation

[49, 87, 40, 10, 22, 68]; (2) verification of runtime properties, including control-flow and data-

flow attestation [84, 42, 44, 6, 45, 116, 105, 43, 55]; as well as (3) proofs of remote software

updates, memory erasure, and system-wide resets [41, 9, 15]. As discussed in Section 6.1 and

demonstrated in Section 6.4, several application domains and use-cases could greatly benefit

from more active RoTs. Therefore, the key motivation for TAROT is to not only provide

proofs that actions have been performed (if indeed they were), but also to assure that these

actions will necessarily occur.

Formalization and formal verification of RoTs for MCU-s is a topic that has recently

attracted lots of attention due to the benefits discussed in Chapter 2 and Section 6.1.

VRASED [40] (Chapter 3) implemented the first formally verified hybrid remote attestation

scheme. APEX [42] (Chapter 5) builds atop VRASED to implement and formally verify

181

an architecture that enables proofs of remote execution of attested software. PURE [41]

implements provably secure services for software updates, memory erasure, and system-wide

resets atop VRASED RoT. Another recent result [24] formalized, and proved security of, a

hardware-assisted mechanism to prevent leakage of secrets through time-based side-channel

that can be abused by malware in control of the MCU interrupts. Inline with aforementioned

work, TAROT also formalizes its assumptions along with its goals and implements the first

formally verified active RoT design.

6.7 Conclusions

This chapter motivated and illustrated the design of TAROT: an active RoT targeting low-

end MCU-s used as platforms for embedded/IoT/CPS devices that perform safety-critical

sensing and actuation tasks. We believe that TAROT is the first clean-slate design of a active

RoT and the first one applicable to lowest-end MCU-s, which cannot host more sophisticated

security components, such as ARM TrustZone, Intel SGX or TPM-s. We believe that this

work is also the first formal treatment of the matter and the first active RoT to support a

wide range of RoT trigger-s.

182

Chapter 7

Final Remarks

This dissertation tackles open problems in software integrity and availability in resource-

constrained embedded systems that, despite performing safety-critical tasks, can not avail

themselves of sophisticated security mechanisms. To this end, we proposed four low-cost

security architectures: VRASED, RATA, APEX, and TAROT. Our designs focused on sim-

plicity and minimality via hardware/software co-design methodology. This approach made

our designs practical (from a cost standpoint) and deployable in the simplest MCUs, that

are commonly found at the edge of complex CPS, implementing sensing and actuation tasks.

They were also based upon systematic and formally verified properties (and provable compo-

sition thereof). We believe this systematic treatment significantly increases the robustness

of these architectures. We hope that this first step can inspire future designs of new security

services with formal guarantees, potentially also targeting more complex devices.

VRASED, described in Chapter 3, is the first hybrid RA architecture to offer formally verified

guarantees for both software and hardware components. It also includes a formal definition of

RA security (in the form of a security game) and proofs for the composition of individual sub-

modules. Furthermore, it established a verification pipeline, based on LTL model checking

183

and theorem proving, that has been used to proof security of architectures described in the

following chapters.

RATA, presented in Chapter 4, is the first TOCTOU-Secure hybrid RA architecture. It

guarantees that even transient malware is detectable. In most cases, RATA greatly reduces

overall RA runtime overhead from linear to constant time in the size of attested memory. As

discussed in Chapter 4, RATA also benefits RA in real-time settings, collective RA protocols,

and runtime attestation (e.g., control-flow and data-flow attestation).

APEX, described in Chapter 5, augmented RA with verified capabilities to prove execution

properties, in addition to memory contents. It enables several important applications – e.g.,

trustworthy sensing and actuation – that are crucial to the robustness of safety-critical CPS.

Subsequent work [43, 91] also demonstrated that APEX is sufficient, as the sole hardware

support, to enable control-flow attestation and data-flow attestation. In turn, these enable

detection of software exploits due to vulnerable implementations of critical operations in

low-end MCUs.

Finally, TAROT (Chapter 6) focused on the availability dimension of low-end embedded

system security. We designed, implemented, and verified an architecture capable of guaran-

teeing that specific safety-critical tasks are always executed upon particular trigger-s, despite

full compromise of all other software in the MCU.

Based on the lessons learned in this work, several avenues remain for future work. Aside from

the natural direction of addressing current limitations of proposed architectures, we foresee

the following general directions: (i) design and verification of similar security services for

slightly higher-end embedded devices, e.g., equipped with rudimentary privilege/exception

levels and MPUs; (ii) design of trusted architectures to solve other problems arising from low-

end sensors and actuators, such as sensing privacy; and (iii) deployment and interoperability

of proposed technologies as a part of larger-scale CPS and cryptographic protocols.

184

Bibliography

[1] VRASED source code. https://github.com/sprout-uci/vrased, 2019.

[2] APEX source code. https://github.com/sprout-uci/APEX, 2020.

[3] TAROT source code. https://www.dropbox.com/sh/y7nwc9y3bc4z9u7/

AACwMGGK3uxKqiCSWYqpm1iVa?dl=0, 2021.

[4] RATA source code (to be moved to github soon). https://www.dropbox.com/sh/

qs8ylburhtp7tzc/AABdaqjOL5lUtZy2nt51E1Jza?dl=0, 2021.

[5] T. Abera, N. Asokan, L. Davi, F. Koushanfar, A. Paverd, A.-R. Sadeghi, and
G. Tsudik. Things, trouble, trust: on building trust in iot systems. In Proceedings of
the 53rd Annual Design Automation Conference, pages 1–6, 2016.

[6] T. Abera et al. C-flat: Control-flow attestation for embedded systems software. In
CCS ’16, 2016.

[7] E. Aliaj, I. D. O. Nunes, and G. Tsudik. Garota: Generalized active root-of-trust
architecture. arXiv preprint arXiv:2102.07014, 2021.

[8] M. Ambrosin et al. SANA: Secure and Scalable Aggregate Network Attestation. In
CCS, 2016.

[9] M. Ammar and B. Crispo. Verify&revive: Secure detection and recovery of compro-
mised low-end embedded devices. In Annual Computer Security Applications Confer-
ence, pages 717–732, 2020.

[10] M. Ammar, B. Crispo, and G. Tsudik. Simple: A remote attestation approach for
resource-constrained iot devices. In 2020 ACM/IEEE 11th International Conference
on Cyber-Physical Systems (ICCPS), pages 247–258. IEEE, 2020.

[11] R. Annessi, J. Fabini, and T. Zseby. It’s about time: Securing broadcast time syn-
chronization with data origin authentication. In 2017 26th International Conference
on Computer Communication and Networks (ICCCN), pages 1–11. IEEE, 2017.

[12] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-
rumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, et al. Understanding the mirai
botnet. In USENIX Security Symposium, 2017.

185

https://github.com/sprout-uci/vrased
https://github.com/sprout-uci/APEX
https://www.dropbox.com/sh/y7nwc9y3bc4z9u7/AACwMGGK3uxKqiCSWYqpm1iVa?dl=0
https://www.dropbox.com/sh/y7nwc9y3bc4z9u7/AACwMGGK3uxKqiCSWYqpm1iVa?dl=0
https://www.dropbox.com/sh/qs8ylburhtp7tzc/AABdaqjOL5lUtZy2nt51E1Jza?dl=0
https://www.dropbox.com/sh/qs8ylburhtp7tzc/AABdaqjOL5lUtZy2nt51E1Jza?dl=0

[13] F. M. Anwar and M. Srivastava. Applications and challenges in securing time. In
12th {USENIX} Workshop on Cyber Security Experimentation and Test ({CSET}
19), 2019.

[14] Arm Ltd. Arm TrustZone. https://www.arm.com/products/security-on-arm/

trustzone, 2018.

[15] N. Asokan, T. Nyman, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik. ASSURED:
Architecture for secure software update of realistic embedded devices. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 37(11), 2018.

[16] N. Asokan et al. Seda: Scalable embedded device attestation. In ACM CCS, 2015.

[17] L. Beringer, A. Petcher, Q. Y. Katherine, and A. W. Appel. Verified correctness and
security of OpenSSL HMAC. In USENIX, 2015.

[18] D. J. Bernstein, T. Lange, and P. Schwabe. The security impact of a new cryptographic
library. In International Conference on Cryptology and Information Security in Latin
America, 2012.

[19] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y. Strub. Implementing
TLS with verified cryptographic security. In IEEE S&P, 2013.

[20] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauwhede. Spon-
gent: The design space of lightweight cryptographic hashing. IEEE Transactions on
Computers, 62, 2013.

[21] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch, B. Parno, A. Rane,
S. Setty, and L. Thompson. Vale: Verifying high-performance cryptographic assembly
code. In USENIX, 2017.

[22] F. Brasser et al. Tytan: Tiny trust anchor for tiny devices. In DAC, 2015.

[23] S. Bratus, N. DCunha, E. Sparks, and S. W. Smith. Toctou, traps, and trusted
computing. In International Conference on Trusted Computing. Springer, 2008.

[24] M. Busi, J. Noorman, J. Van Bulck, L. Galletta, P. Degano, J. T. Mühlberg, and
F. Piessens. Provably secure isolation for interruptible enclaved execution on small mi-
croprocessors. In 2020 IEEE 33rd Computer Security Foundations Symposium (CSF),
pages 262–276. IEEE, 2020.

[25] G. Cabodi, P. Camurati, S. F. Finocchiaro, C. Loiacono, F. Savarese, and D. Ven-
draminetto. Secure embedded architectures: Taint properties verification. In DAS,
2016.

[26] G. Cabodi, P. Camurati, C. Loiacono, G. Pipitone, F. Savarese, and D. Vendraminetto.
Formal verification of embedded systems for remote attestation. WSEAS Transactions
on Computers, 14, 2015.

186

https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone

[27] X. Carpent, K. Eldefrawy, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik. Recon-
ciling remote attestation and safety-critical operation on simple iot devices. In DAC,
2018.

[28] X. Carpent, K. ElDefrawy, N. Rattanavipanon, and G. Tsudik. Lightweight swarm
attestation: a tale of two lisa-s. In Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pages 86–100. ACM, 2017.

[29] X. Carpent, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. Temporal consistency
of integrity-ensuring computations and applications to embedded systems security. In
ASIACCS, 2018.

[30] X. Carpent, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. Temporal consistency
of integrity-ensuring computations and applications to embedded systems security. In
ASIACCS, 2018.

[31] X. Carpent, N. Rattanavipanon, and G. Tsudik. ERASMUS: Efficient remote attes-
tation via self-measurement for unattended settings. In DATE, 2018.

[32] X. Carpent, N. Rattanavipanon, and G. Tsudik. Remote attestation of iot devices via
SMARM: Shuffled measurements against roving malware. In HOST, 2018.

[33] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun, R. Yang,
and K. Zhang. Iotfuzzer: Discovering memory corruptions in iot through app-based
fuzzing. In NDSS, 2018.

[34] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic model checking.
In International Conference on Computer Aided Verification, pages 359–364. Springer,
2002.

[35] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking.
In CAV, 2002.

[36] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith. Model checking.
MIT press, 2018.

[37] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal hardware extensions for
strong software isolation. In 25th {USENIX} Security Symposium ({USENIX} Security
16), 2016.

[38] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A large-scale analysis of the
security of embedded firmwares. In 23rd {USENIX} Security Symposium ({USENIX}
Security 14), pages 95–110, 2014.

[39] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer overflows: Attacks and
defenses for the vulnerability of the decade. In IEEE DISCEX. IEEE, 2000.

187

[40] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and G. Tsudik.
VRASED: A verified hardware/software co-design for remote attestation. In USENIX
Security, 2019.

[41] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. Pure: Using
verified remote attestation to obtain proofs of update, reset and erasure in low-end
embedded systems. 2019.

[42] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. APEX: A
verified architecture for proofs of execution on remote devices under full software com-
promise. In 29th USENIX Security Symposium (USENIX Security 20), Boston, MA,
Aug. 2020. USENIX Association.

[43] I. De Oliveria Nunes, S. Jakkamsetti, and G. Tsudik. Tiny-CFA: Minimalistic control-
flow attestation using verified proofs of execution. In Design, Automation and Test in
Europe Conference (DATE), 2021.

[44] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi. Litehax: lightweight hardware-
assisted attestation of program execution. In 2018 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[45] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl, N. Asokan,
and A.-R. Sadeghi. Lo-fat: Low-overhead control flow attestation in hardware. In
Proceedings of the 54th Annual Design Automation Conference 2017, page 24. ACM,
2017.

[46] X. Du and H.-H. Chen. Security in wireless sensor networks. IEEE Wireless Commu-
nications, 15(4):60–66, 2008.

[47] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu. Spot
2.0a framework for ltl and ω-automata manipulation. In International Symposium on
Automated Technology for Verification and Analysis, 2016.

[48] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. HYDRA: hybrid design for remote
attestation (using a formally verified microkernel). In Wisec, 2017.

[49] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito. SMART: Secure and minimal
architecture for (establishing dynamic) root of trust. In NDSS, 2012.

[50] B. et al. Remote attestation for low-end embedded devices: the prover’s perspective.
In DAC, 2016.

[51] G. A. Fowler. Alexa has been eavesdropping on you this whole
time. https://www.washingtonpost.com/technology/2019/05/06/

alexa-has-been-eavesdropping-you-this-whole-time/, 2019.

[52] A. Francillon et al. A minimalist approach to remote attestation. In DATE, 2014.

188

https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-whole-time/
https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-whole-time/

[53] S. Ganeriwal, S. Čapkun, C.-C. Han, and M. B. Srivastava. Secure time synchronization
service for sensor networks. In Proceedings of the 4th ACM workshop on Wireless
security, pages 97–106, 2005.

[54] R. W. Gardner, S. Garera, and A. D. Rubin. Detecting code alteration by creating a
temporary memory bottleneck. IEEE TIFS, 2009.

[55] M. Geden and K. Rasmussen. Hardware-assisted remote runtime attestation for critical
embedded systems. In 2019 17th International Conference on Privacy, Security and
Trust (PST), pages 1–10. IEEE, 2019.

[56] O. Girard. openMSP430, 2009.

[57] V. D. Gligor and S. L. M. Woo. Establishing software root of trust unconditionally.
In NDSS, 2019.

[58] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang, and B. Zill.
Ironclad apps: End-to-end security via automated full-system verification. In OSDI,
2014.

[59] G. Hinterwälder, A. Moradi, M. Hutter, P. Schwabe, and C. Paar. Full-size high-
security ECC implementation on MSP430 microcontrollers. In International Confer-
ence on Cryptology and Information Security in Latin America, pages 31–47. Springer,
2014.

[60] M. Huber, S. Hristozov, S. Ott, V. Sarafov, and M. Peinado. The lazarus effect: Healing
compromised devices in the internet of small things. arXiv preprint arXiv:2005.09714,
2020.

[61] A. Ibrahim, A.-R. Sadeghi, and S. Zeitouni. SeED: secure non-interactive attestation
for embedded devices. In ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec), 2017.

[62] A. Ibrahim et al. DARPA: Device Attestation Resilient against Physical Attacks. In
WiSec, 2016.

[63] T. Instruments. Msp430 ultra-low-power sensing & measurement mcus. http://www.
ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html.

[64] Intel. Intel Software Guard Extensions (Intel SGX). https://software.intel.com/
en-us/sgx.

[65] A. Irfan, A. Cimatti, A. Griggio, M. Roveri, and R. Sebastiani. Verilog2SMV: A tool
for word-level verification. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2016, 2016.

[66] R. Kennell and L. H. Jamieson. Establishing the genuinity of remote computer systems.
In USENIX Security Symposium, 2003.

189

http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx

[67] G. Klein, K. Elphinstone, G. Heiser, et al. seL4: Formal verification of an OS kernel.
In ACM SIGOPS, 2009.

[68] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. TrustLite: A security
architecture for tiny embedded devices. In EuroSys, 2014.

[69] F. Kohnhäuser, N. Büscher, S. Gabmeyer, and S. Katzenbeisser. Scapi: a scalable
attestation protocol to detect software and physical attacks. In Proceedings of the 10th
ACM Conference on Security and Privacy in Wireless and Mobile Networks, pages
75–86. ACM, 2017.

[70] F. Kohnhäuser, N. Büscher, and S. Katzenbeisser. Salad: Secure and lightweight
attestation of highly dynamic and disruptive networks. In Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, pages 329–342. ACM,
2018.

[71] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and J. Butterworth.
New results for timing-based attestation. In Proceedings of the IEEE Symposium on
Research in Security and Privacy. IEEE Computer Society Press, 2012.

[72] X. Kovah et al. New results for timing-based attestation. In IEEE S&P ’12, 2012.

[73] H. Krawczyk and P. Eronen. HMAC-based extract-and-expand key derivation function
(HKDF). Internet Request for Comment RFC 5869, Internet Engineering Task Force,
May 2010.

[74] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7), 2009.

[75] Y. Li, Y. Cheng, V. Gligor, and A. Perrig. Establishing software-only root of trust
on embedded systems: Facts and fiction. In Security Protocols—22nd International
Workshop, 2015.

[76] Y. Li, J. M. McCune, and A. Perrig. Viper: Verifying the integrity of peripherals’
firmware. In CCS. ACM, 2011.

[77] Y. Li, J. M. McCune, and A. Perrig. VIPER: Verifying the integrity of peripherals’
firmware. In ACM CCS, 2011.

[78] Y. Lindell and J. Katz. Introduction to modern cryptography, chapter 4.3, pages 109–
113. Chapman and Hall/CRC, 2014.

[79] D. W. Loveland. Automated Theorem Proving: a logical basis. Elsevier, 2016.

[80] F. Lugou, L. Apvrille, and A. Francillon. Toward a methodology for unified verification
of hardware/software co-designs. Journal of Cryptographic Engineering, 2016.

[81] F. Lugou, L. Apvrille, and A. Francillon. Smashup: a toolchain for unified verification
of hardware/software co-designs. Journal of Cryptographic Engineering, 7(1):63–74,
2017.

190

[82] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVisor:
Efficient TCB reduction and attestation. In IEEE S&P ’10, 2010.

[83] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An
execution infrastructure for tcb minimization. In Proceedings of the 3rd ACM SIGOP-
S/EuroSys European Conference on Computer Systems 2008, pages 315–328, 2008.

[84] J. McCune et al. Flicker: An execution infrastructure for TCB minimization. SIGOPS
Operating Systems Review, 2008.

[85] K. L. McMillan. The smv system. In Symbolic Model Checking, pages 61–85. Springer,
1993.

[86] L. Narula and T. E. Humphreys. Requirements for secure clock synchronization. IEEE
Journal of Selected Topics in Signal Processing, 12(4):749–762, 2018.

[87] J. Noorman, J. V. Bulck, J. T. Mühlberg, et al. Sancus 2.0: A low-cost security
architecture for iot devices. ACM Trans. Priv. Secur., 20(3), 2017.

[88] J. Noorman et al. Sancus: Low-cost trustworthy extensible networked devices with a
zero-software trusted computing base. In USENIX, 2013.

[89] I. D. O. Nunes, G. Dessouky, A. Ibrahim, N. Rattanavipanon, A.-R. Sadeghi, and
G. Tsudik. Towards systematic design of collective remote attestation protocols. In
ICDCS, 2019.

[90] I. D. O. Nunes, S. Jakkamsetti, N. Rattanavipanon, and G. Tsudik. On the toctou
problem in remote attestation. arXiv preprint arXiv:2005.03873, 2020.

[91] I. D. O. Nunes, S. Jakkamsetti, and G. Tsudik. Dialed: Data integrity attestation for
low-end embedded devices. 2021.

[92] D. Perito and G. Tsudik. Secure code update for embedded devices via proofs of secure
erasure. In ESORICS, 2010.

[93] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh. Copilot — A coprocessor-
based kernel runtime integrity monitor. In USENIX Security Symposium, 2004.

[94] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro, P. Wang, S. Zanella-
Béguelin, A. Delignat-Lavaud, C. Hriţcu, K. Bhargavan, C. Fournet, et al. Verified low-
level programming embedded in f. Proceedings of the ACM on Programming Languages,
2017.

[95] S. Ravi, A. Raghunathan, and S. Chakradhar. Tamper resistance mechanisms for
secure embedded systems. In VLSI Design, 2004.

[96] D. Schellekens et al. Remote attestation on legacy operating systems with trusted
platform modules. Science of Computer Programming, 2008.

191

[97] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. Scuba: Secure code
update by attestation in sensor networks. In ACM workshop on Wireless security,
2006.

[98] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying
code integrity and enforcing untampered code execution on legacy systems. ACM
SIGOPS Operating Systems Review, December 2005.

[99] A. Seshadri et al. SWATT: Software-based attestation for embedded devices. In IEEE
S&P ’04, 2004.

[100] A. Seshadri et al. Pioneer: Verifying code integrity and enforcing untampered code
execution on legacy systems. In ACM SOSP, 2005.

[101] A. Seshadri et al. SAKE: Software attestation for key establishment in sensor networks.
In DCOSS. 2008.

[102] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In CCS ’07, 2007.

[103] L. Simon, D. Chisnall, and R. Anderson. What you get is what you C: Controlling side
effects in mainstream C compilers. In Proceedings of the Third IEEE European Sym-
posium on Security and Privacy (EuroSP), London, UK, Apr. 2018. ACM SIGOPS.

[104] R. V. Steiner and E. Lupu. Attestation in wireless sensor networks: A survey. ACM
Computing Surveys (CSUR), 49(3):51, 2016.

[105] Z. Sun, B. Feng, L. Lu, and S. Jha. Oat: Attesting operation integrity of embedded
devices. In 2020 IEEE Symposium on Security and Privacy (SP), pages 1433–1449.
IEEE, 2020.

[106] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory. In 2013
IEEE Symposium on Security and Privacy, pages 48–62. IEEE, 2013.

[107] Texas Instruments. MSP430 GCC user’s guide, 2016.

[108] J. Torrellas. Architectures for extreme-scale computing. Computer, 42(11):28–35, 2009.

[109] Trusted Computing Group. Trusted platform module (tpm), 2017.

[110] G. S. Tuncay, S. Demetriou, K. Ganju, and C. A. Gunter. Resolving the predicament
of Android custom permissions. In ISOC Network and Distributed Systems Security
Symposium (NDSS), 2018.

[111] J. Vijayan. Stuxnet renews power grid security concerns.
http://www.computerworld.com/article/2519574/security0/

stuxnet-renews-power-grid-security-concerns.html, june 2010.

[112] A. Virtualization. Secure virtual machine architecture reference manual. AMD Publi-
cation, 33047, 2005.

192

http://www.computerworld.com/article/2519574/security0/stuxnet-renews-power-grid-security-concerns.html
http://www.computerworld.com/article/2519574/security0/stuxnet-renews-power-grid-security-concerns.html

[113] Xilinx. Vivado design suite user guide, 2017.

[114] Xilinx Inc. Artix-7 FPGA family, 2018.

[115] M. Xu, M. Huber, Z. Sun, P. England, M. Peinado, S. Lee, A. Marochko, D. Mattoon,
R. Spiger, and S. Thom. Dominance as a new trusted computing primitive for the
internet of things. In 2019 IEEE Symposium on Security and Privacy (SP), pages
1415–1430. IEEE, 2019.

[116] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin, and A.-R. Sadeghi.
Atrium: Runtime attestation resilient under memory attacks. In Proceedings of the
36th International Conference on Computer-Aided Design, pages 384–391. IEEE Press,
2017.

[117] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche. Hacl*: A verified
modern cryptographic library. In CCS, 2017.

193

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Dissertation Structure

	Background
	Scope: Low-end Embedded Devices
	Attestation in Low-end Devices
	Linear Temporal Logic, Model Checking, and Formal Verification

	VRASED: Verifiable Remote Attestation for Simple Embedded Systems
	Introduction
	Overview of VRASED
	Adversary Capabilities & Verification Axioms
	Secure RA Properties at a High-Level (Informally)
	System Architecture
	Verification Pipeline

	Verifying VRASED
	Notation
	Formalizing RA Soundness and Security
	VRASED SW-Att
	Key Access Control (HW-Mod)
	Atomicity and Controlled Invocation (HW-Mod)
	Key Confidentiality (HW-Mod)
	DMA Support
	HW-Mod Composition
	Secure Reset (HW-Mod)

	Alternative Designs
	Erasure on SW-Att
	Compiler-Based Clean-Up
	Double-HMAC Call

	Evaluation
	Implementation
	Verification Results
	Performance and Hardware Cost
	Comparison with Other Low-End RA Architectures

	Related Work
	Conclusion
	Appendix: RA Soundness and Security Proofs
	Proof Strategy
	Machine Model
	RA Soundness Proof
	RA Security Proof

	Appendix: Verifier Authentication
	Appendix: FPGA Deployment and Sample Application

	RATA: Remote Attestation with TOCTOU Avoidance
	Introduction
	Problem Scope & Definitions
	Detection, Prevention & Memory Immutability
	Device Model & MCU Assumptions
	RA Definitions, Architectures & Adversary Model

	RA TOCTOU
	Notation
	TOCTOU-Security Definition
	TOCTOU-Secure RA vs. Consecutive Self-Measurements

	RATAA: RTC-Based TOCTOU-Secure Technique
	RATAA: Design & Security
	RATAA: Implementation & Verification

	RATAB: Clockless TOCTOU-Secure RA Technique
	RATAB – Design & Security
	RATAB: Implementation & Verification

	Evaluation
	Using RATA to Enhance RA & Related Services
	Constant-Time RA
	Atomicity & Real-Time Settings
	Collective RA Protocols and Device-to-Device Malware Relocation
	Runtime Attestation

	Related Work
	Conclusions
	Appendix: Proof of Theorem 3
	Appendix: Proof of Theorem 4
	Appendix: RATA Implementation with SANCUS

	APEX: From Remote Attestation to Verified Proofs of Execution
	Introduction
	Related Work
	Proof of Execution (PoX) Schemes
	PoX Adversary Model & Security Definition
	MCU Assumptions

	APEX: A Secure PoX Architecture
	Protocol and Architecture
	APEX Sub-Properties at a High-Level

	Formal Specification & Verified Implementation
	Machine Model
	Security & Implementation Correctness
	APEX Sub-Properties in LTL

	Implementation & Evaluation
	Evaluation Results
	Comparison with CFA
	Proof of Concept: Authenticated Sensing and Actuation

	Limitations & Future Directions
	Conclusion
	Appendix: Sub-Module Verification
	Appendix: Proofs of Implementation Correctness & Security
	Appendix: Software Transformation

	TAROT: Trigger-based Active Root Of Trust
	Introduction
	TAROT Overview
	TAROT in Detail
	Notation, Machine Model, & Assumptions
	TAROT End-To-End Goals Formally
	TAROT Sub-Properties
	TAROT Composition Proof
	Sub-Module Implementation+Verification
	TCB Confidentiality
	Resets & Availability

	Sample Applications
	GPIO-TCB: Critical Sensing+Actuation
	TimerTCB: Secure Real-Time Scheduling
	NetTCB: Network Event-based trigger
	Comparison with proactive1 and proactive2

	Implementation & Evaluation
	Related Work
	Conclusions

	Final Remarks
	Bibliography

