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ABSTRACT Vehicular sensing has reached new heights due to advances in external perception systems
enabled by the increasing number and type of sensors in vehicles, as well as the availability of on-board
computing. These changes have led to improvements in driver safety and have also created a highly hetero-
geneous environment of vehicles on the road today in terms of sensing and computing. Using collaborative
perception, the information obtained by vehicles with sensing capabilities can be expanded and improved,
and older vehicles that lack external sensors and computing capabilities can be informed of potential
hazards, opening the opportunity to improve traffic efficiency and safety on the roads. However, achieving
real-time collaborative perception is a difficult task due to the dynamic availability of vehicular sensing
and computing and the highly variable nature of vehicular communications. To address these challenges,
we propose a Heterogeneous Adaptive Collaborative Perception (HAdCoP) framework which utilizes a
Context-aware Latency Prediction Network (CaLPeN) to intelligently select which vehicles should transmit
their sensor data, the specific individual and collaborative perception tasks, and the amount of computational
offloading that should be utilized given information about the current state of the environment. Additionally,
we propose an Adaptive Perception Frequency (APF) model to determine the optimal end-to-end latency
requirement according to the current state of the environment. The proposed CaLPeN model outperforms six
implemented comparison models in terms of effective mean average precision (EmAP), beating the next best
model’s performance by 5.5% on average when tested on the OPV2V perception dataset using two different
combinations of wireless communication conditions and vehicular sensor/computing distributions.

INDEX TERMS Connected vehicles, collaborative perception, edge computing, machine learning.

I. INTRODUCTION
Advances in vehicular sensing and perception have paved the
way for improved safety systems for users and have opened
many new possibilities for further improvements in intelligent
transportation systems (ITS). Collaborative vehicular percep-
tion is an emerging topic that is showing the potential to
produce new heights in vehicular perception performance.
Collaborative perception models use sensor data from multi-
ple vehicles as well as sensors on road infrastructure in order
to provide a larger perception area than can be achieved by
a single vehicle, as well as reducing the impact of environ-

mental hazards such as poor weather and occlusions. From a
computational perspective, collaborative perception can also
reduce the aggregate computing requirement by utilizing mo-
bile edge computing, which can allow all vehicles to benefit,
even if they lack on-board computing. However, achieving
collaborative perception in ITS is a challenge considering
the data exchange that must occur between vehicles and the
dynamic wireless communication channels encountered by
moving vehicles, as well as the heterogeneous nature of mod-
ern vehicular sensing.

As vehicular perception technology evolves, so has the
amount of sensing and computing available in vehicles [1].
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As such, there exists a large distribution of sensor and com-
puting configurations that appear on the roads today and this
distribution will only get larger as time goes on. This hetero-
geneity among vehicular sensing creates a unique opportunity
to utilize collaborative perception in order to continually im-
prove the achievable perception, particularly in high traffic
areas where accidents are most likely to occur; as new ve-
hicles with advanced levels of computing and sensing are
introduced, the older vehicles will be able to benefit by col-
laborating with these new vehicles. The emergence of edge
computing, which provides computational resources at the
edge of the communication network such as base stations
on cell towers or mobile access points, provides a potential
infrastructure for facilitating data exchange between vehi-
cles and supplementing computational needs. Furthermore,
broadcasting the collaborative perception results from these
edge nodes allows any vehicle with networking capabilities to
benefit with minimal additional communication overhead [2].
This approach provides benefits for all vehicles in terms of
perception accuracy while also promoting a future direction
towards equity in mobility with the inclusion of pathways
for legacy vehicles to gain information from state-of-the-art
vehicles.

While collaborative perception can produce numerous ben-
efits for vehicular environments, there are also many potential
challenges in its real-world implementation. Some of these
challenges include integrating the current street infrastructure
while adding additional networking and computing resources
needed for edge assisted vehicular collaborative perception,
developing communication protocols to standardize the col-
laborative perception process among all OEMs, and creating
security measures to ensure that individual privacy is pre-
served and adversarial attacks are avoided. For the purpose
of this paper, we will focus on the challenge of optimizing
the end-to-end collaborative perception process for 3D object
detection, both in terms of perception accuracy and execution
latency, in edge-based vehicular environments with varying
distributions of vehicle types and network conditions. Mo-
bile edge computing can provide an avenue for the vehicular
data exchange and computational resources needed, but en-
suring that the end-to-end collaborative sensor fusion process,
including the data transmissions, completes in the required
latency is a considerable challenge considering the highly
dynamic nature of vehicular environments. In this work, we
explore how to maximize collaborative sensor fusion accu-
racy in a heterogeneous sensing environment while ensuring
that latency requirements are achieved. More specifically, the
contributions of this work is as follows:
� We present a Heterogeneous Adaptive Collaborative

Perception (HAdCoP) framework for enabling real-time
collaboration between vehicles with diverse sensing ca-
pabilities in vehicular edge environments.

� We propose an Adaptive Perception Frequency (APF)
model for dynamically adjusting the latency requirement
to increase reliability, minimize perception delays and
reduce idle computing time.

� We have created a neural network-based Context-aware
Latency Prediction Network (CaLPeN) which predicts
the optimal set of collaborative perception actions that
maximize perception accuracy while ensuring the la-
tency requirement is met.

The remainder of this paper will be organized as follows:
Section II will be a review of related work in the area of
individual and collaborative vehicular perception, as well as
vehicular edge computing. In Section III, an overview of the
heterogeneous sensing environment with vehicular edge com-
puting is presented, as well as a discussion of the different
trade-offs and our problem formulation. In Section IV, we
discuss our HAdCoP framework and the three submodels
that it consists of as well as our dataset selection process.
In Section V, we present the chosen collaborative sensor fu-
sion model, the associated feature extraction models, and the
hardware that was used for testing as well as describing how
we are evaluating the collaborative sensor fusion performance
before presenting an action decision model performance com-
parison on four associated sets of testing data. Finally, we
conclude the paper and discuss our plans for future work in
Section VI.

II. RELATED WORK
A. VEHICULAR PERCEPTION
Research in vehicular perception has been rapidly accelerat-
ing in the last decade, largely due to the vehicular sensing
datasets that have been released during this time. The most
well known of these datasets is Kitti [3], but other datasets
that are even more comprehensive in terms of environmental
diversity and amount of labeled data have emerged such as
the NuScenes [4] and Cityscapes [5] datasets. Due to the
high quality labeled data these datasets provide along with
the rise of machine learning methods, many models have
been created for a variety of perception tasks such as mo-
tion/trajectory prediction [6], [7], object detection [8], [9],
object association [10], [11], object tracking [12], and se-
mantic segmentation [13] that have shown promising levels
of performance on these vehicular perception datasets. Object
detection, specifically 3D object detection [14], is at the core
of many of these tasks and as such has attracted a large amount
of research.

The two primary sensors used for vehicular 3D object de-
tection are LiDAR and cameras. LiDAR sensors have become
a popular choice, as this sensor can sense the depth of an
object more accurately than a camera which leads to more
accurate 3D detections [15]. There are four general categories
of LiDAR 3D object detectors: Point based models such as
PointRCNN [16] and PointFormer [17], Grid based models
such as SECOND [18], PointPillar [19] and PIXOR [20],
Point-Voxel based models such as Fast Point R-CNN [21] and
Pyramid R-CNN [22], and Range based models such as Laser-
Net [23] and RangeDet [24]. The voxel-based and point-voxel
based LiDAR detection models produce the highest levels
of accuracy; however, many grid based methods are used
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for real-time vehicular perception due to their exceptional
inference latency.

For camera based 3D object detectors, there are five gen-
eral categories: Image-only monocular based models such as
CenterNet [25] and MonoFlex [26], Depth-assisted monoc-
ular based models such as Pseudo-LiDAR [27] and Mon-
oDTR [28], Prior-guided monocular based models such as
3D-RCNN [29] and MoNet3D [30], stereo based mod-
els such as Stereo R-CNN [31], YOLOStereo3D [32] and
PLUMENET [33], and multi-camera based models such as
DETR3D [34] and ImVoxelNet [35]. Although there have
been improvements in 3D object detection accuracy in camera
based models, especially stereo and multi-camera models,
their performance still lags behind LiDAR models both in
terms of performance and latency [36], [37]. However, since
cameras are currently so much more prevalent on vehicles
today as compared to LiDAR, additional research for camera
based 3D object detection may continue to be of use going
forward.

B. COLLABORATIVE VEHICULAR PERCEPTION
While the area of individual vehicular perception will con-
tinue to advance, a new paradigm of collaborative vehicular
perception has also emerged that offers levels of perception
that are not achievable by any single vehicle. As in indi-
vidual vehicular perception, datasets to study collaborative
vehicular perception have been created such as OPV2V [38],
DAIR-V2X [39], and V2XSet [40]. These datasets provide
synchronized sensor data for two or more vehicles all driving
within the same area. As such, many new collaborative per-
ception models have been proposed within the last few years.
Several different collaboration methods have been proposed,
from the more traditional fusion techniques proposed in F-
Cooper [41] and CoCa3D [42] to the graph based methods of
V2VNet [43], DiscoNet [44] and MP-Pose [45]. However, at-
tention based methods such as AttFusion [38], CoBETV [46]
and VIMI [47] have begun to show more optimal levels
of performance. Until very recently, collaborative percep-
tion research including all work listed up to this point have
been homogeneous in terms of sensing capabilities, but more
work has begun to emerge which investigate collaborative
perception for heterogeneous sensing with models such as
HM-ViT [48] and HEAL [49] that can accept different sensor
modalities from different vehicles.

One aspect of collaborative perception that we are inter-
ested in is ensuring that latency requirements for end-to-end
collaborative perception are met given dynamic networking
conditions, and there have been some methods that have
been created with this task in mind. FPV-RCNN [50] pro-
poses a keypoint feature selection and fusion strategy and
Where2Comm [51] proposes a spatial-confidence aware com-
munication mechanism which both aim to reduce the amount
of data that is transmitted from vehicles. There are also
collaborative perception models such as LCRN [52] and
SyncNet [53] that provide methods to mitigate the effects
of wireless communication loss or delay on collaborative

perception accuracy. However, none of these works consider
the variable availability of vehicular computing and sensing in
real-world scenarios, which is the focus of this work.

C. VEHICULAR EDGE COMPUTING
With the emergence of these vehicular perception methods,
a new need for computing has been created in vehicular envi-
ronments. Edge computing is one avenue to provide additional
computing for vehicles that has shown promise in aiding these
perception tasks and this has opened up an entire area of
research dedicated to determining how to optimally offload
data to the edge in different situations [54].

In order to optimize the edge offloading problem, many
works have employed more classical models such as con-
vex optimization [55], mixed integer nonlinear program-
ming [56], game theory [57], [58], [59], Markov decision
process [60], heuristics [61], and other numerical optimization
methods [62], [63]. More recently more complex machine
learning models have been introduced and new methodologies
for this task partitioning and offloading problem that involve
convolutional neural networks [64], federated learning [65],
and reinforcement learning [66], [67], [68] have been created.
However, none of these proposed methods consider both ac-
curacy and latency in terms of the optimizations.

In our previous work [69], we have explored real-time
collaborative perception in edge enabled vehicular environ-
ments for the case of homogeneous sensing and computing.
In this paper we aimed to expand that work by introducing
a new model which includes variable levels of sensing and
computing, individual decisions for each vehicle rather than
a single system-level decision for all vehicles, and containing
an adaptive latency requirement formulation as opposed to a
static one.

III. HETEROGENEOUS SENSOR FUSION IN MOBILE
EDGE ENVIRONMENTS
In this section, an overview of the subject environment will be
examined. Then, the different trade-offs that create the deci-
sion space for the associated collaborative perception problem
will be explained. Finally, the problem formulation will be
presented that will serve as the basis for the remainder of this
paper.

A. OVERVIEW
To begin the discussion of heterogeneous vehicular environ-
ments, consider the example shown in Fig. 1. This figure
shows vehicles with different levels of sensing and com-
puting driving in the same street environment; vehicles can
transmit sensor data to the edge as well as receive action
decision and perception results as shown by the dashed lines.
Table 1 shows the capacities of the different types of ve-
hicles that are being considered for this work to populate
these heterogeneous vehicular environments. By having vehi-
cles communicate with edge computing and communication
nodes, information can be shared between vehicles without
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FIGURE 1. Overview of an edge-enabled heterogeneous vehicular environment that contains vehicles with different levels of computing and sensing
capabilities as well as edge nodes for vehicles to communicate with and collaboration to occur. Type 1 vehicles, which do not contains external sensors,
can still receive the collaborative perception results but do not transmit data to the edge.

TABLE 1. The Four Vehicle Types We are Considering in This Work

any sort of vehicle-to-vehicle (V2V) communication. Addi-
tionally, decision processes at the edge node can determine
which vehicles should be selected to participate in the col-
laborative perception; all vehicles in the area should have
the results of the collaborative perception broadcast to them
irrespective of whether they can participate in the sensor fu-
sion process or not. If situations are encountered where the
number of vehicles dramatically increases causing congestion
on the roads and wireless networks, then less vehicles can be
selected to participate in generating the collaborative percep-
tion to lighten the networking and computing load. Designing
a system in this way allows for every vehicle to potentially
benefit while only needing a limited number of vehicles to
generate the collaborative perception. This also creates an
inherent scalability, as collaborative perception generation can
continue to operate even as the total number of vehicles and
variations in the network conditions increase.

B. TRADE-OFFS
In terms of the end-to-end heterogeneous sensor fusion pro-
cess for collaborative perception in vehicular edge environ-
ments, there are a number of different trade-offs that create
decisions which can affect the performance of the collabora-
tive perception. The trade-offs discussed in this section will
only pertain to participating vehicles, which we define as any
vehicle that has at least one sensor and can thus participate
in the generation of the collaborative perception. The four
specific trade-offs that will be investigated in this work are

TABLE 2. Changes in Perception Accuracy Measured in mAP Caused by
Different Feature Extractors and Number of Participating Vehicles for the
HEAL [49] Sensor Fusion Model

vehicle selection, feature extraction model, collaborative per-
ception scheme, and the amount of computational offloading.
In this section, each one will be discussed as well as its effect
on collaborative perception performance.

1) VEHICLE SELECTION
In a heterogeneous vehicular environment, there are vehicles
of potentially many different types that coexist in the environ-
ment, but not all vehicles need to participate in every second
of generating the collaborative perception for a particular edge
computing node. There are a number of factors that can affect
why one vehicle should be chosen over another, and there
are two factors in particular that are going to be considered
in this work. One is the sensing available on the vehicle; a
vehicle that contains a powerful sensor suite composed of
a large number of high-fidelity sensors will likely produce
an accurate representation of its surroundings and therefore
should have a higher probability of being chosen to participate
in the collaborative perception compared to vehicles with less
capable sensing suites. The other is the wireless communica-
tion conditions between the vehicle and the edge node. If there
are some vehicles with a weak or non-existent wireless link to
the edge nodes, then these vehicles should avoid being chosen
despite having high quality sensors available.

To quantify why one particular vehicle might be chosen
over another, consider the results presented in Table 2. In
this table, the mean average precision (mAP) accuracy values
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are shown for the HEAL [49] collaborative sensor fusion
model when different feature extractors are used for cases of
1-4 participating vehicles. Several conclusions can be drawn
from these results. One is that for the 3D object detection
task, LiDAR based methods perform much better than camera
based methods, which should make LiDAR enabled vehicles
more likely to be chosen to be a participating vehicle. Another
result to point out from this table is that there are diminishing
returns for perception accuracy as the number of participating
vehicles increases; each new participating vehicle introduces
less new information on average than the one before it and as
such every additional mAP gain from an additional vehicle’s
sensor data is less than the previous. As a result, if there are
certain vehicles without sufficient computing or a bad wireless
link then those vehicles may not be chosen, as the increase
in overall accuracy from the contribution of their sensor data
may not be worth the additional latency required especially if
there are already 2 or more vehicles already participating.

2) FEATURE EXTRACTION
Every participating vehicle will have one or more external
sensors, and there are many different ways that the visual
features needed for perception tasks can be extracted from this
sensor data. While some object detection models are created
to be efficient, in general the more accurate models are more
heavyweight and have higher inference latency and may re-
quire powerful computing in order to run in real-time [14].
Including multiple types of feature extraction within the col-
laborative perception model creates this trade-off between
accuracy and latency, which will act as one of the many knobs
that can be controlled in this system. As shown in Table 2,
the chosen sensor type and the associated feature extraction
methods can have a significant effect on the resultant percep-
tion accuracy.

3) COLLABORATIVE PERCEPTION SCHEME
Another knob in the realm of accuracy and latency trade-offs
is the collaborative perception scheme. For this work, we will
consider the collaborative perception schemes of intermedi-
ate collaboration and late collaboration. In general, an object
detector typically consists of two key components: the feature
extractor, which pulls visual features from the raw sensor data,
and the detection head, which uses these extracted features to
determine the locations of bounding boxes. In intermediate
collaboration, the fusing of data from different sources is per-
formed after extracting features but before the detection head
as shown in Fig. 2. The combined features are then processed
together to make detection decisions, allowing the model to
learn from all data sources simultaneously and leverage com-
plementary information. On the other hand, late collaboration
which is shown in Fig. 3 refers to combining the outputs of
separate detection models, each working on data from a dif-
ferent source. Intermediate collaboration generally provides
richer, more integrated information for decision making, lead-
ing to better detection performance on average compared to

FIGURE 2. Overview of the collaboration scheme of intermediate fusion.

FIGURE 3. Overview of the collaboration scheme of late fusion.

late collaboration; the latency of late collaboration is less than
that of intermediate though as the collaboration method is
usually more lightweight, such as non-maximum suppression,
compared to the more complex collaborative detection heads
in intermediate schemes [70].

4) COMPUTATIONAL OFFLOADING
The final trade-off that we are considering in this work is
the use of computational offloading. Since an edge node is
utilized as the location of the collaboration for collaborative
perception, there is always some level of offloading that is
required for each time step in this process. In this work, we
will consider two different levels of offloading which we term
full offloading and minor offloading, and the differences can
be seen in Fig. 4. With full offloading, the sensor data is
compressed and transmitted to the edge where all computa-
tional processes will occur. In minor offloading, some of the
computation will occur in the vehicle depending on whether
intermediate or late fusion is used. In cases of participat-
ing vehicles that do not have computational resources, full
offloading must be chosen in order to contribute to the col-
laborative perception. Vehicles with computational resources
will have the option to choose either minor or full offloading;
the offloading procedure chosen does not affect perception
accuracy but can have a large effect on latency. Since the
amount of data transmitted from the vehicle to the edge in
minor offloading is much less than full offloading, choosing
minor offloading will be the best decision in most cases.
However, there are some situations where full offloading will
be more optimal, such as when there is a significant difference
in the computing power between the vehicle and the edge or
if there are exceptionally high levels of throughput. Addition-
ally, since the data sizes for the bounding boxes produced by
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FIGURE 4. The four different cases of computational offloading that are
being considered which determine the location of the computing and what
data is being transmitted from the vehicle to the edge.

object detection are smaller than the feature extraction results,
the transmission latency for late fusion will be less than that
of intermediate fusion for minor offloading.

C. PROBLEM FORMULATION
In this work, the state of the vehicles within the edge-enabled
connected vehicle environment is defined as follows:

S = {sv1 , sv2 , . . ., svn} (1)

Each element in S, svi , is a vehicle that contains three states:

svn = {rn, sn, cn} (2)

rn is the current throughput between the vehicle and the edge
(in Mbps) and sn is the current vehicle speed (in Kmph). cn

is the computing and sensing type ∈ [1, 2, 3, 4], as defined in
Table 1. The goal of this work is to select the best action at
each time step of the collaborative perception process given
the current state information. An action (A) is defined as
follows:

A = {acp, av1 , . . ., avn} (3)

A contains a set of instructions for each participating vehicle,
avi , as well as a set of collaboration parameters, acp. The only
collaboration parameter that we consider in this work is the
collaborative perception scheme and as such acp is defined as
follows:

acp = {0, 1} (4)

In this binary encoding, acp = 0 corresponds to late fusion
and acp = 1 corresponds to intermediate fusion. The individ-
ual vehicle instructions are defined as:

avn = {pn, on} (5)

The action decision for each vehicle contains two instructions.
One of these is related to the perception model (p) and the
other is related to the offloading level (o). The perception

model representation is defined as:

pn = {0, 1, . . ., l} (6)

In this encoding, there are l possible feature extractors for
this particular vehicle and the value of l will depend on what
sensors the vehicle is equipped with; the more sensors that are
available on the vehicle, the more possible values of l there
will be since more potential feature extraction models that
can be utilized. Each value of l is associated with a partic-
ular feature extraction model. The option of pn = 0 correlates
with the vehicle not participating in collaborative perception
and thus not transmitting its perception data; this option will
always be chosen for Type 1 vehicles but may be chosen for
Type 2, 3 or 4 vehicles if the conditions warrant it. The other
action for each vehicle is the offloading level, which is defined
as:

on = {0, 1} (7)

In this binary encoding, we define on = 0 as minor offloading
and on = 1 as full offloading. In cases of vehicles that do not
have on-board computing, this value will not factor into the
action decision for this vehicle since on = 1 automatically.
For every time step, the set of all possible actions that can
be executed is defined as follows:

A = {A1, A2, . . ., Ak} (8)

In this equation, A contains all possible actions (Ai) that can
be chosen given the current distribution of vehicles that are
available to participate. Every action selected will produce an
associated end-to-end latency value and collaborative percep-
tion accuracy value that we will define as follows:

fAP(Ai | S) = mAPi (9)

fL(Ai | S) = Li (10)

Essentially, every possible action (Ai) will have a resulting
latency Li (measured in seconds) and collaborative perfor-
mance accuracy mAPi (measured in mean average precision).
Although accuracy should be maximized, a real-time con-
straint should also be applied to the maximization formulation
to ensure that the chosen actions can meet a given latency
requirement τ . As such, we will define the proposed optimiza-
tion problem as follows:

max
A|S

mAPi (11a)

s.t . Li < τ (11b)

In order to define a singular metric that can be used for per-
formance evaluation, a service delivery value is first defined
as follows:

Di =
{

1, if Li < τ

0, otherwise
(12)

In this equation, we have defined successful service delivery
(Di) as the end-to-end collaborative perception process, in-
cluding all data transmissions, completing in an elapsed time
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FIGURE 5. An overview of our proposed HAdCoP framework which consists of three sub-models: the APF model, the action decision model, and the
adjustable sensor fusion model. Each sub-model can be chosen and configured by the user to match the desired use case.

less than τ . Subsequently, we define the metric of effective
mean average precision (EmAP) as follows:

EmAPi = (Di ) × (mAPi ) (13)

Since Di ∈ [0, 1], optimizing this new metric produces an
equivalent optimization formulation as the one presented in
Equation (11) can be restated as follows:

max
A|S

(EmAPi ) (14)

This EmAP metric accurately reflects this optimization prob-
lem considering that the goal is to produce the most accurate
perception possible while still ensuring the latency require-
ment is met which also maximizes reliability since any failure
to deliver makes EmAP = 0.

IV. METHODOLOGY
In this section, the core methodology for heterogeneous
collaborative perception in real-time vehicular edge environ-
ments will be presented. The HAdCoP framework is the center
of this methodology, as this is what defines the data flow
and fusion process and is where the discussion will begin.
Afterwards, each component of this model will be discussed
individually. Finally, a discussion on the dataset selection and
generation used to create the training and testing data for the
performance evaluation is provided.

A. HETEROGENEOUS ADAPTIVE COLLABORATIVE
PERCEPTION
An overview of the Heterogeneous Adaptive Collaborative
Perception (HAdCoP) framework can be seen in Fig. 5. There
are three submodels within the HAdCoP framework that con-
trol the three main processes. The APF model first takes the
set of configurable parameters (U ) and the current state (S) as
input. Then, the latency threshold for the current time step (τ )
is computed. This threshold, along with the state information,
is passed to the action decision model, which determines the
action (A∗) to be executed for the current time step. As defined

in Section III-C, an action contains the overall collaborative
perception scheme as well as the instructions for each vehicle
which determine what object detection or feature extraction
tasks if any need to be computed on the vehicle and what type
of data to be transmitted to the edge; the combination of all
data the participating vehicle have been instructed to offload to
the edge (V ∗) is immediately ingested by the adjustable sensor
fusion model once it is received at the edge.

The output of the adjustable sensor fusion model is the
collaborative perception results (C∗) for the current time step
and this is broadcast to all vehicles in the area. At the next time
step, the process will start over again with the current state
information being transmitted to the edge. This framework
allows for dynamic adaptation of the collaborative perception
model and corresponding frequency of results generation to
match the environment as the vehicle sensor and computing
distributions and wireless conditions change over time.

This proposed framework defines the data transfer process
between each of the different submodels, but the selection of
each particular model can be chosen by the user. This modular
approach allows the proposed framework to have the potential
to be applied to any number of vehicular use cases by chang-
ing the three models within it. For the subject heterogeneous
collaborative perception problem, we utilize a previous work
for the adjustable sensor fusion model, but have proposed new
models to serve as the APF model and the action decision
model which will be discussed in the subsequent subsections.

B. ADAPTIVE PERCEPTION FREQUENCY MODEL
The first submodel within the HAdCoP framework is the
Adaptive Perception Frequency (APF) model. The purpose of
this model is to compute the lowest realistically achievable
latency threshold that the end-to-end collaborative perception
process can execute in given information about the current
state. The motivation for this is that vehicular environments
are highly dynamic and can experience very sudden changes
due to the high-speed nature of vehicles. To this end, the
latency threshold should be as low as it can be at all times.
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TABLE 3. Summary of Key Notations With Descriptions

However, there are situations where a lack of vehicles with
computing, advanced sensing, or poor wireless communica-
tion conditions causes the amount of time required for the
end-to-end collaborative perception process to increase. In
these cases, the latency threshold should be increased so that
there is sufficient time to compute the collaborative perception
results for the current time step before sensor data ingestion
begins for the next time step. In this way, the optimal amount
of data can be processed in a useful way and perception delays
as well as idle time are reduced.

The APF model contains two steps: computing a weighted
lower bound threshold value (T ) and binning this threshold to
produce the final latency threshold τ . The main reason why
T is being binned is due to the nature of sensors operating
on fixed frequencies (e.g. 1 Hz, 10 Hz, 30 Hz, etc.); in order
to keep the different types of sensor synchronized, only cer-
tain frequencies that all sensors can utilize should be chosen.
There are two terms that will be defined which create the
framework of the APF model and these are the lower bounds
for cases involving vehicular computing (minor offloading)
TMO and for cases involving no vehicular computing (full
offloading) TFO. These are defined as follows:

TFO = LFO + 2DC

RA2
(15)

LC = α

(o + 1)
+ β

(v + 1)
+ γ

(c + 1)n
+ δ

(s + 1)n
(16)

TMO = LMO + 2DE

RA2
+ LC (17)

The variables mentioned in the terms of both equations can
be found in Table 3. TFO is fairly straightforward, since it
is just the expected value of the computation latency added
to a best-case estimation of the time it would take for data

transmission. TMO has a similar set of first terms, though their
values will be much lower than TFO since LMO < LF0 and
DE < DC . This case of having the potential to utilize minor
offloading results in more potential actions that can be chosen
which can lead to more optimal action decisions if the state
information can be effectively represented in determining an
achievable latency threshold. As such, four configurable terms
are included to represent the effects of object density, vehicle
speeds, and the distribution of sensors and computing in par-
ticipating vehicles, and these terms are summed to create an
estimated context latency LC . The associated parameter values
for these terms form the set of configurable parameters for the
HAdCoP framework (U = [α, β, γ , δ]). Now that TMO and
TFO have been defined, the APF model is defined as follows:

T =
{

TFO, if C < 2

min(TMO, TFO), otherwise
(18)

τ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

.1, if T < .1

.2, if .1 ≤ T < .2

.5, if .2 ≤ T < .5

1, otherwise

(19)

There are two terms in (18) that correspond to two cases that
can be encountered in connected vehicle environments. The
top term in (18) is used when there are fewer than two vehicles
with on-board computing capacities (C) available. In this case
for the collaborative perception results to be generated, at least
one participating vehicle must utilize full offloading, and as
such, the data transmission will dominate the required total
latency and TFO will best reflect the lower bound for the
latency. The bottom term in (18) shows what will happen in
cases where minor offloading could be utilized and in most
cases TMO will be chosen, but in certain cases with very high
wireless throughput TFO may produce a lower value and be
chosen instead. Equation (19) states the four perception fre-
quency values we are considering for HAdCoP and specifies
which values of T correspond to which values of τ . Since T
is a theoretical lower bound, τ is just the value of T that has
been rounded up to the nearest bin value.

C. ACTION DECISION MODEL
The action decision model is the second submodel. It is the
core of the HAdCoP framework as this is what determines
the selected set of actions to produce accurate, real-time
collaborative perception. As is consistent with the problem
formulation presented in Section III-C, the goal of this model
is to maximize EmAP. To accomplish this, we have created a
Context-aware Latency Prediction Network (CaLPeN) which
is shown in Fig. 6. The idea behind this network is to have
multiple individual neural networks, which we have termed
I-Nets, for each vehicle’s set of state and potential action
instruction combinations to produce a latent space representa-
tion for each combination. These latent space representations
are then concatenated and have an additional feature appended
to them, which is the collaborative perception scheme acp, to
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FIGURE 6. An overview of our proposed CaLPeN model that will act as the
action decision model in HAdCoP. Each vehicle has its state/action
combinations processed on a I-Net before the final C-Net determines
which action should be chosen. Each computational block depicted
contains the input/output size for the fully connected (FC) layers and
channel size for any batch normalization (BN) layers or activation
functions and the data sizes are listed before/after each block.

form the set of intermediate data (ID). This ID is the input
to the collaborative neural network, or C-Net, which classi-
fies the ID to predict which of the associated actions will
meet the required latency. The action within this set of ac-
tions that were predicted to meet the latency requirement that
has the highest expected perception accuracy is chosen as
A∗. The input to the CaLPeN model is a (1 × 12) element
vector S = {sv1, sv2 , sv3 , sv4} that contains the state vehicle

state information for the four vehicles from the current time
step as described in Section III-C. Each vehicle’s associated I-
Net input is created by concatenating copies of that particular
vehicle’s state to every one of the 2l combinations of possible
instructions that the vehicle can execute to create the batch of
data vectors {[svn , a1], [svn , a2], . . ., [svn , ab]} that is of total
size (2l × 5) for each vehicle. Each I-Net will produce an
output of size (2l × 1) and these are concatenated together
to form an output of size (2l × 4); copies of this concatenated
output are created with each having a possible value of acp ap-
pended onto it and then each of these copies are concatenated
together. Since we have defined acp to contain only binary
values, the ID that is the input to the C-Net is of size (4l × 5).
The output of the C-Net is the predicted optimal action A∗
which is of size (1 × 9): four sets of vehicle instructions
which contain an offloading and feature extraction instruction
and one element to indicate the chosen collaborative percep-
tion scheme.

The value of l that is used is that of the participating vehicle
with the highest amount of sensors; we describe our chosen
sensor and model configurations in Section V-A which lead
to a value of l = 4, but the batch sizes that define the first
dimension of the data that moves through the CaLPeN have
been described in terms of l to be generalizable to other
selections of sensors and associated feature extraction models.
While each of the I-Nets have the same neural network archi-
tecture, they are trained separately and as such do not share
parameter weights. This entire network is trained end-to-end
for 5 epochs using the Adam optimizer [71] and the binary
cross-entropy loss function. For the proposed CaLPeN, it is
assumed that there are at least 4 vehicles available to partici-
pate in the collaborative perception; if there are ever less than
4 vehicles available, then null states will be used in place of
the missing vehicles.

D. ADJUSTABLE SENSOR FUSION MODEL
The final submodel of HAdCoP is the adjustable sensor fusion
model. Any multi-source sensor fusion model that can be
configured to accept any type of sensor input would be able to
act as the adjustable sensor fusion model. Fortunately, some
collaborative perception models have been created in recent
years that fit this criteria. For this work, we are not attempting
to create our own adjustable sensor fusion model but have
leveraged a recent work in this area instead. We are using
the Heterogeneous Alliance (HEAL) framework [49] as the
adjustable sensor fusion model. This model has been shown
to produce state-of-the-art results in collaborative 3D object
detection and has been designed specifically to accept any
type of sensor data as input. For each sensor input, multiple
feature extractors can be made available due to the backward
alignment of new agents in the collaborative training process.
Additionally, this model is also lightweight enough that it can
be executed in real-time on most modern GPUs.

E. DATASET SELECTION
There are no datasets that contain perception data (real or
synthetic) from multiple moving vehicles in the same area
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FIGURE 7. The wireless throughput and associated vehicle speeds and object densities for the S1 and S2 testing datasets.

along with the corresponding wireless communication data
for the links from the vehicles to the edge or cell towers.
However, there are datasets that contain multi-source vehic-
ular sensor data and vehicular communications separately. As
such, our approach to creating training and testing datasets
that could be used to study this heterogeneous collaborative
perception task was to combine information from a percep-
tion dataset and information from a wireless communication
dataset to simulate the intended environment. The chosen
perception dataset is OPV2V [38]. This is one of the largest
collaborative perception datasets (11,464 frames) with a focus
on 3D object detection that contains 4 or more vehicles driving
simultaneously equipped with both camera and LiDAR sen-
sors. For the wireless dataset, we utilized 5 G wireless traces
from moving vehicles that have been published for research
purposes [72]. This dataset contains throughput, channel and
context information for 5 G networks and contains over 50
unique wireless traces from moving vehicles.

To generate training and testing data for this work, seg-
ments from both perception and wireless communication
datasets were selected to form two distinct scenarios that can
demonstrate the robustness of our methodology. The wireless
communication dataset contains 16 traces from a moving ve-
hicle performing a file download/upload, and 8 traces were
selected to form two datasets of 4 vehicles. From each wire-
less trace, 600 data points of wireless throughput were chosen,
each containing the vehicle’s wireless throughput and speed;
for each of these data points of the wireless data, a corre-
sponding set of OPV2V perception data is associated with it
forming a complete dataset needed to explore collaborative
perception in real time in vehicular edge environments. The
two sets of wireless traces along with the vehicle speeds and

object counts for the testing datasets can be seen in Fig. 7.
We name these two testing datasets Scenario 1 (S1) and Sce-
nario 2 (S2) respectively. These two segments of perception
and networking data were specifically chosen to simulate two
distinct scenarios with S2 having higher average throughput
and vehicle speeds compared to S1 but with higher variance
and lower levels of surrounding object density.

Each vehicle in the OPV2V dataset contains the same sen-
sor suite that contains both LiDAR and cameras, but we are
interested in studying environments that are closer to the real
world and the heterogeneous sensing that is encountered on
the streets today and that may be on the roads in the future
decades. To combat this, we have defined two different distri-
butions of vehicular sensing and computing to simulate what
may be encountered in vehicular environments. Currently,
there are few vehicles that contain high-definition 360-degree
LiDAR sensors on the road today, but this type of sensing has
become a staple of vehicular perception research over the last
decade due to its superior performance in 3D perception tasks
compared to camera or radar/ultrasound [73]. As such, LiDAR
sensors are expected to appear in production vehicles in the
next decade as demand for continued improvements in auto-
motive safety increases [74]. Although it is unknown what the
distribution of sensors will look like on the roads of the future,
we model two different scenarios of vehicular sensing distri-
butions to use for testing purposes: One for near-future use
cases where LiDAR sensing and powerful computing suites
are still sparsely populated in real-world street environments
which we term computing and sensing conditions 1 (CSC1)
and another for a level of sensing and computing for the more
distant future where advanced sensing and computing on vehi-
cles is more ubiquitous which we have termed computing and
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FIGURE 8. Distribution of vehicle types for the two created computing and sensing conditions.

FIGURE 9. Plots shows how the perception latency threshold value τ changes over time for the 4 testing sets.

sensing conditions 2 (CSC2). A visual representation of these
two distributions can be seen in Fig. 8, using the vehicle type
definitions from Table 1. For each data point in the networking
and perception data S1/S2, 4 vehicles are sampled from the
chosen computing and sensing distribution to determine the
set of vehicles for each data point. By taking the combinations
of the two different vehicle distributions and two different sets
of associated wireless and perception data, 4 total datasets
are produced: CSC1-S1, CSC1-S2, CSC2-S1, and CSC2-S2.
Each of these datasets contain 600 data points which are split
80%/20% (480/120 data points) to form training and testing
sets respectively for the action decision models.

Additionally, an associated set of latency thresholds have
been produced by the proposed APF model for each of these 4
testing datasets. The values for τ for each of these cases can be
seen in Fig. 9 and will be used for the performance evaluation
in the action decision model comparison. As is consistent with
the APF model formulation discussed in Section IV-B, the
cases of higher wireless throughput produce lower threshold
values than those with lower throughput. The values for CSC1
are less than that of CSC2 as well due to the increased pres-
ence of LiDAR sensors and on-board computing in CSC2.
The parameter values used to generate these values of τ were
α = .25, β = .25, γ = .75 and δ = .25. These values were
generated by doing a parameter sweep for all for parameters
values in the range [0,. 25,. 50,. 75, 1] and choosing the
associated parameter values that performed best over the en-
tire training set in terms of minimizing the distance between
T and the true latency value Ttrue under the constraint that T
> Ttrue.

V. EXPERIMENTAL RESULTS
In this section, the remaining details of the research setup as
well as the experimental results will be presented. These re-
maining details include the chosen collaborative sensor fusion
models as well as information about how we are evaluating
accuracy and latency and the specific hardware that was used.
A comparison study is also presented providing the perfor-
mance values for different action decision models including
our proposed CaLPeN model in addition to other machine
learning and heuristic models.

A. COLLABORATIVE SENSOR FUSION EVALUATION
Now that the datasets have been generated, the performance
results for the collaborative sensor fusion are evaluated in
terms of accuracy and latency. As mentioned in Section IV-D,
we are using HEAL [49] as the adjustable sensor fusion
model, which is based on a neural network architecture. How-
ever, each feature extractor needs to correspond to a particular
3D object detection method and two methods were chosen for
each sensor type. For LiDAR sensors, the PointPillars [19]
(pn = 3) and SECOND [18] (pn = 4) 3D object detection
models were used. For camera sensors, two instances of the
lift-splat-shoot [75] 3D object detection model were used: one
using a modified ResNet-101 [76] (pn = 1) feature extractor
and another using an EfficientNet-B0 [77] (pn = 2) feature
extractor. Since there are two different LiDAR feature extrac-
tors and two different camera feature extractors, the value of
l as defined in Section III-C will be l = 4 for type 4 vehicles,
l = 2 for types 2 and 3, and l = 0 for type 1. To evaluate the
accuracy, we tested all combinations of feature extractors for
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FIGURE 10. Average inference latency values for various feature extractors
tested on NVIDIA RTX 1080Ti (vehicle) and RTX 4090 (edge) GPUs.

each individual vehicle and averaged the results over the entire
OPV2V testing dataset to mitigate the performance differ-
ences between different segments of the dataset and establish
the general trends that appear between different sensing and
feature extraction combinations on overall accuracy.

The execution latency of the adjustable sensor fusion model
is determined by the hardware it is executed on as well as the
parameters of inference (i.e. what feature extractors are being
used and how many vehicles are participating). By including
computational offloading to a mobile edge computing node, it
is assumed that the computational power of the edge is greater
than that of the vehicles in order to make this trade-off feasi-
ble. While some vehicles do have some very limited amount
of computing, we are only going to consider vehicles with > 1
TFLOPS of computing to be considered as having computing
in terms of the vehicle types to ensure that the vehicle can at
least execute the lightest of the collaborative perception mod-
els in real time. To model the computing power of vehicles
with available computing for the testing data, a NVIDIA RTX
1080Ti GPU (11.3 TFLOPS) is used to model the computing
capacity of a vehicle that has computing and for the com-
puting power of the edge, an NVIDIA RTX 4090 GPU (82.6
TFLOPS) is used. For the HEAL model, there are two main
steps to the intermediate collaborative perception inference
which is 1) individual vehicle feature extraction and alignment
and 2) collaborative pyramid fusion and detection head. Step
1) can be executed on the vehicle or on the edge while step 2)
always occurs at the edge. Inference latency results for step 1)
for both the vehicle and the edge can be seen in Fig. 10 and the
inference latency results for step 2) at the edge as a function
of how many vehicles participate is seen in Fig. 11. For late
collaborative perception, step 1) is just individual vehicle 3D
object detection while step 2) is non-maximum suppression on
the union of all vehicles 3D detections which was estimated
to take 2 ms.

B. ACTION DECISION MODEL COMPARISON
With all the accuracy and latency values for the collabora-
tive sensor fusion established, it is now possible to generate
performance values for our CaLPeN model in terms of
EmAP. To demonstrate the robustness of our model, we have
implemented several other methods and baselines to compare

FIGURE 11. Average inference latency values for the collaboration
detection head as a function of participating vehicles tested on NVIDIA
RTX 4090 (edge) GPU.

against the performance of our model. All models that have
been tested are classifiers and for this comparison they receive
the same input data of size (1 × 12) as described in Sec-
tion IV-C; this input data will be copied and concatenated with
the 4l possibilities of the nine element combinations within an
action selection to create a total input data size of (4l × 21).
The output of these action decision models will then be a set of
binary labels of size (4l × 1) which subsequently has the same
argmax function that is the last block of the C-Net within
CaLPeN applied to it in order to select the associated action
from the output with the positive label that has the maximum
sensor fusion accuracy. The result of this process will be a
predicted action A∗ for each of the comparison action decision
models that produces an associated EmAP value. This process
is repeated over all 4 testing cases and the results are presented
in the remainder of this section.

The CaLPeN model we proposed utilizes machine learning
and we wanted to use other models that also utilize machine
learning to compare against. The first of these that we tested is
logistic regression (LR), which serves as the most lightweight
option in this category, but one that still fits the problem
formulation well; logistic regression tends to work better in
classification problems compared to linear regression. Addi-
tionally, we wanted to employ an ensemble model that can
capture some of the nonlinearity and patterns in the training
data that more complex machine learning models are able to
achieve and for this we chose the random forest (RF).

In addition to machine learning models, we also created
two heuristic baselines to compare against. One of these base-
lines is termed highest accuracy (HA), since this baseline’s
heuristic is to choose the action from the set of all possible
actions that has the highest expected accuracy. The other
baseline is termed lowest latency (LL) and this baseline’s
heuristic attempts to choose the action which will produce the
lowest latency. It cannot be directly inferred from the state
information which action will definitively produce the lowest
resultant latency, but choosing only the two vehicles with the
highest throughput and having each of these two vehicles use
the feature extractor with the lowest expected latency will
produce the correct action in the majority of cases and as such
that is what the LL heuristic does.
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TABLE 4. The EmAP Performance Values for Each of the Potential Action
Decision Models

FIGURE 12. Results of the action decision model comparison over the 4
testing sets measured in EmAP.

The final type of comparisons we conducted were for
methodologies from a related work that were created for an
analogous task. In this way, by updating the objective func-
tion and parameters to match our problem formulation, these
related methodologies can be used as action decision models
and compared against our proposed model. We chose two
works focused on optimizing offloading decision in mobile
edge computing environments. One work proposes a Value
Iteration Algorithm (VIA) [60] method based on a Markov
decision process and the other work proposed a heuristic mo-
bility aware offloading algorithm (HMAOA) [61] to determine
the optimal offloading decision.

The results of this action decision model comparison can
be seen in Table 4. A visual representation of these results
can also be seen in Fig. 12. What sticks out most in these
results is that methods which focus on maximizing a utility
function, such as accuracy, without properly factoring in a
latency constraint will not perform well for this particular
problem. However, with the HAdCoP framework, many dif-
ferent choices are viable to use as action decision models.
With an APF model choosing achievable perception frequen-
cies, even using the LL heuristic will produce acceptable
performance values for the chosen adjustable sensor fusion
model. However, the machine learning models are the highest
performing on this task with our proposed CaLPeN model
performing the best in all 4 test cases.

To further explore how the decisions made differ between
each of the implemented action decision models, statistics

TABLE 5. The Values for Four Major Categories of Action Decisions
Averaged Over the Four Testing Datasets

were recorded for various categories of actions taken, and the
average values for these in the four testing datasets can be seen
in Table 5. The four action categories that are presented in
this table are the Collaborative Perception Scheme (CPS), the
Number of Vehicles Selected (NVS), the Offloading Percent-
age (OP) and the LiDAR Selection Percentage (LSP). There
are several observations that can be made from this table that
help explain the performances of each of the methods tested.
One thing to note is that HMAOA and HA always selected all
four vehicles (NVS = 4.0), making it impossible to complete
the collaborative perception process in a time less than τ in all
cases, which is the main reason why these methods perform
so much worse than all the others. On the other end of the
spectrum, VIA and LL always choose only two vehicles (NVS
= 2.0) which is a safe option in terms of adhering to the
latency requirement, but will never produce optimal accuracy
values. While CaLPeN, RF, and LR all produce an NVS be-
tween two and four showing there is dynamic selection taking
place, CaLPeN is able to make far more optimal decisions
shown by the increase in CPS, NVS and OP while still pro-
ducing a higher EmAP. Even though LR had the highest LSP,
it lost out on collaborative perception accuracy increase by not
including a third or fourth vehicle enough of the time.

VI. CONCLUSION AND FUTURE WORK
In this work, we have presented HAdCoP, a Heterogeneous
Adaptive Collaborative Perception framework that contains
an APF model, an action decision model, and an adjustable
sensor fusion model. We have proposed a novel APF model
as well as CaLPeN, a neural network-based Context-aware
Latency Prediction Network, which is used as the action deci-
sion model. Using HEAL [49] as the adjustable sensor fusion
model, we show that CaLPeN is capable of outperforming the
six comparison models implemented using our four generated
test datasets in terms of EmAP, beating the next best model’s
performance by 5.5% on average.

With these results, we have shown that as the amount of
vehicular sensing and computing increases, a collaborative
perception system’s potential does as well assuming ITS in-
frastructure continues to grow to allow for the additional
computing and communication needs. There are additional
features that can be incorporated into the collaborative percep-
tion process, as well as new topics that have not yet been fully
explored. In the realm of collaborative perception, there is still
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a need for protocols, both in terms of networking to ensure all
vehicles are able to transmit and receive data in addition to
security and privacy protocols to protect the identity of road
users and their data as well as prevent potential malicious
activity. New methods for multi-source sensor fusion can
help further reduce latency and increase the accuracy of the
end-to-end collaborative perception process. Additionally, in-
vestigating how to enhance sensor data robustness to improve
collaborative perception performance in the limited sensing
and computing environments that exist today may help propel
the adoption of such technologies.

In terms of improving the performance of the proposed
HAdCoP framework, adding additional context features, such
as the expected field of view of each vehicle’s sensors, can
aid in the vehicle selection process so that vehicles that can
contribute sensor data of areas that have not been seen by
other vehicles are more likely to be chosen. Additionally,
creating a new machine learning architecture for HAdCoP
that combines all three submodels into one may help improve
both perception accuracy as well as reducing latency overhead
by improving algorithmic efficiency. The potential to include
sensor data from street infrastructure can reduce the number
of vehicles needed to participate in collaborative perception in
each time step while maintaining or even improving the over-
all perception accuracy with the inclusion of new viewpoints.
Finally, adding or creating new testing data with increased
diversity in terms of weather and street environments as well
as the inclusion of real-world data will help further validate
the robustness of the proposed framework.
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